1
|
Hamza M, Wang S, Liu Y, Li K, Zhu M, Chen L. Unraveling the potential of bioengineered microbiome-based strategies to enhance cancer immunotherapy. Microbiol Res 2025; 296:128156. [PMID: 40158322 DOI: 10.1016/j.micres.2025.128156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
The human microbiome plays a pivotal role in the field of cancer immunotherapy. The microbial communities that inhabit the gastrointestinal tract, as well as the bacterial populations within tumors, have been identified as key modulators of therapeutic outcomes, affecting immune responses and reprogramming the tumor microenvironment. Advances in synthetic biology have made it possible to reprogram and engineer these microorganisms to improve antitumor activity, enhance T-cell function, and enable targeted delivery of therapies to neoplasms. This review discusses the role of the microbiome in modulating both innate and adaptive immune mechanisms-ranging from the initiation of cytokine production and antigen presentation to the regulation of immune checkpoints-and discusses how these mechanisms improve the efficacy of immune checkpoint inhibitors. We highlight significant advances with bioengineered strains like Escherichia coli Nissle 1917, Lactococcus lactis, Bifidobacterium, and Bacteroides, which have shown promising antitumor efficacy in preclinical models. These engineered microorganisms not only efficiently colonize tumor tissues but also help overcome resistance to standard therapies by reprogramming the local immune environment. Nevertheless, several challenges remain, such as the requirement for genetic stability, effective tumor colonization, and the control of potential safety issues. In the future, the ongoing development of genetic engineering tools and the optimization of bacterial delivery systems are crucial for the translation of microbiome-based therapies into the clinic. This review highlights the potential of bioengineered microbiota as an innovative, personalized approach in cancer immunotherapy, bringing hope for more effective and personalized treatment options for patients with advanced malignancies.
Collapse
Affiliation(s)
- Muhammad Hamza
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, China
| | - Yike Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Kun Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Motao Zhu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lin Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Askarizadeh F, Butler AE, Kesharwani P, Sahebkar A. Regulatory effect of curcumin on CD40:CD40L interaction and therapeutic implications. Food Chem Toxicol 2025; 200:115369. [PMID: 40043936 DOI: 10.1016/j.fct.2025.115369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/24/2025] [Accepted: 03/02/2025] [Indexed: 04/21/2025]
Abstract
Natural compounds have garnered significant attention as potential therapeutic agents due to their inherent properties. Their notable qualities, including safety, efficacy, favorable pharmacokinetic properties, and heightened effectiveness against certain diseases, particularly inflammatory conditions, make them particularly appealing. Among these compounds, curcumin has attracted considerable interest for its unique therapeutic properties and has therefore been extensively studied as a potential therapeutic agent for treating various diseases. Curcumin exhibits diverse anti-inflammatory, antioxidant, and antimicrobial effects. Curcumin's immune system regulatory ability has made it a promising compound for treatment of various inflammatory diseases, such as psoriasis, atherosclerosis, asthma, colitis, IBD, and arthritis. Among the signaling pathways implicated in these conditions, the CD40 receptor together with its ligand, CD40L, are recognized as central players. Studies have demonstrated that the interaction between CD40 and CD40L interaction acts as the primary mediator of the immune response in inflammatory diseases. Numerous studies have explored the impact of curcumin on the CD40:CD40L pathway, highlighting its regulatory effects on this inflammatory pathway and its potential therapeutic use in related inflammatory conditions. In this review, we will consider the evidence concerning curcumin's modulatory effects in inflammatory disease and its potential therapeutic role in regulating the CD40:CD40L pathway.
Collapse
Affiliation(s)
- Fatemeh Askarizadeh
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Ton Nu QC, Deka G, Park PH. CD8 + T cell-based immunotherapy: Promising frontier in human diseases. Biochem Pharmacol 2025; 237:116909. [PMID: 40179991 DOI: 10.1016/j.bcp.2025.116909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/28/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
The abundant cell components of the adaptive immune system called T lymphocytes (T cells) play important roles in mediating immune responses to eliminate the invaders and create the memory of the germs to form a new immunity for the next encounter. Among them, cytotoxic T cells expressing cell-surface CD8 are the most critical effector cells that directly eradicate the target infected cells by recognizing antigens presented by major histocompatibility complex class I molecules to protect our body from pathological threats. In the continuous evolution of immunotherapy, various CD8+ T cell-based therapeutic strategies have been developed based on the role and molecular concept of CD8+ T cells. The emergence of such remarkable therapies provides promising hope for multiple human disease treatments such as autoimmunity, infectious disease, cancer, and other non-infectious diseases. In this review, we aim to discuss the current knowledge on the utilization of CD8+ T cell-based immunotherapy for the treatment of various diseases, the molecular basis involved, and its limitations. Additionally, we summarize the recent advances in the use of CD8+ T cell-based immunotherapy and provide a comprehensive overview of CD8+ T cells, including their structure, underlying mechanism of function, and markers associated with CD8+ T cell exhaustion. Building upon these foundations, we delineate the advancement of CD8+ T cell-based immunotherapies with fundamental operating principles followed by research studies, and challenges, as well as illustrate human diseases involved in this development.
Collapse
Affiliation(s)
- Quynh Chau Ton Nu
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Gitima Deka
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea; Research institute of cell culture, Yeungnam University, Gyeongsan, Republic of Korea.
| |
Collapse
|
4
|
Watts TH, Yeung KKM, Yu T, Lee S, Eshraghisamani R. TNF/TNFR Superfamily Members in Costimulation of T Cell Responses-Revisited. Annu Rev Immunol 2025; 43:113-142. [PMID: 39745933 DOI: 10.1146/annurev-immunol-082423-040557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Prosurvival tumor necrosis factor receptor (TNFR) superfamily (TNFRSF) members on T cells, including 4-1BB, CD27, GITR, and OX40, support T cell accumulation during clonal expansion, contributing to T cell memory. During viral infection, tumor necrosis factor superfamily (TNFSF) members on inflammatory monocyte-derived antigen-presenting cells (APCs) provide a postpriming signal (signal 4) for T cell accumulation, particularly in the tissues. Patients with loss-of-function mutations in TNFR/TNFSF members reveal a critical role for 4-1BB and CD27 in CD8 T cell control of Epstein-Barr virus and other childhood infections and of OX40 in CD4 T cell responses. Here, on the 20th anniversary of a previous Annual Review of Immunology article about TNFRSF signaling in T cells, we discuss the effects of endogenous TNFRSF signals in T cells upon recognition of TNFSF members on APCs; the role of TNFRSF members, including TNFR2, on regulatory T cells; and recent advances in the incorporation of TNFRSF signaling in T cells into immunotherapeutic strategies for cancer.
Collapse
Affiliation(s)
- Tania H Watts
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada;
| | - Karen K M Yeung
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada;
| | - Tianning Yu
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada;
| | - Seungwoo Lee
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada;
| | | |
Collapse
|
5
|
Puppala ER, Wu L, Fan X, Cao X. CD27 signaling inhibits tumor growth and metastasis via CD8 + T cell-independent mechanisms in the B16-F10 melanoma model. Cancer Immunol Immunother 2024; 73:198. [PMID: 39105866 PMCID: PMC11303370 DOI: 10.1007/s00262-024-03780-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024]
Abstract
CD27 belongs to the tumor necrosis factor receptor superfamily and acts as a co-stimulatory molecule, modulating T and B cell responses. CD27 stimulation enhances T cell survival and effector functions, thus providing opportunities to develop therapeutic strategies. The current study aims to investigate the role of endogenous CD27 signaling in tumor growth and metastasis. CD8 + T cell-specific CD27 knockout (CD8Cre-CD27fl) mice were developed, while global CD27 knockout (KO) mice were also used in our studies. Flow cytometry analyses confirmed that CD27 was deleted specifically from CD8 + T cells without affecting CD4 + T cells, B cells, and HSPCs in the CD8Cre-CD27fl mice, while CD27 was deleted from all cell types in global CD27 KO mice. Tumor growth and metastasis studies were performed by injecting B16-F10 melanoma cells subcutaneously (right flank) or intravenously into the mice. We have found that global CD27 KO mice succumbed to significantly accelerated tumor growth compared to WT controls. In addition, global CD27 KO mice showed a significantly higher burden of metastatic tumor nests in the lungs compared to WT controls. However, there was no significant difference in tumor growth curves, survival, metastatic tumor nest counts between the CD8Cre-CD27fl mice and WT controls. These results suggest that endogenous CD27 signaling inhibits tumor growth and metastasis via CD8 + T cell-independent mechanisms in this commonly used melanoma model, presumably through stimulating antitumor activities of other types of immune cells.
Collapse
Affiliation(s)
- Eswara Rao Puppala
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, USA
| | - Long Wu
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, USA
| | - Xiaoxuan Fan
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, USA
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, USA
| | - Xuefang Cao
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, USA.
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
6
|
Hou Y, Lin B, Xu T, Jiang J, Luo S, Chen W, Chen X, Wang Y, Liao G, Wang J, Zhang J, Li X, Xiang X, Xie Y, Wang J, Peng S, Lv W, Liu Y, Xiao H. The neurotransmitter calcitonin gene-related peptide shapes an immunosuppressive microenvironment in medullary thyroid cancer. Nat Commun 2024; 15:5555. [PMID: 39030177 PMCID: PMC11271530 DOI: 10.1038/s41467-024-49824-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/20/2024] [Indexed: 07/21/2024] Open
Abstract
Neurotransmitters are key modulators in neuro-immune circuits and have been linked to tumor progression. Medullary thyroid cancer (MTC), an aggressive neuroendocrine tumor, expresses neurotransmitter calcitonin gene-related peptide (CGRP), is insensitive to chemo- and radiotherapies, and the effectiveness of immunotherapies remains unknown. Thus, a comprehensive analysis of the tumor microenvironment would facilitate effective therapies and provide evidence on CGRP's function outside the nervous system. Here, we compare the single-cell landscape of MTC and papillary thyroid cancer (PTC) and find that expression of CGRP in MTC is associated with dendritic cell (DC) abnormal development characterized by activation of cAMP related pathways and high levels of Kruppel Like Factor 2 (KLF2), correlated with an impaired activity of tumor infiltrating T cells. A CGRP receptor antagonist could offset CGRP detrimental impact on DC development in vitro. Our study provides insights of the MTC immunosuppressive microenvironment, and proposes CGRP receptor as a potential therapeutic target.
Collapse
MESH Headings
- Tumor Microenvironment/immunology
- Humans
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/immunology
- Thyroid Neoplasms/pathology
- Calcitonin Gene-Related Peptide/metabolism
- Carcinoma, Neuroendocrine/genetics
- Carcinoma, Neuroendocrine/metabolism
- Carcinoma, Neuroendocrine/pathology
- Carcinoma, Neuroendocrine/immunology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Thyroid Cancer, Papillary/metabolism
- Thyroid Cancer, Papillary/immunology
- Thyroid Cancer, Papillary/genetics
- Thyroid Cancer, Papillary/pathology
- Receptors, Calcitonin Gene-Related Peptide/metabolism
- Cyclic AMP/metabolism
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Neurotransmitter Agents/metabolism
- Gene Expression Regulation, Neoplastic
- Cell Line, Tumor
- Calcitonin Gene-Related Peptide Receptor Antagonists/pharmacology
- Single-Cell Analysis
Collapse
Affiliation(s)
- Yingtong Hou
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bo Lin
- Department of Thyroid Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tianyi Xu
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Juan Jiang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuli Luo
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wanna Chen
- Department of Thyroid Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinwen Chen
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuanqi Wang
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guanrui Liao
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianping Wang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiayuan Zhang
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xuyang Li
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiao Xiang
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yubin Xie
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ji Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sui Peng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weiming Lv
- Department of Thyroid Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yihao Liu
- Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
7
|
Ishigaki H, Yamauchi T, Long MD, Hoki T, Yamamoto Y, Oba T, Ito F. Generation, Transcriptomic States, and Clinical Relevance of CX3CR1+ CD8 T Cells in Melanoma. CANCER RESEARCH COMMUNICATIONS 2024; 4:1802-1814. [PMID: 38881188 PMCID: PMC11267618 DOI: 10.1158/2767-9764.crc-24-0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Recent progress in single-cell profiling technologies has revealed significant phenotypic and transcriptional heterogeneity in tumor-infiltrating CD8+ T cells. However, the transition between the different states of intratumoral antigen-specific CD8+ T cells remains elusive. Here, we sought to examine the generation, transcriptomic states, and the clinical relevance of melanoma-infiltrating CD8+ T cells expressing a chemokine receptor and T-cell differentiation marker, CX3C chemokine receptor 1 (CX3CR1). Analysis of single-cell datasets revealed distinct human melanoma-infiltrating CD8+ T-cell clusters expressing genes associated with effector T-cell function but with distinguishing expression of CX3CR1 or PDCD1. No obvious impact of CX3CR1 expression in melanoma on the response to immune checkpoint inhibitor therapy was observed while increased pretreatment and on-treatment frequency of a CD8+ T-cell cluster expressing high levels of exhaustion markers was associated with poor response to the treatment. Adoptively transferred antigen-specific CX3CR1- CD8+ T cells differentiated into the CX3CR1+ subset in mice treated with FTY720, which inhibits lymphocyte egress from secondary lymphoid tissues, suggesting the intratumoral generation of CX3CR1+ CD8+ T cells rather than their trafficking from secondary lymphoid organs. Furthermore, analysis of adoptively transferred antigen-specific CD8+ T cells, in which the Cx3cr1 gene was replaced with a marker gene confirmed that CX3CR1+ CD8+ T cells could directly differentiate from the intratumoral CX3CR1- subset. These findings highlight that tumor antigen-specific CX3CR1- CD8+ T cells can fully differentiate outside the secondary lymphoid organs and generate CX3CR1+ CD8+ T cells in the tumor microenvironment, which are distinct from CD8+ T cells that express markers of exhaustion. SIGNIFICANCE Intratumoral T cells are composed of heterogeneous subpopulations with various phenotypic and transcriptional states. This study illustrates the intratumoral generation of antigen-specific CX3CR1+ CD8+ T cells that exhibit distinct transcriptomic signatures and clinical relevance from CD8+ T cells expressing markers of exhaustion.
Collapse
Affiliation(s)
- Hirohito Ishigaki
- Department of Surgery, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, California.
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan.
| | - Takayoshi Yamauchi
- Department of Surgery, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, California.
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| | - Mark D. Long
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| | - Toshifumi Hoki
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
- Oncology Science Unit, MSD Japan, Tokyo, Japan.
| | - Yuta Yamamoto
- Department of Surgery, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, California.
- Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Takaaki Oba
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
- Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Fumito Ito
- Department of Surgery, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, California.
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| |
Collapse
|
8
|
Chen MY, Zhang F, Goedegebuure SP, Gillanders WE. Dendritic cell subsets and implications for cancer immunotherapy. Front Immunol 2024; 15:1393451. [PMID: 38903502 PMCID: PMC11188312 DOI: 10.3389/fimmu.2024.1393451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
Dendritic cells (DCs) play a central role in the orchestration of effective T cell responses against tumors. However, their functional behavior is context-dependent. DC type, transcriptional program, location, intratumoral factors, and inflammatory milieu all impact DCs with regard to promoting or inhibiting tumor immunity. The following review introduces important facets of DC function, and how subset and phenotype can affect the interplay of DCs with other factors in the tumor microenvironment. It will also discuss how current cancer treatment relies on DC function, and survey the myriad ways with which immune therapy can more directly harness DCs to enact antitumor cytotoxicity.
Collapse
Affiliation(s)
- Michael Y. Chen
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Felicia Zhang
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Simon Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, MO, United States
| | - William E. Gillanders
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
9
|
Oba T, Long MD, Ito KI, Ito F. Clinical and immunological relevance of SLAMF6 expression in the tumor microenvironment of breast cancer and melanoma. Sci Rep 2024; 14:2394. [PMID: 38287061 PMCID: PMC10825192 DOI: 10.1038/s41598-023-50062-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/14/2023] [Indexed: 01/31/2024] Open
Abstract
Compelling evidence shows that the frequency of T cells in the tumor microenvironment correlates with prognosis as well as response to immunotherapy. However, considerable heterogeneity exists within tumor-infiltrating T cells, and significance of their genomic and transcriptomic landscape on clinical outcomes remains to be elucidated. Signaling lymphocyte activation molecule 6 (SLAMF6) is expressed on intra-tumoral progenitor-exhausted T cells, which exhibit the capacity to proliferate, self-renew and produce terminally-exhausted T cells in pre-clinical models and patients. Here, we investigated the impact of SLAMF6 expression on prognosis in two immunologically different tumor types using publicly available databases. Our findings demonstrate that high SLAMF6 expression is associated with better prognosis, expression of TCF7 (encoding T-cell factor 1), and increased gene signatures associated with conventional type 1 dendritic cells and effector function of T cells in melanoma and breast cancer. Single-cell profiling of breast cancer tumor microenvironment reveals SLAMF6 expression overlaps CD8 T cells with a T-effector signature, which includes subsets expressing TCF7, memory and effector-related genes, analogous to progenitor-exhausted T cells. These findings illustrate the significance of SLAMF6 in the tumor as a marker for better effector responses, and provide insights into the predictive and prognostic determinants for cancer patients.
Collapse
Affiliation(s)
- Takaaki Oba
- Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Mark D Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Ken-Ichi Ito
- Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Fumito Ito
- Department of Surgery, Keck School of Medicine, University of Southern California, 1450 Biggy St. NRT 3505, Los Angeles, CA, 90033, USA.
| |
Collapse
|
10
|
Mortaezaee K, Majidpoor J. Mechanisms of CD8 + T cell exclusion and dysfunction in cancer resistance to anti-PD-(L)1. Biomed Pharmacother 2023; 163:114824. [PMID: 37141735 DOI: 10.1016/j.biopha.2023.114824] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/06/2023] Open
Abstract
CD8+ T cells are the front-line defensive cells against cancer. Reduced infiltration and effector function of CD8+ T cells occurs in cancer and is contributed to defective immunity and immunotherapy resistance. Exclusion and exhaustion of CD8+ T cells are the two key factors associated with reduced durability of immune checkpoint inhibitor (ICI) therapy. Initially activated T cells upon exposure to chronic antigen stimulation or immunosuppressive tumor microenvironment (TME) acquire a hyporesponsive state that progressively lose their effector function. Thus, a key strategy in cancer immunotherapy is to look for factors contributed to defective CD8+ T cell infiltration and function. Targeting such factors can define a promising supplementary approach in patients receiving anti-programmed death-1 receptor (PD-1)/anti-programmed death-ligand 1 (PD-L1) therapy. Recently, bispecific antibodies are developed against PD-(L)1 and a dominant factor within TME, representing higher safety profile and exerting more desired outcomes. The focus of this review is to discuss about promoters of deficient infiltration and effector function of CD8+ T cells and their addressing in cancer ICI therapy.
Collapse
Affiliation(s)
- Keywan Mortaezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
11
|
Parker S, McDowall C, Sanchez-Perez L, Osorio C, Duncker PC, Briley A, Swartz AM, Herndon JE, Yu YRA, McLendon RE, Tedder TF, Desjardins A, Ashley DM, Gunn MD, Enterline DS, Knorr DA, Pastan IH, Nair SK, Bigner DD, Chandramohan V. Immunotoxin-αCD40 therapy activates innate and adaptive immunity and generates a durable antitumor response in glioblastoma models. Sci Transl Med 2023; 15:eabn5649. [PMID: 36753564 PMCID: PMC10440725 DOI: 10.1126/scitranslmed.abn5649] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/17/2023] [Indexed: 02/10/2023]
Abstract
D2C7-immunotoxin (IT), a dual-specific IT targeting wild-type epidermal growth factor receptor (EGFR) and mutant EGFR variant III (EGFRvIII) proteins, demonstrates encouraging survival outcomes in a subset of patients with glioblastoma. We hypothesized that immunosuppression in glioblastoma limits D2C7-IT efficacy. To improve the response rate and reverse immunosuppression, we combined D2C7-IT tumor cell killing with αCD40 costimulation of antigen-presenting cells. In murine glioma models, a single intratumoral injection of D2C7-IT+αCD40 treatment activated a proinflammatory phenotype in microglia and macrophages, promoted long-term tumor-specific CD8+ T cell immunity, and generated cures. D2C7-IT+αCD40 treatment increased intratumoral Slamf6+CD8+ T cells with a progenitor phenotype and decreased terminally exhausted CD8+ T cells. D2C7-IT+αCD40 treatment stimulated intratumoral CD8+ T cell proliferation and generated cures in glioma-bearing mice despite FTY720-induced peripheral T cell sequestration. Tumor transcriptome profiling established CD40 up-regulation, pattern recognition receptor, cell senescence, and immune response pathway activation as the drivers of D2C7-IT+αCD40 antitumor responses. To determine potential translation, immunohistochemistry staining confirmed CD40 expression in human GBM tissue sections. These promising preclinical data allowed us to initiate a phase 1 study with D2C7-IT+αhCD40 in patients with malignant glioma (NCT04547777) to further evaluate this treatment in humans.
Collapse
Affiliation(s)
- Scott Parker
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Charlotte McDowall
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Luis Sanchez-Perez
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Cristina Osorio
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Aaron Briley
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Adam M Swartz
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - James E Herndon
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA
| | - Yen-Rei A Yu
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Roger E McLendon
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Thomas F Tedder
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Annick Desjardins
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - David M Ashley
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael Dee Gunn
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - David S Enterline
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - David A Knorr
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ira H Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Smita K Nair
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Darell D Bigner
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Vidyalakshmi Chandramohan
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
12
|
Gamache A, Conarroe C, Adair S, Bauer T, Padilla F, Bullock TNJ. Interrogating the CD27:CD70 axis in αCD40-dependent control of pancreatic adenocarcinoma. Front Cell Dev Biol 2023; 11:1173686. [PMID: 37123403 PMCID: PMC10130518 DOI: 10.3389/fcell.2023.1173686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Immune checkpoint blockade immunotherapy has radically changed patient outcomes in multiple cancer types. Pancreatic cancer is one of the notable exceptions, being protected from immunotherapy by a variety of mechanisms, including the presence of a dense stroma and immunosuppressive myeloid cells. Previous studies have demonstrated that CD40 stimulation can remodel the tumor microenvironment in a manner that promotes effector immune cell responses and can cooperate with immune checkpoint inhibition for durable tumor control mediated by T cells. Here we confirm the capability of this combination therapy to dramatically, and durably, control pancreatic cancer growth in an orthotopic model and that the immune memory to this cancer is primarily a function of CD4+ T cells. We extend this understanding by demonstrating that recruitment of recently primed T cells from the draining lymph nodes is not necessary for the observed control, suggesting that the pre-existing intra-tumoral cells respond to the combination therapy. Further, we find that the efficacy of CD40 stimulation is not dependent upon CD70, which is commonly induced on dendritic cells in response to CD40 agonism. Finally, we find that directly targeting the receptor for CD70, CD27, in combination with the TLR3 agonist polyIC, provides some protection despite failing to increase the frequency of interferon gamma-secreting T cells.
Collapse
Affiliation(s)
- Awndre Gamache
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, United States
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- *Correspondence: Awndre Gamache,
| | - Claire Conarroe
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, United States
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Sara Adair
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Todd Bauer
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Frederic Padilla
- Focused Ultrasound Foundation, Charlottesville, VA, United States
- Department of Radiology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Timothy N. J. Bullock
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, United States
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
13
|
Engineered Lactococcus lactis secreting Flt3L and OX40 ligand for in situ vaccination-based cancer immunotherapy. Nat Commun 2022; 13:7466. [PMID: 36463242 PMCID: PMC9719518 DOI: 10.1038/s41467-022-35130-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/14/2022] [Indexed: 12/04/2022] Open
Abstract
In situ vaccination is a promising strategy to convert the immunosuppressive tumor microenvironment into an immunostimulatory one with limited systemic exposure and side effect. However, sustained clinical benefits require long-term and multidimensional immune activation including innate and adaptive immunity. Here, we develop a probiotic food-grade Lactococcus lactis-based in situ vaccination (FOLactis) expressing a fusion protein of Fms-like tyrosine kinase 3 ligand and co-stimulator OX40 ligand. Intratumoural delivery of FOLactis contributes to local retention and sustained release of therapeutics to thoroughly modulate key components of the antitumour immune response, such as activation of natural killer cells, cytotoxic T lymphocytes, and conventional-type-1-dendritic cells in the tumors and tumor-draining lymph nodes. In addition, intratumoural administration of FOLactis induces a more robust tumor antigen-specific immune response and superior systemic antitumour efficacy in multiple poorly immune cell-infiltrated and anti-PD1-resistant tumors. Specific depletion of different immune cells reveals that CD8+ T and natural killer cells are crucial to the in situ vaccine-elicited tumor regression. Our results confirm that FOLactis displays an enhanced antitumour immunity and successfully converts the 'cold' tumors to 'hot' tumors.
Collapse
|
14
|
Mao C, Beiss V, Ho GW, Fields J, Steinmetz NF, Fiering S. In situ vaccination with cowpea mosaic virus elicits systemic antitumor immunity and potentiates immune checkpoint blockade. J Immunother Cancer 2022; 10:e005834. [PMID: 36460333 PMCID: PMC9723958 DOI: 10.1136/jitc-2022-005834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND In situ vaccination (ISV) is a cancer immunotherapy strategy in which immunostimulatory reagents are introduced directly into a tumor to stimulate antitumor immunity both against the treated tumor and systemically against untreated tumors. Recently, we showed that cowpea mosaic virus (CPMV) is a potent multi-toll-like receptor (TLR) agonist with potent efficacy for treating tumors in mice and dogs by ISV. However, ISV with CPMV alone does not uniformly treat all mouse tumor models tested, however this can be overcome through strategic combinations. More insight is needed to delineate potency and mechanism of systemic antitumor immunity and abscopal effect. METHOD We investigated the systemic efficacy (abscopal effect) of CPMV ISV with a two-tumor mouse model using murine tumor lines B16F10, 4T1, CT26 and MC38. Flow cytometry identified changes in cell populations responsible for systemic efficacy of CPMV. Transgenic knockout mice and depleting antibodies validated the role of relevant candidate cell populations and cytokines. We evaluated these findings and engineered a multicomponent combination therapy to specifically target the candidate cell population and investigated its systemic efficacy, acquired resistance and immunological memory in mouse models. RESULTS ISV with CPMV induces systemic antitumor T-cell-mediated immunity that inhibits growth of untreated tumors and requires conventional type-1 dendritic cells (cDC1s). Furthermore, using multiple tumor mouse models resistant to anti-programmed death 1 (PD-1) therapy, we tested the hypothesis that CPMV along with local activation of antigen-presenting cells with agonistic anti-CD40 can synergize and strengthen antitumor efficacy. Indeed, this combination ISV strategy induces an influx of CD8+ T cells, triggers regression in both treated local and untreated distant tumors and potentiates tumor responses to anti-PD-1 therapy. Moreover, serial ISV overcomes resistance to anti-PD-1 therapy and establishes tumor-specific immunological memory. CONCLUSIONS These findings provide new insights into in situ TLR activation and cDC1 recruitment as effective strategies to overcome resistance to immunotherapy in treated and untreated tumors.
Collapse
Affiliation(s)
- Chenkai Mao
- Microbiology and Immunology, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Veronique Beiss
- Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Gregory W Ho
- Microbiology and Immunology, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Jennifer Fields
- Microbiology and Immunology, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Steven Fiering
- Microbiology and Immunology, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
- Geisel School of Medicine at Dartmouth, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire, USA
| |
Collapse
|
15
|
Mechanisms of CD40-dependent cDC1 licensing beyond costimulation. Nat Immunol 2022; 23:1536-1550. [PMID: 36271147 PMCID: PMC9896965 DOI: 10.1038/s41590-022-01324-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 09/07/2022] [Indexed: 02/08/2023]
Abstract
CD40 signaling in classical type 1 dendritic cells (cDC1s) is required for CD8 T cell-mediated tumor rejection, but the underlying mechanisms are incompletely understood. Here, we identified CD40-induced genes in cDC1s, including Cd70, Tnfsf9, Ptgs2 and Bcl2l1, and examined their contributions to anti-tumor immunity. cDC1-specific inactivation of CD70 and COX-2, and global CD27 inactivation, only partially impaired tumor rejection or tumor-specific CD8 T cell expansion. Loss of 4-1BB, alone or in Cd27-/- mice, did not further impair anti-tumor immunity. However, cDC1-specific CD40 inactivation reduced cDC1 mitochondrial transmembrane potential and increased caspase activation in tumor-draining lymph nodes, reducing migratory cDC1 numbers in vivo. Similar impairments occurred during in vitro antigen presentation by Cd40-/- cDC1s to CD8+ T cells, which were reversed by re-expression of Bcl2l1. Thus, CD40 signaling in cDC1s not only induces costimulatory ligands for CD8+ T cells but also induces Bcl2l1 that sustains cDC1 survival during priming of anti-tumor responses.
Collapse
|
16
|
Wu R, Murphy KM. DCs at the center of help: Origins and evolution of the three-cell-type hypothesis. J Exp Med 2022; 219:e20211519. [PMID: 35543702 PMCID: PMC9098650 DOI: 10.1084/jem.20211519] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/06/2022] Open
Abstract
Last year was the 10th anniversary of Ralph Steinman's Nobel Prize awarded for his discovery of dendritic cells (DCs), while next year brings the 50th anniversary of that discovery. Current models of anti-viral and anti-tumor immunity rest solidly on Steinman's discovery of DCs, but also rely on two seemingly unrelated phenomena, also reported in the mid-1970s: the discoveries of "help" for cytolytic T cell responses by Cantor and Boyse in 1974 and "cross-priming" by Bevan in 1976. Decades of subsequent work, controversy, and conceptual changes have gradually merged these three discoveries into current models of cell-mediated immunity against viruses and tumors.
Collapse
Affiliation(s)
- Renee Wu
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Kenneth M. Murphy
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
17
|
Carlson KN, Verhagen JC, Jennings H, Verhoven B, McMorrow S, Pavan-Guimaraes J, Chlebeck P, Al-Adra DP. Single-cell RNA sequencing distinguishes dendritic cell subsets in the rat, allowing advanced characterization of the effects of FMS-like tyrosine kinase 3 ligand. Scand J Immunol 2022; 96:e13159. [PMID: 35285040 PMCID: PMC9250598 DOI: 10.1111/sji.13159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/14/2023]
Abstract
Tissue-resident dendritic cells (DCs) are essential for immunological homeostasis and hold promise for a variety of therapeutic interventions. The rare nature of tissue-resident DCs and their suboptimal description in the lab rat model has limited their characterization. To address this limitation, FMS-like tyrosine kinase 3 ligand (FLT3L) has been utilized to expand these population in vitro and in vivo for investigative or therapeutic purposes. However, conflicting reports have suggested that FLT3L can either promote immune tolerance or enhance immunogenicity, necessitating clarification of the effects of FLT3L on DC phenotype and functionality. We first paired single-cell RNA sequencing with multicolour spectral flow cytometry to provide an updated strategy for the identification of tissue-resident classical and plasmacytoid DCs in the rat model. We then administered FLT3L to Lewis rats in vivo to investigate its effect on tissue-resident DC enumeration and phenotype in the liver, spleen, and mesenteric lymph nodes. We found that FLT3L expands classical DCs (cDCs) 1 and 2 in a dose-dependent manner and that cDC1 and cDC2 in secondary lymphoid organs had altered MHC I, MHC II, CD40, CD80, CD86, and PD-L1 cell-surface expression levels following FLT3L administration. These changes were accompanied by an increase in gene expression levels of toll-like receptors 2, 4, 7, and 9 as well as inflammatory cytokines IL-6 and TNF-α. In conclusion, FLT3L administration in vivo increases cDC enumeration in the liver, spleen, and mesenteric lymph nodes accompanied by a tissue-restricted alteration in expression of antigen presentation machinery and inflammatory mediators.
Collapse
Affiliation(s)
- Kristin N Carlson
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Joshua C Verhagen
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Heather Jennings
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Bret Verhoven
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Stacey McMorrow
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Juliana Pavan-Guimaraes
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Peter Chlebeck
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - David P Al-Adra
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medicine, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
18
|
Yamauchi T, Hoki T, Oba T, Kajihara R, Attwood K, Cao X, Ito F. CD40 and CD80/86 signaling in cDC1s mediate effective neoantigen vaccination and generation of antigen-specific CX3CR1 + CD8 + T cells. Cancer Immunol Immunother 2022; 71:137-151. [PMID: 34037810 PMCID: PMC8715856 DOI: 10.1007/s00262-021-02969-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/12/2021] [Indexed: 01/03/2023]
Abstract
The use of tumor mutation-derived neoantigen represents a promising approach for cancer vaccines. Preclinical and early phase human clinical studies have shown the successful induction of tumor neoepitope-directed responses; however, overall clinical efficacy of neoantigen vaccines has been limited. One major obstacle of this strategy is the prevailing lack of sufficient understanding of the mechanism underlying the generation of neoantigen-specific CD8+ T cells. Here, we report a correlation between antitumor efficacy of neoantigen/toll-like receptor 3 (TLR3)/CD40 agonists vaccination and an increased frequency of circulating antigen-specific CD8+ T cells expressing CX3C chemokine receptor 1 (CX3CR1) in a preclinical model. Mechanistic studies using mixed bone marrow chimeras identified that CD40 and CD80/86, but not CD70 signaling in Batf3-dependent conventional type 1 dendritic cells (cDC1s) is required for the antitumor efficacy of neoantigen vaccine and generation of neoantigen-specific CX3CR1+ CD8+ T cells. Although CX3CR1+ CD8+ T cells exhibited robust in vitro effector function, in vivo depletion of this subset did not alter the antitumor efficacy of neoantigen/TLR3/CD40 agonists vaccination. These findings indicate that the vaccine-primed CX3CR1+ subset is dispensable for antitumor CD8+ T cell responses, but can be used as a blood-based T-cell biomarker for effective priming of CD8+ T cells as post-differentiated T cells. Taken together, our results reveal a critical role of CD40 and CD80/86 signaling in cDC1s in antitumor efficacy of neoantigen-based therapeutic vaccines, and implicate the potential utility of CX3CR1 as a circulating predictive T-cell biomarker in vaccine therapy.
Collapse
Affiliation(s)
- Takayoshi Yamauchi
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Toshifumi Hoki
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Takaaki Oba
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Ryutaro Kajihara
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kristopher Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Xuefang Cao
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Fumito Ito
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York At Buffalo, Buffalo, NY, 14263, USA.
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
19
|
CD40 stimulation as a molecular adjuvant for cancer vaccines and other immunotherapies. Cell Mol Immunol 2022; 19:14-22. [PMID: 34282297 PMCID: PMC8752810 DOI: 10.1038/s41423-021-00734-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/31/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
The substantial advances attained by checkpoint blockade immunotherapies have driven an expansion in the approaches used to promote T cell access to the tumor microenvironment to provide targets for checkpoint immunotherapy. Inherent in any T cell response to a tumor antigen is the capacity of dendritic cells to initiate and support such responses. Here, the rationale and early immunobiology of CD40 as a master regulator of dendritic cell activation is reviewed, with further contextualization and appreciation for the role of CD40 stimulation not only in cancer vaccines but also in other contemporary immune-oncology approaches.
Collapse
|
20
|
Yokoi T, Oba T, Kajihara R, Abrams SI, Ito F. Local, multimodal intralesional therapy renders distant brain metastases susceptible to PD-L1 blockade in a preclinical model of triple-negative breast cancer. Sci Rep 2021; 11:21992. [PMID: 34754037 PMCID: PMC8578367 DOI: 10.1038/s41598-021-01455-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/25/2021] [Indexed: 12/31/2022] Open
Abstract
Despite recent progress in therapeutic strategies, prognosis of metastatic triple-negative breast cancer (TNBC) remains dismal. Evidence suggests that the induction and activation of tumor-residing conventional type-1 dendritic cells (cDC1s) is critical for the generation of CD8+ T cells that mediate the regression of mammary tumors and potentiate anti-PD-1/PD-L1 therapeutic efficacy. However, it remains unknown whether this strategy is effective against metastatic TNBC, which is poorly responsive to immunotherapy. Here, using a mouse model of TNBC, we established orthotopic mammary tumors and brain metastases, and treated mammary tumors with in situ immunomodulation (ISIM) consisting of intratumoral injections of Flt3L to mobilize cDC1s, local irradiation to induce immunogenic tumor cell death, and TLR3/CD40 stimulation to activate cDC1s. ISIM treatment of the mammary tumor increased circulating T cells with effector phenotypes, and infiltration of CD8+ T cells into the metastatic brain lesions, resulting in delayed progression of brain metastases and improved survival. Furthermore, although anti-PD-L1 therapy alone was ineffective against brain metastases, ISIM overcame resistance to anti-PD-L1 therapy, which rendered these tumor-bearing mice responsive to anti-PD-L1 therapy and further improved survival. Collectively, these results illustrate the therapeutic potential of multimodal intralesional therapy for patients with unresectable and metastatic TNBC.
Collapse
Affiliation(s)
- Toshihiro Yokoi
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.,Department of Neurosurgery, Shiga University of Medical Science, Otsu, Japan
| | - Takaaki Oba
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.,Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ryutaro Kajihara
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Scott I Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Fumito Ito
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA. .,Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA. .,Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA. .,Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY, USA.
| |
Collapse
|
21
|
Oba T, Kajihara R, Yokoi T, Repasky EA, Ito F. Neoadjuvant in situ immunomodulation enhances systemic antitumor immunity against highly metastatic tumors. Cancer Res 2021; 81:6183-6195. [PMID: 34666993 DOI: 10.1158/0008-5472.can-21-0939] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/21/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022]
Abstract
Neoadjuvant immunotherapy, given before surgical resection, is a promising approach to develop systemic antitumor immunity for the treatment of high-risk resectable disease. Here, using syngeneic and orthotopic mouse models of triple-negative breast cancer, we have tested the hypothesis that generation of tumor-specific T-cell responses by induction and activation of tumor-residing Batf3-dependent conventional type 1 dendritic cells (cDC1) before resection improves control of distant metastatic disease and survival. Mice bearing highly metastatic orthotopic tumors were treated with a combinatorial in situ immunomodulation (ISIM) regimen comprised of intratumoral administration of Flt3L, local radiotherapy, and in situ TLR3/CD40 stimulations, followed by surgical resection. Neoadjuvant ISIM generated tumor-specific CD8+ T cells that infiltrated into distant non-irradiated metastatic sites, which delayed the progression of lung metastases and improved survival after the resection of primary tumors. The efficacy of neoadjuvant ISIM was dependent on de novo adaptive T-cell immunity elicited by Batf3-dependent DCs and was enhanced by increasing dose and fractionation of radiotherapy, and early surgical resection after the completion of neoadjuvant ISIM. Importantly, neoadjuvant ISIM synergized with PD-L1 blockade to improve control of distant metastases and prolong survival, while removal of tumor-draining lymph nodes abrogated the antimetastatic efficacy of neoadjuvant ISIM. Our findings illustrate the therapeutic potential of neoadjuvant multimodal intralesional therapy for the treatment of resectable tumors with high risk of relapse.
Collapse
Affiliation(s)
- Takaaki Oba
- Division of Breast and Endocrine Surgery, Department of Surgery (II), Shinshu University School of Medicine
| | - Ryutaro Kajihara
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center
| | - Toshihiro Yokoi
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center
| | | | - Fumito Ito
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center
| |
Collapse
|
22
|
Patel A, Oba T, Kajihara R, Yokoi T, Abrams SI, Ito F. Multimodal Intralesional Therapy for Reshaping the Myeloid Compartment of Tumors Resistant to Anti-PD-L1 Therapy via IRF8 Expression. THE JOURNAL OF IMMUNOLOGY 2021; 207:1298-1309. [PMID: 34362833 DOI: 10.4049/jimmunol.2100281] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/23/2021] [Indexed: 12/29/2022]
Abstract
Intralesional therapy is a promising approach for remodeling the immunosuppressive tumor microenvironment while minimizing systemic toxicities. A combinatorial in situ immunomodulation (ISIM) regimen with intratumoral administration of Fms-like tyrosine kinase 3 ligand (Flt3L), local irradiation, and TLR3/CD40 stimulation induces and activates conventional type 1 dendritic cells in the tumor microenvironment and elicits de novo adaptive T cell immunity in poorly T cell-inflamed tumors. However, the impact of ISIM on myeloid-derived suppressor cells (MDSCs), which may promote treatment resistance, remains unknown. In this study, we examined changes in the frequencies and heterogeneity of CD11b+Ly-6CloLy-6G+ polymorphonuclear (PMN)-MDSCs and CD11b+Ly-6ChiLy-6G- monocytic (M)-MDSCs in ISIM-treated tumors using mouse models of triple-negative breast cancer. We found that ISIM treatment decreased intratumoral PMN-MDSCs, but not M-MDSCs. Although the frequency of M-MDSCs remained unchanged, ISIM caused a substantial reduction of CX3CR1+ M-MDSCs that express F4/80. Importantly, these ISIM-induced changes in tumor-residing MDSCs were not observed in Batf3-/- mice. ISIM upregulated PD-L1 expression in both M-MDSCs and PMN-MDSCs and synergized with anti-PD-L1 therapy. Furthermore, ISIM increased the expression of IFN regulatory factor 8 (IRF8) in myeloid cells, a known negative regulator of MDSCs, indicating a potential mechanism by which ISIM decreases PMN-MDSC levels. Accordingly, ISIM-mediated reduction of PMN-MDSCs was not observed in mice with conditional deletion of IRF8 in myeloid cells. Altogether, these findings suggest that ISIM holds promise as a multimodal intralesional therapy to alter both lymphoid and myeloid compartments of highly aggressive poorly T cell-inflamed, myeloid-enriched tumors resistant to anti-PD-L1 therapy.
Collapse
Affiliation(s)
- Ankit Patel
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Takaaki Oba
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Ryutaro Kajihara
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Toshihiro Yokoi
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Scott I Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY; and
| | - Fumito Ito
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY; .,Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY.,Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY; and.,Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY
| |
Collapse
|
23
|
Marciscano AE, Anandasabapathy N. The role of dendritic cells in cancer and anti-tumor immunity. Semin Immunol 2021; 52:101481. [PMID: 34023170 PMCID: PMC8545750 DOI: 10.1016/j.smim.2021.101481] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 12/25/2022]
Abstract
Dendritic cells (DC) are key sentinels of the host immune response with an important role in linking innate and adaptive immunity and maintaining tolerance. There is increasing recognition that DC are critical determinants of initiating and sustaining effective T-cell-mediated anti-tumor immune responses. Recent progress in immuno-oncology has led to the evolving insight that the presence and function of DC within the tumor microenvironment (TME) may dictate efficacy of cancer immunotherapies as well as conventional cancer therapies, including immune checkpoint blockade, radiotherapy and chemotherapy. As such, improved understanding of dendritic cell immunobiology specifically focusing on their role in T-cell priming, migration into tissues and TME, and the coordinated in vivo responses of functionally specialized DC subsets will facilitate a better mechanistic understanding of how tumor-immune surveillance can be leveraged to improve patient outcomes and to develop novel DC-targeted therapeutic approaches.
Collapse
Affiliation(s)
- Ariel E Marciscano
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States.
| | - Niroshana Anandasabapathy
- Department of Dermatology, Meyer Cancer Center, Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, NY, United States; Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, New York, NY, United States.
| |
Collapse
|
24
|
Kim CW, Kim KD, Lee HK. The role of dendritic cells in tumor microenvironments and their uses as therapeutic targets. BMB Rep 2021. [PMID: 33298246 PMCID: PMC7851442 DOI: 10.5483/bmbrep.2021.54.1.224] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Dendritic cells (DC), which consist of several different subsets, specialize in antigen presentation and are critical for mediating the innate and adaptive immune responses. DC subsets can be classified into conventional, plasmacytoid, and monocyte-derived DC in the tumor microenvironment, and each subset plays a different role. Because of the role of intratumoral DCs in initiating antitumor immune responses with tumor-derived antigen presentation to T cells, DCs have been targeted in the treatment of cancer. By regulating the functionality of DCs, several DC-based immunotherapies have been developed, including administration of tumor-derived antigens and DC vaccines. In addition, DCs participate in the mechanisms of classical cancer therapies, such as radiation therapy and chemotherapy. Thus, regulating DCs is also important in improving current cancer therapies. Here, we will discuss the role of each DC subset in antitumor immune responses, and the current status of DC-related cancer therapies.
Collapse
Affiliation(s)
- Chae Won Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Kyun-Do Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- BioMedical Research Center, KAIST, Daejeon 34141, Korea
| |
Collapse
|
25
|
Nakajima H, Maeno K, Ito T, Kanai T, Oba T, Ono M, Takayama F, Uehara T, Ito KI. Concomitant use of 18F-FDG PET-CT SUVmax is useful in the assessment of Ki67 labeling index in core-needle biopsy specimens of breast cancer. Gland Surg 2021; 10:1-9. [PMID: 33633957 DOI: 10.21037/gs-20-485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Ki67 is a recognized proliferative and predictive marker in invasive breast cancer. However, results of Ki67 evaluation are affected by the method employed for sample fixation or biopsy, as well as by intratumor heterogeneity. Here, we aimed to compare the Ki67 labeling index (Ki67LI) between core-needle biopsy specimens (CNBSs) and surgically resected specimens (SRSs) of invasive breast cancer, and verify whether the discordance in Ki67LI can be reduced by analyzing the maximum standardized uptake value (SUVmax) obtained from pretreatment whole-body positron emission tomography/computed tomography (PET/CT) in combination with Ki67LI. Methods Tumor tissues were obtained from 118 patients with invasive breast cancer. Ki67LI was evaluated in CNBSs and SRSs by immunohistochemistry. First, we directly compared Ki67LI between CNBS and SRS, "allowing a tolerance margin of 5%." We divided the Ki67LI values into three groups (Low: 0≤ Ki67LI ≤10, Intermediate: 10< Ki67LI <30, and High: 30≤ Ki67LI) and the SUVmax into three groups (SUVmax ≤4, 4< SUVmax <8, and 8≤ SUVmax). We then verified the concordance rate between CNBS and SRS in each group in combination with the SUVmax obtained by PET/CT. Results The median Ki67LI was 17.8% (0.5-75.9%) and 17.0% (1.0-75.7%) in CNBS and SRS, respectively. The overall Ki67LI concordance rate between CNBS and SRS was 37.3% (44/118). The concordance was improved in the Low and High Ki67LI groups by applying SUVmax thresholds of 4 [82.6% (19/23), P=0.033 and 8 (92.3% (12/13), P=0.009], respectively. Conclusions Our results indicated that CNBS Ki67LI alone was not able to reflect SRS Ki67LI with sufficient accuracy. By dividing CNBS Ki67LI into three classes in combination with SUVmax, tumor proliferation could be predicted with higher accuracy in patients with invasive breast carcinoma.
Collapse
Affiliation(s)
- Hiroki Nakajima
- Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Japan
| | - Kazuma Maeno
- Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Japan
| | - Tokiko Ito
- Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Japan
| | - Toshiharu Kanai
- Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Japan
| | - Takaaki Oba
- Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Japan
| | - Mayu Ono
- Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Japan
| | | | - Tsuyoshi Uehara
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Ken-Ichi Ito
- Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Japan
| |
Collapse
|
26
|
Oba T, Long MD, Keler T, Marsh HC, Minderman H, Abrams SI, Liu S, Ito F. Overcoming primary and acquired resistance to anti-PD-L1 therapy by induction and activation of tumor-residing cDC1s. Nat Commun 2020; 11:5415. [PMID: 33110069 PMCID: PMC7592056 DOI: 10.1038/s41467-020-19192-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/02/2020] [Indexed: 01/01/2023] Open
Abstract
The ability of cancer cells to ensure T-cell exclusion from the tumor microenvironment is a significant mechanism of resistance to anti-PD-1/PD-L1 therapy. Evidence indicates crucial roles of Batf3-dependent conventional type-1 dendritic cells (cDC1s) for inducing antitumor T-cell immunity; however, strategies to maximize cDC1 engagement remain elusive. Here, using multiple orthotopic tumor mouse models resistant to anti-PD-L1-therapy, we are testing the hypothesis that in situ induction and activation of tumor-residing cDC1s overcomes poor T-cell infiltration. In situ immunomodulation with Flt3L, radiotherapy, and TLR3/CD40 stimulation induces an influx of stem-like Tcf1+ Slamf6+ CD8+ T cells, triggers regression not only of primary, but also untreated distant tumors, and renders tumors responsive to anti-PD-L1 therapy. Furthermore, serial in situ immunomodulation (ISIM) reshapes repertoires of intratumoral T cells, overcomes acquired resistance to anti-PD-L1 therapy, and establishes tumor-specific immunological memory. These findings provide new insights into cDC1 biology as a critical determinant to overcome mechanisms of intratumoral T-cell exclusion.
Collapse
Affiliation(s)
- Takaaki Oba
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mark D Long
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Tibor Keler
- Celldex Therapeutics, Inc., Hampton, NJ, USA
| | | | - Hans Minderman
- Flow & Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Scott I Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Fumito Ito
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA. .,Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA. .,Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA. .,Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY, USA.
| |
Collapse
|