1
|
Pfeifle A, Anderson-Duvall R, Tamming LA, Zhang W, Thulasi Raman SN, Gravel C, Wu J, Coatsworth H, Voordouw MJ, Zhang X, Johnston MJW, Chen W, Sauve S, Wang L, Li X. Borrelia burgdorferi Strain-Specific Differences in Mouse Infectivity and Pathology. Pathogens 2025; 14:352. [PMID: 40333117 PMCID: PMC12029986 DOI: 10.3390/pathogens14040352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 05/09/2025] Open
Abstract
Lyme disease (LD), caused by infection with the tick-borne bacteria, Borrelia burgdorferi, is associated with a wide array of symptoms in human patients. Variations in clinical manifestations are thought to be influenced by genetic differences among B. burgdorferi strains. In this study, we evaluated the infectivity, tissue bacterial load, pathology, and immunogenicity of five strains of B. burgdorferi sensu stricto (297 Ah130, Bb16-54, B31-A3, Bb16-126, JD1) in female C3H/HeN mice at three infectious doses (104, 105, 106 spirochetes). We found that strains Bb16-126 and JD1 were the most infectious, resulting in 100% infection across all the tested doses. Strain Bb16-126 caused the highest bacterial burden in the heart tissue and significant carditis, whereas JD1 exhibited the lowest spirochete load in the heart and minimal carditis. In comparison, strain B31-A3 demonstrated the highest abundance in the tibiotarsal joint. Infection with all the strains induced severe lymph node hyperplasia, with JD1 producing the greatest increase in cellularity. Using a diagnostic C6 peptide ELISA, all the strains induced significant anti-C6 IgM and IgG antibody titers at 14 days post-infection; however, strain B31-A3 elicited the highest anti-C6 IgM titers. Our findings demonstrate the importance of strain diversity in shaping B. burgdorferi pathogenesis in a mouse model and provide insights for developing strain-specific diagnostic, therapeutic, and vaccine strategies.
Collapse
Affiliation(s)
- Annabelle Pfeifle
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (A.P.); (R.A.-D.); (L.A.T.); (W.Z.); (S.N.T.R.); (C.G.); (J.W.); (X.Z.); (M.J.W.J.); (S.S.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Rose Anderson-Duvall
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (A.P.); (R.A.-D.); (L.A.T.); (W.Z.); (S.N.T.R.); (C.G.); (J.W.); (X.Z.); (M.J.W.J.); (S.S.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Levi A. Tamming
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (A.P.); (R.A.-D.); (L.A.T.); (W.Z.); (S.N.T.R.); (C.G.); (J.W.); (X.Z.); (M.J.W.J.); (S.S.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Wanyue Zhang
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (A.P.); (R.A.-D.); (L.A.T.); (W.Z.); (S.N.T.R.); (C.G.); (J.W.); (X.Z.); (M.J.W.J.); (S.S.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Sathya N. Thulasi Raman
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (A.P.); (R.A.-D.); (L.A.T.); (W.Z.); (S.N.T.R.); (C.G.); (J.W.); (X.Z.); (M.J.W.J.); (S.S.)
| | - Caroline Gravel
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (A.P.); (R.A.-D.); (L.A.T.); (W.Z.); (S.N.T.R.); (C.G.); (J.W.); (X.Z.); (M.J.W.J.); (S.S.)
| | - Jianguo Wu
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (A.P.); (R.A.-D.); (L.A.T.); (W.Z.); (S.N.T.R.); (C.G.); (J.W.); (X.Z.); (M.J.W.J.); (S.S.)
| | - Heather Coatsworth
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3M4, Canada;
| | - Maarten J. Voordouw
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Xu Zhang
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (A.P.); (R.A.-D.); (L.A.T.); (W.Z.); (S.N.T.R.); (C.G.); (J.W.); (X.Z.); (M.J.W.J.); (S.S.)
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Michael J. W. Johnston
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (A.P.); (R.A.-D.); (L.A.T.); (W.Z.); (S.N.T.R.); (C.G.); (J.W.); (X.Z.); (M.J.W.J.); (S.S.)
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Wangxue Chen
- Human Health Therapeutics Research Center, National Research Council of Canada, Ottawa, ON K1N 1J1, Canada;
| | - Simon Sauve
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (A.P.); (R.A.-D.); (L.A.T.); (W.Z.); (S.N.T.R.); (C.G.); (J.W.); (X.Z.); (M.J.W.J.); (S.S.)
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Xuguang Li
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (A.P.); (R.A.-D.); (L.A.T.); (W.Z.); (S.N.T.R.); (C.G.); (J.W.); (X.Z.); (M.J.W.J.); (S.S.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| |
Collapse
|
2
|
Badami GD, Tamburini B, Mohammadnezhad L, Vaz-Rodrigues R, La Barbera L, de la Fuente J, Sireci G. Netosis and trained immunity in tick-borne diseases: a possible pathogenetic role. Cell Immunol 2024; 405-406:104881. [PMID: 39368167 DOI: 10.1016/j.cellimm.2024.104881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Various types of pathogens transmitted by ticks elicit distinct immune responses just like the emerging α-Gal syndrome that is associated with allergic reactions to tick bites. The mechanisms of Neutrophil Extracellular Traps release (called NETosis) and trained immunity in response to tick-borne microbes have not been extensively investigated. In our paper, we explored the intricate interplay of NETosis and trained immunity within the realm of infectious diseases triggered by tick bites and their possible pathogenetic role in autoimmunity. We conducted an extensive literature search to identify studies for this review, considering articles and reviews published in English within the last years. Additionally, we scrutinized the references of all included papers and relevant review articles to ensure comprehensive coverage. We shed light on a plausible correlation between these innate immune responses and their potential implication in certain pathological conditions, with a specific focus on some autoimmune diseases. These findings offer new perspectives for a more profound comprehension of the immunopathogenesis of certain autoimmune-like signs where clinicians should include Tick-Borne Diseases (TBDs) in their differential diagnoses, in those geographical areas of tick infestation.
Collapse
Affiliation(s)
- Giusto Davide Badami
- CLADIBIOR, Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy
| | - Bartolo Tamburini
- CLADIBIOR, Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90127 Palermo, Italy
| | - Leila Mohammadnezhad
- CLADIBIOR, Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90127 Palermo, Italy
| | - Rita Vaz-Rodrigues
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - Lidia La Barbera
- Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90127 Palermo, Italy
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071 Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater OK 74078, USA
| | - Guido Sireci
- CLADIBIOR, Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy.
| |
Collapse
|
3
|
Gutierrez MDLP, Huckaby AB, Yang E, Weaver KL, Hall JM, Hudson M, Dublin SR, Sen-Kilic E, Rocuskie-Marker CM, Miller SJ, Pritchett CL, Mummadisetti MP, Zhang Y, Driscoll T, Barbier M. Antibody-mediated immunological memory correlates with long-term Lyme veterinary vaccine protection in mice. Vaccine 2024; 42:126084. [PMID: 38937181 DOI: 10.1016/j.vaccine.2024.06.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Lyme disease, caused by the bacterium Borrelia burgdorferi, is the most common tick-borne illness in the United States. Despite the rise in Lyme disease incidence, there is no vaccine against B. burgdorferi approved for human use. Little is known about the immune correlates of protection needed to prevent Lyme disease. In this work, a mouse model was used to characterize the immune response and compare the protection provided by two USDA-approved vaccines for use in canines: Duramune (bacterin vaccine) and Vanguard crLyme (subunit vaccine composed of two outer surface proteins, OspA and OspC). C3H/HeNCrl mice were immunized with two doses of either Duramune or Vanguard, and immune responses and protection against B. burgdorferi were assessed in short (35 days) and long-term (120 days) studies. Flow cytometry, ELISPOT detection of antibody-producing cells, and antibody affinity studies were performed to identify correlates of vaccine-mediated protection. Both vaccines induced humoral responses, with high IgG titers against B. burgdorferi. However, the levels of anti-B. burgdorferi antibodies decayed over time in Vanguard-vaccinated mice. While both vaccines triggered the production of antibodies against both OspA and OspC, antibody levels against these proteins were also lower in Vanguard-vaccinated mice 120 days post-vaccination. Both vaccines only provided partial protection against B. burgdorferi at the dose used in this model. The protection provided by Duramune was superior to Vanguard 120 days post-vaccination, and was characterized by higher antibody titers, higher abundance of long-lived plasma cells, and higher avidity antibodies than Vanguard. Overall, these studies provide insights into the importance of the humoral memory response to veterinary vaccines against Lyme disease and will help inform the development of future human vaccines.
Collapse
Affiliation(s)
- Maria de la Paz Gutierrez
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA
| | - Annalisa B Huckaby
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA
| | - Evita Yang
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA
| | - Kelly L Weaver
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA
| | - Joshua M Hall
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA
| | - Matthew Hudson
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA
| | - Spencer R Dublin
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA
| | - Emel Sen-Kilic
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA
| | - Carleena M Rocuskie-Marker
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA
| | - Sarah Jo Miller
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA
| | | | | | - Ying Zhang
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Timothy Driscoll
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA.
| |
Collapse
|
4
|
Helble JD, Walsh MJ, McCarthy JE, Smith NP, Tirard AJ, Arnold BY, Villani AC, Hu LT. Single-cell RNA sequencing of murine ankle joints over time reveals distinct transcriptional changes following Borrelia burgdorferi infection. iScience 2023; 26:108217. [PMID: 37953958 PMCID: PMC10632114 DOI: 10.1016/j.isci.2023.108217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/06/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Lyme disease is caused by the bacterial pathogen Borrelia burgdorferi, which can be readily modeled in laboratory mice. In order to understand the cellular and transcriptional changes that occur during B. burgdorferi infection, we conducted single-cell RNA sequencing (scRNA-seq) of ankle joints of infected C57BL/6 mice over time. We found that macrophages/monocytes, T cells, synoviocytes and fibroblasts all showed significant differences in gene expression of both inflammatory and non-inflammatory genes that peaked early and returned to baseline before the typical resolution of arthritis. Predictions of cellular interactions showed that macrophages appear to communicate extensively between different clusters of macrophages as well as with fibroblasts and synoviocytes. Our data give unique insights into the interactions between B. burgdorferi and the murine immune system over time and allow for a better understanding of mechanisms by which the dysregulation of the immune response may lead to prolonged symptoms in some patients.
Collapse
Affiliation(s)
- Jennifer D. Helble
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Michael J. Walsh
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Julie E. McCarthy
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Neal P. Smith
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alice J. Tirard
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Benjamin Y. Arnold
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Linden T. Hu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
5
|
Momčilović S, Jovanović A. Editorial commentary: Lyme carditis - "a ray of light revealed in a dark story" of dilated cardiomyopathy. Trends Cardiovasc Med 2023; 33:537-539. [PMID: 35777596 DOI: 10.1016/j.tcm.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Stefan Momčilović
- Plastic and Reconstructive Surgery Clinic, University Clinical Center Niš, Blvd Zorana Djindjica 48, 18000 Niš, Serbia.
| | - Andriana Jovanović
- Clinic for Nephrology, University Clinical Center Niš, Blvd Zorana Djindjica 48, 18000 Niš, Serbia
| |
Collapse
|
6
|
Bernard Q, Goumeidane M, Chaumond E, Robbe-Saule M, Boucaud Y, Esnault L, Croué A, Jullien J, Marsollier L, Marion E. Type-I interferons promote innate immune tolerance in macrophages exposed to Mycobacterium ulcerans vesicles. PLoS Pathog 2023; 19:e1011479. [PMID: 37428812 PMCID: PMC10358927 DOI: 10.1371/journal.ppat.1011479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/13/2023] [Indexed: 07/12/2023] Open
Abstract
Buruli ulcer is a chronic infectious disease caused by Mycobacterium ulcerans. The pathogen persistence in host skin is associated with the development of ulcerative and necrotic lesions leading to permanent disabilities in most patients. However, few of diagnosed cases are thought to resolve through an unknown self-healing process. Using in vitro and in vivo mouse models and M. ulcerans purified vesicles and mycolactone, we showed that the development of an innate immune tolerance was only specific to macrophages from mice able to heal spontaneously. This tolerance mechanism depends on a type I interferon response and can be induced by interferon beta. A type I interferon signature was further detected during in vivo infection in mice as well as in skin samples from patients under antibiotics regiment. Our results indicate that type I interferon-related genes expressed in macrophages may promote tolerance and healing during infection with skin damaging pathogen.
Collapse
Affiliation(s)
- Quentin Bernard
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | | | - Emmanuel Chaumond
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | - Marie Robbe-Saule
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | - Yan Boucaud
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | - Lucille Esnault
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | - Anne Croué
- Laboratoire d'anatomo-pathologie, CHU Angers, Angers, France
| | | | - Laurent Marsollier
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | - Estelle Marion
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| |
Collapse
|
7
|
Dagenais A, Villalba-Guerrero C, Olivier M. Trained immunity: A “new” weapon in the fight against infectious diseases. Front Immunol 2023; 14:1147476. [PMID: 36993966 PMCID: PMC10040606 DOI: 10.3389/fimmu.2023.1147476] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
Innate immune cells can potentiate the response to reinfection through an innate form of immunological memory known as trained immunity. The potential of this fast-acting, nonspecific memory compared to traditional adaptive immunological memory in prophylaxis and therapy has been a topic of great interest in many fields, including infectious diseases. Amidst the rise of antimicrobial resistance and climate change—two major threats to global health—, harnessing the advantages of trained immunity compared to traditional forms of prophylaxis and therapy could be game-changing. Here, we present recent works bridging trained immunity and infectious disease that raise important discoveries, questions, concerns, and novel avenues for the modulation of trained immunity in practice. By exploring the progress in bacterial, viral, fungal, and parasitic diseases, we equally highlight future directions with a focus on particularly problematic and/or understudied pathogens.
Collapse
Affiliation(s)
- Amy Dagenais
- Department of Microbiology and Immunology, Faculty of Medicine, Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Carlos Villalba-Guerrero
- Department of Microbiology and Immunology, Faculty of Medicine, Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, Faculty of Medicine, Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- Department of Medicine, Faculty of Medicine, Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- *Correspondence: Martin Olivier,
| |
Collapse
|
8
|
Hu Z, Lu S, Lowrie DB, Fan X. Trained immunity: A Yin-Yang balance. MedComm (Beijing) 2022; 3:e121. [PMID: 35281787 PMCID: PMC8906449 DOI: 10.1002/mco2.121] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/17/2022] Open
Abstract
Traditionally, immune memory is regarded as an exclusive hallmark of adaptive immunity. However, a growing body of evidence suggesting that innate immune cells show adaptive characteristics has challenged this dogma. In the past decade, trained immunity, a de facto innate immune memory, has been defined as a long-term functional reprogramming of cells of the innate immune system: the reprogramming is evoked by endogenous or exogenous insults, the cells return to a nonactivated state and subsequently show altered inflammatory responses against a second challenge. Trained immunity became regarded as a mechanism selected in evolution to protect against infection; however, a maladaptive effect might result in hyperinflammation. This dual effect is consistent with the Yin-Yang theory in traditional Chinese philosophy, in which Yang represents active, positive, and aggressive factors, whereas Yin represents passive, negative, and inhibitory factors. In this review, we give a brief overview of history and latest progress about trained immunity, including experimental models, inductors, molecular mechanisms, clinical application and so on. Moreover, this is the first time to put forward the theory of Yin-Yang balance to understand trained immunity. We envision that more efforts will be focused on developing novel immunotherapies targeting trained immunity in the coming years.
Collapse
Affiliation(s)
- Zhidong Hu
- Shanghai Public Health Clinical CenterKey Laboratory of Medical Molecular Virology of MOE/MOHFudan UniversityShanghaiChina
| | - Shui‐Hua Lu
- Shanghai Public Health Clinical CenterKey Laboratory of Medical Molecular Virology of MOE/MOHFudan UniversityShanghaiChina
- National Medical Center for Infectious Diseases of ChinaShenzhen Third People Hospital, South Science & Technology UniversityShenzhenChina
| | - Douglas B. Lowrie
- National Medical Center for Infectious Diseases of ChinaShenzhen Third People Hospital, South Science & Technology UniversityShenzhenChina
| | - Xiao‐Yong Fan
- Shanghai Public Health Clinical CenterKey Laboratory of Medical Molecular Virology of MOE/MOHFudan UniversityShanghaiChina
| |
Collapse
|