1
|
Neale DA, Morris JC, Verrills NM, Ammit AJ. Understanding the regulatory landscape of protein phosphatase 2A (PP2A): Pharmacological modulators and potential therapeutics. Pharmacol Ther 2025; 269:108834. [PMID: 40023321 DOI: 10.1016/j.pharmthera.2025.108834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/20/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Protein phosphatase 2A (PP2A) is a ubiquitously expressed serine/threonine phosphatase with a diverse and integral role in cellular signalling pathways. Consequently, its dysfunction is frequently observed in disease states such as cancer, inflammation and Alzheimer's disease. A growing understanding of both PP2A and its endogenous regulatory proteins has presented numerous targets for therapeutic intervention. This provides important context for the dynamic control and dysregulation of PP2A function in disease states. Understanding the intricate regulation of PP2A signalling in disease has resulted in the development of novel pharmacological agents aimed at restoring cellular homeostasis. Herein we review the structure and function of PP2A together with pharmacological modulators, both endogenous (proteins) and exogenous (small molecules and peptides), with relevance to targeting PP2A as a future pharmacotherapeutic strategy.
Collapse
Affiliation(s)
- David A Neale
- School of Chemistry, UNSW Sydney, NSW 2052, Australia
| | | | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, NSW 2308, Australia; Precision Medicine Program, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, Macquarie University, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia.
| |
Collapse
|
2
|
Gao YJ, Zhang YL, Wang WH, Latif A, Wang YT, Tang WQ, Pu CX, Sun Y. Protein phosphatase 2A B'α and B'β promote pollen wall construction partially through BRASSINAZOLE-RESISTANT 1-activated cysteine protease gene CEP1 in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1735-1751. [PMID: 39798077 DOI: 10.1093/jxb/eraf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/09/2025] [Indexed: 01/13/2025]
Abstract
A well-constructed pollen wall is essential for pollen fertility, which relies on the contribution of the tapetum. Our results demonstrated an essential role of the tapetum-expressed protein phosphatase 2A (PP2A) B'α and B'β in pollen wall formation. The b'aβ double mutant pollen grain harboured sticky remnants and tectum breakages, resulting in failed release. B'α and B'β functioned partially through dephosphorylating and activating BRASSINAZOLE-RESISTANT 1 (BZR1). The bzr1 bes1 double and higher-order mutants of this BZR1/BES1 family displayed similar defects in the pollen wall, while bzr1-1D, having an active form of the BRZ1 protein, exhibited fertile pollen grains in a B'α and B'β dependent manner. Correspondingly, the level of phospho-BZR1 was increased and dephospho-BZR1 was decreased in b'aβ and bzr1-1D/b'aβ at anther stages 8-9 as compared with Col-0 and bzr1-1D, respectively. A cysteine protease gene CEP1 was identified as a BZR1 target, whose transcriptional activation necessitates brassinosteroid (BR)-responsive elements in the promoter region and the BZR1 DNA binding domain. The mRNA level of CEP1 at stages 8-9 was extremely low in bzr1 and bzr1 bes1, but higher in Col-0 and bzr1-1D depending on B'α and B'β. Furthermore, cep1 mutants displayed similar defects in the pollen wall. In brief, this study uncovered a PP2A-BZR1-CEP1 regulatory module, providing a new insight into pollen maturation mechanisms.
Collapse
Affiliation(s)
- Ying-Jie Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yu-Lan Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Wen-Hui Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Ammara Latif
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yue-Tian Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Wen-Qiang Tang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Cui-Xia Pu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Ying Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
3
|
Wu SC, Chen YJ, Su SH, Fang PH, Liu RW, Tsai HY, Chang YJ, Li HH, Li JC, Chen CH. Dysfunctional BCAA degradation triggers neuronal damage through disrupted AMPK-mitochondrial axis due to enhanced PP2Ac interaction. Commun Biol 2025; 8:105. [PMID: 39838082 PMCID: PMC11751115 DOI: 10.1038/s42003-025-07457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025] Open
Abstract
Metabolic and neurological disorders commonly display dysfunctional branched-chain amino acid (BCAA) metabolism, though it is poorly understood how this leads to neurological damage. We investigated this by generating Drosophila mutants lacking BCAA-catabolic activity, resulting in elevated BCAA levels and neurological dysfunction, mimicking disease-relevant symptoms. Our findings reveal a reduction in neuronal AMP-activated protein kinase (AMPK) activity, which disrupts autophagy in mutant brain tissues, linking BCAA imbalance to brain dysfunction. Mechanistically, we show that excess BCAA-induced mitochondrial reactive oxygen species (ROS) triggered the binding of protein phosphatase 2 A catalytic subunit (PP2Ac) to AMPK, suppressing AMPK activity. This initiated a dysregulated feedback loop of AMPK-mitochondrial interactions, exacerbating mitochondrial dysfunction and oxidative neuronal damage. Our study identifies BCAA imbalance as a critical driver of neuronal damage through AMPK suppression and autophagy dysfunction, offering insights into metabolic-neuronal interactions in neurological diseases and potential therapeutic targets for BCAA-related neurological conditions.
Collapse
Affiliation(s)
- Shih-Cheng Wu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 10048, Taiwan.
- Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 10021, Taiwan.
| | - Yan-Jhen Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401, Taiwan
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Shih-Han Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 10048, Taiwan
| | - Pai-Hsiang Fang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401, Taiwan
| | - Rei-Wen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401, Taiwan
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Hui-Ying Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401, Taiwan
| | - Yen-Jui Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 10048, Taiwan
| | - Hsing-Han Li
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401, Taiwan
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jian-Chiuan Li
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401, Taiwan
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401, Taiwan.
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, 350401, Taiwan.
| |
Collapse
|
4
|
Dabo AJ, Raghavan S, Ezegbunam W, Thankachen J, Evgrafov O, Majka S, Geraghty P, Foronjy RF. Cigarette smoke alters calcium flux to induce PP2A membrane trafficking and endothelial cell permeability. Sci Rep 2024; 14:28012. [PMID: 39543165 PMCID: PMC11564810 DOI: 10.1038/s41598-024-77776-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024] Open
Abstract
Alveolar capillary barrier disruption induces local edema and inflammation that impairs pulmonary function and promotes alveolar destruction in COPD. This study aimed to determine how cigarette smoke modulated the serine-threonine phosphatase protein phosphatase 2 A (PP2A) to alter the barrier function of human lung microvascular endothelial cells (HLMVECs). Cigarette smoke exposure lowered overall PP2A activity and enhanced endothelial permeability in HLMVECs. However, directly decreasing PP2A activity with Fostriecin significantly reduced endothelial cell permeability. Protein fractionation studies determined that cigarette smoke diminished cytosolic PP2A activity but increased membrane and cytoskeletal activity. These changes coincided with the translocation of PP2A to the membrane, which reduced occludin phosphorylation in the membrane. Cigarette smoke decreased protein tyrosine phosphatase 1B (PTP1B) activity, a PP2A activator which also counters calcium intracellular influx. The decrease in PTP1B activity correlated with reduced calcium efflux in endothelial cells and these changes in calcium flux regulated PP2A activity. Indeed, culturing endothelial cells in low calcium medium prevented the decrease in cytosolic PP2A activity mediated by cigarette smoke. Together, these findings outline a mechanism whereby cigarette smoke acts via calcium to traffic PP2A from the cytosol to the membrane where it dephosphorylates occludin to increase endothelial cell permeability.
Collapse
Affiliation(s)
- Abdoulaye J Dabo
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Sonya Raghavan
- Division of Pulmonary, and Critical Care Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wendy Ezegbunam
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Jincy Thankachen
- Division of Pulmonary, and Critical Care Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Oleg Evgrafov
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Sue Majka
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
| | - Patrick Geraghty
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Robert F Foronjy
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA.
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA.
- Division of Pulmonary & Critical Care Medicine, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY, 11203, USA.
| |
Collapse
|
5
|
Niphadkar S, Karinje L, Laxman S. The PP2A-like phosphatase Ppg1 mediates assembly of the Far complex to balance gluconeogenic outputs and enables adaptation to glucose depletion. PLoS Genet 2024; 20:e1011202. [PMID: 38452140 PMCID: PMC10950219 DOI: 10.1371/journal.pgen.1011202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/19/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
To sustain growth in changing nutrient conditions, cells reorganize outputs of metabolic networks and appropriately reallocate resources. Signaling by reversible protein phosphorylation can control such metabolic adaptations. In contrast to kinases, the functions of phosphatases that enable metabolic adaptation as glucose depletes are poorly studied. Using a Saccharomyces cerevisiae deletion screen, we identified the PP2A-like phosphatase Ppg1 as required for appropriate carbon allocations towards gluconeogenic outputs-trehalose, glycogen, UDP-glucose, UDP-GlcNAc-after glucose depletion. This Ppg1 function is mediated via regulation of the assembly of the Far complex-a multi-subunit complex that tethers to the ER and mitochondrial outer membranes forming localized signaling hubs. The Far complex assembly is Ppg1 catalytic activity-dependent. Ppg1 regulates the phosphorylation status of multiple ser/thr residues on Far11 to enable the proper assembly of the Far complex. The assembled Far complex is required to maintain gluconeogenic outputs after glucose depletion. Glucose in turn regulates Far complex amounts. This Ppg1-mediated Far complex assembly, and Ppg1-Far complex dependent control of gluconeogenic outputs enables adaptive growth under glucose depletion. Our study illustrates how protein dephosphorylation is required for the assembly of a multi-protein scaffold present in localized cytosolic pools, to thereby alter gluconeogenic flux and enable cells to metabolically adapt to nutrient fluctuations.
Collapse
Affiliation(s)
- Shreyas Niphadkar
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem) Bangalore, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lavanya Karinje
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem) Bangalore, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem) Bangalore, India
| |
Collapse
|
6
|
Wu HM, Huang YY, Xu YQ, Xiang WL, Yang C, Liu RY, Li D, Guo XF, Zhang ZB, Bei CH, Tan SK, Zhu XN. Comprehensive analysis of the protein phosphatase 2A regulatory subunit B56ε in pan-cancer and its role and mechanism in hepatocellular carcinoma. World J Gastrointest Oncol 2024; 16:475-492. [PMID: 38425404 PMCID: PMC10900161 DOI: 10.4251/wjgo.v16.i2.475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/10/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND B56ε is a regulatory subunit of the serine/threonine protein phosphatase 2A, which is abnormally expressed in tumors and regulates various tumor cell functions. At present, the application of B56ε in pan-cancer lacks a comprehensive analysis, and its role and mechanism in hepatocellular carcinoma (HCC) are still unclear. AIM To analyze B56ε in pan-cancer, and explore its role and mechanism in HCC. METHODS The Cancer Genome Atlas, Genotype-Tissue Expression, Gene Expression Profiling Interactive Analysis, and Tumor Immune Estimation Resource databases were used to analyze B56ε expression, prognostic mutations, somatic copy number alterations, and tumor immune characteristics in 33 tumors. The relationships between B56ε expression levels and drug sensitivity, immunotherapy, immune checkpoints, and human leukocyte antigen (HLA)-related genes were further analyzed. Gene Set Enrichment Analysis (GSEA) was performed to reveal the role of B56ε in HCC. The Cell Counting Kit-8, plate cloning, wound healing, and transwell assays were conducted to assess the effects of B56ε interference on the malignant behavior of HCC cells. RESULTS In most tumors, B56ε expression was upregulated, and high B56ε expression was a risk factor for adrenocortical cancer, HCC, pancreatic adenocarcinoma, and pheochromocytoma and paraganglioma (all P < 0.05). B56ε expression levels were correlated with a variety of immune cells, such as T helper 17 cells, B cells, and macrophages. There was a positive correlation between B56ε expression levels with immune checkpoint genes and HLA-related genes (all P < 0.05). The expression of B56ε was negatively correlated with the sensitivity of most chemotherapy drugs, but a small number showed a positive correlation (all P < 0.05). GSEA analysis showed that B56ε expression was related to the cancer pathway, p53 downstream pathway, and interleukin-mediated signaling in HCC. Knockdown of B56ε expression in HCC cells inhibited the proliferation, migration, and invasion capacity of tumor cells. CONCLUSION B56ε is associated with the microenvironment, immune evasion, and immune cell infiltration of multiple tumors. B56ε plays an important role in HCC progression, supporting it as a prognostic marker and potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Hong-Mei Wu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| | - Yuan-Yuan Huang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| | - Yu-Qiu Xu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| | - Wei-Lai Xiang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| | - Chang Yang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| | - Ru-Yuan Liu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| | - Di Li
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| | - Xue-Feng Guo
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| | - Zheng-Bao Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| | - Chun-Hua Bei
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| | - Sheng-Kui Tan
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Nian Zhu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
7
|
Erguven M, Kilic S, Karaca E, Diril MK. Genetic complementation screening and molecular docking give new insight on phosphorylation-dependent Mastl kinase activation. J Biomol Struct Dyn 2023; 41:8241-8253. [PMID: 36270968 DOI: 10.1080/07391102.2022.2131627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/26/2022] [Indexed: 10/24/2022]
Abstract
Mastl is a mitotic kinase that is essential for error-free chromosome segregation. It is an atypical member of AGC kinase family, possessing a unique non-conserved middle region. The mechanism of Mastl activation has been studied extensively in vitro. Phosphorylation of several residues were identified to be crucial for activation. These sites correspond to T193 and T206 in the activation loop and S861 in the C-terminal tail of mouse Mastl. To date, the significance of these phosphosites was not confirmed in intact mammalian cells. Here, we utilize a genetic complementation approach to determine the essentials of mammalian Mastl kinase activation. We used tamoxifen-inducible conditional knockout mouse embryonic fibroblasts to delete endogenous Mastl and screened various mutants for their ability to complement its loss. S861A mutant was able to complement endogenous Mastl loss. In parallel, we performed computational molecular docking studies to evaluate the significance of this residue for kinase activation. Our in-depth sequence and structure analysis revealed that Mastl pS861 does not belong to a conformational state, where the phosphoresidue contributes to C-tail docking. C-tail of Mastl is relatively short and it lacks a hydrophobic (HF) motif that would otherwise help its anchoring over N-lobe, required for the final steps of kinase activation. Our results show that phosphorylation of Mastl C-tail turn motif (S861) is dispensable for kinase function in cellulo.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mehmet Erguven
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Seval Kilic
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Ezgi Karaca
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - M Kasim Diril
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
8
|
Verbinnen I, Procknow SS, Lenaerts L, Reynhout S, Mehregan A, Ulens C, Janssens V, King KA. Clinical and molecular characteristics of a novel rare de novo variant in PPP2CA in a patient with a developmental disorder, autism, and epilepsy. Front Cell Dev Biol 2022; 10:1059938. [DOI: 10.3389/fcell.2022.1059938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
PP2A-related (neuro) developmental disorders are a family of genetic diseases caused by a heterozygous alteration in one of several genes encoding a subunit of type 2A protein phosphatases. Reported affected genes, so far, are PPP2R5D, encoding the PP2A regulatory B56δ subunit; PPP2R1A, encoding the scaffolding Aα subunit; and PPP2CA, encoding the catalytic Cα subunit—in that order of frequency. Patients with a pathogenic de novo mutation in one of these genes, in part, present with overlapping features, such as generalized hypotonia, intellectual and developmental delay, facial dysmorphologies, seizures, and autistic features, and, in part, with opposite features, e.g., smaller versus larger head sizes or normal versus absent corpus callosum. Molecular variant characterization has been consistent so far with loss-of-function or dominant-negative disease mechanisms for all three affected genes. Here, we present a case report of another PPP2CA-affected individual with a novel de novo missense variant, resulting in a one-amino acid substitution in the Cα subunit: p.Cys196Arg. Biochemical characterization of the variant revealed its pathogenicity, as it appeared severely catalytically impaired, showed mildly affected A subunit binding, and moderately decreased binding to B/B55, B”/PR72, and all B56 subunits, except B56γ1. Carboxy-terminal methylation appeared unaffected, as was binding to B”’/STRN3—all being consistent with a partial loss of function. Clinically, the girl presented with mild-to-moderate developmental delay, a full-scale IQ of 83, mild dysmorphic facial features, tonic–clonic seizures, and autistic behaviors. Brain MRI appeared normal. We conclude that this individual falls within the milder end of the clinical and molecular spectrum of previously reported PPP2CA cases.
Collapse
|
9
|
Hwang S, Ha Y, Koo G, Noh H, Lee A, Kim B, Hong SM, Morgan MJ, Eyun S, Lee D, Roe J, Lee Y, Kim Y. LCK-Mediated RIPK3 Activation Controls Double-Positive Thymocyte Proliferation and Restrains Thymic Lymphoma by Regulating the PP2A-ERK Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204522. [PMID: 36161785 PMCID: PMC9661840 DOI: 10.1002/advs.202204522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Receptor-interacting protein kinase 3 (RIPK3) is the primary regulator of necroptotic cell death. RIPK3 expression is often silenced in various cancer cells, which suggests that it may have tumor suppressor properties. However, the exact mechanism by which RIPK3 negatively regulates cancer development and progression remains unclear. This report indicates that RIPK3 acts as a potent regulator of the homeostatic proliferation of CD4+ CD8+ double-positive (DP) thymocytes. Abnormal proliferation of RIPK3-deficient DP thymocytes occurs independently of the well-known role for RIPK3 in necroptosis (upstream of MLKL activation), and is associated with an incidental thymic mass, likely thymic hyperplasia. In addition, Ripk3-null mice develop increased thymic tumor formation accompanied by reduced host survival in the context of an N-ethyl-N-nitrosourea (ENU)-induced tumor model. Moreover, RIPK3 deficiency in p53-null mice promotes thymic lymphoma development via upregulated extracellular signal-regulated kinase (ERK) signaling, which correlates with markedly reduced survival rates. Mechanistically, lymphocyte-specific protein tyrosine kinase (LCK) activates RIPK3, which in turn leads to increases in the phosphatase activity of protein phosphatase 2 (PP2A), thereby suppressing hyper-activation of ERK in DP thymocytes. Overall, these findings suggest that a RIPK3-PP2A-ERK signaling axis regulates DP thymocyte homeostasis and may provide a potential therapeutic target to improve thymic lymphoma therapies.
Collapse
Affiliation(s)
- Sung‐Min Hwang
- Department of Biochemistry and Molecular BiologyAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐gu, SuwonGyeonggi‐do16499Republic of Korea
- Sandra and Edward Meyer Cancer Center and Department of Obstetrics and GynecologyWeill Cornell MedicineNew YorkNY10065USA
| | - Yu‐Jin Ha
- Department of Biochemistry and Molecular BiologyAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐gu, SuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐gu, SuwonGyeonggi‐do16499Republic of Korea
| | - Gi‐Bang Koo
- Department of Biochemistry and Molecular BiologyAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐gu, SuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐gu, SuwonGyeonggi‐do16499Republic of Korea
| | - Hyun‐Jin Noh
- Department of Biochemistry and Molecular BiologyAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐gu, SuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐gu, SuwonGyeonggi‐do16499Republic of Korea
| | - A‐Yeon Lee
- Department of Biochemistry and Molecular BiologyAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐gu, SuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐gu, SuwonGyeonggi‐do16499Republic of Korea
| | - Byeong‐Ju Kim
- Department of Biochemistry and Molecular BiologyAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐gu, SuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐gu, SuwonGyeonggi‐do16499Republic of Korea
| | - Sun Mi Hong
- Department of Biochemistry and Molecular BiologyAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐gu, SuwonGyeonggi‐do16499Republic of Korea
| | - Michael J. Morgan
- Department of Natural SciencesNortheastern State UniversityTahlequahOK74464USA
| | - Seong‐il Eyun
- Department of Life ScienceChung‐Ang UniversitySeoul06973Republic of Korea
| | - Dakeun Lee
- Department of PathologyAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐gu, SuwonGyeonggi‐do16499Republic of Korea
| | - Jae‐Seok Roe
- Department of BiochemistryCollege of Life Science and BiotechnologyYonsei UniversitySeoul03722Republic of Korea
| | - Youngsoo Lee
- Institute of Medical ScienceAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐gu, SuwonGyeonggi‐do16499Republic of Korea
| | - You‐Sun Kim
- Department of Biochemistry and Molecular BiologyAjou University School of Medicine164 Worldcup‐ro, Yeongtong‐gu, SuwonGyeonggi‐do16499Republic of Korea
- Department of Biomedical SciencesGraduate School of Ajou University164 Worldcup‐ro, Yeongtong‐gu, SuwonGyeonggi‐do16499Republic of Korea
| |
Collapse
|
10
|
Kokot T, Köhn M. Emerging insights into serine/threonine-specific phosphoprotein phosphatase function and selectivity. J Cell Sci 2022; 135:277104. [DOI: 10.1242/jcs.259618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
ABSTRACT
Protein phosphorylation on serine and threonine residues is a widely distributed post-translational modification on proteins that acts to regulate their function. Phosphoprotein phosphatases (PPPs) contribute significantly to a plethora of cellular functions through the accurate dephosphorylation of phosphorylated residues. Most PPPs accomplish their purpose through the formation of complex holoenzymes composed of a catalytic subunit with various regulatory subunits. PPP holoenzymes then bind and dephosphorylate substrates in a highly specific manner. Despite the high prevalence of PPPs and their important role for cellular function, their mechanisms of action in the cell are still not well understood. Nevertheless, substantial experimental advancements in (phospho-)proteomics, structural and computational biology have contributed significantly to a better understanding of PPP biology in recent years. This Review focuses on recent approaches and provides an overview of substantial new insights into the complex mechanism of PPP holoenzyme regulation and substrate selectivity.
Collapse
Affiliation(s)
- Thomas Kokot
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg 1 , Freiburg 79104 , Germany
- University of Freiburg, 2 Faculty of Biology , Freiburg 79104 , Germany
| | - Maja Köhn
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg 1 , Freiburg 79104 , Germany
- University of Freiburg, 2 Faculty of Biology , Freiburg 79104 , Germany
| |
Collapse
|
11
|
Kliche J, Ivarsson Y. Orchestrating serine/threonine phosphorylation and elucidating downstream effects by short linear motifs. Biochem J 2022; 479:1-22. [PMID: 34989786 PMCID: PMC8786283 DOI: 10.1042/bcj20200714] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
Cellular function is based on protein-protein interactions. A large proportion of these interactions involves the binding of short linear motifs (SLiMs) by folded globular domains. These interactions are regulated by post-translational modifications, such as phosphorylation, that create and break motif binding sites or tune the affinity of the interactions. In addition, motif-based interactions are involved in targeting serine/threonine kinases and phosphatases to their substrate and contribute to the specificity of the enzymatic actions regulating which sites are phosphorylated. Here, we review how SLiM-based interactions assist in determining the specificity of serine/threonine kinases and phosphatases, and how phosphorylation, in turn, affects motif-based interactions. We provide examples of SLiM-based interactions that are turned on/off, or are tuned by serine/threonine phosphorylation and exemplify how this affects SLiM-based protein complex formation.
Collapse
Affiliation(s)
- Johanna Kliche
- Department of Chemistry – BMC, Uppsala University, Husargatan 3, Box 576 751 23 Uppsala, Sweden
| | - Ylva Ivarsson
- Department of Chemistry – BMC, Uppsala University, Husargatan 3, Box 576 751 23 Uppsala, Sweden
| |
Collapse
|
12
|
Shao L, Ma Y, Fang Q, Huang Z, Wan S, Wang J, Yang L. Role of protein phosphatase 2A in kidney disease (Review). Exp Ther Med 2021; 22:1236. [PMID: 34539832 PMCID: PMC8438693 DOI: 10.3892/etm.2021.10671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Kidney disease affects millions of people worldwide and is a financial burden on the healthcare system. Protein phosphatase 2A (PP2A), which is involved in renal development and the function of ion-transport proteins, aquaporin-2 and podocytes, is likely to serve an important role in renal processes. PP2A is associated with the pathogenesis of a variety of different kidney diseases including podocyte injury, inflammation, tumors and chronic kidney disease. The current review aimed to discuss the structure and function of PP2A subunits in the context of kidney diseases. How dysregulation of PP2A in the kidneys causes podocyte death and the inactivation of PP2A in renal carcinoma tissues is discussed. Inhibition of PP2A activity prevents epithelial-mesenchymal transition and attenuates renal fibrosis, creating a favorable inflammatory microenvironment and promoting the initiation and progression of tumor pathogenesis. The current review also indicates that PP2A serves an important role in protection against renal inflammation. Understanding the detailed mechanisms of PP2A provides information that can be utilized in the design and application of novel therapeutics for the treatment and prevention of renal diseases.
Collapse
Affiliation(s)
- Lishi Shao
- Department of Radiology, Kunming Medical University and The Second Affiliated Hospital, Kunming, Yunnan 650500, P.R. China
| | - Yiqun Ma
- Department of Radiology, Kunming Medical University and The Second Affiliated Hospital, Kunming, Yunnan 650500, P.R. China
| | - Qixiang Fang
- Department of Urology, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Ziye Huang
- Department of Urology, Kunming Medical University and The Second Affiliated Hospital, Kunming, Yunnan 650500, P.R. China
| | - Shanshan Wan
- Department of Radiology, Yunnan Kun-Gang Hospital, Anning, Yunnan 650300, P.R. China
| | - Jiaping Wang
- Department of Radiology, Kunming Medical University and The Second Affiliated Hospital, Kunming, Yunnan 650500, P.R. China
| | - Li Yang
- Department of Anatomy, Histology and Embryology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
13
|
Phosphatase and Kinase Substrate Specificity Profiling with Pooled Synthetic Peptides and Mass Spectrometry. Methods Mol Biol 2021. [PMID: 34085215 DOI: 10.1007/978-1-0716-1538-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Reversible phosphorylation is a pervasive regulatory event in cellular physiology controlled by reciprocal actions of protein kinases and phosphatases. Determining the inherent substrate specificity of kinases and phosphatases is essential for understanding their cellular roles. Synthetic peptides have long served as substrate proxies for defining intrinsic kinase and phosphatase specificities. Here, we describe a high throughput protocol to simultaneously measure specificity constants (kcat/KM) of many synthetic peptide substrates in a single pool using label-free quantitative mass spectrometry. The generation of specificity constants from a single pooled reaction provides a rigorous and rapid comparison of substrate variants to help define an enzyme's specificity. Equally applicable to kinases and phosphatases, as well as other enzyme classes, the protocol consists of three general steps: (1) reaction of enzyme with pooled peptide substrates, each ideally with a unique mass and at concentrations well below KM, (2) analysis of reaction products using liquid chromatography-coupled mass spectrometry (LC-MS), and (3) automated extraction and integration of elution peaks for each substrate/product pair. We incorporate an ionization correction strategy allowing direct calculation of reaction progress, and subsequently kcat/KM, from substrate and product peak areas in a single sample, obviating the need for stable isotope labeling. Peptide consumption is minimal, and high peptide purity and accurate concentrations are not required. Access to a high-resolution LC-MS system is the only nonstandard equipment need. We present an analysis pipeline consisting entirely of established open-source software tools, and demonstrate proof of principle with the highly selective cell cycle phosphatase Cdc14 from Saccharomyces cerevisiae.
Collapse
|
14
|
Protein Phosphatase 2A (PP2A) mutations in brain function, development, and neurologic disease. Biochem Soc Trans 2021; 49:1567-1588. [PMID: 34241636 DOI: 10.1042/bst20201313] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022]
Abstract
By removing Ser/Thr-specific phosphorylations in a multitude of protein substrates in diverse tissues, Protein Phosphatase type 2A (PP2A) enzymes play essential regulatory roles in cellular signalling and physiology, including in brain function and development. Here, we review current knowledge on PP2A gene mutations causally involved in neurodevelopmental disorders and intellectual disability, focusing on PPP2CA, PPP2R1A and PPP2R5D. We provide insights into the impact of these mutations on PP2A structure, substrate specificity and potential function in neurobiology and brain development.
Collapse
|
15
|
Papke CM, Smolen KA, Swingle MR, Cressey L, Heng RA, Toporsian M, Deng L, Hagen J, Shen Y, Chung WK, Kettenbach AN, Honkanen RE. A disorder-related variant (E420K) of a PP2A-regulatory subunit (PPP2R5D) causes constitutively active AKT-mTOR signaling and uncoordinated cell growth. J Biol Chem 2021; 296:100313. [PMID: 33482199 PMCID: PMC7952134 DOI: 10.1016/j.jbc.2021.100313] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 02/08/2023] Open
Abstract
Functional genomic approaches have facilitated the discovery of rare genetic disorders and improved efforts to decipher their underlying etiology. PPP2R5D-related disorder is an early childhood onset condition characterized by intellectual disability, hypotonia, autism-spectrum disorder, macrocephaly, and dysmorphic features. The disorder is caused by de novo single nucleotide changes in PPP2R5D, which generate heterozygous dominant missense variants. PPP2R5D is known to encode a B'-type (B'56δ) regulatory subunit of a PP2A-serine/threonine phosphatase. To help elucidate the molecular mechanisms altered in PPP2R5D-related disorder, we used a CRISPR-single-base editor to generate HEK-293 cells in which a single transition (c.1258G>A) was introduced into one allele, precisely recapitulating a clinically relevant E420K variant. Unbiased quantitative proteomic and phosphoproteomic analyses of endogenously expressed proteins revealed heterozygous-dominant changes in kinase/phosphatase signaling. These data combined with orthogonal validation studies revealed a previously unrecognized interaction of PPP2R5D with AKT in human cells, leading to constitutively active AKT-mTOR signaling, increased cell size, and uncoordinated cellular growth in E420K-variant cells. Rapamycin reduced cell size and dose-dependently reduced RPS6 phosphorylation in E420K-variant cells, suggesting that inhibition of mTOR1 can suppress both the observed RPS6 hyperphosphorylation and increased cell size. Together, our findings provide a deeper understanding of PPP2R5D and insight into how the E420K-variant alters signaling networks influenced by PPP2R5D. Our comprehensive approach, which combines precise genome editing, isobaric tandem mass tag labeling of peptides generated from endogenously expressed proteins, and concurrent liquid chromatography-mass spectrometry (LC-MS3), also provides a roadmap that can be used to rapidly explore the etiologies of additional genetic disorders.
Collapse
Affiliation(s)
- Cinta M Papke
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Kali A Smolen
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Mark R Swingle
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Lauren Cressey
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Richard A Heng
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Mourad Toporsian
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Liyong Deng
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Jacob Hagen
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA; Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA.
| | - Richard E Honkanen
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA.
| |
Collapse
|
16
|
Wang J, Chen G, Qian H, Shang Q, Xiao J, Liang M, Gao B, Li T, Liu X. PP2A-C may be a promising candidate for postmortem interval estimation. Int J Legal Med 2021; 135:837-844. [PMID: 33409557 DOI: 10.1007/s00414-020-02466-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 11/12/2020] [Indexed: 01/16/2023]
Abstract
Determining the postmortem interval (PMI) is an important task in forensic pathology. However, a reliable means of determining the PMI between 24 h and approximately 7 days after death has not yet been established. A previous study demonstrated that subunit A of protein phosphatase 2A (PP2A-A) is a promising candidate to estimate the PMI during the first 96 h. However, more detailed work is still needed to investigate PP2A's function in PMI estimation. PP2A is a serine/threonine phosphatase consisting of three subunits (PP2A-A, PP2A-B, and PP2A-C), and its activation is reflected by Tyr-307 phosphorylation of the catalytic subunit (P-PP2A-C). In this study, we speculated that the other two subunits of PP2A and the activation of PP2A may play different roles in estimating the PMI. For this purpose, mice were euthanized and stored at different temperatures (4, 15, and 25 °C). At each temperature, the musculus vastus lateralis was collected at different time points (0, 24, 48, and 96 h) to investigate the degradation of PP2A-B, PP2A-C, and P-PP2A-C (Tyr-307). Homocysteine (Hcy) was used to establish a hyperhomocysteinemia animal model to explore the effects of plasma Hcy on PMI estimation. The data showed not only that PP2A-C was more stable than PP2A-B, but also that it was not affected by homocysteine (Hcy). These characteristics make PP2A-C a promising candidate for short-term (24 h to 48 h) PMI estimation.
Collapse
Affiliation(s)
- Jing Wang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, Shaanxi, 710061, People's Republic of China.,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Gang Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, Shaanxi, 710061, People's Republic of China.,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Hongyan Qian
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, Shaanxi, 710061, People's Republic of China.,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Qing Shang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, Shaanxi, 710061, People's Republic of China.,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Jing Xiao
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, Shaanxi, 710061, People's Republic of China.,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Min Liang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, Shaanxi, 710061, People's Republic of China.,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Baoyao Gao
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, Shaanxi, 710061, People's Republic of China.,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Tao Li
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, Shaanxi, 710061, People's Republic of China. .,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.
| | - Xinshe Liu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, Shaanxi, 710061, People's Republic of China. .,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.
| |
Collapse
|
17
|
He X, Li M, Yu H, Liu G, Wang N, Yin C, Tu Q, Narla G, Tao Y, Cheng S, Yin H. Loss of hepatic aldolase B activates Akt and promotes hepatocellular carcinogenesis by destabilizing the Aldob/Akt/PP2A protein complex. PLoS Biol 2020; 18:e3000803. [PMID: 33275593 PMCID: PMC7744066 DOI: 10.1371/journal.pbio.3000803] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/16/2020] [Accepted: 11/13/2020] [Indexed: 12/21/2022] Open
Abstract
Loss of hepatic fructose-1, 6-bisphosphate aldolase B (Aldob) leads to a paradoxical up-regulation of glucose metabolism to favor hepatocellular carcinogenesis (HCC), but the upstream signaling events remain poorly defined. Akt is highly activated in HCC, and targeting Akt is being explored as a potential therapy for HCC. Herein, we demonstrate that Aldob suppresses Akt activity and tumor growth through a protein complex containing Aldob, Akt, and protein phosphatase 2A (PP2A), leading to inhibition of cell viability, cell cycle progression, glucose uptake, and metabolism. Interestingly, Aldob directly interacts with phosphorylated Akt (p-Akt) and promotes the recruitment of PP2A to dephosphorylate p-Akt, and this scaffolding effect of Aldob is independent of its enzymatic activity. Loss of Aldob or disruption of Aldob/Akt interaction in Aldob R304A mutant restores Akt activity and tumor-promoting effects. Consistently, Aldob and p-Akt expression are inversely correlated in human HCC tissues, and Aldob down-regulation coupled with p-Akt up-regulation predicts a poor prognosis for HCC. We have further discovered that Akt inhibition or a specific small-molecule activator of PP2A (SMAP) efficiently attenuates HCC tumorigenesis in xenograft mouse models. Our work reveals a novel nonenzymatic role of Aldob in negative regulation of Akt activation, suggesting that directly inhibiting Akt activity or through reactivating PP2A may be a potential therapeutic approach for HCC treatment.
Collapse
Affiliation(s)
- Xuxiao He
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Min Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Hongming Yu
- The Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Guijun Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ningning Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Chunzhao Yin
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qiaochu Tu
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Goutham Narla
- Division of Genetic Medicine, Department of International Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yongzhen Tao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Shuqun Cheng
- The Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| |
Collapse
|
18
|
Neal SJ, Zhou Q, Pignoni F. STRIPAK-PP2A regulates Hippo-Yorkie signaling to suppress retinal fate in the Drosophila eye disc peripodial epithelium. J Cell Sci 2020; 133:jcs237834. [PMID: 32184260 PMCID: PMC7272332 DOI: 10.1242/jcs.237834] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/09/2020] [Indexed: 12/30/2022] Open
Abstract
The specification of organs, tissues and cell types results from cell fate restrictions enacted by nuclear transcription factors under the control of conserved signaling pathways. The progenitor epithelium of the Drosophila compound eye, the eye imaginal disc, is a premier model for the study of such processes. Early in development, apposing cells of the eye disc are established as either retinal progenitors or support cells of the peripodial epithelium (PE), in a process whose genetic and mechanistic determinants are poorly understood. We have identified protein phosphatase 2A (PP2A), and specifically a STRIPAK-PP2A complex that includes the scaffolding and substrate-specificity components Cka, Strip and SLMAP, as a critical player in the retina-PE fate choice. We show that these factors suppress ectopic retina formation in the presumptive PE and do so via the Hippo signaling axis. STRIPAK-PP2A negatively regulates Hippo kinase, and consequently its substrate Warts, to release the transcriptional co-activator Yorkie into the nucleus. Thus, a modular higher-order PP2A complex refines the activity of this general phosphatase to act in a precise specification of cell fate.
Collapse
Affiliation(s)
- Scott J Neal
- Department of Ophthalmology and Visual Sciences, Upstate Medical University, 505 Irving Avenue, NRB 4610, Syracuse, NY 13210, USA
| | - Qingxiang Zhou
- Department of Ophthalmology and Visual Sciences, Upstate Medical University, 505 Irving Avenue, NRB 4610, Syracuse, NY 13210, USA
| | - Francesca Pignoni
- Department of Ophthalmology and Visual Sciences, Upstate Medical University, 505 Irving Avenue, NRB 4610, Syracuse, NY 13210, USA
- Department of Neuroscience and Physiology; Department of Biochemistry and Molecular Biology; Department of Cell and Developmental Biology, Upstate Medical University, 505 Irving Avenue, NRB 4610, Syracuse, NY 13210, USA
| |
Collapse
|
19
|
Li X, Terunuma M, Deeb TG, Wiseman S, Pangalos MN, Nairn AC, Moss SJ, Slesinger PA. Direct Interaction of PP2A Phosphatase with GABA B Receptors Alters Functional Signaling. J Neurosci 2020; 40:2808-2816. [PMID: 32111696 PMCID: PMC7117905 DOI: 10.1523/jneurosci.2654-19.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/02/2020] [Accepted: 02/18/2020] [Indexed: 01/16/2023] Open
Abstract
Addictive drugs usurp the brain's intrinsic mechanism for reward, leading to compulsive and destructive behaviors. In the ventral tegmental area (VTA), the center of the brain's reward circuit, GABAergic neurons control the excitability of dopamine (DA) projection neurons and are the site of initial psychostimulant-dependent changes in signaling. Previous work established that cocaine/methamphetamine exposure increases protein phosphatase 2A (PP2A) activity, which dephosphorylates the GABABR2 subunit, promotes internalization of the GABAB receptor (GABABR) and leads to smaller GABABR-activated G-protein-gated inwardly rectifying potassium (GIRK) currents in VTA GABA neurons. How the actions of PP2A become selective for a particular signaling pathway is poorly understood. Here, we demonstrate that PP2A can associate directly with a short peptide sequence in the C terminal domain of the GABABR1 subunit, and that GABABRs and PP2A are in close proximity in rodent neurons (mouse/rat; mixed sexes). We show that this PP2A-GABABR interaction can be regulated by intracellular Ca2+ Finally, a peptide that potentially reduces recruitment of PP2A to GABABRs and thereby limits receptor dephosphorylation increases the magnitude of baclofen-induced GIRK currents. Thus, limiting PP2A-dependent dephosphorylation of GABABRs may be a useful strategy to increase receptor signaling for treating diseases.SIGNIFICANCE STATEMENT Dysregulation of GABAB receptors (GABABRs) underlies altered neurotransmission in many neurological disorders. Protein phosphatase 2A (PP2A) is involved in dephosphorylating and subsequent internalization of GABABRs in models of addiction and depression. Here, we provide new evidence that PP2A B55 regulatory subunit interacts directly with a small region of the C-terminal domain of the GABABR1 subunit, and that this interaction is sensitive to intracellular Ca2+ We demonstrate that a short peptide corresponding to the PP2A interaction site on GABABR1 competes for PP2A binding, enhances phosphorylation GABABR2 S783, and affects functional signaling through GIRK channels. Our study highlights how targeting PP2A dependent dephosphorylation of GABABRs may provide a specific strategy to modulate GABABR signaling in disease conditions.
Collapse
Affiliation(s)
- Xiaofan Li
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Miho Terunuma
- Division of Oral Biochemistry, Graduate School of Medical and Dental Sciences, Niigata University, 951-8514 Japan
| | - Tarek G Deeb
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Shari Wiseman
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | | - Angus C Nairn
- Department Psychiatry, Yale University School of Medicine, New Haven, Connecticut 065019
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111,
- Department of Physiology, Pharmacology and Neuroscience, University College, London WC1E 6BT, United Kingdom
| | - Paul A Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029,
| |
Collapse
|
20
|
Puhl SL, Weeks KL, Güran A, Ranieri A, Boknik P, Kirchhefer U, Müller FU, Avkiran M. Role of type 2A phosphatase regulatory subunit B56α in regulating cardiac responses to β-adrenergic stimulation in vivo. Cardiovasc Res 2020; 115:519-529. [PMID: 30203051 PMCID: PMC6383118 DOI: 10.1093/cvr/cvy230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/26/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022] Open
Abstract
AIMS B56α is a protein phosphatase 2A (PP2A) regulatory subunit that is highly expressed in the heart. We previously reported that cardiomyocyte B56α localizes to myofilaments under resting conditions and translocates to the cytosol in response to acute β-adrenergic receptor (β-AR) stimulation. Given the importance of reversible protein phosphorylation in modulating cardiac function during sympathetic stimulation, we hypothesized that loss of B56α in mice with targeted disruption of the gene encoding B56α (Ppp2r5a) would impact on cardiac responses to β-AR stimulation in vivo. METHODS AND RESULTS Cardiac phenotype of mice heterozygous (HET) or homozygous (HOM) for the disrupted Ppp2r5a allele and wild type (WT) littermates was characterized under basal conditions and following acute β-AR stimulation with dobutamine (DOB; 0.75 mg/kg i.p.) or sustained β-AR stimulation by 2-week infusion of isoproterenol (ISO; 30 mg/kg/day s.c.). Left ventricular (LV) wall thicknesses, chamber dimensions and function were assessed by echocardiography, and heart tissue collected for gravimetric, histological, and biochemical analyses. Western blot analysis revealed partial and complete loss of B56α protein in hearts from HET and HOM mice, respectively, and no changes in the expression of other PP2A regulatory, catalytic or scaffolding subunits. PP2A catalytic activity was reduced in hearts of both HET and HOM mice. There were no differences in the basal cardiac phenotype between genotypes. Acute DOB stimulation induced the expected inotropic response in WT and HET mice, which was attenuated in HOM mice. In contrast, DOB-induced increases in heart rate were unaffected by B56α deficiency. In WT mice, ISO infusion increased LV wall thicknesses, cardiomyocyte area and ventricular mass, without LV dilation, systolic dysfunction, collagen deposition or foetal gene expression. The hypertrophic response to ISO was blunted in mice deficient for B56α. CONCLUSION These findings identify B56α as a potential regulator of cardiac structure and function during β-AR stimulation.
Collapse
Affiliation(s)
- Sarah-Lena Puhl
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, St Thomas' Hospital, Westminster Bridge Road, London, UK.,Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Pettenkoferstrasse 9b, D-80336 Munich, Germany
| | - Kate L Weeks
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, St Thomas' Hospital, Westminster Bridge Road, London, UK.,Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
| | - Alican Güran
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, St Thomas' Hospital, Westminster Bridge Road, London, UK
| | - Antonella Ranieri
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, St Thomas' Hospital, Westminster Bridge Road, London, UK
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Domagkstrasse 12, D-48149 Münster, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Domagkstrasse 12, D-48149 Münster, Germany
| | - Frank U Müller
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Domagkstrasse 12, D-48149 Münster, Germany
| | - Metin Avkiran
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, St Thomas' Hospital, Westminster Bridge Road, London, UK
| |
Collapse
|
21
|
Meidan E, Li H, Pan W, Kono M, Yu S, Kyttaris VC, Ioannidis C, Rodriguez Rodriguez N, Crispin JC, Apostolidis SA, Lee P, Manis J, Sharabi A, Tsokos MG, Tsokos GC. Serine/threonine phosphatase PP2A is essential for optimal B cell function. JCI Insight 2020; 5:130655. [PMID: 32161189 PMCID: PMC7141385 DOI: 10.1172/jci.insight.130655] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 02/12/2020] [Indexed: 12/28/2022] Open
Abstract
Protein phosphatase 2A (PP2A), a serine/threonine phosphatase, has been shown to control T cell function. We found that in vitro-activated B cells and B cells from various lupus-prone mice and patients with systemic lupus erythematosus display increased PP2A activity. To understand the contribution of PP2A to B cell function, we generated a Cd19CrePpp2r1afl/fl (flox/flox) mouse which lacks functional PP2A only in B cells. Flox/flox mice displayed reduced spontaneous germinal center formation and decreased responses to T cell-dependent and T-independent antigens, while their B cells responded poorly in vitro to stimulation with an anti-CD40 antibody or CpG in the presence of IL-4. Transcriptome and metabolome studies revealed altered nicotinamide adenine dinucleotide (NAD) and purine/pyrimidine metabolism and increased expression of purine nucleoside phosphorylase in PP2A-deficient B cells. Our results demonstrate that PP2A is required for optimal B cell function and may contribute to increased B cell activity in systemic autoimmunity.
Collapse
Affiliation(s)
- Esra Meidan
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Hao Li
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - Wenliang Pan
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - Michihito Kono
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - Shuilian Yu
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - Vasileios C. Kyttaris
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - Christina Ioannidis
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - Noe Rodriguez Rodriguez
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición, Mexico City, Mexico
| | - Jose C. Crispin
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición, Mexico City, Mexico
| | - Sokratis A. Apostolidis
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - Pui Lee
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - John Manis
- Division of Transfusion Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Amir Sharabi
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - Maria G. Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - George C. Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| |
Collapse
|
22
|
Akiyama H, Iwasaki Y, Yamada S, Kamiguchi H, Sakakibara SI. Control of cell migration by the novel protein phosphatase-2A interacting protein inka2. Cell Tissue Res 2020; 380:527-537. [DOI: 10.1007/s00441-020-03169-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022]
|
23
|
Svarcbahs R, Jäntti M, Kilpeläinen T, Julku UH, Urvas L, Kivioja S, Norrbacka S, Myöhänen TT. Prolyl oligopeptidase inhibition activates autophagy via protein phosphatase 2A. Pharmacol Res 2019; 151:104558. [PMID: 31759088 DOI: 10.1016/j.phrs.2019.104558] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/02/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
Prolyl oligopeptidase (PREP) is a serine protease that has been studied particularly in the context of neurodegenerative diseases for decades but its physiological function has remained unclear. We have previously found that PREP negatively regulates beclin1-mediated macroautophagy (autophagy), and that PREP inhibition by a small-molecule inhibitor induces clearance of protein aggregates in Parkinson's disease models. Since autophagy induction has been suggested as a potential therapy for several diseases, we wanted to further characterize how PREP regulates autophagy. We measured the levels of various kinases and proteins regulating beclin1-autophagy in HEK-293 and SH-SY5Y cell cultures after PREP inhibition, PREP deletion, and PREP overexpression and restoration, and verified the results in vivo by using PREP knock-out and wild-type mouse tissue where PREP was restored or overexpressed, respectively. We found that PREP regulates autophagy by interacting with protein phosphatase 2A (PP2A) and its endogenous inhibitor, protein phosphatase methylesterase 1 (PME1), and activator (protein phosphatase 2 phosphatase activator, PTPA), thus adjusting its activity and the levels of PP2A in the intracellular pool. PREP inhibition and deletion increased PP2A activity, leading to activation of death-associated protein kinase 1 (DAPK1), beclin1 phosphorylation and induced autophagy while PREP overexpression reduced this. Lowered activity of PP2A is connected to several neurodegenerative disorders and cancers, and PP2A activators would have enormous potential as drug therapy but development of such compounds has been a challenge. The concept of PREP inhibition has been proved safe, and therefore, our study supports the further development of PREP inhibitors as PP2A activators.
Collapse
Affiliation(s)
- Reinis Svarcbahs
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Maria Jäntti
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Tommi Kilpeläinen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Ulrika H Julku
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Lauri Urvas
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Saara Kivioja
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Susanna Norrbacka
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Timo T Myöhänen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland.
| |
Collapse
|
24
|
Brautigan DL, Shenolikar S. Protein Serine/Threonine Phosphatases: Keys to Unlocking Regulators and Substrates. Annu Rev Biochem 2019; 87:921-964. [PMID: 29925267 DOI: 10.1146/annurev-biochem-062917-012332] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein serine/threonine phosphatases (PPPs) are ancient enzymes, with distinct types conserved across eukaryotic evolution. PPPs are segregated into types primarily on the basis of the unique interactions of PPP catalytic subunits with regulatory proteins. The resulting holoenzymes dock substrates distal to the active site to enhance specificity. This review focuses on the subunit and substrate interactions for PPP that depend on short linear motifs. Insights about these motifs from structures of holoenzymes open new opportunities for computational biology approaches to elucidate PPP networks. There is an expanding knowledge base of posttranslational modifications of PPP catalytic and regulatory subunits, as well as of their substrates, including phosphorylation, acetylation, and ubiquitination. Cross talk between these posttranslational modifications creates PPP-based signaling. Knowledge of PPP complexes, signaling clusters, as well as how PPPs communicate with each other in response to cellular signals should unlock the doors to PPP networks and signaling "clouds" that orchestrate and coordinate different aspects of cell physiology.
Collapse
Affiliation(s)
- David L Brautigan
- Center for Cell Signaling and Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA;
| | - Shirish Shenolikar
- Signature Research Programs in Cardiovascular and Metabolic Disorders and Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857
| |
Collapse
|
25
|
Zhang YL, Zhang H, Gao YJ, Yan LL, Yu XY, Yang YH, Xu WY, Pu CX, Sun Y. Protein Phosphatase 2A B'α and B'β Protect Centromeric Cohesion during Meiosis I. PLANT PHYSIOLOGY 2019; 179:1556-1568. [PMID: 30705069 PMCID: PMC6446778 DOI: 10.1104/pp.18.01320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/20/2019] [Indexed: 05/06/2023]
Abstract
During meiosis, the stepwise release of sister chromatid cohesion is crucial for the equal distribution of genetic material to daughter cells, enabling generation of fertile gametophytes. However, the molecular mechanism that protects centromeric cohesion from release at meiosis I is unclear in Arabidopsis (Arabidopsis thaliana). Here, we report that the protein phosphatase 2A regulatory subunits B'α and B'β participate in the control of sister chromatid separation. The double mutant b'αβ exhibited severe male and female sterility, caused by the lack of a nucleus or presence of an abnormal nucleus in mature microspores and embryo sacs. 4',6-Diamidino-2-phenylindole staining revealed unequal amounts of DNA in the mononuclear microspores. Transverse sections of the anthers revealed unevenly sized tetrads with or without a nucleus, suggesting a defect in meiocyte meiosis. An analysis of chromosome spreads showed that the sister chromatids separated prematurely at anaphase I in b'αβ Immunoblotting showed that AtRECOMBINATION DEFECTIVE8 (AtREC8), a key member of the cohesin complex, was hyperphosphorylated in b'αβ anthers and pistils during meiosis but hypophosphorylated in the wild type. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation assays showed that B'α and B'β interact specifically with AtREC8, AtSHUGOSHIN1 (AtSGO1), AtSGO2, and PATRONUS1. Given that B'α was reported to localize to the centromere in meiotic cells, we propose that protein phosphatase 2A B'α and B'β are recruited by AtSGO1/2 and PATRONUS1 to dephosphorylate AtREC8 at the site of centromere cohesion to shield it from cleavage until anaphase II, contributing to the balanced separation of sister chromatids at meiosis.
Collapse
Affiliation(s)
- Yu-Lan Zhang
- College of Life Science, Hebei Normal University, Hebei 050024, People's Republic of China
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, People's Republic of China
| | - He Zhang
- College of Life Science, Hebei Normal University, Hebei 050024, People's Republic of China
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Ying-Jie Gao
- College of Life Science, Hebei Normal University, Hebei 050024, People's Republic of China
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Lin-Lin Yan
- College of Life Science, Hebei Normal University, Hebei 050024, People's Republic of China
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Xin-Yu Yu
- College of Life Science, Hebei Normal University, Hebei 050024, People's Republic of China
| | - Yi-Hong Yang
- College of Life Science, Hebei Normal University, Hebei 050024, People's Republic of China
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Wan-Yue Xu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Cui-Xia Pu
- College of Life Science, Hebei Normal University, Hebei 050024, People's Republic of China
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Ying Sun
- College of Life Science, Hebei Normal University, Hebei 050024, People's Republic of China
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, People's Republic of China
| |
Collapse
|
26
|
Ramos F, Villoria MT, Alonso-Rodríguez E, Clemente-Blanco A. Role of protein phosphatases PP1, PP2A, PP4 and Cdc14 in the DNA damage response. Cell Stress 2019; 3:70-85. [PMID: 31225502 PMCID: PMC6551743 DOI: 10.15698/cst2019.03.178] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Maintenance of genome integrity is fundamental for cellular physiology. Our hereditary information encoded in the DNA is intrinsically susceptible to suffer variations, mostly due to the constant presence of endogenous and environmental genotoxic stresses. Genomic insults must be repaired to avoid loss or inappropriate transmission of the genetic information, a situation that could lead to the appearance of developmental anomalies and tumorigenesis. To safeguard our genome, cells have evolved a series of mechanisms collectively known as the DNA damage response (DDR). This surveillance system regulates multiple features of the cellular response, including the detection of the lesion, a transient cell cycle arrest and the restoration of the broken DNA molecule. While the role of multiple kinases in the DDR has been well documented over the last years, the intricate roles of protein dephosphorylation have only recently begun to be addressed. In this review, we have compiled recent information about the function of protein phosphatases PP1, PP2A, PP4 and Cdc14 in the DDR, focusing mainly on their capacity to regulate the DNA damage checkpoint and the repair mechanism encompassed in the restoration of a DNA lesion.
Collapse
Affiliation(s)
- Facundo Ramos
- Cell Cycle and Genome Stability Group. Institute of Functional Biology and Genomics (IBFG). Spanish National Research Council (CSIC), University of Salamanca (USAL), C/Zacarías González 2, Salamanca 37007, SPAIN
| | - María Teresa Villoria
- Cell Cycle and Genome Stability Group. Institute of Functional Biology and Genomics (IBFG). Spanish National Research Council (CSIC), University of Salamanca (USAL), C/Zacarías González 2, Salamanca 37007, SPAIN
| | - Esmeralda Alonso-Rodríguez
- Cell Cycle and Genome Stability Group. Institute of Functional Biology and Genomics (IBFG). Spanish National Research Council (CSIC), University of Salamanca (USAL), C/Zacarías González 2, Salamanca 37007, SPAIN
| | - Andrés Clemente-Blanco
- Cell Cycle and Genome Stability Group. Institute of Functional Biology and Genomics (IBFG). Spanish National Research Council (CSIC), University of Salamanca (USAL), C/Zacarías González 2, Salamanca 37007, SPAIN
| |
Collapse
|
27
|
Moura M, Conde C. Phosphatases in Mitosis: Roles and Regulation. Biomolecules 2019; 9:E55. [PMID: 30736436 PMCID: PMC6406801 DOI: 10.3390/biom9020055] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Mitosis requires extensive rearrangement of cellular architecture and of subcellular structures so that replicated chromosomes can bind correctly to spindle microtubules and segregate towards opposite poles. This process originates two new daughter nuclei with equal genetic content and relies on highly-dynamic and tightly regulated phosphorylation of numerous cell cycle proteins. A burst in protein phosphorylation orchestrated by several conserved kinases occurs as cells go into and progress through mitosis. The opposing dephosphorylation events are catalyzed by a small set of protein phosphatases, whose importance for the accuracy of mitosis is becoming increasingly appreciated. This review will focus on the established and emerging roles of mitotic phosphatases, describe their structural and biochemical properties, and discuss recent advances in understanding the regulation of phosphatase activity and function.
Collapse
Affiliation(s)
- Margarida Moura
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal.
| | - Carlos Conde
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
28
|
Balligand JL. Phosphatase regulatory subunits in beta-adrenergic signalling: a delicate balancing act. Cardiovasc Res 2018; 115:477-478. [DOI: 10.1093/cvr/cvy275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
29
|
Distinguishing the progression of an endometrioma: Benign or malignant? Eur J Obstet Gynecol Reprod Biol 2018; 230:79-84. [DOI: 10.1016/j.ejogrb.2018.09.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/26/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
|
30
|
Leslie SN, Nairn AC. cAMP regulation of protein phosphatases PP1 and PP2A in brain. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:64-73. [PMID: 30401536 DOI: 10.1016/j.bbamcr.2018.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022]
Abstract
Normal functioning of the brain is dependent upon a complex web of communication between numerous cell types. Within neuronal networks, the faithful transmission of information between neurons relies on an equally complex organization of inter- and intra-cellular signaling systems that act to modulate protein activity. In particular, post-translational modifications (PTMs) are responsible for regulating protein activity in response to neurochemical signaling. The key second messenger, cyclic adenosine 3',5'-monophosphate (cAMP), regulates one of the most ubiquitous and influential PTMs, phosphorylation. While cAMP is canonically viewed as regulating the addition of phosphate groups through its activation of cAMP-dependent protein kinases, it plays an equally critical role in regulating removal of phosphate through indirect control of protein phosphatase activity. This dichotomy of regulation by cAMP places it as one of the key regulators of protein activity in response to neuronal signal transduction throughout the brain. In this review we focus on the role of cAMP in regulation of the serine/threonine phosphatases protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) and the relevance of control of PP1 and PP2A to regulation of brain function and behavior.
Collapse
Affiliation(s)
- Shannon N Leslie
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States of America
| | - Angus C Nairn
- Department of Psychiatry, Yale University, New Haven, CT, United States of America
| |
Collapse
|
31
|
Homeostatic Control of Hpo/MST Kinase Activity through Autophosphorylation-Dependent Recruitment of the STRIPAK PP2A Phosphatase Complex. Cell Rep 2018; 21:3612-3623. [PMID: 29262338 DOI: 10.1016/j.celrep.2017.11.076] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/25/2017] [Accepted: 11/21/2017] [Indexed: 12/22/2022] Open
Abstract
The Hippo pathway controls organ size and tissue homeostasis through a kinase cascade leading from the Ste20-like kinase Hpo (MST1/2 in mammals) to the transcriptional coactivator Yki (YAP/TAZ in mammals). Whereas previous studies have uncovered positive and negative regulators of Hpo/MST, how they are integrated to maintain signaling homeostasis remains poorly understood. Here, we identify a self-restricting mechanism whereby autophosphorylation of an unstructured linker in Hpo/MST creates docking sites for the STRIPAK PP2A phosphatase complex to inactivate Hpo/MST. Mutation of the phospho-dependent docking sites in Hpo/MST or deletion of Slmap, the STRIPAK subunit recognizing these docking sites, results in constitutive activation of Hpo/MST in both Drosophila and mammalian cells. In contrast, autophosphorylation of the Hpo/MST linker at distinct sites is known to recruit Mats/MOB1 to facilitate Hippo signaling. Thus, multisite autophosphorylation of Hpo/MST linker provides an evolutionarily conserved built-in molecular platform to maintain signaling homeostasis by coupling antagonistic signaling activities.
Collapse
|
32
|
Schott K, Fuchs NV, Derua R, Mahboubi B, Schnellbächer E, Seifried J, Tondera C, Schmitz H, Shepard C, Brandariz-Nuñez A, Diaz-Griffero F, Reuter A, Kim B, Janssens V, König R. Dephosphorylation of the HIV-1 restriction factor SAMHD1 is mediated by PP2A-B55α holoenzymes during mitotic exit. Nat Commun 2018; 9:2227. [PMID: 29884836 PMCID: PMC5993806 DOI: 10.1038/s41467-018-04671-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/15/2018] [Indexed: 12/20/2022] Open
Abstract
SAMHD1 is a critical restriction factor for HIV-1 in non-cycling cells and its antiviral activity is regulated by T592 phosphorylation. Here, we show that SAMHD1 dephosphorylation at T592 is controlled during the cell cycle, occurring during M/G1 transition in proliferating cells. Using several complementary proteomics and biochemical approaches, we identify the phosphatase PP2A-B55α responsible for rendering SAMHD1 antivirally active. SAMHD1 is specifically targeted by PP2A-B55α holoenzymes during mitotic exit, in line with observations that PP2A-B55α is a key mitotic exit phosphatase in mammalian cells. Strikingly, as HeLa or activated primary CD4+ T cells enter the G1 phase, pronounced reduction of RT products is observed upon HIV-1 infection dependent on the presence of dephosphorylated SAMHD1. Moreover, PP2A controls SAMHD1 pT592 level in non-cycling monocyte-derived macrophages (MDMs). Thus, the PP2A-B55α holoenzyme is a key regulator to switch on the antiviral activity of SAMHD1.
Collapse
Affiliation(s)
- Kerstin Schott
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Nina V Fuchs
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Rita Derua
- Department of Cellular and Molecular Medicine, Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, 3000, Leuven, Belgium.,Facility for Systems Biology based Mass Spectrometry (SYBIOMA), KU Leuven, 3000, Leuven, Belgium
| | - Bijan Mahboubi
- Center for Drug Discovery, Department of Pediatrics, Emory University, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | | | - Janna Seifried
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Christiane Tondera
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Heike Schmitz
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Caitlin Shepard
- Center for Drug Discovery, Department of Pediatrics, Emory University, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Alberto Brandariz-Nuñez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andreas Reuter
- Division of Allergology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Baek Kim
- Center for Drug Discovery, Department of Pediatrics, Emory University, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA.,Department of Pharmacy, Kyung-Hee University, 2447, Seoul, South Korea
| | - Veerle Janssens
- Department of Cellular and Molecular Medicine, Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, 3000, Leuven, Belgium
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, 63225, Langen, Germany. .,Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA. .,German Center for Infection Research (DZIF), 63225, Langen, Germany.
| |
Collapse
|
33
|
Tian H, Lu Y, Liu J, Liu W, Lu L, Duan C, Gao G, Yang H. Leucine Carboxyl Methyltransferase Downregulation and Protein Phosphatase Methylesterase Upregulation Contribute Toward the Inhibition of Protein Phosphatase 2A by α-Synuclein. Front Aging Neurosci 2018; 10:173. [PMID: 29950985 PMCID: PMC6008559 DOI: 10.3389/fnagi.2018.00173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/22/2018] [Indexed: 11/13/2022] Open
Abstract
The pathology of Parkinson's disease (PD) is characterized by intracellular neurofibrillary tangles of phosphorylated α-synuclein (α-syn). Protein phosphatase 2A (PP2A) is responsible for α-syn dephosphorylation. Previous work has demonstrated that α-syn can regulate PP2A activity. However, the mechanisms underlying α-syn regulation of PP2A activity are not well understood. In this study, we found that α-syn overexpression induced increased α-syn phosphorylation at serine 129 (Ser129), and PP2A inhibition, in vitro and in vivo. α-syn overexpression resulted in PP2A demethylation. This demethylation was mediated via downregulated leucine carboxyl methyltransferase (LCMT-1) expression, and upregulated protein phosphatase methylesterase (PME-1) expression. Furthermore, LCMT-1 overexpression, or PME-1 inhibition, reversed α-syn-induced increases in α-syn phosphorylation and apoptosis. In addition to post-translational modifications of the catalytic subunit, regulatory subunits are involved in the regulation of PP2A activity. We found that the levels of regulatory subunits which belong to the PPP2R2 subfamily, not the PPP2R5 subfamily, were downregulated in the examined brain regions of transgenic mice. Our work identifies a novel mechanism to explain how α-syn regulates PP2A activity, and provides the optimization of PP2A methylation as a new target for PD treatment.
Collapse
Affiliation(s)
- Hao Tian
- Department of Neurobiology Capital Medical University, Center of Parkinson's Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing, China
| | - Yongquan Lu
- Department of Neurobiology Capital Medical University, Center of Parkinson's Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing, China
| | - Jia Liu
- Department of Neurobiology Capital Medical University, Center of Parkinson's Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing, China
| | - Weijin Liu
- Department of Neurobiology Capital Medical University, Center of Parkinson's Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing, China
| | - Lingling Lu
- Department of Neurobiology Capital Medical University, Center of Parkinson's Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing, China
| | - Chunli Duan
- Department of Neurobiology Capital Medical University, Center of Parkinson's Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing, China
| | - Ge Gao
- Department of Neurobiology Capital Medical University, Center of Parkinson's Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing, China
| | - Hui Yang
- Department of Neurobiology Capital Medical University, Center of Parkinson's Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing, China
| |
Collapse
|
34
|
Ranieri A, Kemp E, Burgoyne JR, Avkiran M. β-Adrenergic regulation of cardiac type 2A protein phosphatase through phosphorylation of regulatory subunit B56δ at S573. J Mol Cell Cardiol 2017; 115:20-31. [PMID: 29294329 PMCID: PMC5823843 DOI: 10.1016/j.yjmcc.2017.12.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/19/2017] [Accepted: 12/29/2017] [Indexed: 11/18/2022]
Abstract
Background Type 2A protein phosphatase (PP2A) enzymes are serine/threonine phosphatases which comprise a scaffold A subunit, a regulatory B subunit and a catalytic C subunit, and have been implicated in the dephosphorylation of multiple cardiac phosphoproteins. B subunits determine subcellular targeting, substrate specificity and catalytic activity, and can themselves be regulated by post-translational modifications. We explored potential β-adrenergic regulation of PP2A in cardiomyocytes through phosphorylation of the regulatory B subunit isoform B56δ. Methods and results Phosphate affinity SDS-PAGE and immunoblot analysis revealed increased phosphorylation of B56δ in adult rat ventricular myocytes (ARVM) exposed to the β-adrenergic receptor (βAR) agonist isoprenaline (ISO). Phosphorylation of B56δ occurred at S573, primarily through stimulation of the β1AR subtype, and was dependent on PKA activity. The functional role of the phosphorylation was explored in ARVM transduced with adenoviruses expressing wild type (WT) or non-phosphorylatable (S573A) B56δ, fused to GFP at the N-terminus. C subunit expression was increased in ARVM expressing GFP-B56δ-WT or GFP-B56δ-S573A, both of which co-immunoprecipitated with endogenous C and A subunits. PP2A activity in cell lysates was increased in response to ISO in ARVM expressing GFP-B56δ-WT but not GFP-B56δ-S573A. Immunoblot analysis of the phosphoproteome in ARVM expressing GFP-B56δ-WT or GFP-B56δ-S573A with antibodies detecting (i) phospho-serine/threonine residues in distinct kinase substrate motifs or (ii) specific phosphorylated residues of functional importance in selected proteins revealed a comparable phosphorylation profile in the absence or presence of ISO stimulation. Conclusions In cardiomyocytes, βAR stimulation induces PKA-mediated phosphorylation of the PP2A regulatory subunit isoform B56δ at S573, which increases associated PP2A catalytic activity. This is likely to regulate the phosphorylation status of specific B56δ-PP2A substrates, which remain to be identified. PP2A subunit B56δ is phosphorylated on β-adrenergic stimulation of cardiomyocytes. Phosphorylation occurs at Ser573 and increases B56δ-PP2A catalytic activity. Response is mediated by the β1-adrenoceptor subtype and protein kinase A. Phosphorylated B56δ abundance is increased in pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Antonella Ranieri
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, The Rayne Institute, St Thomas' Hospital, London, United Kingdom
| | - Elizabeth Kemp
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, The Rayne Institute, St Thomas' Hospital, London, United Kingdom
| | - Joseph R Burgoyne
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, The Rayne Institute, St Thomas' Hospital, London, United Kingdom
| | - Metin Avkiran
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, The Rayne Institute, St Thomas' Hospital, London, United Kingdom.
| |
Collapse
|
35
|
Therapeutic targeting of PP2A. Int J Biochem Cell Biol 2017; 96:182-193. [PMID: 29107183 DOI: 10.1016/j.biocel.2017.10.008] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022]
Abstract
Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase that regulates many cellular processes. Given the central role of PP2A in regulating diverse biological functions and its dysregulation in many diseases, including cancer, PP2A directed therapeutics have become of great interest. The main approaches leveraged thus far can be categorized as follows: 1) inhibiting endogenous inhibitors of PP2A, 2) targeted disruption of post translational modifications on PP2A subunits, or 3) direct targeting of PP2A. Additional insight into the structural, molecular, and biological framework driving the efficacy of these therapeutic strategies will provide a foundation for the refinement and development of novel and clinically tractable PP2A targeted therapies.
Collapse
|
36
|
Rogers S, McCloy R, Watkins DN, Burgess A. Mechanisms regulating phosphatase specificity and the removal of individual phosphorylation sites during mitotic exit. Bioessays 2017; 38 Suppl 1:S24-32. [PMID: 27417119 DOI: 10.1002/bies.201670905] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 12/22/2022]
Abstract
Entry into mitosis is driven by the activity of kinases, which phosphorylate over 7000 proteins on multiple sites. For cells to exit mitosis and segregate their genome correctly, these phosphorylations must be removed in a specific temporal order. This raises a critical and important question: how are specific phosphorylation sites on an individual protein removed? Traditionally, the temporal order of dephosphorylation was attributed to decreasing kinase activity. However, recent evidence in human cells has identified unique patterns of dephosphorylation during mammalian mitotic exit that cannot be fully explained by the loss of kinase activity. This suggests that specificity is determined in part by phosphatases. In this review, we explore how the physicochemical properties of an individual phosphosite and its surrounding amino acids can affect interactions with a phosphatase. These positive and negative interactions in turn help determine the specific pattern of dephosphorylation required for correct mitotic exit.
Collapse
Affiliation(s)
- Samuel Rogers
- The Kinghorn Cancer Center, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Rachael McCloy
- The Kinghorn Cancer Center, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - D Neil Watkins
- The Kinghorn Cancer Center, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW, Australia.,Department of Thoracic Medicine, St Vincent's Hospital, Darlinghurst, NSW, 2010, Australia
| | - Andrew Burgess
- The Kinghorn Cancer Center, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW, Australia
| |
Collapse
|
37
|
Tsai NP, Wilkerson JR, Guo W, Huber KM. FMRP-dependent Mdm2 dephosphorylation is required for MEF2-induced synapse elimination. Hum Mol Genet 2017; 26:293-304. [PMID: 28025327 DOI: 10.1093/hmg/ddw386] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/03/2016] [Indexed: 11/12/2022] Open
Abstract
The Myocyte Enhancer Factor 2 (MEF2) transcription factors suppress an excitatory synapse number by promoting degradation of the synaptic scaffold protein, postsynaptic density protein 95 (PSD-95), a process that is deficient in the mouse model of Fragile X Syndrome, Fmr1 KO. How MEF2 activation results in PSD-95 degradation and why this is defective in Fmr1 KO neurons is unknown. Here we report that MEF2 induces a Protein phosphatase 2A (PP2A)-mediated dephosphorylation of murine double minute-2 (Mdm2), the ubiquitin E3 ligase for PSD-95, which results in nuclear export and synaptic accumulation of Mdm2 as well as PSD-95 degradation and synapse elimination. In Fmr1 KO neurons, Mdm2 is hyperphosphorylated, nuclear localized basally, and unaffected by MEF2 activation, which our data suggest due to an enhanced interaction with Eukaryotic Elongation Factor 1α (EF1α), whose protein levels are elevated in Fmr1 KO. Expression of a dephosphomimetic of Mdm2 rescues PSD-95 ubiquitination, degradation and synapse elimination in Fmr1 KO neurons. This work reveals detailed mechanisms of synapse elimination in health and a developmental brain disorder.
Collapse
Affiliation(s)
- Nien-Pei Tsai
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Julia R Wilkerson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weirui Guo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kimberly M Huber
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
38
|
Booker MA, DeLong A. Atypical Protein Phosphatase 2A Gene Families Do Not Expand via Paleopolyploidization. PLANT PHYSIOLOGY 2017; 173:1283-1300. [PMID: 28034953 PMCID: PMC5291013 DOI: 10.1104/pp.16.01768] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 12/23/2016] [Indexed: 05/22/2023]
Abstract
Protein phosphatase 2A (PP2A) presents unique opportunities for analyzing molecular mechanisms of functional divergence between gene family members. The canonical PP2A holoenzyme regulates multiple eukaryotic signaling pathways by dephosphorylating target proteins and contains a catalytic (C) subunit, a structural/scaffolding (A) subunit, and a regulatory (B) subunit. Genes encoding PP2A subunits have expanded into multigene families in both flowering plants and mammals, and the extent to which different isoform functions may overlap is not clearly understood. To gain insight into the diversification of PP2A subunits, we used phylogenetic analyses to reconstruct the evolutionary histories of PP2A gene families in Arabidopsis (Arabidopsis thaliana). Genes encoding PP2A subunits in mammals represent ancient lineages that expanded early in vertebrate evolution, while flowering plant PP2A subunit lineages evolved much more recently. Despite this temporal difference, our data indicate that the expansion of PP2A subunit gene families in both flowering plants and animals was driven by whole-genome duplications followed by nonrandom gene loss. Selection analysis suggests that the expansion of one B subunit gene family (B56/PPP2R5) was driven by functional diversification rather than by the maintenance of gene dosage. We also observed reduced expansion rates in three distinct B subunit subclades. One of these subclades plays a highly conserved role in cell division, while the distribution of a second subclade suggests a specialized function in supporting beneficial microbial associations. Thus, while whole-genome duplications have driven the expansion and diversification of most PP2A gene families, members of functionally specialized subclades quickly revert to singleton status after duplication events.
Collapse
Affiliation(s)
- Matthew A Booker
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Alison DeLong
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
39
|
Theurey P, Rieusset J. Mitochondria-Associated Membranes Response to Nutrient Availability and Role in Metabolic Diseases. Trends Endocrinol Metab 2017; 28:32-45. [PMID: 27670636 DOI: 10.1016/j.tem.2016.09.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 12/13/2022]
Abstract
Metabolic diseases are associated with nutrient excess and metabolic inflexibility. Mitochondria and endoplasmic reticulum are important organelles and nutrient sensors, and their dysfunction has been extensively and independently implicated in metabolic diseases. Both organelles interact at sites known as mitochondria-associated membranes (MAMs), in order to exchange metabolites and calcium. Recent evidence indicates that MAM could be a hub of hepatic insulin signaling and nutrient sensing. In this review, we discuss the roles organelle function and communication play in the cell's adaptation to nutrient availability, in both physiology and metabolic diseases. We highlight how dynamic regulation of MAM affects mitochondria physiology and adaptation of cellular metabolism to nutrient availability, and how chronic MAM disruption participates in the metabolic inflexibility associated with metabolic disorders.
Collapse
Affiliation(s)
- Pierre Theurey
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Jennifer Rieusset
- INSERM UMR-1060, CarMeN Laboratory, Lyon 1 University, INRA U1397, F-69921 Oullins, France.
| |
Collapse
|
40
|
Regulation of protein phosphatase 2A (PP2A) tumor suppressor function by PME-1. Biochem Soc Trans 2016; 44:1683-1693. [DOI: 10.1042/bst20160161] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/06/2016] [Accepted: 09/09/2016] [Indexed: 02/06/2023]
Abstract
Protein phosphatase 2A (PP2A) plays a major role in maintaining cellular signaling homeostasis by dephosphorylation of a variety of signaling proteins and acts as a tumor suppressor. Protein phosphatase methylesterase-1 (PME-1) negatively regulates PP2A activity by highly complex mechanisms that are reviewed here. Importantly, recent studies have shown that PME-1 promotes oncogenic MAPK/ERK and AKT pathway activities in various cancer types. In human glioma, high PME-1 expression correlates with tumor progression and kinase inhibitor resistance. We discuss the emerging cancer-associated function of PME-1 and its potential clinical relevance.
Collapse
|
41
|
|
42
|
Long-term depression-associated signaling is required for an in vitro model of NMDA receptor-dependent synapse pruning. Neurobiol Learn Mem 2016; 138:39-53. [PMID: 27794462 DOI: 10.1016/j.nlm.2016.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/20/2016] [Accepted: 10/25/2016] [Indexed: 02/06/2023]
Abstract
Activity-dependent pruning of synaptic contacts plays a critical role in shaping neuronal circuitry in response to the environment during postnatal brain development. Although there is compelling evidence that shrinkage of dendritic spines coincides with synaptic long-term depression (LTD), and that LTD is accompanied by synapse loss, whether NMDA receptor (NMDAR)-dependent LTD is a required step in the progression toward synapse pruning is still unknown. Using repeated applications of NMDA to induce LTD in dissociated rat neuronal cultures, we found that synapse density, as measured by colocalization of fluorescent markers for pre- and postsynaptic structures, was decreased irrespective of the presynaptic marker used, post-treatment recovery time, and the dendritic location of synapses. Consistent with previous studies, we found that synapse loss could occur without apparent net spine loss or cell death. Furthermore, synapse loss was unlikely to require direct contact with microglia, as the number of these cells was minimal in our culture preparations. Supporting a model by which NMDAR-LTD is required for synapse loss, the effect of NMDA on fluorescence colocalization was prevented by phosphatase and caspase inhibitors. In addition, gene transcription and protein translation also appeared to be required for loss of putative synapses. These data support the idea that NMDAR-dependent LTD is a required step in synapse pruning and contribute to our understanding of the basic mechanisms of this developmental process.
Collapse
|
43
|
Grech G, Baldacchino S, Saliba C, Grixti MP, Gauci R, Petroni V, Fenech AG, Scerri C. Deregulation of the protein phosphatase 2A, PP2A in cancer: complexity and therapeutic options. Tumour Biol 2016; 37:11691-11700. [PMID: 27444275 DOI: 10.1007/s13277-016-5145-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/11/2016] [Indexed: 01/26/2023] Open
Abstract
The complexity of the phosphatase, PP2A, is being unravelled and current research is increasingly providing information on the association of deregulated PP2A function with cancer initiation and progression. It has been reported that decreased activity of PP2A is a recurrent observation in many types of cancer, including colorectal and breast cancer (Baldacchino et al. EPMA J. 5:3, 2014; Cristobal et al. Mol Cancer Ther. 13:938-947, 2014). Since deregulation of PP2A and its regulatory subunits is a common event in cancer, PP2A is a potential target for therapy (Baldacchino et al. EPMA J. 5:3, 2014). In this review, the structural components of the PP2A complex are described, giving an in depth overview of the diversity of regulatory subunits. Regulation of the active PP2A trimeric complex, through phosphorylation and methylation, can be targeted using known compounds, to reactivate the complex. The endogenous inhibitors of the PP2A complex are highly deregulated in cancer, representing cases that are eligible to PP2A-activating drugs. Pharmacological opportunities to target low PP2A activity are available and preclinical data support the efficacy of these drugs, but clinical trials are lacking. We highlight the importance of PP2A deregulation in cancer and the current trends in targeting the phosphatase.
Collapse
Affiliation(s)
- Godfrey Grech
- Department of Pathology, Faculty of Medicine & Surgery, Medical School, University of Malta, Msida, MSD2090, Malta.
| | - Shawn Baldacchino
- Department of Pathology, Faculty of Medicine & Surgery, Medical School, University of Malta, Msida, MSD2090, Malta
| | - Christian Saliba
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Maria Pia Grixti
- Department of Pathology, Faculty of Medicine & Surgery, Medical School, University of Malta, Msida, MSD2090, Malta
| | - Robert Gauci
- Department of Pathology, Faculty of Medicine & Surgery, Medical School, University of Malta, Msida, MSD2090, Malta
| | - Vanessa Petroni
- Department of Anatomy, Faculty of Medicine & Surgery, University of Malta, Msida, Malta
| | - Anthony G Fenech
- Department of Clinical Pharmacology & Therapeutics, Faculty of Medicine & Surgery, University of Malta, Msida, Malta
| | - Christian Scerri
- Department of Physiology and Biochemistry, Faculty of Medicine & Surgery, University of Malta, Msida, Malta.,Molecular Genetics Clinic, Mater Dei Hospital, Msida, Malta
| |
Collapse
|
44
|
Mohl BP, Roy P. Cellular Casein Kinase 2 and Protein Phosphatase 2A Modulate Replication Site Assembly of Bluetongue Virus. J Biol Chem 2016; 291:14566-74. [PMID: 27226558 PMCID: PMC4938178 DOI: 10.1074/jbc.m116.714766] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Indexed: 12/13/2022] Open
Abstract
A number of cytoplasmic replicating viruses produce cytoplasmic inclusion bodies or protein aggregates; however, a hallmark of viruses of the Reoviridae family is that they utilize these sites for purposes of replication and capsid assembly, functioning as viral assembly factories. Here we have used bluetongue virus (BTV) as a model system for this broad family of important viruses to understand the mechanisms regulating inclusion body assembly. Newly synthesized viral proteins interact with sequestered viral RNA molecules prior to capsid assembly and double-stranded RNA synthesis within viral inclusion bodies (VIBs). VIBs are predominantly comprised of a BTV-encoded non-structural protein 2 (NS2). Previous in vitro studies indicated that casein kinase 2 (CK2) mediated the phosphorylation of NS2, which regulated the propensity of NS2 to form larger aggregates. Using targeted pharmacological reagents, specific mutation in the viral genome by reverse genetics and confocal microscopy, here we demonstrate that CK2 activity is important for BTV replication. Furthermore, we show that a novel host cell factor, protein phosphatase 2A, is involved in NS2 dephosphorylation and that, together with CK2, it regulates VIB morphology and virus replication. Thus, these two host enzymes influence the dynamic nature of VIB assembly/disassembly, and these concerted activities may be relevant to the assembly and the release of these cores from VIBs.
Collapse
Affiliation(s)
- Bjorn-Patrick Mohl
- From the Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Polly Roy
- From the Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| |
Collapse
|
45
|
Janssens V, Zwaenepoel K, Rossé C, Petit MMR, Goris J, Parker PJ. PP2A binds to the LIM domains of lipoma-preferred partner through its PR130/B″ subunit to regulate cell adhesion and migration. J Cell Sci 2016; 129:1605-18. [PMID: 26945059 PMCID: PMC5333791 DOI: 10.1242/jcs.175778] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 02/18/2016] [Indexed: 01/23/2023] Open
Abstract
Here, we identify the LIM protein lipoma-preferred partner (LPP) as a binding partner of a specific protein phosphatase 2A (PP2A) heterotrimer that is characterised by the regulatory PR130/B″α1 subunit (encoded by PPP2R3A). The PR130 subunit interacts with the LIM domains of LPP through a conserved Zn²⁺-finger-like motif in the differentially spliced N-terminus of PR130. Isolated LPP-associated PP2A complexes are catalytically active. PR130 colocalises with LPP at multiple locations within cells, including focal contacts, but is specifically excluded from mature focal adhesions, where LPP is still present. An LPP-PR130 fusion protein only localises to focal adhesions upon deletion of the domain of PR130 that binds to the PP2A catalytic subunit (PP2A/C), suggesting that PR130-LPP complex formation is dynamic and that permanent recruitment of PP2A activity might be unfavourable for focal adhesion maturation. Accordingly, siRNA-mediated knockdown of PR130 increases adhesion of HT1080 fibrosarcoma cells onto collagen I and decreases their migration in scratch wound and Transwell assays. Complex formation with LPP is mandatory for these PR130-PP2A functions, as neither phenotype can be rescued by re-expression of a PR130 mutant that no longer binds to LPP. Our data highlight the importance of specific, locally recruited PP2A complexes in cell adhesion and migration dynamics.
Collapse
Affiliation(s)
- Veerle Janssens
- Francis Crick Institute, Protein Phosphorylation Laboratory, 44 Lincoln's Inn Fields, London WC2A 3PX, UK Laboratory of Protein Phosphorylation and Proteomics, Dept. of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 PO-box 901, Leuven B-3000, Belgium
| | - Karen Zwaenepoel
- Laboratory of Protein Phosphorylation and Proteomics, Dept. of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 PO-box 901, Leuven B-3000, Belgium
| | - Carine Rossé
- Francis Crick Institute, Protein Phosphorylation Laboratory, 44 Lincoln's Inn Fields, London WC2A 3PX, UK Research Centre, Institut Curie, Paris 75005, France
| | - Marleen M R Petit
- Molecular Oncology Laboratory, Dept. of Human Genetics, KU Leuven, Herestraat 49 PO-box 602, Leuven B-3000, Belgium
| | - Jozef Goris
- Laboratory of Protein Phosphorylation and Proteomics, Dept. of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 PO-box 901, Leuven B-3000, Belgium
| | - Peter J Parker
- Francis Crick Institute, Protein Phosphorylation Laboratory, 44 Lincoln's Inn Fields, London WC2A 3PX, UK Division of Cancer Studies King's College London, Guy's Hospital Campus, Thomas Street, London SE1 9RT, UK
| |
Collapse
|
46
|
Er TK, Su YF, Wu CC, Chen CC, Wang J, Hsieh TH, Herreros-Villanueva M, Chen WT, Chen YT, Liu TC, Chen HS, Tsai EM. Targeted next-generation sequencing for molecular diagnosis of endometriosis-associated ovarian cancer. J Mol Med (Berl) 2016; 94:835-47. [PMID: 26920370 DOI: 10.1007/s00109-016-1395-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 12/22/2022]
Abstract
UNLABELLED Recent molecular and pathological studies suggest that endometriosis may serve as a precursor of ovarian cancer (endometriosis-associated ovarian cancer, EAOC), especially of the endometrioid and clear cell subtypes. Accordingly, this study had two cardinal aims: first, to obtain mutation profiles of EAOC from Taiwanese patients; and second, to determine whether somatic mutations present in EAOC can be detected in preneoplastic lesions. Formalin-fixed paraffin-embedded (FFPE) tissues were obtained from ten endometriosis patients with malignant transformation. Macrodissection was performed to separate four different types of cells from FFPE sections in six patients. The four types of samples included normal endometrium, ectopic endometriotic lesion, atypical endometriosis, and carcinoma. Ultra-deep (>1000×) targeted sequencing was performed on 409 cancer-related genes to identify pathogenic mutations associated with EAOC. The most frequently mutated genes were PIK3CA (6/10) and ARID1A (5/10). Other recurrently mutated genes included ETS1, MLH1, PRKDC (3/10 each), and AMER1, ARID2, BCL11A, CREBBP, ERBB2, EXT1, FANCD2, MSH6, NF1, NOTCH1, NUMA1, PDE4DIP, PPP2R1A, RNF213, and SYNE1 (2/10 each). Importantly, in five of the six patients, identical somatic mutations were detected in atypical endometriosis and tumor lesions. In two patients, genetic alterations were also detected in ectopic endometriotic lesions, indicating the presence of genetic alterations in preneoplastic lesion. Genetic analysis in preneoplastic lesions may help to identify high-risk patients at early stage of malignant transformation and also shed new light on fundamental aspects of the molecular pathogenesis of EAOC. KEY MESSAGES Molecular characterization of endometriosis-associated ovarian cancer genes by targeted NGS. Candidate genes predictive of malignant transformation were identified. Chromatin remodeling, PI3K-AKT-mTOR, Notch signaling, and Wnt/β-catenin pathway may promote cell malignant transformation.
Collapse
Affiliation(s)
- Tze-Kiong Er
- Department of Health and Nutrition Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan.,Division of Molecular Diagnostics, Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Fa Su
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Chieh Wu
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chih-Chieh Chen
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Jing Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Tsung-Hua Hsieh
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Marta Herreros-Villanueva
- Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universidad del País Vasco UPV/EHU, San Sebastián, Spain
| | - Wan-Tzu Chen
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yi-Ting Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ta-Chih Liu
- Division of Molecular Diagnostics, Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hung-Sheng Chen
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Eing-Mei Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan. .,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
47
|
Sullivan JM, Havrda MC, Kettenbach AN, Paolella BR, Zhang Z, Gerber SA, Israel MA. Phosphorylation Regulates Id2 Degradation and Mediates the Proliferation of Neural Precursor Cells. Stem Cells 2016; 34:1321-31. [PMID: 26756672 DOI: 10.1002/stem.2291] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/23/2015] [Accepted: 12/07/2015] [Indexed: 01/07/2023]
Abstract
Inhibitor of DNA binding proteins (Id1-Id4) function to inhibit differentiation and promote proliferation of many different cell types. Among the Id family members, Id2 has been most extensively studied in the central nervous system (CNS). Id2 contributes to cultured neural precursor cell (NPC) proliferation as well as to the proliferation of CNS tumors such as glioblastoma that are likely to arise from NPC-like cells. We identified three phosphorylation sites near the N-terminus of Id2 in NPCs. To interrogate the importance of Id2 phosphorylation, Id2(-/-) NPCs were modified to express wild type (WT) Id2 or an Id2 mutant protein that could not be phosphorylated at the identified sites. We observed that NPCs expressing this mutant lacking phosphorylation near the N-terminus had higher steady-state levels of Id2 when compared to NPCs expressing WT Id2. This elevated level was the result of a longer half-life and reduced proteasome-mediated degradation. Moreover, NPCs expressing constitutively de-phosphorylated Id2 proliferated more rapidly than NPCs expressing WT Id2, a finding consistent with the well-characterized function of Id2 in driving proliferation. Observing that phosphorylation of Id2 modulates the degradation of this important cell-cycle regulator, we sought to identify a phosphatase that would stabilize Id2 enhancing its activity in NPCs and extended our analysis to include human glioblastoma-derived stem cells (GSCs). We found that expression of the phosphatase PP2A altered Id2 levels. Our findings suggest that inhibition of PP2A may be a novel strategy to regulate the proliferation of normal NPCs and malignant GSCs by decreasing Id2 levels. Stem Cells 2016;34:1321-1331.
Collapse
Affiliation(s)
- Jaclyn M Sullivan
- Pharmacology and Toxicology, Norris Cotton Cancer Center, One Medical Center Drive, Lebanon, NH, 03756.,Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Matthew C Havrda
- Pharmacology and Toxicology, Norris Cotton Cancer Center, One Medical Center Drive, Lebanon, NH, 03756.,Department of Pediatrics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Arminja N Kettenbach
- Pharmacology and Toxicology, Norris Cotton Cancer Center, One Medical Center Drive, Lebanon, NH, 03756.,Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Brenton R Paolella
- Pharmacology and Toxicology, Norris Cotton Cancer Center, One Medical Center Drive, Lebanon, NH, 03756.,Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Zhonghua Zhang
- Pharmacology and Toxicology, Norris Cotton Cancer Center, One Medical Center Drive, Lebanon, NH, 03756.,Department of Pediatrics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Scott A Gerber
- Pharmacology and Toxicology, Norris Cotton Cancer Center, One Medical Center Drive, Lebanon, NH, 03756.,Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.,Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Mark A Israel
- Pharmacology and Toxicology, Norris Cotton Cancer Center, One Medical Center Drive, Lebanon, NH, 03756.,Department of Pediatrics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.,Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
48
|
Huang Y, Wu Z, Zhou B. Behind the curtain of tauopathy: a show of multiple players orchestrating tau toxicity. Cell Mol Life Sci 2016; 73:1-21. [PMID: 26403791 PMCID: PMC11108533 DOI: 10.1007/s00018-015-2042-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/22/2015] [Accepted: 09/08/2015] [Indexed: 12/24/2022]
Abstract
tau, a microtubule-associated protein, directly binds with microtubules to dynamically regulate the organization of cellular cytoskeletons, and is especially abundant in neurons of the central nervous system. Under disease conditions such as Pick's disease, progressive supranuclear palsy, frontotemporal dementia, parkinsonism linked to chromosome 17 and Alzheimer's disease, tau proteins can self-assemble to paired helical filaments progressing to neurofibrillary tangles. In these diseases, collectively referred to as "tauopathies", alterations of diverse tau modifications including phosphorylation, metal ion binding, glycosylation, as well as structural changes of tau proteins have all been observed, indicating the complexity and variability of factors in the regulation of tau toxicity. Here, we review our current knowledge and hypotheses from relevant studies on tau toxicity, emphasizing the roles of phosphorylations, metal ions, folding and clearance control underlining tau etiology and their regulations. A summary of clinical efforts and associated findings of drug candidates under development is also presented. It is hoped that a more comprehensive understanding of tau regulation will provide us with a better blueprint of tau networking in neuronal cells and offer hints for the design of more efficient strategies to tackle tau-related diseases in the future.
Collapse
Affiliation(s)
- Yunpeng Huang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhihao Wu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
49
|
Yabe R, Miura A, Usui T, Mudrak I, Ogris E, Ohama T, Sato K. Protein Phosphatase Methyl-Esterase PME-1 Protects Protein Phosphatase 2A from Ubiquitin/Proteasome Degradation. PLoS One 2015; 10:e0145226. [PMID: 26678046 PMCID: PMC4683032 DOI: 10.1371/journal.pone.0145226] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/01/2015] [Indexed: 11/30/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a conserved essential enzyme that is implicated as a tumor suppressor based on its central role in phosphorylation-dependent signaling pathways. Protein phosphatase methyl esterase (PME-1) catalyzes specifically the demethylation of the C-terminal Leu309 residue of PP2A catalytic subunit (PP2Ac). It has been shown that PME-1 affects the activity of PP2A by demethylating PP2Ac, but also by directly binding to the phosphatase active site, suggesting loss of PME-1 in cells would enhance PP2A activity. However, here we show that PME-1 knockout mouse embryonic fibroblasts (MEFs) exhibit lower PP2A activity than wild type MEFs. Loss of PME-1 enhanced poly-ubiquitination of PP2Ac and shortened the half-life of PP2Ac protein resulting in reduced PP2Ac levels. Chemical inhibition of PME-1 and rescue experiments with wild type and mutated PME-1 revealed methyl-esterase activity was necessary to maintain PP2Ac protein levels. Our data demonstrate that PME-1 methyl-esterase activity protects PP2Ac from ubiquitin/proteasome degradation.
Collapse
Affiliation(s)
- Ryotaro Yabe
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753–8515, Japan
| | - Akane Miura
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753–8515, Japan
| | - Tatsuya Usui
- Laboratory of Veterinary Toxicology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753–8515, Japan
| | - Ingrid Mudrak
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, 1030, Austria
| | - Egon Ogris
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, 1030, Austria
| | - Takashi Ohama
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753–8515, Japan
- * E-mail:
| | - Koichi Sato
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753–8515, Japan
| |
Collapse
|
50
|
Weber S, Meyer-Roxlau S, Wagner M, Dobrev D, El-Armouche A. Counteracting Protein Kinase Activity in the Heart: The Multiple Roles of Protein Phosphatases. Front Pharmacol 2015; 6:270. [PMID: 26617522 PMCID: PMC4643138 DOI: 10.3389/fphar.2015.00270] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/28/2015] [Indexed: 12/19/2022] Open
Abstract
Decades of cardiovascular research have shown that variable and flexible levels of protein phosphorylation are necessary to maintain cardiac function. A delicate balance between phosphorylated and dephosphorylated states of proteins is guaranteed by a complex interplay of protein kinases (PKs) and phosphatases. Serine/threonine phosphatases, in particular members of the protein phosphatase (PP) family govern dephosphorylation of the majority of these cardiac proteins. Recent findings have however shown that PPs do not only dephosphorylate previously phosphorylated proteins as a passive control mechanism but are capable to actively control PK activity via different direct and indirect signaling pathways. These control mechanisms can take place on (epi-)genetic, (post-)transcriptional, and (post-)translational levels. In addition PPs themselves are targets of a plethora of proteinaceous interaction partner regulating their endogenous activity, thus adding another level of complexity and feedback control toward this system. Finally, novel approaches are underway to achieve spatiotemporal pharmacologic control of PPs which in turn can be used to fine-tune misleaded PK activity in heart disease. Taken together, this review comprehensively summarizes the major aspects of PP-mediated PK regulation and discusses the subsequent consequences of deregulated PP activity for cardiovascular diseases in depth.
Collapse
Affiliation(s)
- Silvio Weber
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Stefanie Meyer-Roxlau
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Michael Wagner
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, Faculty of Medicine, West German Heart and Vascular Center , Essen, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| |
Collapse
|