1
|
Moleirinho B, Paulo-Pedro M, Martins NC, Jelagat E, Conti E, Velho TR, Abecasis M, Anjos R, Almeida ARM, Sousa AE. A backbone-based flow cytometry approach to decipher regulatory T cell trajectories in the human thymus. Front Immunol 2025; 16:1553535. [PMID: 40098950 PMCID: PMC11911493 DOI: 10.3389/fimmu.2025.1553535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Thymus-committed regulatory T cells (Tregs) are essential for immune homeostasis. Recent findings stress their heterogeneity, suggesting possible alternate routes for thymic Treg development with unique features in humans, namely the clear evidence of Treg commitment at the double-positive (DP) stage and the presence of a significant population of CD8 single-positive (SP) FOXP3pos Tregs. Here, we present a dedicated analysis strategy to a spectral flow cytometry-based study of thymus from children and aged adults (≥ 74-years-old), to further elucidate Treg development and heterogeneity in the human thymus. We applied an unsupervised analysis pipeline to data generated from 6 high-dimensional panels, taking advantage of a common backbone of 11 markers, and we were able to map thymocytes along T cell maturation stages. Generating UMAP and FlowSOM cluster coordinates from the backbone, we projected all other markers onto these, characterizing clusters with the information of all markers. Focusing this analysis on events inside a putative total Treg gate, we could portray rarer subsets of human thymic Tregs and investigate their trajectories using pseudotime analysis. We uncover clusters within human DP thymocytes uniquely expressing FOXP3 or CD25, a DP-branching trajectory towards a CD103posCD8SP Tregs endpoint, and define trajectories towards CD4SP Tregs, including towards a cluster of CXCR3posCD4SP Tregs, that may consist of thymic resident or recirculating Tregs, and do not expand in the elderly. Our flow cytometry approach separates Treg populations with likely distinct functions and facilitates the design of future studies to unravel the complexity of human regulatory T cells.
Collapse
Affiliation(s)
- Beatriz Moleirinho
- GIMM- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Margarida Paulo-Pedro
- GIMM- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Nicole C Martins
- GIMM- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Emily Jelagat
- GIMM- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Eller Conti
- GIMM- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Tiago R Velho
- Cardiothoracic Surgery Research Unit, Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Department of Cardiothoracic Surgery, Hospital de Santa Maria, Unidade Local de Saúde de Santa Maria, Lisbon, Portugal
| | - Miguel Abecasis
- Hospital de Santa Cruz, Unidade Local de Saúde de Lisboa Ocidental, Carnaxide, Portugal
| | - Rui Anjos
- Hospital de Santa Cruz, Unidade Local de Saúde de Lisboa Ocidental, Carnaxide, Portugal
| | - Afonso R M Almeida
- GIMM- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana E Sousa
- GIMM- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
2
|
Wardell CM, Boardman DA, Levings MK. Harnessing the biology of regulatory T cells to treat disease. Nat Rev Drug Discov 2025; 24:93-111. [PMID: 39681737 DOI: 10.1038/s41573-024-01089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 12/18/2024]
Abstract
Regulatory T (Treg) cells are a suppressive subset of CD4+ T cells that maintain immune homeostasis and restrain inflammation. Three decades after their discovery, the promise of strategies to harness Treg cells for therapy has never been stronger. Multiple clinical trials seeking to enhance endogenous Treg cells or deliver them as a cell-based therapy have been performed and hint at signs of success, as well as to important limitations and unanswered questions. Strategies to deplete Treg cells in cancer are also in active clinical testing. Furthermore, multi-dimensional methods to interrogate the biology of Treg cells are leading to a refined understanding of Treg cell biology and new approaches to harness tissue-specific functions for therapy. A new generation of Treg cell clinical trials is now being fuelled by advances in nanomedicine and synthetic biology, seeking more precise ways to tailor Treg cell function. This Review will discuss recent advances in our understanding of human Treg cell biology, with a focus on mechanisms of action and strategies to assess outcomes of Treg cell-targeted therapies. It highlights results from recent clinical trials aiming to enhance or inhibit Treg cell activity in a variety of diseases, including allergy, transplantation, autoimmunity and cancer, and discusses ongoing strategies to refine these approaches.
Collapse
Affiliation(s)
- Christine M Wardell
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dominic A Boardman
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
3
|
Raposo AASF, Rosmaninho P, Silva SL, Paço S, Brazão ME, Godinho-Santos A, Tokunaga-Mizoro Y, Nunes-Cabaço H, Serra-Caetano A, Almeida ARM, Sousa AE. Decoding mutational hotspots in human disease through the gene modules governing thymic regulatory T cells. Front Immunol 2024; 15:1458581. [PMID: 39483472 PMCID: PMC11525063 DOI: 10.3389/fimmu.2024.1458581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/17/2024] [Indexed: 11/03/2024] Open
Abstract
Computational strategies to extract meaningful biological information from multiomics data are in great demand for effective clinical use, particularly in complex immune-mediated disorders. Regulatory T cells (Tregs) are essential for immune homeostasis and self-tolerance, controlling inflammatory and autoimmune processes in many diseases with a multigenic basis. Here, we quantify the Transcription Factor (TF) differential occupancy landscape to uncover the Gene Regulatory Modules governing lineage-committed Tregs in the human thymus, and show that it can be used as a tool to prioritise variants in complex diseases. We combined RNA-seq and ATAC-seq and generated a matrix of differential TF binding to genes differentially expressed in Tregs, in contrast to their counterpart conventional CD4 single-positive thymocytes. The gene loci of both established and novel genetic interactions uncovered by the Gene Regulatory Modules were significantly enriched in rare variants carried by patients with common variable immunodeficiency, here used as a model of polygenic-based disease with severe inflammatory and autoimmune manifestations. The Gene Regulatory Modules controlling the Treg signature can, therefore, be a valuable resource for variant classification, and to uncover new therapeutic targets. Overall, our strategy can also be applied in other biological processes of interest to decipher mutational hotspots in individual genomes.
Collapse
Affiliation(s)
- Alexandre A. S. F. Raposo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Rosmaninho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Susana L. Silva
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Serviço de Imunoalergologia, Hospital de Santa Maria, Unidade Local de Saúde (ULS) Santa Maria, Lisboa, Portugal
| | - Susana Paço
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Maria E. Brazão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Godinho-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Yumie Tokunaga-Mizoro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Helena Nunes-Cabaço
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Serra-Caetano
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Afonso R. M. Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana E. Sousa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
4
|
Pala F, Notarangelo LD, Bosticardo M. Rediscovering the human thymus through cutting-edge technologies. J Exp Med 2024; 221:e20230892. [PMID: 39167072 PMCID: PMC11338284 DOI: 10.1084/jem.20230892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/24/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Recent technological advances have transformed our understanding of the human thymus. Innovations such as high-resolution imaging, single-cell omics, and organoid cultures, including thymic epithelial cell (TEC) differentiation and culture, and improvements in biomaterials, have further elucidated the thymus architecture, cellular dynamics, and molecular mechanisms underlying T cell development, and have unraveled previously unrecognized levels of stromal cell heterogeneity. These advancements offer unprecedented insights into thymic biology and hold promise for the development of novel therapeutic strategies for immune-related disorders.
Collapse
Affiliation(s)
- Francesca Pala
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD, USA
| | - Luigi D Notarangelo
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD, USA
| | - Marita Bosticardo
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
5
|
Belean A, Xue E, Cisneros B, Roberson EDO, Paley MA, Bigley TM. Transcriptomic profiling of thymic dysregulation and viral tropism after neonatal roseolovirus infection. Front Immunol 2024; 15:1375508. [PMID: 38895117 PMCID: PMC11183875 DOI: 10.3389/fimmu.2024.1375508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/10/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Herpesviruses, including the roseoloviruses, have been linked to autoimmune disease. The ubiquitous and chronic nature of these infections have made it difficult to establish a causal relationship between acute infection and subsequent development of autoimmunity. We have shown that murine roseolovirus (MRV), which is highly related to human roseoloviruses, induces thymic atrophy and disruption of central tolerance after neonatal infection. Moreover, neonatal MRV infection results in development of autoimmunity in adult mice, long after resolution of acute infection. This suggests that MRV induces durable immune dysregulation. Methods In the current studies, we utilized single-cell RNA sequencing (scRNAseq) to study the tropism of MRV in the thymus and determine cellular processes in the thymus that were disrupted by neonatal MRV infection. We then utilized tropism data to establish a cell culture system. Results Herein, we describe how MRV alters the thymic transcriptome during acute neonatal infection. We found that MRV infection resulted in major shifts in inflammatory, differentiation and cell cycle pathways in the infected thymus. We also observed shifts in the relative number of specific cell populations. Moreover, utilizing expression of late viral transcripts as a proxy of viral replication, we identified the cellular tropism of MRV in the thymus. This approach demonstrated that double negative, double positive, and CD4 single positive thymocytes, as well as medullary thymic epithelial cells were infected by MRV in vivo. Finally, by applying pseudotime analysis to viral transcripts, which we refer to as "pseudokinetics," we identified viral gene transcription patterns associated with specific cell types and infection status. We utilized this information to establish the first cell culture systems susceptible to MRV infection in vitro. Conclusion Our research provides the first complete picture of roseolovirus tropism in the thymus after neonatal infection. Additionally, we identified major transcriptomic alterations in cell populations in the thymus during acute neonatal MRV infection. These studies offer important insight into the early events that occur after neonatal MRV infection that disrupt central tolerance and promote autoimmune disease.
Collapse
Affiliation(s)
- Andrei Belean
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Eden Xue
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Benjamin Cisneros
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Elisha D. O. Roberson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael A. Paley
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Tarin M. Bigley
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
6
|
Santosh Nirmala S, Kayani K, Gliwiński M, Hu Y, Iwaszkiewicz-Grześ D, Piotrowska-Mieczkowska M, Sakowska J, Tomaszewicz M, Marín Morales JM, Lakshmi K, Marek-Trzonkowska NM, Trzonkowski P, Oo YH, Fuchs A. Beyond FOXP3: a 20-year journey unravelling human regulatory T-cell heterogeneity. Front Immunol 2024; 14:1321228. [PMID: 38283365 PMCID: PMC10811018 DOI: 10.3389/fimmu.2023.1321228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024] Open
Abstract
The initial idea of a distinct group of T-cells responsible for suppressing immune responses was first postulated half a century ago. However, it is only in the last three decades that we have identified what we now term regulatory T-cells (Tregs), and subsequently elucidated and crystallized our understanding of them. Human Tregs have emerged as essential to immune tolerance and the prevention of autoimmune diseases and are typically contemporaneously characterized by their CD3+CD4+CD25high CD127lowFOXP3+ phenotype. It is important to note that FOXP3+ Tregs exhibit substantial diversity in their origin, phenotypic characteristics, and function. Identifying reliable markers is crucial to the accurate identification, quantification, and assessment of Tregs in health and disease, as well as the enrichment and expansion of viable cells for adoptive cell therapy. In our comprehensive review, we address the contributions of various markers identified in the last two decades since the master transcriptional factor FOXP3 was identified in establishing and enriching purity, lineage stability, tissue homing and suppressive proficiency in CD4+ Tregs. Additionally, our review delves into recent breakthroughs in innovative Treg-based therapies, underscoring the significance of distinct markers in their therapeutic utilization. Understanding Treg subsets holds the key to effectively harnessing human Tregs for immunotherapeutic approaches.
Collapse
Affiliation(s)
| | - Kayani Kayani
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Department of Academic Surgery, Queen Elizabeth Hospital, University of Birmingham, Birmingham, United Kingdom
- Department of Renal Surgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Mateusz Gliwiński
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Yueyuan Hu
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| | | | | | - Justyna Sakowska
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Martyna Tomaszewicz
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Kavitha Lakshmi
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| | | | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Ye Htun Oo
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Transplant and Hepatobiliary Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Birmingham Advanced Cellular Therapy Facility, University of Birmingham, Birmingham, United Kingdom
- Centre for Rare Diseases, European Reference Network - Rare Liver Centre, Birmingham, United Kingdom
| | - Anke Fuchs
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| |
Collapse
|
7
|
Heimli M, Tennebø Flåm S, Sagsveen Hjorthaug H, Bjørnstad PM, Chernigovskaya M, Le QK, Tekpli X, Greiff V, Lie BA. Human thymic putative CD8αα precursors exhibit a biased TCR repertoire in single cell AIRR-seq. Sci Rep 2023; 13:17714. [PMID: 37853083 PMCID: PMC10584817 DOI: 10.1038/s41598-023-44693-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
Thymic T cell development comprises T cell receptor (TCR) recombination and assessment of TCR avidity towards self-peptide-MHC complexes presented by antigen-presenting cells. Self-reactivity may lead to negative selection, or to agonist selection and differentiation into unconventional lineages such as regulatory T cells and CD8[Formula: see text] T cells. To explore the effect of the adaptive immune receptor repertoire on thymocyte developmental decisions, we performed single cell adaptive immune receptor repertoire sequencing (scAIRR-seq) of thymocytes from human young paediatric thymi and blood. Thymic PDCD1+ cells, a putative CD8[Formula: see text] T cell precursor population, exhibited several TCR features previously associated with thymic and peripheral ZNF683+ CD8[Formula: see text] T cells, including enrichment of large and positively charged complementarity-determining region 3 (CDR3) amino acids. Thus, the TCR repertoire may partially explain the decision between conventional vs. agonist selected thymocyte differentiation, an aspect of importance for the development of therapies for patients with immune-mediated diseases.
Collapse
Affiliation(s)
- Marte Heimli
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway
| | - Siri Tennebø Flåm
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway
| | - Hanne Sagsveen Hjorthaug
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway
| | - Pål Marius Bjørnstad
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway
| | - Maria Chernigovskaya
- Department of Immunology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway
| | - Quy Khang Le
- Department of Immunology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway
| | - Xavier Tekpli
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway
| | - Benedicte Alexandra Lie
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway.
| |
Collapse
|
8
|
Heimli M, Flåm ST, Hjorthaug HS, Trinh D, Frisk M, Dumont KA, Ribarska T, Tekpli X, Saare M, Lie BA. Multimodal human thymic profiling reveals trajectories and cellular milieu for T agonist selection. Front Immunol 2023; 13:1092028. [PMID: 36741401 PMCID: PMC9895842 DOI: 10.3389/fimmu.2022.1092028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 01/22/2023] Open
Abstract
To prevent autoimmunity, thymocytes expressing self-reactive T cell receptors (TCRs) are negatively selected, however, divergence into tolerogenic, agonist selected lineages represent an alternative fate. As thymocyte development, selection, and lineage choices are dependent on spatial context and cell-to-cell interactions, we have performed Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-seq) and spatial transcriptomics on paediatric human thymus. Thymocytes expressing markers of strong TCR signalling diverged from the conventional developmental trajectory prior to CD4+ or CD8+ lineage commitment, while markers of different agonist selected T cell populations (CD8αα(I), CD8αα(II), T(agonist), Treg(diff), and Treg) exhibited variable timing of induction. Expression profiles of chemokines and co-stimulatory molecules, together with spatial localisation, supported that dendritic cells, B cells, and stromal cells contribute to agonist selection, with different subsets influencing thymocytes at specific developmental stages within distinct spatial niches. Understanding factors influencing agonist T cells is needed to benefit from their immunoregulatory effects in clinical use.
Collapse
Affiliation(s)
- Marte Heimli
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Siri Tennebø Flåm
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | | | - Don Trinh
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Karl-Andreas Dumont
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Teodora Ribarska
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Xavier Tekpli
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Mario Saare
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Benedicte Alexandra Lie
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway,*Correspondence: Benedicte Alexandra Lie,
| |
Collapse
|
9
|
Owen DL, La Rue RS, Munro SA, Farrar MA. Tracking Regulatory T Cell Development in the Thymus Using Single-Cell RNA Sequencing/TCR Sequencing. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1300-1313. [PMID: 36038290 PMCID: PMC9529998 DOI: 10.4049/jimmunol.2200089] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/26/2022] [Indexed: 11/06/2022]
Abstract
Recent studies have demonstrated that regulatory T cells (Tregs) develop in the thymus via two pathways involving distinct Treg progenitors (TregP): CD25+FOXP3- (CD25+ TregP) and CD25-FOXP3lo (FOXP3lo TregP) Treg progenitors. To examine this process in more detail, we carried out single-cell RNA sequencing (scRNA-Seq) and TCR-Seq on sorted murine CD4+CD8+ double-positive (DP) thymocytes, CD4+ single-positive (CD4SP) thymocytes, CD25+FOXP3-CD73- TregP, CD25-FOXP3loCD73- TregP, newly generated mature CD25+FOXP3+CD73- Tregs, and FOXP3+CD73+ recirculating/long-term resident Tregs (RT-Tregs). Sorted populations were individually hashtagged and then combined into one scRNA-Seq/TCR-Seq library before sequencing and subsequent analysis. We found that both CD25+ TregP and FOXP3lo TregP arise via an initial agonist-activated state that gives rise to a second transitional stage before differentiating into mature Tregs Using both scRNA-Seq and bulk RNA-Seq on sorted thymocyte subsets, we demonstrate that CD25+ TregP are significantly enriched for Il2 production, suggesting that they are the major source of IL-2 needed to convert TregP into mature Tregs Using TCR-Seq, we found that several TCRs were clearly biased in favor of the conventional or Treg lineages, but that a large fraction of TCRs were found in both these lineages. Finally, we found that RT-Tregs in the thymus are not monomorphic but are composed of multiple distinct subsets and that these RT-Tregs express the most diverse TCR repertoire of all CD4SP thymocytes. Thus, our studies define multiple stages of Treg differentiation within the murine thymus and serve as a resource for future studies on CD4+ thymocyte development and Treg differentiation.
Collapse
Affiliation(s)
- David L Owen
- Center for Immunology, University of Minnesota, Minneapolis, MN
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN; and
| | - Rebecca S La Rue
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN
| | - Sarah A Munro
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN
| | - Michael A Farrar
- Center for Immunology, University of Minnesota, Minneapolis, MN;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN; and
| |
Collapse
|
10
|
Sex Differences in Coronary Artery Disease and Diabetes Revealed by scRNA-Seq and CITE-Seq of Human CD4+ T Cells. Int J Mol Sci 2022; 23:ijms23179875. [PMID: 36077273 PMCID: PMC9456056 DOI: 10.3390/ijms23179875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022] Open
Abstract
Despite the decades-old knowledge that males and people with diabetes mellitus (DM) are at increased risk for coronary artery disease (CAD), the reasons for this association are only partially understood. Among the immune cells involved, recent evidence supports a critical role of T cells as drivers and modifiers of CAD. CD4+ T cells are commonly found in atherosclerotic plaques. We aimed to understand the relationship of CAD with sex and DM by single-cell RNA (scRNA-Seq) and antibody sequencing (CITE-Seq) of CD4+ T cells. Peripheral blood mononuclear cells (PBMCs) of 61 men and women who underwent cardiac catheterization were interrogated by scRNA-Seq combined with 49 surface markers (CITE-Seq). CAD severity was quantified using Gensini scores, with scores above 30 considered CAD+ and below 6 considered CAD-. Four pairs of groups were matched for clinical and demographic parameters. To test how sex and DM changed cell proportions and gene expression, we compared matched groups of men and women, as well as diabetic and non-diabetic subjects. We analyzed 41,782 single CD4+ T cell transcriptomes for sex differences in 16 women and 45 men with and without coronary artery disease and with and without DM. We identified 16 clusters in CD4+ T cells. The proportion of cells in CD4+ effector memory cluster 8 (CD4T8, CCR2+ Em) was significantly decreased in CAD+, especially among DM+ participants. This same cluster, CD4T8, was significantly decreased in female participants, along with two other CD4+ T cell clusters. In CD4+ T cells, 31 genes showed significant and coordinated upregulation in both CAD and DM. The DM gene signature was partially additive to the CAD gene signature. We conclude that (1) CAD and DM are clearly reflected in PBMC transcriptomes, and (2) significant differences exist between women and men and (3) between subjects with DM and non-DM.
Collapse
|
11
|
Shichkin VP, Felli MP, Screpanti I, Antica M. Editorial: Thymus function and aging: A focus on thymic epithelial cells. Front Immunol 2022; 13:1003490. [PMID: 36059545 PMCID: PMC9429806 DOI: 10.3389/fimmu.2022.1003490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Valentin P. Shichkin
- OmniFarma, Kyiv, Ukraine
- *Correspondence: Valentin P. Shichkin, ; ; Maria Pia Felli, ; Isabella Screpanti, ; Mariastefania Antica,
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- *Correspondence: Valentin P. Shichkin, ; ; Maria Pia Felli, ; Isabella Screpanti, ; Mariastefania Antica,
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- *Correspondence: Valentin P. Shichkin, ; ; Maria Pia Felli, ; Isabella Screpanti, ; Mariastefania Antica,
| | - Mariastefania Antica
- Division of Molecular Biology, Rudjer Boskovic Institute, Zagreb, Croatia
- *Correspondence: Valentin P. Shichkin, ; ; Maria Pia Felli, ; Isabella Screpanti, ; Mariastefania Antica,
| |
Collapse
|
12
|
Shichkin VP, Antica M. Key Factors for Thymic Function and Development. Front Immunol 2022; 13:926516. [PMID: 35844535 PMCID: PMC9280625 DOI: 10.3389/fimmu.2022.926516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
The thymus is the organ responsible for T cell development and the formation of the adaptive immunity function. Its multicellular environment consists mainly of the different stromal cells and maturing T lymphocytes. Thymus-specific progenitors of epithelial, mesenchymal, and lymphoid cells with stem cell properties represent only minor populations. The thymic stromal structure predominantly determines the function of the thymus. The stromal components, mostly epithelial and mesenchymal cells, form this specialized area. They support the consistent developmental program of functionally distinct conventional T cell subpopulations. These include the MHC restricted single positive CD4+ CD8- and CD4- CD8+ cells, regulatory T lymphocytes (Foxp3+), innate natural killer T cells (iNKT), and γδT cells. Several physiological causes comprising stress and aging and medical treatments such as thymectomy and chemo/radiotherapy can harm the thymus function. The present review summarizes our knowledge of the development and function of the thymus with a focus on thymic epithelial cells as well as other stromal components and the signaling and transcriptional pathways underlying the thymic cell interaction. These critical thymus components are significant for T cell differentiation and restoring the thymic function after damage to reach the therapeutic benefits.
Collapse
|