1
|
Valentin-Alvarado LE, Fakra SC, Probst AJ, Giska JR, Jaffe AL, Oltrogge LM, West-Roberts J, Rowland J, Manga M, Savage DF, Greening C, Baker BJ, Banfield JF. Autotrophic biofilms sustained by deeply sourced groundwater host diverse bacteria implicated in sulfur and hydrogen metabolism. MICROBIOME 2024; 12:15. [PMID: 38273328 PMCID: PMC10811913 DOI: 10.1186/s40168-023-01704-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 10/18/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Biofilms in sulfide-rich springs present intricate microbial communities that play pivotal roles in biogeochemical cycling. We studied chemoautotrophically based biofilms that host diverse CPR bacteria and grow in sulfide-rich springs to investigate microbial controls on biogeochemical cycling. RESULTS Sulfide springs biofilms were investigated using bulk geochemical analysis, genome-resolved metagenomics, and scanning transmission X-ray microscopy (STXM) at room temperature and 87 K. Chemolithotrophic sulfur-oxidizing bacteria, including Thiothrix and Beggiatoa, dominate the biofilms, which also contain CPR Gracilibacteria, Absconditabacteria, Saccharibacteria, Peregrinibacteria, Berkelbacteria, Microgenomates, and Parcubacteria. STXM imaging revealed ultra-small cells near the surfaces of filamentous bacteria that may be CPR bacterial episymbionts. STXM and NEXAFS spectroscopy at carbon K and sulfur L2,3 edges show that filamentous bacteria contain protein-encapsulated spherical elemental sulfur granules, indicating that they are sulfur oxidizers, likely Thiothrix. Berkelbacteria and Moranbacteria in the same biofilm sample are predicted to have a novel electron bifurcating group 3b [NiFe]-hydrogenase, putatively a sulfhydrogenase, potentially linked to sulfur metabolism via redox cofactors. This complex could potentially contribute to symbioses, for example, with sulfur-oxidizing bacteria such as Thiothrix that is based on cryptic sulfur cycling. One Doudnabacteria genome encodes adjacent sulfur dioxygenase and rhodanese genes that may convert thiosulfate to sulfite. We find similar conserved genomic architecture associated with CPR bacteria from other sulfur-rich subsurface ecosystems. CONCLUSIONS Our combined metagenomic, geochemical, spectromicroscopic, and structural bioinformatics analyses of biofilms growing in sulfide-rich springs revealed consortia that contain CPR bacteria and sulfur-oxidizing Proteobacteria, including Thiothrix, and bacteria from a new family within Beggiatoales. We infer roles for CPR bacteria in sulfur and hydrogen cycling. Video Abstract.
Collapse
Affiliation(s)
- Luis E Valentin-Alvarado
- Graduate Group in Microbiology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Sirine C Fakra
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alexander J Probst
- Earth and Planetary Science, University of California, Berkeley, CA, USA
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry,, University of Duisburg-Essen, Essen, Essen, Germany
| | - Jonathan R Giska
- Earth and Planetary Science, University of California, Berkeley, CA, USA
- Cleaner Air Oregon Program, Oregon Department of Environmental Quality, Portland, USA
| | - Alexander L Jaffe
- Graduate Group in Microbiology, University of California, Berkeley, CA, USA
| | - Luke M Oltrogge
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
| | - Jacob West-Roberts
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Joel Rowland
- Earth and Planetary Science, University of California, Berkeley, CA, USA
- Earth and Env. Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Michael Manga
- Earth and Planetary Science, University of California, Berkeley, CA, USA
- University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - David F Savage
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Brett J Baker
- Department of Integrative Biology, University of Texas, Austin, USA
- Department of Marine Science, University of Texas, Austin, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Earth and Planetary Science, University of California, Berkeley, CA, USA.
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
- Department of Marine Science, University of Texas, Austin, USA.
- Energy Geoscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
2
|
Hao Z, Wang Q, Wang J, Deng Y, Yan Z, Tian L, Jiang H. Water Level Fluctuations Modulate the Microbiomes Involved in Biogeochemical Cycling in Floodplains. MICROBIAL ECOLOGY 2023; 87:24. [PMID: 38159125 DOI: 10.1007/s00248-023-02331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
Drastic changes in hydrological conditions within floodplain ecosystems create distinct microbial habitats. However, there remains a lack of exploration regarding the variations in microbial function potentials across the flooding and drought seasons. In this study, metagenomics and environmental analyses were employed in floodplains that experience hydrological variations across four seasons. Analysis of functional gene composition, encompassing nitrogen, carbon, and sulfur metabolisms, revealed apparent differences between the flooding and drought seasons. The primary environmental drivers identified were water level, overlying water depth, submergence time, and temperature. Specific modules, e.g., the hydrolysis of β-1,4-glucosidic bond, denitrification, and dissimilatory/assimilatory nitrate reduction to ammonium, exhibited higher relative abundance in summer compared to winter. It is suggested that cellulose degradation was potentially coupled with nitrate reduction during the flooding season. Phylogenomic analysis of metagenome-assembled genomes (MAGs) unveiled that the Desulfobacterota lineage possessed abundant nitrogen metabolism genes supported by pathway reconstruction. Variation of relative abundance implied its environmental adaptability to both the wet and dry seasons. Furthermore, a novel order was found within Methylomirabilota, containing nitrogen reduction genes in the MAG. Overall, this study highlights the crucial role of hydrological factors in modulating microbial functional diversity and generating genomes with abundant nitrogen metabolism potentials.
Collapse
Affiliation(s)
- Zheng Hao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qianhong Wang
- Changjiang Nanjing Waterway Engineering Bureau, Nanjing, 210011, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zaisheng Yan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Linqi Tian
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China.
| |
Collapse
|
3
|
Aronson HS, Clark CE, LaRowe DE, Amend JP, Polerecky L, Macalady JL. Sulfur disproportionating microbial communities in a dynamic, microoxic-sulfidic karst system. GEOBIOLOGY 2023; 21:791-803. [PMID: 37721188 DOI: 10.1111/gbi.12574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/24/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
Biogeochemical sulfur cycling in sulfidic karst systems is largely driven by abiotic and biological sulfide oxidation, but the fate of elemental sulfur (S0 ) that accumulates in these systems is not well understood. The Frasassi Cave system (Italy) is intersected by a sulfidic aquifer that mixes with small quantities of oxygen-rich meteoric water, creating Proterozoic-like conditions and supporting a prolific ecosystem driven by sulfur-based chemolithoautotrophy. To better understand the cycling of S0 in this environment, we examined the geochemistry and microbiology of sediments underlying widespread sulfide-oxidizing mats dominated by Beggiatoa. Sediment populations were dominated by uncultivated relatives of sulfur cycling chemolithoautotrophs related to Sulfurovum, Halothiobacillus, Thiofaba, Thiovirga, Thiobacillus, and Desulfocapsa, as well as diverse uncultivated anaerobic heterotrophs affiliated with Bacteroidota, Anaerolineaceae, Lentimicrobiaceae, and Prolixibacteraceae. Desulfocapsa and Sulfurovum populations accounted for 12%-26% of sediment 16S rRNA amplicon sequences and were closely related to isolates which carry out autotrophic S0 disproportionation in pure culture. Gibbs energy (∆Gr ) calculations revealed that S0 disproportionation under in situ conditions is energy yielding. Microsensor profiles through the mat-sediment interface showed that Beggiatoa mats consume dissolved sulfide and oxygen, but a net increase in acidity was only observed in the sediments below. Together, these findings suggest that disproportionation is an important sink for S0 generated by microbial sulfide oxidation in this oxygen-limited system and may contribute to the weathering of carbonate rocks and sediments in sulfur-rich environments.
Collapse
Affiliation(s)
- Heidi S Aronson
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Christian E Clark
- Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Douglas E LaRowe
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - Jan P Amend
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - Lubos Polerecky
- Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jennifer L Macalady
- Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
4
|
Grim SL, Stuart DG, Aron P, Levin NE, Kinsman-Costello L, Waldbauer JR, Dick GJ. Seasonal shifts in community composition and proteome expression in a sulphur-cycling cyanobacterial mat. Environ Microbiol 2023; 25:2516-2533. [PMID: 37596970 DOI: 10.1111/1462-2920.16480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/29/2023] [Indexed: 08/21/2023]
Abstract
Seasonal changes in light and physicochemical conditions have strong impacts on cyanobacteria, but how they affect community structure, metabolism, and biogeochemistry of cyanobacterial mats remains unclear. Light may be particularly influential for cyanobacterial mats exposed to sulphide by altering the balance of oxygenic photosynthesis and sulphide-driven anoxygenic photosynthesis. We studied temporal shifts in irradiance, water chemistry, and community structure and function of microbial mats in the Middle Island Sinkhole (MIS), where anoxic and sulphate-rich groundwater provides habitat for cyanobacteria that conduct both oxygenic and anoxygenic photosynthesis. Seasonal changes in light and groundwater chemistry were accompanied by shifts in bacterial community composition, with a succession of dominant cyanobacteria from Phormidium to Planktothrix, and an increase in diatoms, sulphur-oxidizing bacteria, and sulphate-reducing bacteria from summer to autumn. Differential abundance of cyanobacterial light-harvesting proteins likely reflects a physiological response of cyanobacteria to light level. Beggiatoa sulphur oxidation proteins were more abundant in autumn. Correlated abundances of taxa through time suggest interactions between sulphur oxidizers and sulphate reducers, sulphate reducers and heterotrophs, and cyanobacteria and heterotrophs. These results support the conclusion that seasonal change, including light availability, has a strong influence on community composition and biogeochemical cycling of sulphur and O2 in cyanobacterial mats.
Collapse
Affiliation(s)
- Sharon L Grim
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Dack G Stuart
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Phoebe Aron
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Naomi E Levin
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Jacob R Waldbauer
- Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA
| | - Gregory J Dick
- Department of Earth and Environmental Sciences, Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Gao P, Fan K. Sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) in oil reservoir and biological control of SRB: a review. Arch Microbiol 2023; 205:162. [PMID: 37010699 DOI: 10.1007/s00203-023-03520-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 04/04/2023]
Abstract
Sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) inhabit oilfield production systems. Sulfur oxidation driven by SOB and dissimilatory sulfate reduction driven by SRB play important roles in sulfur cycle of oil reservoirs. More importantly, hydrogen sulfide produced by SRB is an acidic, flammable, and smelly toxic gas associated with reservoir souring, corrosion of oil-production facilities, and personnel safety. Effective control of SRB is urgently needed for the oil industry. This depends on an in-depth understanding of the microbial species that drive sulfur cycle and other related microorganisms in oil reservoir environments. Here, we identified SOB and SRB in produced brines of Qizhong block (Xinjiang Oilfield, China) from metagenome sequencing data based on reported SOB and SRB, reviewed metabolic pathways of sulfur oxidation and dissimilatory sulfate reduction, and ways for SRB control. The existing issues and future research of microbial sulfur cycle and SRB control are also discussed. Knowledge of the distribution of the microbial populations, their metabolic characteristics and interactions can help to develop an effective process to harness these microorganisms for oilfield production.
Collapse
Affiliation(s)
- Peike Gao
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China.
| | - Keyan Fan
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| |
Collapse
|
6
|
Liau P, Kim C, Saxton MA, Malkin SY. Microbial succession in a marine sediment: Inferring interspecific microbial interactions with marine cable bacteria. Environ Microbiol 2022; 24:6348-6364. [PMID: 36178156 PMCID: PMC10092204 DOI: 10.1111/1462-2920.16230] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/27/2022] [Indexed: 01/12/2023]
Abstract
Cable bacteria are long, filamentous, multicellular bacteria that grow in marine sediments and couple sulfide oxidation to oxygen reduction over centimetre-scale distances via long-distance electron transport. Cable bacteria can strongly modify biogeochemical cycling and may affect microbial community networks. Here we examine interspecific interactions with marine cable bacteria (Ca. Electrothrix) by monitoring the succession of 16S rRNA amplicons (DNA and RNA) and cell abundance across depth and time, contrasting sediments with and without cable bacteria growth. In the oxic zone, cable bacteria activity was positively associated with abundant predatory bacteria (Bdellovibrionota, Myxococcota, Bradymonadales), indicating putative predation on cathodic cells. At suboxic depths, cable bacteria activity was positively associated with sulfate-reducing and magnetotactic bacteria, consistent with cable bacteria functioning as ecosystem engineers that modify their local biogeochemical environment, benefitting certain microbes. Cable bacteria activity was negatively associated with chemoautotrophic sulfur-oxidizing Gammaproteobacteria (Thiogranum, Sedimenticola) at oxic depths, suggesting competition, and positively correlated with these taxa at suboxic depths, suggesting syntrophy and/or facilitation. These observations are consistent with chemoautotrophic sulfur oxidizers benefitting from an oxidizing potential imparted by cable bacteria at suboxic depths, possibly by using cable bacteria as acceptors for electrons or electron equivalents, but by an as yet enigmatic mechanism.
Collapse
Affiliation(s)
- Pinky Liau
- Horn Point Laboratory, University of Maryland Center for Environmental Science (UMCES), Cambridge, Maryland, USA
| | - Carol Kim
- Horn Point Laboratory, University of Maryland Center for Environmental Science (UMCES), Cambridge, Maryland, USA
| | - Matthew A Saxton
- Department of Biological Sciences, Miami University, Middletown, Ohio, USA
| | - Sairah Y Malkin
- Horn Point Laboratory, University of Maryland Center for Environmental Science (UMCES), Cambridge, Maryland, USA
| |
Collapse
|
7
|
Hashimoto Y, Shimamura S, Tame A, Sawayama S, Miyazaki J, Takai K, Nakagawa S. Physiological and comparative proteomic characterization of Desulfolithobacter dissulfuricans gen. nov., sp. nov., a novel mesophilic, sulfur-disproportionating chemolithoautotroph from a deep-sea hydrothermal vent. Front Microbiol 2022; 13:1042116. [PMID: 36532468 PMCID: PMC9751629 DOI: 10.3389/fmicb.2022.1042116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/31/2022] [Indexed: 03/19/2024] Open
Abstract
In deep-sea hydrothermal environments, inorganic sulfur compounds are important energy substrates for sulfur-oxidizing, -reducing, and -disproportionating microorganisms. Among these, sulfur-disproportionating bacteria have been poorly understood in terms of ecophysiology and phylogenetic diversity. Here, we isolated and characterized a novel mesophilic, strictly chemolithoautotrophic, diazotrophic sulfur-disproportionating bacterium, designated strain GF1T, from a deep-sea hydrothermal vent chimney at the Suiyo Seamount in the Izu-Bonin Arc, Japan. Strain GF1T disproportionated elemental sulfur, thiosulfate, and tetrathionate in the presence of ferrihydrite. The isolate also grew by respiratory hydrogen oxidation coupled to sulfate reduction. Phylogenetic and physiological analyses support that strain GF1T represents the type strain of a new genus and species in the family Desulfobulbaceae, for which the name Desulfolithobacter dissulfuricans gen. nov. sp. nov. is proposed. Proteomic analysis revealed that proteins related to tetrathionate reductase were specifically and abundantly produced when grown via thiosulfate disproportionation. In addition, several proteins possibly involved in thiosulfate disproportionation, including those encoded by the YTD gene cluster, were also found. The overall findings pointed to a possible diversity of sulfur-disproportionating bacteria in hydrothermal systems and provided a refined picture of microbial sulfur disproportionation.
Collapse
Affiliation(s)
- Yurina Hashimoto
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Shigeru Shimamura
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Akihiro Tame
- General Affairs Department, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Department of Marine and Earth Sciences, Marine Works Japan Ltd., Yokosuka, Japan
| | - Shigeki Sawayama
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Junichi Miyazaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Ken Takai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Section for Exploration of Life in Extreme Environments, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Japan
| | - Satoshi Nakagawa
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Section for Exploration of Life in Extreme Environments, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Japan
| |
Collapse
|
8
|
Allioux M, Yvenou S, Godfroy A, Shao Z, Jebbar M, Alain K. Genome analysis of a new sulphur disproportionating species Thermosulfurimonas strain F29 and comparative genomics of sulfur-disproportionating bacteria from marine hydrothermal vents. Microb Genom 2022; 8. [PMID: 36136081 DOI: 10.1099/mgen.0.000865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This paper reports on the genome analysis of strain F29 representing a new species of the genus Thermosulfurimonas. This strain, isolated from the Lucky Strike hydrothermal vent field on the Mid-Atlantic Ridge, is able to grow by disproportionation of S0 with CO2 as a carbon source. Strain F29 possesses a genome of 2,345,565 bp, with a G+C content of 58.09%, and at least one plasmid. The genome analysis revealed complete sets of genes for CO2 fixation via the Wood-Ljungdahl pathway, for sulphate-reduction and for hydrogen oxidation, suggesting the involvement of the strain into carbon, sulphur, and hydrogen cycles of deep-sea hydrothermal vents. Strain F29 genome encodes also several CRISPR sequences, suggesting that the strain may be subjected to viral attacks. Comparative genomics was carried out to decipher sulphur disproportionation pathways. Genomes of sulphur-disproportionating bacteria from marine hydrothermal vents were compared to the genomes of non-sulphur-disproportionating bacteria. This analysis revealed the ubiquitous presence in these genomes of a molybdopterin protein consisting of a large and a small subunit, and an associated chaperone. We hypothesize that these proteins may be involved in the process of elemental sulphur disproportionation.
Collapse
Affiliation(s)
- Maxime Allioux
- Univ Brest, CNRS, Ifremer, Unité Biologie et Ecologie des Ecosystèmes marins Profonds BEEP, UMR 6197, IRP 1211 MicrobSea, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France
| | - Stéven Yvenou
- Univ Brest, CNRS, Ifremer, Unité Biologie et Ecologie des Ecosystèmes marins Profonds BEEP, UMR 6197, IRP 1211 MicrobSea, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France
| | - Anne Godfroy
- Univ Brest, CNRS, Ifremer, Unité Biologie et Ecologie des Ecosystèmes marins Profonds BEEP, UMR 6197, IRP 1211 MicrobSea, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China
| | - Mohamed Jebbar
- Univ Brest, CNRS, Ifremer, Unité Biologie et Ecologie des Ecosystèmes marins Profonds BEEP, UMR 6197, IRP 1211 MicrobSea, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France
| | - Karine Alain
- Univ Brest, CNRS, Ifremer, Unité Biologie et Ecologie des Ecosystèmes marins Profonds BEEP, UMR 6197, IRP 1211 MicrobSea, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France
| |
Collapse
|
9
|
Bell E, Lamminmäki T, Alneberg J, Qian C, Xiong W, Hettich RL, Frutschi M, Bernier-Latmani R. Active anaerobic methane oxidation and sulfur disproportionation in the deep terrestrial subsurface. THE ISME JOURNAL 2022; 16:1583-1593. [PMID: 35173296 PMCID: PMC9123182 DOI: 10.1038/s41396-022-01207-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Microbial life is widespread in the terrestrial subsurface and present down to several kilometers depth, but the energy sources that fuel metabolism in deep oligotrophic and anoxic environments remain unclear. In the deep crystalline bedrock of the Fennoscandian Shield at Olkiluoto, Finland, opposing gradients of abiotic methane and ancient seawater-derived sulfate create a terrestrial sulfate-methane transition zone (SMTZ). We used chemical and isotopic data coupled to genome-resolved metaproteogenomics to demonstrate active life and, for the first time, provide direct evidence of active anaerobic oxidation of methane (AOM) in a deep terrestrial bedrock. Proteins from Methanoperedens (formerly ANME-2d) are readily identifiable despite the low abundance (≤1%) of this genus and confirm the occurrence of AOM. This finding is supported by 13C-depleted dissolved inorganic carbon. Proteins from Desulfocapsaceae and Desulfurivibrionaceae, in addition to 34S-enriched sulfate, suggest that these organisms use inorganic sulfur compounds as both electron donor and acceptor. Zerovalent sulfur in the groundwater may derive from abiotic rock interactions, or from a non-obligate syntrophy with Methanoperedens, potentially linking methane and sulfur cycles in Olkiluoto groundwater. Finally, putative episymbionts from the candidate phyla radiation (CPR) and DPANN archaea represented a significant diversity in the groundwater (26/84 genomes) with roles in sulfur and carbon cycling. Our results highlight AOM and sulfur disproportionation as active metabolisms and show that methane and sulfur fuel microbial activity in the deep terrestrial subsurface.
Collapse
Affiliation(s)
- Emma Bell
- Environmental Microbiology Laboratory, Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland.
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | | | - Johannes Alneberg
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, SE-17121, Sweden
| | - Chen Qian
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Weili Xiong
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Manon Frutschi
- Environmental Microbiology Laboratory, Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland.
| |
Collapse
|
10
|
Rajala P, Cheng DQ, Rice SA, Lauro FM. Sulfate-dependant microbially induced corrosion of mild steel in the deep sea: a 10-year microbiome study. MICROBIOME 2022; 10:4. [PMID: 35027090 PMCID: PMC8756651 DOI: 10.1186/s40168-021-01196-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/13/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Metal corrosion in seawater has been extensively studied in surface and shallow waters. However, infrastructure is increasingly being installed in deep-sea environments, where extremes of temperature, salinity, and high hydrostatic pressure increase the costs and logistical challenges associated with monitoring corrosion. Moreover, there is currently only a rudimentary understanding of the role of microbially induced corrosion, which has rarely been studied in the deep-sea. We report here an integrative study of the biofilms growing on the surface of corroding mooring chain links that had been deployed for 10 years at ~2 km depth and developed a model of microbially induced corrosion based on flux-balance analysis. METHODS We used optical emission spectrometry to analyze the chemical composition of the mooring chain and energy-dispersive X-ray spectrometry coupled with scanning electron microscopy to identify corrosion products and ultrastructural features. The taxonomic structure of the microbiome was determined using shotgun metagenomics and was confirmed by 16S amplicon analysis and quantitative PCR of the dsrB gene. The functional capacity was further analyzed by generating binned, genomic assemblies and performing flux-balance analysis on the metabolism of the dominant taxa. RESULTS The surface of the chain links showed intensive and localized corrosion with structural features typical of microbially induced corrosion. The microbiome on the links differed considerably from that of the surrounding sediment, suggesting selection for specific metal-corroding biofilms dominated by sulfur-cycling bacteria. The core metabolism of the microbiome was reconstructed to generate a mechanistic model that combines biotic and abiotic corrosion. Based on this metabolic model, we propose that sulfate reduction and sulfur disproportionation might play key roles in deep-sea corrosion. CONCLUSIONS The corrosion rate observed was higher than what could be expected from abiotic corrosion mechanisms under these environmental conditions. High corrosion rate and the form of corrosion (deep pitting) suggest that the corrosion of the chain links was driven by both abiotic and biotic processes. We posit that the corrosion is driven by deep-sea sulfur-cycling microorganisms which may gain energy by accelerating the reaction between metallic iron and elemental sulfur. The results of this field study provide important new insights on the ecophysiology of the corrosion process in the deep sea.
Collapse
Affiliation(s)
- Pauliina Rajala
- Singapore Centre for Environmental Life Sciences Engineering/Nanyang Technological University, 60 Nanyang Dr, Singapore, 637551 Singapore
- VTT Technical Research Centre of Finland Ltd., Materials in Extreme Environments, Kemistintie 3, 02044-VTT Espoo, Finland
| | - Dong-Qiang Cheng
- Singapore Centre for Environmental Life Sciences Engineering/Nanyang Technological University, 60 Nanyang Dr, Singapore, 637551 Singapore
| | - Scott A. Rice
- Singapore Centre for Environmental Life Sciences Engineering/Nanyang Technological University, 60 Nanyang Dr, Singapore, 637551 Singapore
- The School of Biological Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
- ithree Institute, The University of Technology Sydney, Ultimo, Australia
| | - Federico M. Lauro
- Singapore Centre for Environmental Life Sciences Engineering/Nanyang Technological University, 60 Nanyang Dr, Singapore, 637551 Singapore
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
| |
Collapse
|
11
|
Genetic Potential of Dissulfurimicrobium hydrothermale, an Obligate Sulfur-Disproportionating Thermophilic Microorganism. Microorganisms 2021; 10:microorganisms10010060. [PMID: 35056509 PMCID: PMC8780430 DOI: 10.3390/microorganisms10010060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 12/12/2022] Open
Abstract
The biochemical pathways of anaerobic sulfur disproportionation are only partially deciphered, and the mechanisms involved in the first step of S0-disproportionation remain unknown. Here, we present the results of sequencing and analysis of the complete genome of Dissulfurimicrobium hydrothermale strain Sh68T, one of two strains isolated to date known to grow exclusively by anaerobic disproportionation of inorganic sulfur compounds. Dissulfurimicrobium hydrothermale Sh68T is a motile, thermophilic, anaerobic, chemolithoautotrophic microorganism isolated from a hydrothermal pond at Uzon caldera, Kamchatka, Russia. It is able to produce energy and grow by disproportionation of elemental sulfur, sulfite and thiosulfate. Its genome consists of a circular chromosome of 2,025,450 base pairs, has a G + C content of 49.66% and a completion of 97.6%. Genomic data suggest that CO2 assimilation is carried out by the Wood–Ljungdhal pathway and that central anabolism involves the gluconeogenesis pathway. The genome of strain Sh68T encodes the complete gene set of the dissimilatory sulfate reduction pathway, some of which are likely to be involved in sulfur disproportionation. A short sequence protein of unknown function present in the genome of strain Sh68T is conserved in the genomes of a large panel of other S0-disproportionating bacteria and was absent from the genomes of microorganisms incapable of elemental sulfur disproportionation. We propose that this protein may be involved in the first step of elemental sulfur disproportionation, as S0 is poorly soluble and unable to cross the cytoplasmic membrane in this form.
Collapse
|
12
|
Iwanowicz DD, Jonas RB, Schill WB, Marano-Briggs K. Novel microbiome dominated by Arcobacter during anoxic excurrent flow from an ocean blue hole in Andros Island, The Bahamas. PLoS One 2021; 16:e0256305. [PMID: 34411155 PMCID: PMC8375975 DOI: 10.1371/journal.pone.0256305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/03/2021] [Indexed: 11/18/2022] Open
Abstract
Andros Island, The Bahamas, composed of porous carbonate rock, has about 175 inland blue holes and over 50 known submerged ocean caves along its eastern barrier reef. These ocean blue holes can have both vertical and horizontal zones that penetrate under the island. Tidal forces drive water flow in and out of these caves. King Kong Cavern has a vertical collapse zone and a deep penetration under Andros Island that emits sulfidic, anoxic water and masses of thin, mucoid filaments ranging to meters in length and off-white turbid water during ebb flow. Our objective was to determine the microbial composition of this mucoid material and the unconsolidated water column turbidity based on the concept that they represent unique lithoautotrophic microbial material swept from the cave into the surrounding ocean. Bacterial DNA extracted from these filaments and surrounding turbid water was characterized using PCR that targeted a portion of the 16S rRNA gene. The genus Arcobacter dominated both the filaments and the water column above the cave entrance. Arcobacter nitrofigilis and Arcobacter sp. UDC415 in the mucoid filaments accounted for as much as 80% of mapped DNA reads. In the water column Arcobacter comprised from 65% to over 85% of the reads in the depth region from about 18 m to 34 m. Bacterial species diversity was much higher in surface water and in water deeper than 36 m than in the intermediate zone. Community composition indicates that ebb flow from the cavern influences the entire water column at least to within 6 m of the surface and perhaps the near surface as well.
Collapse
Affiliation(s)
- Deborah D. Iwanowicz
- Eastern Ecological Science Center, United States Geological Survey, Kearneysville, West Virginia, United States of America
| | - Robert B. Jonas
- Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia, United States of America
- * E-mail:
| | - William B. Schill
- Eastern Ecological Science Center, United States Geological Survey, Kearneysville, West Virginia, United States of America
| | - Kay Marano-Briggs
- Eastern Ecological Science Center, United States Geological Survey, Kearneysville, West Virginia, United States of America
| |
Collapse
|
13
|
Slobodkina G, Allioux M, Merkel A, Cambon-Bonavita MA, Alain K, Jebbar M, Slobodkin A. Physiological and Genomic Characterization of a Hyperthermophilic Archaeon Archaeoglobus neptunius sp. nov. Isolated From a Deep-Sea Hydrothermal Vent Warrants the Reclassification of the Genus Archaeoglobus. Front Microbiol 2021; 12:679245. [PMID: 34335500 PMCID: PMC8322695 DOI: 10.3389/fmicb.2021.679245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/30/2021] [Indexed: 11/28/2022] Open
Abstract
Hyperthermophilic archaea of the genus Archaeoglobus are the subject of many fundamental and biotechnological researches. Despite their significance, the class Archaeoglobi is currently represented by only eight species obtained as axenic cultures and taxonomically characterized. Here, we report the isolation and characterization of a new species of Archaeoglobus from a deep-sea hydrothermal vent (Mid-Atlantic Ridge, TAG) for which the name Archaeoglobus neptunius sp. nov. is proposed. The type strain is SE56T (=DSM 110954T = VKM B-3474T). The cells of the novel isolate are motile irregular cocci growing at 50–85°C, pH 5.5–7.5, and NaCl concentrations of 1.5–4.5% (w/v). Strain SE56T grows lithoautotrophically with H2 as an electron donor, sulfite or thiosulfate as an electron acceptor, and CO2/HCO3− as a carbon source. It is also capable of chemoorganotrophic growth by reduction of sulfate, sulfite, or thiosulfate. The genome of the new isolate consists of a 2,115,826 bp chromosome with an overall G + C content of 46.0 mol%. The whole-genome annotation confirms the key metabolic features of the novel isolate demonstrated experimentally. Genome contains a complete set of genes involved in CO2 fixation via reductive acetyl-CoA pathway, gluconeogenesis, hydrogen and fatty acids oxidation, sulfate reduction, and flagellar motility. The phylogenomic reconstruction based on 122 conserved single-copy archaeal proteins supported by average nucleotide identity (ANI), average amino acid identity (AAI), and alignment fraction (AF) values, indicates a polyphyletic origin of the species currently included into the genus Archaeoglobus, warranting its reclassification.
Collapse
Affiliation(s)
- Galina Slobodkina
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Maxime Allioux
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E, Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, UMR 6197, Plouzané, France
| | - Alexander Merkel
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Marie-Anne Cambon-Bonavita
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E, Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, UMR 6197, Plouzané, France
| | - Karine Alain
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E, Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, UMR 6197, Plouzané, France
| | - Mohamed Jebbar
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E, Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, UMR 6197, Plouzané, France
| | - Alexander Slobodkin
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
14
|
Wu B, Liu F, Fang W, Yang T, Chen GH, He Z, Wang S. Microbial sulfur metabolism and environmental implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146085. [PMID: 33714092 DOI: 10.1016/j.scitotenv.2021.146085] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Sulfur as a macroelement plays an important role in biochemistry in both natural environments and engineering biosystems, which can be further linked to other important element cycles, e.g. carbon, nitrogen and iron. Consequently, the sulfur cycling primarily mediated by sulfur compounds oxidizing microorganisms and sulfur compounds reducing microorganisms has enormous environmental implications, particularly in wastewater treatment and pollution bioremediation. In this review, to connect the knowledge in microbial sulfur metabolism to environmental applications, we first comprehensively review recent advances in understanding microbial sulfur metabolisms at molecular-, cellular- and ecosystem-levels, together with their energetics. We then discuss the environmental implications to fight against soil and water pollution, with four foci: (1) acid mine drainage, (2) water blackening and odorization in urban rivers, (3) SANI® and DS-EBPR processes for sewage treatment, and (4) bioremediation of persistent organic pollutants. In addition, major challenges and further developments toward elucidation of microbial sulfur metabolisms and their environmental applications are identified and discussed.
Collapse
Affiliation(s)
- Bo Wu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Feifei Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, China
| | - Wenwen Fang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Tony Yang
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2, Canada
| | - Guang-Hao Chen
- Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
15
|
van Vliet DM, von Meijenfeldt FB, Dutilh BE, Villanueva L, Sinninghe Damsté JS, Stams AJ, Sánchez‐Andrea I. The bacterial sulfur cycle in expanding dysoxic and euxinic marine waters. Environ Microbiol 2021; 23:2834-2857. [PMID: 33000514 PMCID: PMC8359478 DOI: 10.1111/1462-2920.15265] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 09/03/2020] [Accepted: 09/28/2020] [Indexed: 01/29/2023]
Abstract
Dysoxic marine waters (DMW, < 1 μM oxygen) are currently expanding in volume in the oceans, which has biogeochemical, ecological and societal consequences on a global scale. In these environments, distinct bacteria drive an active sulfur cycle, which has only recently been recognized for open-ocean DMW. This review summarizes the current knowledge on these sulfur-cycling bacteria. Critical bottlenecks and questions for future research are specifically addressed. Sulfate-reducing bacteria (SRB) are core members of DMW. However, their roles are not entirely clear, and they remain largely uncultured. We found support for their remarkable diversity and taxonomic novelty by mining metagenome-assembled genomes from the Black Sea as model ecosystem. We highlight recent insights into the metabolism of key sulfur-oxidizing SUP05 and Sulfurimonas bacteria, and discuss the probable involvement of uncultivated SAR324 and BS-GSO2 bacteria in sulfur oxidation. Uncultivated Marinimicrobia bacteria with a presumed organoheterotrophic metabolism are abundant in DMW. Like SRB, they may use specific molybdoenzymes to conserve energy from the oxidation, reduction or disproportionation of sulfur cycle intermediates such as S0 and thiosulfate, produced from the oxidation of sulfide. We expect that tailored sampling methods and a renewed focus on cultivation will yield deeper insight into sulfur-cycling bacteria in DMW.
Collapse
Affiliation(s)
- Daan M. van Vliet
- Laboratory of MicrobiologyWageningen University and Research, Stippeneng 4, 6708WEWageningenNetherlands
| | | | - Bas E. Dutilh
- Theoretical Biology and Bioinformatics, Science for LifeUtrecht University, Padualaan 8, 3584 CHUtrechtNetherlands
| | - Laura Villanueva
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Research (NIOZ), Utrecht University, Landsdiep 4, 1797 SZ, 'tHorntje (Texel)Netherlands
| | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Research (NIOZ), Utrecht University, Landsdiep 4, 1797 SZ, 'tHorntje (Texel)Netherlands
- Department of Earth Sciences, Faculty of GeosciencesUtrecht University, Princetonlaan 8A, 3584 CBUtrechtNetherlands
| | - Alfons J.M. Stams
- Laboratory of MicrobiologyWageningen University and Research, Stippeneng 4, 6708WEWageningenNetherlands
- Centre of Biological EngineeringUniversity of Minho, Campus de Gualtar, 4710‐057BragaPortugal
| | - Irene Sánchez‐Andrea
- Laboratory of MicrobiologyWageningen University and Research, Stippeneng 4, 6708WEWageningenNetherlands
| |
Collapse
|
16
|
Ward LM, Bertran E, Johnston DT. Expanded Genomic Sampling Refines Current Understanding of the Distribution and Evolution of Sulfur Metabolisms in the Desulfobulbales. Front Microbiol 2021; 12:666052. [PMID: 34093483 PMCID: PMC8170396 DOI: 10.3389/fmicb.2021.666052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
The reconstruction of modern and paleo-sulfur cycling relies on understanding the long-term relative contribution of its main actors; these include microbial sulfate reduction (MSR) and microbial sulfur disproportionation (MSD). However, a unifying theory is lacking for how MSR and MSD, with the same enzyme machinery and intimately linked evolutionary histories, perform two drastically different metabolisms. Here, we aim at shedding some light on the distribution, diversity, and evolutionary histories of MSR and MSD, with a focus on the Desulfobulbales as a test case. The Desulfobulbales is a diverse and widespread order of bacteria in the Desulfobacterota (formerly Deltaproteobacteria) phylum primarily composed of sulfate reducing bacteria. Recent culture- and sequence-based approaches have revealed an expanded diversity of organisms and metabolisms within this clade, including the presence of obligate and facultative sulfur disproportionators. Here, we present draft genomes of previously unsequenced species of Desulfobulbales, substantially expanding the available genomic diversity of this clade. We leverage this expanded genomic sampling to perform phylogenetic analyses, revealing an evolutionary history defined by vertical inheritance of sulfur metabolism genes with numerous convergent instances of transition from sulfate reduction to sulfur disproportionation.
Collapse
Affiliation(s)
- Lewis M. Ward
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, United States
| | - Emma Bertran
- Princeton Environmental Institute, Princeton University, Princeton, NJ, United States
| | - David T. Johnston
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, United States
| |
Collapse
|
17
|
Ewton E, Klasek S, Peck E, Wiest J, Colwell F. Microbial Community Characteristics Largely Unaffected by X-Ray Computed Tomography of Sediment Cores. Front Microbiol 2021; 12:584676. [PMID: 33912140 PMCID: PMC8072469 DOI: 10.3389/fmicb.2021.584676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/12/2021] [Indexed: 11/13/2022] Open
Abstract
X-ray computed tomography (CT) scanning is used to study the physical characteristics of soil and sediment cores, allowing scientists to analyze stratigraphy without destroying core integrity. Microbiologists often work with geologists to understand the microbial properties in such cores; however, we do not know whether CT scanning alters microbial DNA such that DNA sequencing, a common method of community characterization, changes as a result of X-ray exposure. Our objective was to determine whether CT scanning affects the estimates of the composition of microbial communities that exist in cores. Sediment cores were extracted from a salt marsh and then submitted for CT scanning. We observed a minimal effect of CT scanning on microbial community composition in the sediment cores either when the cores were examined shortly after recovery from the field or after the cores had been stored for several weeks. In contrast, properties such as sediment layer and marsh location did affect microbial community structure. While we observed that CT scanning did not alter microbial community composition as a whole, we identified a few amplicon sequence variants (13 out of 7,037) that showed differential abundance patterns between scanned and unscanned samples among paired sample sets. Our overall conclusion is that the CT-scanning conditions typically used to obtain images for geological core characterization do not significantly alter microbial community structure. We stress that minimizing core exposure to X-rays is important if cores are to be studied for biological properties. Future investigations might consider variables, such as the length and energy of radiation exposure, the volume of the core, or the degree, to which microbial communities are stressed as important factors in assessing the impact of X-rays on microbes in geological cores.
Collapse
Affiliation(s)
- Erica Ewton
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Scott Klasek
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Erin Peck
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| | - Jason Wiest
- Department of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Frederick Colwell
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
18
|
Seyler LM, Trembath-Reichert E, Tully BJ, Huber JA. Time-series transcriptomics from cold, oxic subseafloor crustal fluids reveals a motile, mixotrophic microbial community. THE ISME JOURNAL 2021; 15:1192-1206. [PMID: 33273721 PMCID: PMC8115675 DOI: 10.1038/s41396-020-00843-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/27/2020] [Accepted: 11/11/2020] [Indexed: 01/29/2023]
Abstract
The oceanic crustal aquifer is one of the largest habitable volumes on Earth, and it harbors a reservoir of microbial life that influences global-scale biogeochemical cycles. Here, we use time series metagenomic and metatranscriptomic data from a low-temperature, ridge flank environment representative of the majority of global hydrothermal fluid circulation in the ocean to reconstruct microbial metabolic potential, transcript abundance, and community dynamics. We also present metagenome-assembled genomes from recently collected fluids that are furthest removed from drilling disturbances. Our results suggest that the microbial community in the North Pond aquifer plays an important role in the oxidation of organic carbon within the crust. This community is motile and metabolically flexible, with the ability to use both autotrophic and organotrophic pathways, as well as function under low oxygen conditions by using alternative electron acceptors such as nitrate and thiosulfate. Anaerobic processes are most abundant in subseafloor horizons deepest in the aquifer, furthest from connectivity with the deep ocean, and there was little overlap in the active microbial populations between sampling horizons. This work highlights the heterogeneity of microbial life in the subseafloor aquifer and provides new insights into biogeochemical cycling in ocean crust.
Collapse
Affiliation(s)
- Lauren M Seyler
- School of Natural and Mathematical Sciences, Stockton University, Galloway, NJ, USA.
- Blue Marble Space Institute of Science, Seattle, WA, USA.
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | | | - Benjamin J Tully
- Center for Dark Energy Biosphere Investigations, University of Southern California, Los Angeles, CA, USA
| | - Julie A Huber
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
19
|
Paul V, Banerjee Y, Ghosh P, Busi SB. Depthwise microbiome and isotopic profiling of a moderately saline microbial mat in a solar saltern. Sci Rep 2020; 10:20686. [PMID: 33244085 PMCID: PMC7693307 DOI: 10.1038/s41598-020-77622-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 11/09/2020] [Indexed: 11/23/2022] Open
Abstract
The solar salterns in Tuticorin, India, are man-made, saline to hypersaline systems hosting some uniquely adapted populations of microorganisms and eukaryotic algae that have not been fully characterized. Two visually different microbial mats (termed 'white' and 'green') developing on the reservoir ponds (53 PSU) were isolated from the salterns. Firstly, archaeal and bacterial diversity in different vertical layers of the mats were analyzed. Culture-independent 16S rRNA gene analysis revealed that both bacteria and archaea were rich in their diversity. The top layers had a higher representation of halophilic archaea Halobacteriaceae, phylum Chloroflexi, and classes Anaerolineae, Delta- and Gamma- Proteobacteria than the deeper sections, indicating that a salinity gradient exists within the mats. Limited presence of Cyanobacteria and detection of algae-associated bacteria, such as Phycisphaerae, Phaeodactylibacter and Oceanicaulis likely implied that eukaryotic algae and other phototrophs could be the primary producers within the mat ecosystem. Secondly, predictive metabolic pathway analysis using the 16S rRNA gene data revealed that in addition to the regulatory microbial functions, methane and nitrogen metabolisms were prevalent. Finally, stable carbon and nitrogen isotopic compositions determined from both mat samples showed that the δ13Corg and δ15Norg values increased slightly with depth, ranging from - 16.42 to - 14.73‰, and 11.17 to 13.55‰, respectively. The isotopic signature along the microbial mat profile followed a pattern that is distinctive to the community composition and net metabolic activities, and comparable to saline mats in other salterns. The results and discussions presented here by merging culture-independent studies, predictive metabolic analyses and isotopic characterization, provide a collective strategy to understand the compositional and functional characteristics of microbial mats in saline environments.
Collapse
Affiliation(s)
- Varun Paul
- Department of Geosciences, Mississippi State University, Starkville, MS, 39762, USA.
| | - Yogaraj Banerjee
- Interdisciplinary Centre for Water Research, Indian Institute of Science, Bangalore, 560012, India
| | - Prosenjit Ghosh
- Interdisciplinary Centre for Water Research, Indian Institute of Science, Bangalore, 560012, India
- Centre for Earth Sciences, Indian Institute of Science, Bangalore, 560012, India
| | - Susheel Bhanu Busi
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
20
|
Löffler M, Wallerang KB, Venceslau SS, Pereira IAC, Dahl C. The Iron-Sulfur Flavoprotein DsrL as NAD(P)H:Acceptor Oxidoreductase in Oxidative and Reductive Dissimilatory Sulfur Metabolism. Front Microbiol 2020; 11:578209. [PMID: 33178160 PMCID: PMC7596348 DOI: 10.3389/fmicb.2020.578209] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/23/2020] [Indexed: 11/13/2022] Open
Abstract
DsrAB-type dissimilatory sulfite reductase is a key enzyme of microbial sulfur-dependent energy metabolism. Sulfur oxidizers also contain DsrL, which is essential for sulfur oxidation in Allochromatium vinosum. This NAD(P)H oxidoreductase acts as physiological partner of oxidative-type rDsrAB. Recent analyses uncovered that DsrL is not confined to sulfur oxidizers but also occurs in (probable) sulfate/sulfur-reducing bacteria. Here, phylogenetic analysis revealed a separation into two major branches, DsrL-1, with two subgroups, and DsrL-2. When present in organisms with reductive-type DsrAB, DsrL is of type 2. In the majority of cases oxidative-type rDsrAB occurs with DsrL-1 but combination with DsrL-2-type enzymes is also observed. Three model DsrL proteins, DsrL-1A and DsrL-1B from the sulfur oxidizers A. vinosum and Chlorobaculum tepidum, respectively, as well as DsrL-2 from thiosulfate- and sulfur-reducing Desulfurella amilsii were kinetically characterized. DaDsrL-2 is active with NADP(H) but not with NAD(H) which we relate to a conserved YRR-motif in the substrate-binding domains of all DsrL-2 enzymes. In contrast, AvDsrL-1A has a strong preference for NAD(H) and the CtDsrL-1B enzyme is completely inactive with NADP(H). Thus, NAD+ as well as NADP+ are suitable in vivo electron acceptors for rDsrABL-1-catalyzed sulfur oxidation, while NADPH is required as electron donor for sulfite reduction. This observation can be related to the lower redox potential of the NADPH/NADP+ than the NADH/NAD+ couple under physiological conditions. Organisms with a rdsrAB and dsrL-1 gene combination can be confidently identified as sulfur oxidizers while predictions for organisms with other combinations require much more caution and additional information sources.
Collapse
Affiliation(s)
- Maria Löffler
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Kai B Wallerang
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Sofia S Venceslau
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
21
|
Umezawa K, Kojima H, Kato Y, Fukui M. Disproportionation of inorganic sulfur compounds by a novel autotrophic bacterium belonging to Nitrospirota. Syst Appl Microbiol 2020; 43:126110. [DOI: 10.1016/j.syapm.2020.126110] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/21/2022]
|
22
|
Panwar P, Allen MA, Williams TJ, Hancock AM, Brazendale S, Bevington J, Roux S, Páez-Espino D, Nayfach S, Berg M, Schulz F, Chen IMA, Huntemann M, Shapiro N, Kyrpides NC, Woyke T, Eloe-Fadrosh EA, Cavicchioli R. Influence of the polar light cycle on seasonal dynamics of an Antarctic lake microbial community. MICROBIOME 2020; 8:116. [PMID: 32772914 PMCID: PMC7416419 DOI: 10.1186/s40168-020-00889-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/30/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Cold environments dominate the Earth's biosphere and microbial activity drives ecosystem processes thereby contributing greatly to global biogeochemical cycles. Polar environments differ to all other cold environments by experiencing 24-h sunlight in summer and no sunlight in winter. The Vestfold Hills in East Antarctica contains hundreds of lakes that have evolved from a marine origin only 3000-7000 years ago. Ace Lake is a meromictic (stratified) lake from this region that has been intensively studied since the 1970s. Here, a total of 120 metagenomes representing a seasonal cycle and four summers spanning a 10-year period were analyzed to determine the effects of the polar light cycle on microbial-driven nutrient cycles. RESULTS The lake system is characterized by complex sulfur and hydrogen cycling, especially in the anoxic layers, with multiple mechanisms for the breakdown of biopolymers present throughout the water column. The two most abundant taxa are phototrophs (green sulfur bacteria and cyanobacteria) that are highly influenced by the seasonal availability of sunlight. The extent of the Chlorobium biomass thriving at the interface in summer was captured in underwater video footage. The Chlorobium abundance dropped from up to 83% in summer to 6% in winter and 1% in spring, before rebounding to high levels. Predicted Chlorobium viruses and cyanophage were also abundant, but their levels did not negatively correlate with their hosts. CONCLUSION Over-wintering expeditions in Antarctica are logistically challenging, meaning insight into winter processes has been inferred from limited data. Here, we found that in contrast to chemolithoautotrophic carbon fixation potential of Southern Ocean Thaumarchaeota, this marine-derived lake evolved a reliance on photosynthesis. While viruses associated with phototrophs also have high seasonal abundance, the negative impact of viral infection on host growth appeared to be limited. The microbial community as a whole appears to have developed a capacity to generate biomass and remineralize nutrients, sufficient to sustain itself between two rounds of sunlight-driven summer-activity. In addition, this unique metagenome dataset provides considerable opportunity for future interrogation of eukaryotes and their viruses, abundant uncharacterized taxa (i.e. dark matter), and for testing hypotheses about endemic species in polar aquatic ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Pratibha Panwar
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Michelle A Allen
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Alyce M Hancock
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania, Australia
| | - Sarah Brazendale
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
- , 476 Lancaster Rd, Pegarah, Australia
| | - James Bevington
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Simon Roux
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - David Páez-Espino
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Mammoth BioSciences, 279 East Grand Ave, South San Francisco, CA, USA
| | - Stephen Nayfach
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Maureen Berg
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Frederik Schulz
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - I-Min A Chen
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | | | - Nicole Shapiro
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | | | - Tanja Woyke
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | | | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia.
| |
Collapse
|
23
|
Abstract
A unique environment at Borup Fiord Pass is characterized by a sulfur-enriched glacial ecosystem in the low-temperature Canadian High Arctic. BFP represents one of the best terrestrial analog sites for studying icy, sulfur-rich worlds outside our own, such as Europa and Mars. The site also allows investigation of sulfur-based microbial metabolisms in cold environments here on Earth. Here, we report whole-genome sequencing data that suggest that sulfur cycling metabolisms at BFP are more widely used across bacterial taxa than predicted. From our analyses, the metabolic capability of sulfur oxidation among multiple community members appears likely due to functional redundancy present in their genomes. Functional redundancy, with respect to sulfur-oxidation at the BFP sulfur-ice environment, may indicate that this dynamic ecosystem hosts microorganisms that are able to use multiple sulfur electron donors alongside other metabolic pathways, including those for carbon and nitrogen. Biological sulfur cycling in polar, low-temperature ecosystems is an understudied phenomenon in part due to difficulty of access and the dynamic nature of glacial environments. One such environment where sulfur cycling is known to play an important role in microbial metabolisms is located at Borup Fiord Pass (BFP) in the Canadian High Arctic. Here, transient springs emerge from ice near the terminus of a glacier, creating a large area of proglacial aufeis (spring-derived ice) that is often covered in bright yellow/white sulfur, sulfate, and carbonate mineral precipitates accompanied by a strong odor of hydrogen sulfide. Metagenomic sequencing of samples from multiple sites and of various sample types across the BFP glacial system produced 31 metagenome-assembled genomes (MAGs) that were queried for sulfur, nitrogen, and carbon cycling/metabolism genes. An abundance of sulfur cycling genes was widespread across the isolated MAGs and sample metagenomes taxonomically associated with the bacterial classes Alphaproteobacteria and Gammaproteobacteria and Campylobacteria (formerly the Epsilonproteobacteria). This corroborates previous research from BFP implicating Campylobacteria as the primary class responsible for sulfur oxidation; however, data reported here suggested putative sulfur oxidation by organisms in both the alphaproteobacterial and gammaproteobacterial classes that was not predicted by previous work. These findings indicate that in low-temperature, sulfur-based environments, functional redundancy may be a key mechanism that microorganisms use to enable coexistence whenever energy is limited and/or focused by redox chemistry. IMPORTANCE A unique environment at Borup Fiord Pass is characterized by a sulfur-enriched glacial ecosystem in the low-temperature Canadian High Arctic. BFP represents one of the best terrestrial analog sites for studying icy, sulfur-rich worlds outside our own, such as Europa and Mars. The site also allows investigation of sulfur-based microbial metabolisms in cold environments here on Earth. Here, we report whole-genome sequencing data that suggest that sulfur cycling metabolisms at BFP are more widely used across bacterial taxa than predicted. From our analyses, the metabolic capability of sulfur oxidation among multiple community members appears likely due to functional redundancy present in their genomes. Functional redundancy, with respect to sulfur-oxidation at the BFP sulfur-ice environment, may indicate that this dynamic ecosystem hosts microorganisms that are able to use multiple sulfur electron donors alongside other metabolic pathways, including those for carbon and nitrogen.
Collapse
|
24
|
Xu Z, Chen X, Li H, Wan D, Wan J. Combined heterotrophic and autotrophic system for advanced denitrification of municipal secondary effluent in full-scale plant and bacterial community analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:136981. [PMID: 32092802 DOI: 10.1016/j.scitotenv.2020.136981] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/15/2020] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
Total nitrogen (TN) removal is the major technical challenge for wastewater treatment plants to meet the more stringent discharge standard. In this study, lab- (0.05 m3/d), pilot- (1000 m3/d) and full-scale (10,000 m3/d) combined heterotrophic and autotrophic denitrification reactors (HARs) were designed and operated to treat municipal secondary effluent. During the 110-day stable operation, the effluent TN was reduced below 2.5 mg/L without secondary pollution causing by the excessive addition of organics, close to Class IV of Environmental Quality Standards for Surface Water. The bacterial richness and diversity increased with the expansion of reactor scale. Denitrifying bacteria (DB) dominated in all reactors, however, Thiomonas (12.42%), Methylotenera (6.35%), Thiobacillus (20.62%), Methyloverstatilis (5.44%) and Thauera (8.21%) were the main genera in lab-, pilot- and full-scale reactors respectively. The denitrification efficiency temporarily deteriorated at the later stage, and redundancy analysis (RDA) indicated the obviously increased sulfate reducing bacteria (SRB) and sulfide were main contributors. Sludge supplement rapidly recovered the reactors performance in five days. This study suggests that HARs could be a promising technique for advanced denitrification of the municipal secondary effluent.
Collapse
Affiliation(s)
- Zicong Xu
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Xiaolei Chen
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Haisong Li
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China.
| | - Dongjin Wan
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Junfeng Wan
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
25
|
" Candidatus Desulfobulbus rimicarensis," an Uncultivated Deltaproteobacterial Epibiont from the Deep-Sea Hydrothermal Vent Shrimp Rimicaris exoculata. Appl Environ Microbiol 2020; 86:AEM.02549-19. [PMID: 32060020 PMCID: PMC7117923 DOI: 10.1128/aem.02549-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/26/2020] [Indexed: 02/03/2023] Open
Abstract
The shrimp Rimicaris exoculata represents the dominant faunal biomass at many deep-sea hydrothermal vent ecosystems along the Mid-Atlantic Ridge. This organism harbors dense bacterial epibiont communities in its enlarged cephalothoracic chamber that play an important nutritional role. Deltaproteobacteria are ubiquitous in epibiotic communities of R. exoculata, and their functional roles as epibionts are based solely on the presence of functional genes. Here, we describe “Candidatus Desulfobulbus rimicarensis,” an uncultivated deltaproteobacterial epibiont. Compared to campylobacterial and gammaproteobacterial epibionts of R. exoculata, this bacterium possessed unique metabolic pathways, such as the Wood-Ljungdahl pathway, as well as sulfur disproportionation and nitrogen fixation pathways. Furthermore, this epibiont can be distinguished from closely related free-living Desulfobulbus strains by its reduced genetic content and potential loss of functions, suggesting unique adaptations to the shrimp host. This study is a genomic and transcriptomic analysis of a deltaproteobacterial epibiont and largely expands the understanding of its metabolism and adaptation to the R. exoculata host. The deep-sea hydrothermal vent shrimp Rimicaris exoculata largely depends on a dense epibiotic chemoautotrophic bacterial community within its enlarged cephalothoracic chamber. However, our understanding of shrimp-bacterium interactions is limited. In this report, we focused on the deltaproteobacterial epibiont of R. exoculata from the relatively unexplored South Mid-Atlantic Ridge. A nearly complete genome of a Deltaproteobacteria epibiont was binned from the assembled metagenome. Whole-genome phylogenetic analysis reveals that it is affiliated with the genus Desulfobulbus, representing a potential novel species for which the name “Candidatus Desulfobulbus rimicarensis” is proposed. Genomic and transcriptomic analyses reveal that this bacterium utilizes the Wood-Ljungdahl pathway for carbon assimilation and harvests energy via sulfur disproportionation, which is significantly different from other shrimp epibionts. Additionally, this epibiont has putative nitrogen fixation activity, but it is extremely active in directly taking up ammonia and urea from the host or vent environments. Moreover, the epibiont could be distinguished from its free-living relatives by various features, such as the lack of chemotaxis and motility traits, a dramatic reduction in biosynthesis genes for capsular and extracellular polysaccharides, enrichment of genes required for carbon fixation and sulfur metabolism, and resistance to environmental toxins. Our study highlights the unique role and symbiotic adaptation of Deltaproteobacteria in deep-sea hydrothermal vent shrimps. IMPORTANCE The shrimp Rimicaris exoculata represents the dominant faunal biomass at many deep-sea hydrothermal vent ecosystems along the Mid-Atlantic Ridge. This organism harbors dense bacterial epibiont communities in its enlarged cephalothoracic chamber that play an important nutritional role. Deltaproteobacteria are ubiquitous in epibiotic communities of R. exoculata, and their functional roles as epibionts are based solely on the presence of functional genes. Here, we describe “Candidatus Desulfobulbus rimicarensis,” an uncultivated deltaproteobacterial epibiont. Compared to campylobacterial and gammaproteobacterial epibionts of R. exoculata, this bacterium possessed unique metabolic pathways, such as the Wood-Ljungdahl pathway, as well as sulfur disproportionation and nitrogen fixation pathways. Furthermore, this epibiont can be distinguished from closely related free-living Desulfobulbus strains by its reduced genetic content and potential loss of functions, suggesting unique adaptations to the shrimp host. This study is a genomic and transcriptomic analysis of a deltaproteobacterial epibiont and largely expands the understanding of its metabolism and adaptation to the R. exoculata host.
Collapse
|
26
|
Active sulfur cycling in the terrestrial deep subsurface. ISME JOURNAL 2020; 14:1260-1272. [PMID: 32047278 DOI: 10.1038/s41396-020-0602-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 11/09/2022]
Abstract
The deep terrestrial subsurface remains an environment where there is limited understanding of the extant microbial metabolisms. At Olkiluoto, Finland, a deep geological repository is under construction for the final storage of spent nuclear fuel. It is therefore critical to evaluate the potential impact microbial metabolism, including sulfide generation, could have upon the safety of the repository. We investigated a deep groundwater where sulfate is present, but groundwater geochemistry suggests limited microbial sulfate-reducing activity. Examination of the microbial community at the genome-level revealed microorganisms with the metabolic capacity for both oxidative and reductive sulfur transformations. Deltaproteobacteria are shown to have the genetic capacity for sulfate reduction and possibly sulfur disproportionation, while Rhizobiaceae, Rhodocyclaceae, Sideroxydans, and Sulfurimonas oxidize reduced sulfur compounds. Further examination of the proteome confirmed an active sulfur cycle, serving for microbial energy generation and growth. Our results reveal that this sulfide-poor groundwater harbors an active microbial community of sulfate-reducing and sulfide-oxidizing bacteria, together mediating a sulfur cycle that remained undetected by geochemical monitoring alone. The ability of sulfide-oxidizing bacteria to limit the accumulation of sulfide was further demonstrated in groundwater incubations and highlights a potential sink for sulfide that could be beneficial for geological repository safety.
Collapse
|
27
|
Draft Genome Sequence of Acidianus ambivalens DSM 3772, an Aerobic Thermoacidophilic Sulfur Disproportionator. Microbiol Resour Announc 2020; 9:9/3/e01415-19. [PMID: 31948968 PMCID: PMC6965586 DOI: 10.1128/mra.01415-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we describe the genome sequence of Acidianus ambivalens DSM 3772, an archaeon belonging to the Sulfolobales order that was first isolated from continental solfataric fields. This thermoacidophile was sequenced because it utilizes a unique sulfur disproportionation pathway that enables this metabolism under aerobic conditions, in contrast to obligately anaerobic bacterial sulfur disproportionators. Here, we describe the genome sequence of Acidianus ambivalens DSM 3772, an archaeon belonging to the Sulfolobales order that was first isolated from continental solfataric fields. This thermoacidophile was sequenced because it utilizes a unique sulfur disproportionation pathway that enables this metabolism under aerobic conditions, in contrast to obligately anaerobic bacterial sulfur disproportionators.
Collapse
|
28
|
Löffler M, Feldhues J, Venceslau SS, Kammler L, Grein F, Pereira IAC, Dahl C. DsrL mediates electron transfer between NADH and rDsrAB in Allochromatium vinosum. Environ Microbiol 2019; 22:783-795. [PMID: 31854015 DOI: 10.1111/1462-2920.14899] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 11/30/2022]
Abstract
Dissimilatory sulphite reductase DsrAB occurs in sulphate/sulphite-reducing prokaryotes, in sulphur disproportionators and also in sulphur oxidizers, where it functions in reverse. Predictions of physiological traits in metagenomic studies relying on the presence of dsrAB, other dsr genes or combinations thereof suffer from the lack of information on crucial Dsr proteins. The iron-sulphur flavoprotein DsrL is an example of this group. It has a documented essential function during sulphur oxidation and was recently also found in some metagenomes of probable sulphate and sulphite reducers. Here, we show that DsrL and reverse acting rDsrAB can form a complex and are copurified from the phototrophic sulphur oxidizer Allochromatium vinosum. Recombinant DsrL exhibits NAD(P)H:acceptor oxidoreductase activity with a strong preference for NADH over NADPH. In vitro, the rDsrABL complex effectively catalyses NADH-dependent sulphite reduction, which is strongly enhanced by the sulphur-binding protein DsrC. Our work reveals NAD+ as suitable in vivo electron acceptor for sulphur oxidation in organisms operating the rDsr pathway and points to reduced nicotinamide adenine dinucleotides as electron donors for sulphite reduction in sulphate/sulphite-reducing prokaryotes that contain DsrL. In addition, dsrL cannot be used as a marker distinguishing sulphate/sulphite reducers and sulphur oxidizers in metagenomic studies without further analysis.
Collapse
Affiliation(s)
- Maria Löffler
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Julia Feldhues
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Sofia S Venceslau
- Instituto de Tecnologia Química e Biológica Antonio Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Lydia Kammler
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Fabian Grein
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica Antonio Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
29
|
Slobodkin AI, Slobodkina GB. Diversity of Sulfur-Disproportionating Microorganisms. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719050138] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
30
|
Abstract
Cable bacteria of the family Desulfobulbaceae form centimeter-long filaments comprising thousands of cells. They occur worldwide in the surface of aquatic sediments, where they connect sulfide oxidation with oxygen or nitrate reduction via long-distance electron transport. In the absence of pure cultures, we used single-filament genomics and metagenomics to retrieve draft genomes of 3 marine Candidatus Electrothrix and 1 freshwater Ca. Electronema species. These genomes contain >50% unknown genes but still share their core genomic makeup with sulfate-reducing and sulfur-disproportionating Desulfobulbaceae, with few core genes lost and 212 unique genes (from 197 gene families) conserved among cable bacteria. Last common ancestor analysis indicates gene divergence and lateral gene transfer as equally important origins of these unique genes. With support from metaproteomics of a Ca. Electronema enrichment, the genomes suggest that cable bacteria oxidize sulfide by reversing the canonical sulfate reduction pathway and fix CO2 using the Wood-Ljungdahl pathway. Cable bacteria show limited organotrophic potential, may assimilate smaller organic acids and alcohols, fix N2, and synthesize polyphosphates and polyglucose as storage compounds; several of these traits were confirmed by cell-level experimental analyses. We propose a model for electron flow from sulfide to oxygen that involves periplasmic cytochromes, yet-unidentified conductive periplasmic fibers, and periplasmic oxygen reduction. This model proposes that an active cable bacterium gains energy in the anodic, sulfide-oxidizing cells, whereas cells in the oxic zone flare off electrons through intense cathodic oxygen respiration without energy conservation; this peculiar form of multicellularity seems unparalleled in the microbial world.
Collapse
|
31
|
Daghio M, Vaiopoulou E, Aulenta F, Sherry A, Head I, Franzetti A, Rabaey K. Anode potential selection for sulfide removal in contaminated marine sediments. JOURNAL OF HAZARDOUS MATERIALS 2018; 360:498-503. [PMID: 30145477 DOI: 10.1016/j.jhazmat.2018.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/13/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Sulfate reducing microorganisms are typically involved in hydrocarbon biodegradation in the sea sediment, with their metabolism resulting in the by-production of toxic sulfide. In this context, it is of utmost importance identifying the optimal value for anodic potential which ensures efficient toxic sulfide removal. Along this line, in this study the (bio)electrochemical removal of sulfide was tested at anodic potentials of -205 mV, +195 mV and +300 mV (vs Ag/AgCl), also in the presence of a pure culture of the sulfur-oxidizing bacterium Desulfobulbus propionicus. Current production, sulfide concentration and sulfate concentration were monitored over time. At the end of the experiment sulfur deposition on the electrodes and the microbial communities were characterized by SEM-EDS and by next generation sequencing of the 16S rRNA gene respectively. Results confirmed that current production was linked to sulfide removal and D. propionicus promoted back oxidation of deposited sulfur to sulfate. The highest electron recovery was observed at +195 mV vs Ag/AgCl, and the lowest sulfur deposition was obtained at -205 mV vs Ag/AgCl anode polarization.
Collapse
Affiliation(s)
- Matteo Daghio
- Department of Earth and Environmental Sciences-University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Eleni Vaiopoulou
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B- 9000 Ghent, Belgium; Concawe, Environmental Science for the European Refining Industry, Boulevard du Souverain 165, B-1160 Brussels, Belgium.
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), Via Salaria km 29, 300, 00015, Monterotondo, RM, Italy
| | - Angela Sherry
- School of Natural and Environmental Sciences, 3rd Floor Devonshire Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Ian Head
- School of Natural and Environmental Sciences, 3rd Floor Devonshire Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences-University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B- 9000 Ghent, Belgium
| |
Collapse
|
32
|
Trivedi CB, Lau GE, Grasby SE, Templeton AS, Spear JR. Low-Temperature Sulfidic-Ice Microbial Communities, Borup Fiord Pass, Canadian High Arctic. Front Microbiol 2018; 9:1622. [PMID: 30087659 PMCID: PMC6066561 DOI: 10.3389/fmicb.2018.01622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 06/28/2018] [Indexed: 11/30/2022] Open
Abstract
A sulfur-dominated supraglacial spring system found at Borup Fiord Pass (BFP), Ellesmere Island, Nunavut, Canada, is a unique sulfur-on-ice system expressed along the toe of a glacier. BFP has an intermittent flowing, subsurface-derived, glacial spring that creates a large white-yellow icing (aufeis) that extends down-valley. Over field campaigns in 2014, 2016, and 2017, numerous samples were collected and analyzed for both microbial community composition and aqueous geochemistry. Samples were collected from multiple site types: spring discharge fluid, aufeis (spring-derived ice), melt pools with sedimented cryoconite material, and mineral precipitate scrapings, to probe how microbial communities differed between site types in a dynamic freeze/thaw sulfur-rich system. Dissolved sulfate varied between 0.07 and 11.6 mM and was correlated with chloride concentrations, where the fluids were saltiest among spring fluids. The highest sulfate samples exhibited high dissolved sulfide values between 0.22 and 2.25 mM. 16S rRNA gene sequencing from melt pool and aufeis samples from the 2014 campaign were highly abundant in operational taxonomic units (OTUs) closely related to sulfur-oxidizing microorganisms (SOM; Sulfurimonas, Sulfurovum, and Sulfuricurvum). Subsequent sampling 2 weeks later had fewer SOMs and showed an increased abundance of the genus Flavobacterium. Desulfocapsa, an organism that specializes in the disproportionation of inorganic sulfur compounds was also found. Samples from 2016 and 2017 revealed that microorganisms present were highly similar in community composition to 2014 samples, primarily echoed by the continued presence of Flavobacterium sp. Results suggest that while there may be acute events where sulfur cycling organisms dominate, a basal community structure appears to dominate over time and site type. These results further enhance our knowledge of low-temperature sulfur systems on Earth, and help to guide the search for potential life on extraterrestrial worlds, such as Europa, where similar low-temperature sulfur-rich conditions may exist.
Collapse
Affiliation(s)
- Christopher B. Trivedi
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Graham E. Lau
- Department of Geological Sciences, University of Colorado Boulder, Boulder, CO, United States
| | | | - Alexis S. Templeton
- Department of Geological Sciences, University of Colorado Boulder, Boulder, CO, United States
| | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| |
Collapse
|
33
|
Rezadehbashi M, Baldwin SA. Core Sulphate-Reducing Microorganisms in Metal-Removing Semi-Passive Biochemical Reactors and the Co-Occurrence of Methanogens. Microorganisms 2018; 6:microorganisms6010016. [PMID: 29473875 PMCID: PMC5874630 DOI: 10.3390/microorganisms6010016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/14/2018] [Accepted: 02/17/2018] [Indexed: 11/25/2022] Open
Abstract
Biochemical reactors (BCRs) based on the stimulation of sulphate-reducing microorganisms (SRM) are emerging semi-passive remediation technologies for treatment of mine-influenced water. Their successful removal of metals and sulphate has been proven at the pilot-scale, but little is known about the types of SRM that grow in these systems and whether they are diverse or restricted to particular phylogenetic or taxonomic groups. A phylogenetic study of four established pilot-scale BCRs on three different mine sites compared the diversity of SRM growing in them. The mine sites were geographically distant from each other, nevertheless the BCRs selected for similar SRM types. Clostridia SRM related to Desulfosporosinus spp. known to be tolerant to high concentrations of copper were members of the core microbial community. Members of the SRM family Desulfobacteraceae were dominant, particularly those related to Desulfatirhabdium butyrativorans. Methanogens were dominant archaea and possibly were present at higher relative abundances than SRM in some BCRs. Both hydrogenotrophic and acetoclastic types were present. There were no strong negative or positive co-occurrence correlations of methanogen and SRM taxa. Knowing which SRM inhabit successfully operating BCRs allows practitioners to target these phylogenetic groups when selecting inoculum for future operations.
Collapse
Affiliation(s)
- Maryam Rezadehbashi
- Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Susan A Baldwin
- Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
34
|
Kato S, Shibuya T, Takaki Y, Hirai M, Nunoura T, Suzuki K. Genome-enabled metabolic reconstruction of dominant chemosynthetic colonizers in deep-sea massive sulfide deposits. Environ Microbiol 2018; 20:862-877. [DOI: 10.1111/1462-2920.14032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/08/2017] [Accepted: 12/13/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Shingo Kato
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources; Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Yokosuka Kanagawa 237-0061 Japan
- Research and Development Center for Submarine Resources; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
| | - Takazo Shibuya
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources; Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Yokosuka Kanagawa 237-0061 Japan
- Research and Development Center for Submarine Resources; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
- Department of Subsurface Geobiological Analysis and Research; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
| | - Yoshihiro Takaki
- Department of Subsurface Geobiological Analysis and Research; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
- Ecosystem Observation and Evaluation Methodology Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
- Research and Development Center for Marine Biosciences; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
| | - Miho Hirai
- Research and Development Center for Marine Biosciences; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
| | - Takuro Nunoura
- Ecosystem Observation and Evaluation Methodology Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
- Research and Development Center for Marine Biosciences; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
| | - Katsuhiko Suzuki
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources; Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Yokosuka Kanagawa 237-0061 Japan
- Research and Development Center for Submarine Resources; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
| |
Collapse
|
35
|
Tu TH, Wu LW, Lin YS, Imachi H, Lin LH, Wang PL. Microbial Community Composition and Functional Capacity in a Terrestrial Ferruginous, Sulfate-Depleted Mud Volcano. Front Microbiol 2017; 8:2137. [PMID: 29163423 PMCID: PMC5673622 DOI: 10.3389/fmicb.2017.02137] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/19/2017] [Indexed: 01/31/2023] Open
Abstract
Terrestrial mud volcanoes (MVs) are an important natural source of methane emission. The role of microbial processes in methane cycling and organic transformation in such environments remains largely unexplored. In this study, we aim to uncover functional potentials and community assemblages across geochemical transitions in a ferruginous, sulfate-depleted MV of eastern Taiwan. Geochemical profiles combined with 16S rRNA gene abundances indicated that anaerobic oxidation of methane (AOM) mediated by ANME-2a group coincided with iron/manganese reduction by Desulfuromonadales at shallow depths deprived of sulfate. The activity of AOM was stimulated either by methane alone or by methane and a range of electron acceptors, such as sulfate, ferrihydrite, and artificial humic acid. Metagenomic analyses revealed that functional genes for AOM and metal reduction were more abundant at shallow intervals. In particular, genes encoding pili expression and electron transport through multi-heme cytochromes were prevalent, suggesting potential intercellular interactions for electron transport involved in AOM. For comparison, genes responsible for methanogenesis and degradation of chitin and plant-derived molecules were more abundant at depth. The gene distribution combined with the enhanced proportions of 16S rRNA genes related to methanogens and heterotrophs, and geochemical characteristics suggest that particulate organic matter was degraded into various organic entities that could further fuel in situ methanogenesis. Finally, genes responsible for aerobic methane oxidation were more abundant in the bubbling pool and near-surface sediments. These methane oxidizers account for the ultimate attenuation of methane discharge into the atmosphere. Overall, our results demonstrated that various community members were compartmentalized into stratified niches along geochemical gradients. These community members form a metabolic network that cascades the carbon transformation from the upstream degradation of recalcitrant organic carbon with fermentative production of labile organic entities and methane to downstream methane oxidation and metal reduction near the surface. Such a metabolic architecture enables effective methane removal under ferruginous, sulfate-depleted conditions in terrestrial MVs.
Collapse
Affiliation(s)
- Tzu-Hsuan Tu
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
- Department of Geosciences, National Taiwan University, Taipei, Taiwan
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Li-Wei Wu
- Department of Geosciences, National Taiwan University, Taipei, Taiwan
- The Experimental Forest, College of Bio-Resources and Agriculture, National Taiwan University, Nantou, Taiwan
| | - Yu-Shih Lin
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hiroyuki Imachi
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
- Research and Development Center for Marine Resources, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Li-Hung Lin
- Department of Geosciences, National Taiwan University, Taipei, Taiwan
| | - Pei-Ling Wang
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
36
|
Wasmund K, Mußmann M, Loy A. The life sulfuric: microbial ecology of sulfur cycling in marine sediments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:323-344. [PMID: 28419734 PMCID: PMC5573963 DOI: 10.1111/1758-2229.12538] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular- and ecosystem-level processes. Sulfur-transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate-rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep-subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle.
Collapse
Affiliation(s)
- Kenneth Wasmund
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network “Chemistry meets Microbiology”University of ViennaAlthanstrasse 14ViennaA‐1090Austria
- Austrian Polar Research InstituteViennaAustria
| | - Marc Mußmann
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network “Chemistry meets Microbiology”University of ViennaAlthanstrasse 14ViennaA‐1090Austria
| | - Alexander Loy
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network “Chemistry meets Microbiology”University of ViennaAlthanstrasse 14ViennaA‐1090Austria
- Austrian Polar Research InstituteViennaAustria
| |
Collapse
|
37
|
Slobodkina GB, Mardanov AV, Ravin NV, Frolova AA, Chernyh NA, Bonch-Osmolovskaya EA, Slobodkin AI. Respiratory Ammonification of Nitrate Coupled to Anaerobic Oxidation of Elemental Sulfur in Deep-Sea Autotrophic Thermophilic Bacteria. Front Microbiol 2017; 8:87. [PMID: 28194142 PMCID: PMC5276818 DOI: 10.3389/fmicb.2017.00087] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/12/2017] [Indexed: 02/05/2023] Open
Abstract
Respiratory ammonification of nitrate is the microbial process that determines the retention of nitrogen in an ecosystem. To date, sulfur-dependent dissimilatory nitrate reduction to ammonium has been demonstrated only with sulfide as an electron donor. We detected a novel pathway that couples the sulfur and nitrogen cycles. Thermophilic anaerobic bacteria Thermosulfurimonas dismutans and Dissulfuribacter thermophilus, isolated from deep-sea hydrothermal vents, grew autotrophically with elemental sulfur as an electron donor and nitrate as an electron acceptor producing sulfate and ammonium. The genomes of both bacteria contain a gene cluster that encodes a putative nitrate ammonification enzyme system. Nitrate reduction occurs via a Nap-type complex. The reduction of produced nitrite to ammonium does not proceed via the canonical Nrf system because nitrite reductase NrfA is absent in the genomes of both microorganisms. The genome of D. thermophilus encodes a complete sulfate reduction pathway, while the Sox sulfur oxidation system is missing, as shown previously for T. dismutans. Thus, in high-temperature environments, nitrate ammonification with elemental sulfur may represent an unrecognized route of primary biomass production. Moreover, the anaerobic oxidation of sulfur compounds coupled to growth has not previously been demonstrated for the members of Thermodesulfobacteria or Deltaproteobacteria, which were considered exclusively as participants of the reductive branch of the sulfur cycle.
Collapse
Affiliation(s)
- Galina B Slobodkina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Anastasia A Frolova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Nikolay A Chernyh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Elizaveta A Bonch-Osmolovskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Alexander I Slobodkin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| |
Collapse
|
38
|
Mardanov AV, Beletsky AV, Kadnikov VV, Slobodkin AI, Ravin NV. Genome Analysis of Thermosulfurimonas dismutans, the First Thermophilic Sulfur-Disproportionating Bacterium of the Phylum Thermodesulfobacteria. Front Microbiol 2016; 7:950. [PMID: 27379079 PMCID: PMC4911364 DOI: 10.3389/fmicb.2016.00950] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/02/2016] [Indexed: 11/17/2022] Open
Abstract
Thermosulfurimonas dismutans S95T, isolated from a deep-sea hydrothermal vent is the first bacterium of the phylum Thermodesulfobacteria reported to grow by the disproportionation of elemental sulfur, sulfite, or thiosulfate with carbon dioxide as the sole carbon source. In contrast to its phylogenetically close relatives, which are dissimilatory sulfate-reducers, T. dismutans is unable to grow by sulfate respiration. The features of this organism and its 2,1 Mb draft genome sequence are described in this report. Genome analysis revealed that the T. dismutans genome contains the set of genes for dissimilatory sulfate reduction including ATP sulfurylase, the AprA and B subunits of adenosine-5′-phosphosulfate reductase, and dissimilatory sulfite reductase. The oxidation of elemental sulfur to sulfite could be enabled by APS reductase-associated electron transfer complex QmoABC and heterodisulfide reductase. The genome also contains several membrane-linked molybdopterin oxidoreductases that are thought to be involved in sulfur metabolism as subunits of thiosulfate, polysulfide, or tetrathionate reductases. Nitrate could be used as an electron acceptor and reduced to ammonium, as indicated by the presence of periplasmic nitrate and nitrite reductases. Autotrophic carbon fixation is enabled by the Wood–Ljungdahl pathway, and the complete set of genes that is required for nitrogen fixation is also present in T. dismutans. Overall, our results provide genomic insights into energy and carbon metabolism of chemolithoautotrophic sulfur-disproportionating bacterium that could be important primary producer in microbial communities of deep-sea hydrothermal vents.
Collapse
Affiliation(s)
- Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Alexey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Vitaly V Kadnikov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Alexander I Slobodkin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| |
Collapse
|
39
|
Wasmund K, Cooper M, Schreiber L, Lloyd KG, Baker BJ, Petersen DG, Jørgensen BB, Stepanauskas R, Reinhardt R, Schramm A, Loy A, Adrian L. Single-Cell Genome and Group-Specific dsrAB Sequencing Implicate Marine Members of the Class Dehalococcoidia (Phylum Chloroflexi) in Sulfur Cycling. mBio 2016; 7:e00266-16. [PMID: 27143384 PMCID: PMC4959651 DOI: 10.1128/mbio.00266-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/05/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The marine subsurface sediment biosphere is widely inhabited by bacteria affiliated with the class Dehalococcoidia (DEH), phylum Chloroflexi, and yet little is known regarding their metabolisms. In this report, genomic content from a single DEH cell (DEH-C11) with a 16S rRNA gene that was affiliated with a diverse cluster of 16S rRNA gene sequences prevalent in marine sediments was obtained from sediments of Aarhus Bay, Denmark. The distinctive gene content of this cell suggests metabolic characteristics that differ from those of known DEH and Chloroflexi The presence of genes encoding dissimilatory sulfite reductase (Dsr) suggests that DEH could respire oxidized sulfur compounds, although Chloroflexi have never been implicated in this mode of sulfur cycling. Using long-range PCR assays targeting DEH dsr loci, dsrAB genes were amplified and sequenced from various marine sediments. Many of the amplified dsrAB sequences were affiliated with the DEH Dsr clade, which we propose equates to a family-level clade. This provides supporting evidence for the potential for sulfite reduction by diverse DEH species. DEH-C11 also harbored genes encoding reductases for arsenate, dimethyl sulfoxide, and halogenated organics. The reductive dehalogenase homolog (RdhA) forms a monophyletic clade along with RdhA sequences from various DEH-derived contigs retrieved from available metagenomes. Multiple facts indicate that this RdhA may not be a terminal reductase. The presence of other genes indicated that nutrients and energy may be derived from the oxidation of substituted homocyclic and heterocyclic aromatic compounds. Together, these results suggest that marine DEH play a previously unrecognized role in sulfur cycling and reveal the potential for expanded catabolic and respiratory functions among subsurface DEH. IMPORTANCE Sediments underlying our oceans are inhabited by microorganisms in cell numbers similar to those estimated to inhabit the oceans. Microorganisms in sediments consist of various diverse and uncharacterized groups that contribute substantially to global biogeochemical cycles. Since most subsurface microorganisms continue to evade cultivation, possibly due to very slow growth, we obtained and analyzed genomic information from a representative of one of the most widespread and abundant, yet uncharacterized bacterial groups of the marine subsurface. We describe several key features that may contribute to their widespread distribution, such as respiratory flexibility and the potential to use oxidized sulfur compounds, which are abundant in marine environments, as electron acceptors. Together, these data provide important information that can be used to assist in designing enrichment strategies or other postgenomic studies, while also improving our understanding of the diversity and distribution of dsrAB genes, which are widely used functional marker genes for sulfur-cycling microbes.
Collapse
Affiliation(s)
- Kenneth Wasmund
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna, Austria
| | - Myriel Cooper
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Lars Schreiber
- Department of Bioscience, Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
| | - Karen G Lloyd
- Department of Bioscience, Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
| | - Brett J Baker
- Department of Marine Science, University of Texas-Austin, Marine Science Institute, Port Aransas, Texas, USA
| | - Dorthe G Petersen
- Department of Bioscience, Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
| | - Bo Barker Jørgensen
- Department of Bioscience, Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
| | | | | | - Andreas Schramm
- Department of Bioscience, Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
| | - Alexander Loy
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna, Austria
| | - Lorenz Adrian
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| |
Collapse
|
40
|
Microbial metabolic networks in a complex electrogenic biofilm recovered from a stimulus-induced metatranscriptomics approach. Sci Rep 2015; 5:14840. [PMID: 26443302 PMCID: PMC4595844 DOI: 10.1038/srep14840] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/01/2015] [Indexed: 01/28/2023] Open
Abstract
Microorganisms almost always exist as mixed communities in nature. While the significance of microbial community activities is well appreciated, a thorough understanding about how microbial communities respond to environmental perturbations has not yet been achieved. Here we have used a combination of metagenomic, genome binning, and stimulus-induced metatranscriptomic approaches to estimate the metabolic network and stimuli-induced metabolic switches existing in a complex microbial biofilm that was producing electrical current via extracellular electron transfer (EET) to a solid electrode surface. Two stimuli were employed: to increase EET and to stop EET. An analysis of cell activity marker genes after stimuli exposure revealed that only two strains within eleven binned genomes had strong transcriptional responses to increased EET rates, with one responding positively and the other responding negatively. Potential metabolic switches between eleven dominant members were mainly observed for acetate, hydrogen, and ethanol metabolisms. These results have enabled the estimation of a multi-species metabolic network and the associated short-term responses to EET stimuli that induce changes to metabolic flow and cooperative or competitive microbial interactions. This systematic meta-omics approach represents a next step towards understanding complex microbial roles within a community and how community members respond to specific environmental stimuli.
Collapse
|
41
|
Seagrass (Zostera marina) Colonization Promotes the Accumulation of Diazotrophic Bacteria and Alters the Relative Abundances of Specific Bacterial Lineages Involved in Benthic Carbon and Sulfur Cycling. Appl Environ Microbiol 2015. [PMID: 26209674 DOI: 10.1128/aem.01382-15] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Seagrass colonization changes the chemistry and biogeochemical cycles mediated by microbes in coastal sediments. In this study, we molecularly characterized the diazotrophic assemblages and entire bacterial community in surface sediments of a Zostera marina-colonized coastal lagoon in northern China. Higher nitrogenase gene (nifH) copy numbers were detected in the sediments from the vegetated region than in the sediments from the unvegetated region nearby. The nifH phylotypes detected were mostly affiliated with the Geobacteraceae, Desulfobulbus, Desulfocapsa, and Pseudomonas. Redundancy analysis based on terminal restriction fragment length polymorphism analysis showed that the distribution of nifH genotypes was mostly shaped by the ratio of total organic carbon to total organic nitrogen, the concentration of cadmium in the sediments, and the pH of the overlying water. High-throughput sequencing and phylogenetic analyses of bacterial 16S rRNA genes also indicated the presence of Geobacteraceae and Desulfobulbaceae phylotypes in these samples. A comparison of these results with those of previous studies suggests the prevalence and predominance of iron(III)-reducing Geobacteraceae and sulfate-reducing Desulfobulbaceae diazotrophs in coastal sedimentary environments. Although the entire bacterial community structure was not significantly different between these two niches, Desulfococcus (Deltaproteobacteria) and Anaerolineae (Chloroflexi) presented with much higher proportions in the vegetated sediments, and Flavobacteriaceae (Bacteroidetes) occurred more frequently in the bare sediments. These data suggest that the high bioavailability of organic matter (indicated by relatively lower carbon-to-nitrogen ratios) and the less-reducing anaerobic condition in vegetated sediments may favor Desulfococcus and Anaerolineae lineages, which are potentially important populations in benthic carbon and sulfur cycling in the highly productive seagrass ecosystem.
Collapse
|
42
|
A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes. Adv Microb Physiol 2015. [PMID: 26210106 DOI: 10.1016/bs.ampbs.2015.05.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dissimilatory sulphate reduction is the unifying and defining trait of sulphate-reducing prokaryotes (SRP). In their predominant habitats, sulphate-rich marine sediments, SRP have long been recognized to be major players in the carbon and sulphur cycles. Other, more recently appreciated, ecophysiological roles include activity in the deep biosphere, symbiotic relations, syntrophic associations, human microbiome/health and long-distance electron transfer. SRP include a high diversity of organisms, with large nutritional versatility and broad metabolic capacities, including anaerobic degradation of aromatic compounds and hydrocarbons. Elucidation of novel catabolic capacities as well as progress in the understanding of metabolic and regulatory networks, energy metabolism, evolutionary processes and adaptation to changing environmental conditions has greatly benefited from genomics, functional OMICS approaches and advances in genetic accessibility and biochemical studies. Important biotechnological roles of SRP range from (i) wastewater and off gas treatment, (ii) bioremediation of metals and hydrocarbons and (iii) bioelectrochemistry, to undesired impacts such as (iv) souring in oil reservoirs and other environments, and (v) corrosion of iron and concrete. Here we review recent advances in our understanding of SRPs focusing mainly on works published after 2000. The wealth of publications in this period, covering many diverse areas, is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored.
Collapse
|
43
|
Stigebrandt A, Liljebladh B, de Brabandere L, Forth M, Granmo Å, Hall P, Hammar J, Hansson D, Kononets M, Magnusson M, Norén F, Rahm L, Treusch AH, Viktorsson L. An experiment with forced oxygenation of the deepwater of the anoxic By Fjord, western Sweden. AMBIO 2015; 44:42-54. [PMID: 24789509 PMCID: PMC4293361 DOI: 10.1007/s13280-014-0524-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 03/22/2014] [Accepted: 03/28/2014] [Indexed: 05/31/2023]
Abstract
In a 2.5-year-long environmental engineering experiment in the By Fjord, surface water was pumped into the deepwater where the frequency of deepwater renewals increased by a factor of 10. During the experiment, the deepwater became long-term oxic, and nitrate became the dominating dissolved inorganic nitrogen component. The amount of phosphate in the water column decreased by a factor of 5 due to the increase in flushing and reduction in the leakage of phosphate from the sediments when the sediment surface became oxidized. Oxygenation of the sediments did not increase the leakage of toxic metals and organic pollutants. The bacterial community was the first to show changes after the oxygenation, with aerobic bacteria also thriving in the deepwater. The earlier azoic deepwater bottom sediments were colonized by animals. No structural difference between the phytoplankton communities in the By Fjord and the adjacent Havsten Fjord, with oxygenated deepwater, could be detected during the experiment.
Collapse
Affiliation(s)
- Anders Stigebrandt
- Department of Geosciences, University of Gothenburg, Box 460, 405 30 Göteborg, Sweden
| | - Bengt Liljebladh
- Department of Geosciences, University of Gothenburg, Box 460, 405 30 Göteborg, Sweden
| | - Loreto de Brabandere
- Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Michael Forth
- Nordic Center for Earth Evolution Institute of Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Åke Granmo
- Marine Monitoring AB, Strandvägen 9, 453 30 Lysekil, Sweden
| | - Per Hall
- Department of Chemistry and Molecular Biology Marine Chemistry, University of Gothenburg, 412 96 Göteborg, Sweden
| | - Jonatan Hammar
- Marine Monitoring AB, Strandvägen 9, 453 30 Lysekil, Sweden
| | - Daniel Hansson
- Swedish Institute for the Marine Environment, Box 260, 405 30 Göteborg, Sweden
| | - Mikhail Kononets
- Department of Chemistry and Molecular Biology, Marine Chemistry, University of Gothenburg, 412 96 Göteborg, Sweden
| | | | - Fredrik Norén
- IVL Swedish Environmental Research Institute, Rosviksgatan 12, 45330 Lysekil, Sweden
| | - Lars Rahm
- Department of Thematic Studies, Water and Environmental Studies, Linköping University, 581 83 Linköping, Sweden
| | - Alexander H. Treusch
- Nordic Center for Earth Evolution Institute of Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Lena Viktorsson
- Department of Geosciences, University of Gothenburg, Box 460, 405 30 Göteborg, Sweden
| |
Collapse
|
44
|
Draft Genome Sequence of Uncultivated Toluene-Degrading Desulfobulbaceae Bacterium Tol-SR, Obtained by Stable Isotope Probing Using [13C6]Toluene. GENOME ANNOUNCEMENTS 2015; 3:3/1/e01423-14. [PMID: 25593261 PMCID: PMC4299903 DOI: 10.1128/genomea.01423-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The draft genome of a member of the bacterial family Desulfobulbaceae (phylum Deltaproteobacteria) was assembled from the metagenome of a sulfidogenic [13C6]toluene-degrading enrichment culture. The “Desulfobulbaceae bacterium Tol-SR” genome is distinguished from related, previously sequenced genomes by suites of genes associated with anaerobic toluene metabolism, including bss, bbs, and bam.
Collapse
|
45
|
Hao TW, Xiang PY, Mackey HR, Chi K, Lu H, Chui HK, van Loosdrecht MCM, Chen GH. A review of biological sulfate conversions in wastewater treatment. WATER RESEARCH 2014; 65:1-21. [PMID: 25086411 DOI: 10.1016/j.watres.2014.06.043] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/26/2014] [Accepted: 06/30/2014] [Indexed: 06/03/2023]
Abstract
Treatment of waters contaminated with sulfur containing compounds (S) resulting from seawater intrusion, the use of seawater (e.g. seawater flushing, cooling) and industrial processes has become a challenging issue since around two thirds of the world's population live within 150 km of the coast. In the past, research has produced a number of bioengineered systems for remediation of industrial sulfate containing sewage and sulfur contaminated groundwater utilizing sulfate reducing bacteria (SRB). The majority of these studies are specific with SRB only or focusing on the microbiology rather than the engineered application. In this review, existing sulfate based biotechnologies and new approaches for sulfate contaminated waters treatment are discussed. The sulfur cycle connects with carbon, nitrogen and phosphorus cycles, thus a new platform of sulfur based biotechnologies incorporating sulfur cycle with other cycles can be developed, for the removal of sulfate and other pollutants (e.g. carbon, nitrogen, phosphorus and metal) from wastewaters. All possible electron donors for sulfate reduction are summarized for further understanding of the S related biotechnologies including rates and benefits/drawbacks of each electron donor. A review of known SRB and their environmental preferences with regard to bioreactor operational parameters (e.g. pH, temperature, salinity etc.) shed light on the optimization of sulfur conversion-based biotechnologies. This review not only summarizes information from the current sulfur conversion-based biotechnologies for further optimization and understanding, but also offers new directions for sulfur related biotechnology development.
Collapse
Affiliation(s)
- Tian-wei Hao
- Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Peng-yu Xiang
- Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Hamish R Mackey
- Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Kun Chi
- Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Hui Lu
- SYSU-HKUST Joint Research Centre for Innovative Environmental Technology, Sun Yat-sen University, Guangzhou, China
| | - Ho-kwong Chui
- Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands
| | - Guang-Hao Chen
- Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; SYSU-HKUST Joint Research Centre for Innovative Environmental Technology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
46
|
Wilbanks EG, Jaekel U, Salman V, Humphrey PT, Eisen JA, Facciotti MT, Buckley DH, Zinder SH, Druschel GK, Fike DA, Orphan VJ. Microscale sulfur cycling in the phototrophic pink berry consortia of the Sippewissett Salt Marsh. Environ Microbiol 2014; 16:3398-415. [PMID: 24428801 PMCID: PMC4262008 DOI: 10.1111/1462-2920.12388] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/30/2013] [Accepted: 01/05/2014] [Indexed: 11/27/2022]
Abstract
Microbial metabolism is the engine that drives global biogeochemical cycles, yet many key transformations are carried out by microbial consortia over short spatiotemporal scales that elude detection by traditional analytical approaches. We investigate syntrophic sulfur cycling in the 'pink berry' consortia of the Sippewissett Salt Marsh through an integrative study at the microbial scale. The pink berries are macroscopic, photosynthetic microbial aggregates composed primarily of two closely associated species: sulfide-oxidizing purple sulfur bacteria (PB-PSB1) and sulfate-reducing bacteria (PB-SRB1). Using metagenomic sequencing and (34) S-enriched sulfate stable isotope probing coupled with nanoSIMS, we demonstrate interspecies transfer of reduced sulfur metabolites from PB-SRB1 to PB-PSB1. The pink berries catalyse net sulfide oxidation and maintain internal sulfide concentrations of 0-500 μm. Sulfide within the berries, captured on silver wires and analysed using secondary ion mass spectrometer, increased in abundance towards the berry interior, while δ(34) S-sulfide decreased from 6‰ to -31‰ from the exterior to interior of the berry. These values correspond to sulfate-sulfide isotopic fractionations (15-53‰) consistent with either sulfate reduction or a mixture of reductive and oxidative metabolisms. Together this combined metagenomic and high-resolution isotopic analysis demonstrates active sulfur cycling at the microscale within well-structured macroscopic consortia consisting of sulfide-oxidizing anoxygenic phototrophs and sulfate-reducing bacteria.
Collapse
Affiliation(s)
- Elizabeth G Wilbanks
- Department of Department of Microbiology Graduate Group, University of CaliforniaDavis, CA, 95616, USA
| | - Ulrike Jaekel
- Department of Evolution and Ecology, University of CaliforniaDavis, CA, 95616, USA
- Department of Microbiology and Immunology, University of CaliforniaDavis, CA, 95616, USA
| | - Verena Salman
- Department of Biomedical Engineering, University of CaliforniaDavis, CA, 95616, USA
| | - Parris T Humphrey
- UC Davis Genome Center, University of CaliforniaDavis, CA, 95616, USA
| | - Jonathan A Eisen
- Arctic Technology, Shell Technology NorwayOslo, N-0277, Norway
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridge, MA, 02138, USA
- Department of Marine Sciences, University of North Carolina at Chapel HillChapel Hill, NC, 27599, USA
| | - Marc T Facciotti
- Department of Marine Sciences, University of North Carolina at Chapel HillChapel Hill, NC, 27599, USA
- Ecology and Evolutionary Biology, University of ArizonaTucson, AZ, 85721, USA
| | - Daniel H Buckley
- Crop and Soil Sciences, Cornell UniversityIthaca, NY, 14853, USA
| | - Stephen H Zinder
- Department of Microbiology, Cornell UniversityIthaca, NY, 14853, USA
| | - Gregory K Druschel
- Department of Earth Sciences, Indiana University-Purdue UniversityIndianapolis, IN, 46202, USA
| | - David A Fike
- Department of Earth and Planetary Sciences, Washington UniversitySt. Louis, MO, 63130, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of TechnologyPasadena, CA, 91125, USA
| |
Collapse
|
47
|
Mand J, Park HS, Jack TR, Voordouw G. The role of acetogens in microbially influenced corrosion of steel. Front Microbiol 2014; 5:268. [PMID: 24917861 PMCID: PMC4043135 DOI: 10.3389/fmicb.2014.00268] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/15/2014] [Indexed: 11/13/2022] Open
Abstract
Microbially influenced corrosion (MIC) of iron (Fe(0)) by sulfate-reducing bacteria (SRB) has been studied extensively. Through a mechanism, that is still poorly understood, electrons or hydrogen (H2) molecules are removed from the metal surface and used as electron donor for sulfate reduction. The resulting ferrous ions precipitate in part with the sulfide produced, forming characteristic black iron sulfide. Hydrogenotrophic methanogens can also contribute to MIC. Incubation of pipeline water samples, containing bicarbonate and some sulfate, in serum bottles with steel coupons and a headspace of 10% (vol/vol) CO2 and 90% N2, indicated formation of acetate and methane. Incubation of these samples in serum bottles, containing medium with coupons and bicarbonate but no sulfate, also indicated that formation of acetate preceded the formation of methane. Microbial community analyses of these enrichments indicated the presence of Acetobacterium, as well as of hydrogenotrophic and acetotrophic methanogens. The formation of acetate by homoacetogens, such as Acetobacterium woodii from H2 (or Fe(0)) and CO2, is potentially important, because acetate is a required carbon source for many SRB growing with H2 and sulfate. A consortium of the SRB Desulfovibrio vulgaris Hildenborough and A. woodii was able to grow in defined medium with H2, CO2, and sulfate, because A. woodii provides the acetate, needed by D. vulgaris under these conditions. Likewise, general corrosion rates of metal coupons incubated with D. vulgaris in the presence of acetate or in the presence of A. woodii were higher than in the absence of acetate or A. woodii, respectively. An extended MIC model capturing these results is presented.
Collapse
Affiliation(s)
- Jaspreet Mand
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Hyung Soo Park
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Thomas R Jack
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Gerrit Voordouw
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| |
Collapse
|