1
|
Yang T, Wang SY. Integrating transcriptome and metabolomics analyses of hepatocellular carcinoma to discover novel biomarkers and drug targets. Clin Res Hepatol Gastroenterol 2025; 49:102546. [PMID: 39938636 DOI: 10.1016/j.clinre.2025.102546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/23/2025] [Accepted: 01/31/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) ranks sixth in incidence and third in mortality among all cancers. Chronic infection by hepatitis B and C viruses are the predominant risk factors for HCC, but other factors related to metabolic disorders including diabetes and obesity are also involved. METHODS Ten male HCC patients with chronic HBV infection were included in this study. Primary HCC tissues were obtained from all study participants following liver resection. Normal tissues that were simultaneously collected served as the controls and were defined as tissue at least 5 cm from the tumor edge. Tissues were subjected to untargeted metabolomics and transcriptome analyses. RESULTS We identified 31 and 41 differentially expressed metabolites (DEMs) in positive and negative ion modes, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that 15 DEMs were enriched in ABC transporters, nine in purine metabolism, eight in central carbon metabolism in cancer, and seven in biosynthesis of amino acids. Regarding the transcriptome analysis, 1,224 significantly up-regulated and 887 down-regulated RNAs were found. KEGG pathway analysis revealed that the most significantly enriched pathways were metabolic pathways. Integrated analysis showed seven pathways that were highly activated in HCC tissues including PI3K/Akt, ABC transporters, caffeine metabolism, carbon metabolism, biosynthesis of amino acids, arginine biosynthesis, alanine, aspartate, and glutamate metabolism. CONCLUSION Some DEMs could be biomarkers or therapeutic targets for HCC. Moreover, we found that MAGEB2 was significantly elevated in HCC tissues for the first time, and its association with HCC needs to be explored by functional studies.
Collapse
Affiliation(s)
- Ting Yang
- Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, 201-209 Hubin South Road, Xiamen, Fujian Province, 361014, China
| | - Si-Yu Wang
- Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, 201-209 Hubin South Road, Xiamen, Fujian Province, 361014, China.
| |
Collapse
|
2
|
Verma S, Swain D, Kushwaha PP, Brahmbhatt S, Gupta K, Sundi D, Gupta S. Melanoma Antigen Family A (MAGE A) as Promising Biomarkers and Therapeutic Targets in Bladder Cancer. Cancers (Basel) 2024; 16:246. [PMID: 38254738 PMCID: PMC10813664 DOI: 10.3390/cancers16020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
The Melanoma Antigen Gene (MAGE) is a large family of highly conserved proteins that share a common MAGE homology domain. Interestingly, many MAGE family members exhibit restricted expression in reproductive tissues but are abnormally expressed in various human malignancies, including bladder cancer, which is a common urinary malignancy associated with high morbidity and mortality rates. The recent literature suggests a more prominent role for MAGEA family members in driving bladder tumorigenesis. This review highlights the role of MAGEA proteins, the potential for them to serve as diagnostic or prognostic biomarker(s), and as therapeutic targets for bladder cancer.
Collapse
Affiliation(s)
- Shiv Verma
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (P.P.K.); (K.G.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Diya Swain
- College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (D.S.); (S.B.)
| | - Prem Prakash Kushwaha
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (P.P.K.); (K.G.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Smit Brahmbhatt
- College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (D.S.); (S.B.)
| | - Karishma Gupta
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (P.P.K.); (K.G.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Debasish Sundi
- Department of Urology, Division of Urologic Oncology, The Ohio State University Comprehensive Cancer Center, James Cancer Hospital & Wexner Medical Center, Columbus, OH 43210, USA;
| | - Sanjay Gupta
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (P.P.K.); (K.G.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
3
|
Tsimberidou AM, Guenther K, Andersson BS, Mendrzyk R, Alpert A, Wagner C, Nowak A, Aslan K, Satelli A, Richter F, Kuttruff-Coqui S, Schoor O, Fritsche J, Coughlin Z, Mohamed AS, Sieger K, Norris B, Ort R, Beck J, Vo HH, Hoffgaard F, Ruh M, Backert L, Wistuba II, Fuhrmann D, Ibrahim NK, Morris VK, Kee BK, Halperin DM, Nogueras-Gonzalez GM, Kebriaei P, Shpall EJ, Vining D, Hwu P, Singh H, Reinhardt C, Britten CM, Hilf N, Weinschenk T, Maurer D, Walter S. Feasibility and Safety of Personalized, Multi-Target, Adoptive Cell Therapy (IMA101): First-in-Human Clinical Trial in Patients with Advanced Metastatic Cancer. Cancer Immunol Res 2023; 11:925-945. [PMID: 37172100 PMCID: PMC10330623 DOI: 10.1158/2326-6066.cir-22-0444] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/15/2022] [Accepted: 05/11/2023] [Indexed: 05/14/2023]
Abstract
IMA101 is an actively personalized, multi-targeted adoptive cell therapy (ACT), whereby autologous T cells are directed against multiple novel defined peptide-HLA (pHLA) cancer targets. HLA-A*02:01-positive patients with relapsed/refractory solid tumors expressing ≥1 of 8 predefined targets underwent leukapheresis. Endogenous T cells specific for up to 4 targets were primed and expanded in vitro. Patients received lymphodepletion (fludarabine, cyclophosphamide), followed by T-cell infusion and low-dose IL2 (Cohort 1). Patients in Cohort 2 received atezolizumab for up to 1 year (NCT02876510). Overall, 214 patients were screened, 15 received lymphodepletion (13 women, 2 men; median age, 44 years), and 14 were treated with T-cell products. IMA101 treatment was feasible and well tolerated. The most common adverse events were cytokine release syndrome (Grade 1, n = 6; Grade 2, n = 4) and expected cytopenias. No patient died during the first 100 days after T-cell therapy. No neurotoxicity was observed. No objective responses were noted. Prolonged disease stabilization was noted in three patients lasting for 13.7, 12.9, and 7.3 months. High frequencies of target-specific T cells (up to 78.7% of CD8+ cells) were detected in the blood of treated patients, persisted for >1 year, and were detectable in posttreatment tumor tissue. Individual T-cell receptors (TCR) contained in T-cell products exhibited broad variation in TCR avidity, with the majority being low avidity. High-avidity TCRs were identified in some patients' products. This study demonstrates the feasibility and tolerability of an actively personalized ACT directed to multiple defined pHLA cancer targets. Results warrant further evaluation of multi-target ACT approaches using potent high-avidity TCRs. See related Spotlight by Uslu and June, p. 865.
Collapse
Affiliation(s)
- Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Borje S Andersson
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | - Anna Nowak
- Immatics Biotechnologies GmbH, Tuebingen, Germany
| | - Katrin Aslan
- Immatics Biotechnologies GmbH, Tuebingen, Germany
| | | | | | | | | | | | | | | | | | - Becky Norris
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rita Ort
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer Beck
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Henry Hiep Vo
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Manuel Ruh
- Immatics Biotechnologies GmbH, Tuebingen, Germany
| | | | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Nuhad K Ibrahim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Van Karlyle Morris
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Texas
| | - Bryan K Kee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Texas
| | - Daniel M Halperin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Texas
| | | | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Vining
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | - Norbert Hilf
- Immatics Biotechnologies GmbH, Tuebingen, Germany
| | | | | | | |
Collapse
|
4
|
Comment on: Endogenous retroviruses expressed in human tumours cannot be used as targets for anti-tumour vaccines. Transl Oncol 2021; 14:101041. [PMID: 33810829 PMCID: PMC8046944 DOI: 10.1016/j.tranon.2021.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 11/30/2022] Open
|
5
|
Bermejo AV, Nielsen KN, Holst PJ. Comment on: Endogenous retroviruses expressed in human tumours cannot be used as targets for anti-tumour vaccines. Transl Oncol 2021; 14:101040. [PMID: 33810828 PMCID: PMC8046955 DOI: 10.1016/j.tranon.2021.101040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 12/26/2022] Open
Affiliation(s)
- Amaia Vergara Bermejo
- InProTher ApS, BioInnovation Institute, Copenhagen Bio Science Park, 2200 Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Karen Nørgaard Nielsen
- InProTher ApS, BioInnovation Institute, Copenhagen Bio Science Park, 2200 Copenhagen, Denmark
| | - Peter Johannes Holst
- InProTher ApS, BioInnovation Institute, Copenhagen Bio Science Park, 2200 Copenhagen, Denmark; Center for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
6
|
Ladelfa MF, Peche LY, Amato GE, Escalada MC, Zampieri S, Pascucci FA, Benevento AF, Do Porto DF, Dardis A, Schneider C, Monte M. Expression of the tumor-expressed protein MageB2 enhances rRNA transcription. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119015. [PMID: 33741433 DOI: 10.1016/j.bbamcr.2021.119015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/22/2021] [Accepted: 03/12/2021] [Indexed: 11/17/2022]
Abstract
An essential requirement for cells to sustain a high proliferating rate is to be paired with enhanced protein synthesis through the production of ribosomes. For this reason, part of the growth-factor signaling pathways, are devoted to activate ribosome biogenesis. Enhanced production of ribosomes is a hallmark in cancer cells, which is boosted by different mechanisms. Here we report that the nucleolar tumor-protein MageB2, whose expression is associated with cell proliferation, also participates in ribosome biogenesis. Studies carried out in both siRNA-mediated MageB2 silenced cells and CRISPR/CAS9-mediated MageB2 knockout (KO) cells showed that its expression is linked to rRNA transcription increase independently of the cell proliferation status. Mechanistically, MageB2 interacts with phospho-UBF, a protein which causes the recruitment of RNA Pol I pre-initiation complex required for rRNA transcription. In addition, cells expressing MageB2 displays enhanced phospho-UBF occupancy at the rDNA gene promoter. Proteomic studies performed in MageB2 KO cells revealed impairment in ribosomal protein (RPs) content. Functionally, enhancement in rRNA production in MageB2 expressing cells, was directly associated with an increased dynamic in protein synthesis. Altogether our results unveil a novel function for a tumor-expressed protein from the MAGE-I family. Findings reported here suggest that nucleolar MageB2 might play a role in enhancing ribosome biogenesis as part of its repertoire to support cancer cell proliferation.
Collapse
Affiliation(s)
- María Fátima Ladelfa
- Lab. Oncología Molecular, Departamento de Química Biológica, IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Leticia Yamila Peche
- Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, Area Science Park, Trieste, Italy
| | - Gastón Ezequiel Amato
- Lab. Oncología Molecular, Departamento de Química Biológica, IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Micaela Carolina Escalada
- Lab. Oncología Molecular, Departamento de Química Biológica, IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Stefania Zampieri
- Centro di Coordinamento Regionale per le Malattie Rare, Ospedale Universitario Santa Maria Della Misericordia, Udine, Italy
| | - Franco Andrés Pascucci
- Lab. Oncología Molecular, Departamento de Química Biológica, IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andres Fernandez Benevento
- Plataforma de Bioinformática Argentina, Instituto de Cálculo, Pabellón 2, Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina
| | - Dario Fernandez Do Porto
- Plataforma de Bioinformática Argentina, Instituto de Cálculo, Pabellón 2, Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina
| | - Andrea Dardis
- Centro di Coordinamento Regionale per le Malattie Rare, Ospedale Universitario Santa Maria Della Misericordia, Udine, Italy
| | - Claudio Schneider
- Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, Area Science Park, Trieste, Italy; Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, p.le Kolbe 4, Udine, Italy
| | - Martin Monte
- Lab. Oncología Molecular, Departamento de Química Biológica, IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Florke Gee RR, Chen H, Lee AK, Daly CA, Wilander BA, Fon Tacer K, Potts PR. Emerging roles of the MAGE protein family in stress response pathways. J Biol Chem 2020; 295:16121-16155. [PMID: 32921631 PMCID: PMC7681028 DOI: 10.1074/jbc.rev120.008029] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
The melanoma antigen (MAGE) proteins all contain a MAGE homology domain. MAGE genes are conserved in all eukaryotes and have expanded from a single gene in lower eukaryotes to ∼40 genes in humans and mice. Whereas some MAGEs are ubiquitously expressed in tissues, others are expressed in only germ cells with aberrant reactivation in multiple cancers. Much of the initial research on MAGEs focused on exploiting their antigenicity and restricted expression pattern to target them with cancer immunotherapy. Beyond their potential clinical application and role in tumorigenesis, recent studies have shown that MAGE proteins regulate diverse cellular and developmental pathways, implicating them in many diseases besides cancer, including lung, renal, and neurodevelopmental disorders. At the molecular level, many MAGEs bind to E3 RING ubiquitin ligases and, thus, regulate their substrate specificity, ligase activity, and subcellular localization. On a broader scale, the MAGE genes likely expanded in eutherian mammals to protect the germline from environmental stress and aid in stress adaptation, and this stress tolerance may explain why many cancers aberrantly express MAGEs Here, we present an updated, comprehensive review on the MAGE family that highlights general characteristics, emphasizes recent comparative studies in mice, and describes the diverse functions exerted by individual MAGEs.
Collapse
Affiliation(s)
- Rebecca R Florke Gee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Helen Chen
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Anna K Lee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christina A Daly
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Benjamin A Wilander
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Klementina Fon Tacer
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; School of Veterinary Medicine, Texas Tech University, Amarillo, Texas, USA.
| | - Patrick Ryan Potts
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
8
|
Das B, Senapati S. Immunological and functional aspects of MAGEA3 cancer/testis antigen. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 125:121-147. [PMID: 33931137 DOI: 10.1016/bs.apcsb.2020.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Identification of ectopic gene activation in cancer cells serves as a basis for both gene signature-guided tumor targeting and unearthing of oncogenic mechanisms to expand the understanding of tumor biology/oncogenic process. Proteins expressed only in germ cells of testis and/or placenta (immunoprivileged organs) and in malignancies are called cancer testis antigens; they are antigenic because of the lack of antigen presentation by those specific cell types (germ cells), which limits the exposure of the proteins to the immune cells. Since the Cancer Testis Antigens (CTAs) are immunogenic and expressed in a wide variety of cancer types, CT antigens have become interesting target for immunotherapy against cancer. Among CT antigens MAGEA family is reported to have 12 members (MAGEA1 to MAGEA12). The current review highlights the studies on MAGEA3 which is a CT antigen and reported in almost all types of cancer. MAGEA3 is well tried for cancer immunotherapy. Recent advances on its functional and immunological aspect warranted much deliberation on effective therapeutic approach, thus making it a more interesting target for cancer therapy.
Collapse
Affiliation(s)
- Biswajit Das
- Tumor Microenvironment and Animal Models Lab, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India; Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Lab, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India.
| |
Collapse
|
9
|
Park S, Han JE, Kim HG, Kim HY, Kim MG, Park JK, Cho GJ, Huang H, Kim MO, Ryoo ZY, Han SH, Choi SK. Inhibition of MAGEA2 regulates pluripotency, proliferation, apoptosis, and differentiation in mouse embryonic stem cells. J Cell Biochem 2020; 121:4667-4679. [PMID: 32065444 DOI: 10.1002/jcb.29692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/30/2020] [Indexed: 01/27/2023]
Abstract
Mouse embryonic stem cells (mESCs) exhibit self-renewal and pluripotency, can differentiate into all three germ layers, and serve as an essential model in stem cell research and for potential clinical application in regenerative medicine. Melanoma-associated antigen A2 (MAGEA2) is not expressed in normal somatic cells but rather in different types of cancer, especially in undifferentiated cells, such as in the testis, differentiating cells, and ESCs. However, the role of MAGEA2 in mESCs remains to be clarified. Accordingly, in this study, we examined the expression and functions of MAGEA2 in mESCs. MAGEA2 messenger RNA (mRNA) expression was decreased during mESCs differentiation. MAGEA2 function was then evaluated in knockdown mESC. MAGEA2 knockdown resulted in decreased pluripotency marker gene expression in mESCs consequent to increased Erk1/2 phosphorylation. Decreased MAGEA2 expression inhibited mESC proliferation via S phase cell cycle arrest with a subsequent decrease in cell cycle-associated genes Cdk1, Cdk2, Cyclin A1, Cyclin D1, and Cdc25a. Apoptotic mESCs markedly increased along with cleaved forms of caspases 3, 6, and 7 and PARP expression, confirming caspase-dependent apoptosis. MAGEA2 knockdown significantly decreased embryoid body size in vitro when cells were differentiated naturally and teratoma size in vivo, concomitant with decreased ectoderm marker gene expression. These findings suggested that MAGEA2 regulates ESC pluripotency, proliferation, cell cycle, apoptosis, and differentiation. The enhanced understanding of the regulatory mechanisms underlying diverse mESC characteristics will facilitate the clinical application of mESCs.
Collapse
Affiliation(s)
- Song Park
- Core Protein Resources Center, DGIST, Daegu, South Korea
| | - Jee Eun Han
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Hyeon-Gyeom Kim
- School of Life Science, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, South Korea
| | - Hee-Yeon Kim
- Core Protein Resources Center, DGIST, Daegu, South Korea
| | - Min-Gi Kim
- Core Protein Resources Center, DGIST, Daegu, South Korea
| | - Jin-Kyu Park
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Gil-Jae Cho
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Hai Huang
- The School of Animal BT Science, Kyungpook National University, Sangju-si, Gyeongsangbuk-do, South Korea
| | - Myoung Ok Kim
- The School of Animal BT Science, Kyungpook National University, Sangju-si, Gyeongsangbuk-do, South Korea
| | - Zae Young Ryoo
- School of Life Science, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, South Korea
| | - Se-Hyeon Han
- School of Media Communication, Hanyang University, Seongdonggu, Seoul, South Korea
| | - Seong-Kyoon Choi
- Core Protein Resources Center, DGIST, Daegu, South Korea.,Division of Biotechnology, DGIST, Daegu, South Korea
| |
Collapse
|
10
|
Gordeeva O. TGFβ Family Signaling Pathways in Pluripotent and Teratocarcinoma Stem Cells' Fate Decisions: Balancing Between Self-Renewal, Differentiation, and Cancer. Cells 2019; 8:cells8121500. [PMID: 31771212 PMCID: PMC6953027 DOI: 10.3390/cells8121500] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
The transforming growth factor-β (TGFβ) family factors induce pleiotropic effects and are involved in the regulation of most normal and pathological cellular processes. The activity of different branches of the TGFβ family signaling pathways and their interplay with other signaling pathways govern the fine regulation of the self-renewal, differentiation onset and specialization of pluripotent stem cells in various cell derivatives. TGFβ family signaling pathways play a pivotal role in balancing basic cellular processes in pluripotent stem cells and their derivatives, although disturbances in their genome integrity induce the rearrangements of signaling pathways and lead to functional impairments and malignant transformation into cancer stem cells. Therefore, the identification of critical nodes and targets in the regulatory cascades of TGFβ family factors and other signaling pathways, and analysis of the rearrangements of the signal regulatory network during stem cell state transitions and interconversions, are key issues for understanding the fundamental mechanisms of both stem cell biology and cancer initiation and progression, as well as for clinical applications. This review summarizes recent advances in our understanding of TGFβ family functions in naїve and primed pluripotent stem cells and discusses how these pathways are involved in perturbations in the signaling network of malignant teratocarcinoma stem cells with impaired differentiation potential.
Collapse
Affiliation(s)
- Olga Gordeeva
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov str., 119334 Moscow, Russia
| |
Collapse
|
11
|
Hont AB, Cruz CR, Ulrey R, O'Brien B, Stanojevic M, Datar A, Albihani S, Saunders D, Hanajiri R, Panchapakesan K, Darko S, Banerjee P, Fortiz MF, Hoq F, Lang H, Wang Y, Hanley PJ, Dome JS, Bollard CM, Meany HJ. Immunotherapy of Relapsed and Refractory Solid Tumors With Ex Vivo Expanded Multi-Tumor Associated Antigen Specific Cytotoxic T Lymphocytes: A Phase I Study. J Clin Oncol 2019; 37:2349-2359. [PMID: 31356143 DOI: 10.1200/jco.19.00177] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Tumor-associated antigen cytotoxic T cells (TAA-Ts) represent a new, potentially effective and nontoxic therapeutic approach for patients with relapsed or refractory solid tumors. In this first-in-human trial, we investigated the safety of administering TAA-Ts that target Wilms tumor gene 1, preferentially expressed antigen of melanoma, and survivin to patients with relapsed/refractory solid tumors. MATERIALS AND METHODS TAA-T products were generated from autologous peripheral blood and infused over three dose levels: 1, 2, and 4 × 107 cells/m2. Patients were eligible for up to eight infusions administered 4 to 7 weeks apart. We assessed dose limiting toxicity during the first 45 days after infusion. Disease response was determined within the context of a phase I trial. RESULTS There were no dose-limiting toxicities. Of 15 evaluable patients, 11 (73%) with stable disease or better at day 45 postinfusion were defined as responders. Six responders remain without progression at a median of 13.9 months (range, 4.1 to 19.9 months) after initial TAA-Ts. Patients who were treated at the highest dose level showed the best clinical outcomes, with a 6-month progression-free survival of 73% after TAA-T infusion compared with a 38% 6-month progression-free survival with prior therapy. Antigen spreading and a reduction in circulating tumor-associated antigens using digital droplet polymerase chain reaction was observed in patients after TAA-T infusion. CONCLUSION TAA-Ts safely induced disease stabilization, prolonged time to progression, and were associated with antigen spreading and a reduction in circulating tumor-associated antigen DNA levels in patients with relapsed/refractory solid tumors without lymphodepleting chemotherapy before infusion. TAA-Ts are a promising new treatment approach for patients with solid tumors.
Collapse
Affiliation(s)
- Amy B Hont
- Children's National Health System, Washington, DC.,The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - C Russell Cruz
- Children's National Health System, Washington, DC.,The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Robert Ulrey
- Children's National Health System, Washington, DC
| | | | | | | | | | | | - Ryo Hanajiri
- Children's National Health System, Washington, DC
| | | | - Sam Darko
- National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | | | | | - Fahmida Hoq
- Children's National Health System, Washington, DC
| | - Haili Lang
- Children's National Health System, Washington, DC
| | - Yunfei Wang
- Children's National Health System, Washington, DC
| | - Patrick J Hanley
- Children's National Health System, Washington, DC.,The George Washington University School of Medicine and Health Sciences, Washington, DC
| | | | - Catherine M Bollard
- Children's National Health System, Washington, DC.,The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Holly J Meany
- Children's National Health System, Washington, DC.,The George Washington University School of Medicine and Health Sciences, Washington, DC
| |
Collapse
|
12
|
Expression dynamics of Mage family genes during self-renewal and differentiation of mouse pluripotent stem and teratocarcinoma cells. Oncotarget 2019; 10:3248-3266. [PMID: 31143371 PMCID: PMC6524934 DOI: 10.18632/oncotarget.26933] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/29/2019] [Indexed: 12/28/2022] Open
Abstract
The biological roles of cancer-testis antigens of the Melanoma antigen (Mage) family in mammalian development, stem cell differentiation and carcinogenesis are largely unknown. In order to understand the involvement of the Mage family genes in maintenance of normal and cancer stem cells, the expression patterns of Mage-a, Mage-b, Mage-d, Mage-e, Mage-h and Mage-l gene subfamilies were analyzed during the self-renewal and differentiation of mouse pluripotent stem and teratocarcinoma cells. Clustering analysis based on the gene expression profiles of undifferentiated and differentiating cell populations revealed strong correlations between Mage expression patterns and differentiation and malignant states. Gene co-expression analysis disclosed the potential contributions of Mage family members in self-renewal and differentiation of pluripotent stem and teratocarcinoma cells. Two gene clusters including Mage-a4 and Mage-a8, Mageb1, Mage-d1, Mage-d2, Mage-e1, Mage-l2 were identified as functional antagonists with opposing roles in the regulation of proliferation and differentiation of mouse pluripotent stem and teratocarcinoma cells. The identified aberrant expression patterns of Mage-a2, Mage-a6, Mage-b4, Mageb-16 and Mage-h1 in teratocarcinoma cells can be considered as specific teratocarcinoma biomarkers promoted the malignant phenotype. Our study first provides a model for the involvement of Mage family members in regulatory networks during the self-renewal and early differentiation of normal and cancerous stem cells for further research of the predicted functional modules and the development of new cancer treatment strategies.
Collapse
|
13
|
Miranda A, Hamilton PT, Zhang AW, Pattnaik S, Becht E, Mezheyeuski A, Bruun J, Micke P, de Reynies A, Nelson BH. Cancer stemness, intratumoral heterogeneity, and immune response across cancers. Proc Natl Acad Sci U S A 2019; 116:9020-9029. [PMID: 30996127 PMCID: PMC6500180 DOI: 10.1073/pnas.1818210116] [Citation(s) in RCA: 393] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Regulatory programs that control the function of stem cells are active in cancer and confer properties that promote progression and therapy resistance. However, the impact of a stem cell-like tumor phenotype ("stemness") on the immunological properties of cancer has not been systematically explored. Using gene-expression-based metrics, we evaluated the association of stemness with immune cell infiltration and genomic, transcriptomic, and clinical parameters across 21 solid cancers. We found pervasive negative associations between cancer stemness and anticancer immunity. This occurred despite high stemness cancers exhibiting increased mutation load, cancer-testis antigen expression, and intratumoral heterogeneity. Stemness was also strongly associated with cell-intrinsic suppression of endogenous retroviruses and type I IFN signaling, and increased expression of multiple therapeutically accessible immunosuppressive pathways. Thus, stemness is not only a fundamental process in cancer progression but may provide a mechanistic link between antigenicity, intratumoral heterogeneity, and immune suppression across cancers.
Collapse
Affiliation(s)
- Alex Miranda
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
| | | | - Allen W Zhang
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 4E6, Canada
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Graduate Bioinformatics Training Program, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Swetansu Pattnaik
- The Kinghorn Cancer Centre and Cancer Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Etienne Becht
- Singapore Immunology Network, Agency for Science, Technology and Research, 138648 Singapore
| | - Artur Mezheyeuski
- Department of Immunology, Genetics, and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Jarle Bruun
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | - Patrick Micke
- Department of Immunology, Genetics, and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Aurélien de Reynies
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Brad H Nelson
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada;
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 3E6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
14
|
Salama R, Al-Obaidy KI, Perrino CM, Grignon DJ, Ulbright TM, Idrees MT. DOG1 immunohistochemical staining of testicular biopsies is a reliable tool for objective assessment of infertility. Ann Diagn Pathol 2019; 40:18-22. [PMID: 30849695 DOI: 10.1016/j.anndiagpath.2019.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 11/30/2022]
Abstract
Testicular biopsy may be a component of the work-up of male infertility. However, no reliable diagnostic tools are available for objective quantitative assessment of spermatogenic cells. It is well known that MAGE-A4 is selectively expressed in spermatogonia and our group has previously demonstrated that DOG1 differentially stains germ cells. Therefore, we performed DOG1 and a double stain cocktail (DOG1 and 57b murine monoclonal anti-MAGE-A4) immunohistochemical stains on 40 testicular infertility biopsies (10 each with active spermatogenesis, Sertoli cell-only, hypospermatogenesis, and maturation arrest), 25 benign seminiferous tubules from radical orchiectomies, and 5 spermatocytic tumors (ST). In biopsies/resections with active spermatogenesis, DOG1 stained spermatocytes and spermatids and was absent in spermatogonia, while MAGE-A4 stained spermatogonia and primary spermatocytes (weak). In hypospermatogenesis, DOG1 highlighted decreased spermatocytes/spermatids and MAGE-A4 highlighted decreased spermatogonia. DOG1 staining confirmed decreased to absent spermatocytes in maturation arrest and MAGE-A4 staining established the presence of preserved spermatogonia in all cases. All STs were negative for DOG1 and positive for MAGE-A4, while all Sertoli cell-only cases were negative for DOG1 and the double stain cocktail. In conclusion, we confirmed that DOG1 is expressed in spermatocytes and spermatids and MAGE-A4 highlights primarily spermatogonia. Usage of these stains facilitates confirmation of maturation arrest, assessment of the percentage of testis involvement in hypospermatogenesis and identification of mixed patterns. Finally, this study supports that the differentiation of STs is more closely related to spermatogonia than the more mature spermatocytes.
Collapse
Affiliation(s)
- Rasha Salama
- Department of Pathology, St. Elizabeth Healthcare, Edgewood, KY, USA
| | - Khaleel I Al-Obaidy
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - David J Grignon
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Thomas M Ulbright
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Muhammad T Idrees
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
15
|
Abstract
Mammalian sex chromosomes evolved from an ordinary pair of autosomes. The X chromosome is highly conserved, whereas the Y chromosome varies among species in size, structure, and gene content. Unlike autosomes that contain randomly mixed collections of genes, the sex chromosomes are enriched in testis-biased genes related to sexual development and reproduction, particularly in spermatogenesis and male fertility. This review focuses on how sex chromosome dosage compensation takes place and why meiotic sex chromosome inactivation occurs during spermatogenesis. Furthermore, the review also emphasizes how testis-biased genes are enriched on the sex chromosomes and their functions in male fertility. It is concluded that sex chromosomes are critical to sexual development and male fertility; however, our understanding of how sex chromosome genes direct sexual development and fertility has been hampered by the structural complexities of the sex chromosomes and by the multicopy nature of the testis gene families that also play a role in immunity, cancer development, and brain function.
Collapse
Affiliation(s)
- Wan-Sheng Liu
- Department of Animal Science, Center for Reproductive Biology and Health, College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
16
|
Chi Soh JE, Abu N, Jamal R. The potential immune-eliciting cancer testis antigens in colorectal cancer. Immunotherapy 2018; 10:1093-1104. [DOI: 10.2217/imt-2018-0044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The identification of cancer testis antigens (CTAs) has been an important finding in the search of potential targets for cancer immunotherapy. CTA is one of the subfamilies of the large tumor-associated antigens groups. It is aberrantly expressed in various types of human tumors but is absent in normal tissues except for the testis and placenta. This CTAs-restricted pattern of expression in human malignancies together with its potential immunogenic properties, has stirred the interest of many researchers to use CTAs as one of the ideal targets in cancer immunotherapy. To date, multiple studies have shown that CTAs-based vaccines can elicit clinical and immunological responses in different tumors, including colorectal cancer (CRC). This review details our current understanding of CTAs and CRC in regard to the expression and immunological responses as well as some of the critical hurdles in CTAs-based immunotherapy.
Collapse
Affiliation(s)
- Joanne Ern Chi Soh
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Cheras, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Gordeeva O. Cancer-testis antigens: Unique cancer stem cell biomarkers and targets for cancer therapy. Semin Cancer Biol 2018; 53:75-89. [PMID: 30171980 DOI: 10.1016/j.semcancer.2018.08.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023]
Abstract
Cancer-testis antigens (CTAs) are considered as unique and promising cancer biomarkers and targets for cancer therapy. CTAs are multifunctional protein group with specific expression patterns in normal embryonic and adult cells and various types of cancer cells. CTAs are involved in regulating of the basic cellular processes during development, stem cell differentiation and carcinogenesis though the biological roles and cell functions of CTA families remain largely unclear. Analysis of CTA expression patterns in embryonic germ and somatic cells, pluripotent and multipotent stem cells, cancer stem cells and their cell descendants indicates that rearrangements of characteristic CTA profiles (aberrant expression) could be associated with cancer transformation and failure of the developmental program of cell lineage specification and germ line restriction. Therefore, aberrant CTA profiles can be used as panels of biomarkers for diagnoses and the selection of cancer treatment strategies. Moreover, immunogenic CTAs are prospective targets for cancer immunotherapy. Clinical trials testing broad range of cancer therapeutic vaccines against antigens of MAGEA and NY-ESO-1 families for treating various cancers have shown mixed clinical efficiency, safety and tolerability, suggesting the requirement of in-depth research of CTA expression in normal and cancer stem cells and extensive clinical trials for improving cancer immunotherapy technologies. This review focuses on recent advancement in study of CTAs in normal and cancer cells, particularly in normal and cancer stem cells, and provides a new insight into CTA expression patterns during normal and cancer stem cell lineage development. Additionally, new approaches in development of effective CTA-based therapies exclusively targeting cancer stem cells will be discussed.
Collapse
Affiliation(s)
- Olga Gordeeva
- Laboratory of Cell and Molecular Mechanisms of Histogenesis, Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia.
| |
Collapse
|
18
|
da Silva VL, Fonseca AF, Fonseca M, da Silva TE, Coelho AC, Kroll JE, de Souza JES, Stransky B, de Souza GA, de Souza SJ. Genome-wide identification of cancer/testis genes and their association with prognosis in a pan-cancer analysis. Oncotarget 2017; 8:92966-92977. [PMID: 29190970 PMCID: PMC5696236 DOI: 10.18632/oncotarget.21715] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/17/2017] [Indexed: 11/29/2022] Open
Abstract
Cancer/testis (CT) genes are excellent candidates for cancer immunotherapies because of their restrict expression in normal tissues and the capacity to elicit an immune response when expressed in tumor cells. In this study, we provide a genome-wide screen for CT genes with the identification of 745 putative CT genes. Comparison with a set of known CT genes shows that 201 new CT genes were identified. Integration of gene expression and clinical data led us to identify dozens of CT genes associated with either good or poor prognosis. For the CT genes related to good prognosis, we show that there is a direct relationship between CT gene expression and a signal for CD8+ cells infiltration for some tumor types, especially melanoma.
Collapse
Affiliation(s)
- Vandeclecio Lira da Silva
- Instituto do Cérebro, UFRN, Natal, Brazil.,Ph.D. Program in Bioinformatics, UFRN, Natal, Brazil.,Bioinformatics Multidisciplinary Environment (BioME), Digital Metropolis Institute, UFRN, Natal, Brazil
| | - André Faustino Fonseca
- Instituto do Cérebro, UFRN, Natal, Brazil.,Ph.D. Program in Bioinformatics, UFRN, Natal, Brazil.,Bioinformatics Multidisciplinary Environment (BioME), Digital Metropolis Institute, UFRN, Natal, Brazil
| | | | | | - Ana Carolina Coelho
- Instituto do Cérebro, UFRN, Natal, Brazil.,Bioinformatics Multidisciplinary Environment (BioME), Digital Metropolis Institute, UFRN, Natal, Brazil
| | - José Eduardo Kroll
- Instituto do Cérebro, UFRN, Natal, Brazil.,Bioinformatics Multidisciplinary Environment (BioME), Digital Metropolis Institute, UFRN, Natal, Brazil.,Instituto de Bioinformática e Biotecnologia, Natal, Brazil
| | - Jorge Estefano Santana de Souza
- Bioinformatics Multidisciplinary Environment (BioME), Digital Metropolis Institute, UFRN, Natal, Brazil.,Instituto Metrópole Digital, UFRN, Natal, Brazil
| | - Beatriz Stransky
- Bioinformatics Multidisciplinary Environment (BioME), Digital Metropolis Institute, UFRN, Natal, Brazil.,Departmento de Engenharia Biomédica, UFRN, Natal, Brazil
| | - Gustavo Antonio de Souza
- Instituto do Cérebro, UFRN, Natal, Brazil.,Bioinformatics Multidisciplinary Environment (BioME), Digital Metropolis Institute, UFRN, Natal, Brazil
| | - Sandro José de Souza
- Instituto do Cérebro, UFRN, Natal, Brazil.,Bioinformatics Multidisciplinary Environment (BioME), Digital Metropolis Institute, UFRN, Natal, Brazil
| |
Collapse
|
19
|
Shukla V, Rao M, Zhang H, Beers J, Wangsa D, Wangsa D, Buishand FO, Wang Y, Yu Z, Stevenson HS, Reardon ES, McLoughlin KC, Kaufman AS, Payabyab EC, Hong JA, Zhang M, Davis S, Edelman D, Chen G, Miettinen MM, Restifo NP, Ried T, Meltzer PA, Schrump DS. ASXL3 Is a Novel Pluripotency Factor in Human Respiratory Epithelial Cells and a Potential Therapeutic Target in Small Cell Lung Cancer. Cancer Res 2017; 77:6267-6281. [PMID: 28935813 DOI: 10.1158/0008-5472.can-17-0570] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/28/2017] [Accepted: 09/07/2017] [Indexed: 01/16/2023]
Abstract
In this study, we generated induced pluripotent stem cells (iPSC) from normal human small airway epithelial cells (SAEC) to investigate epigenetic mechanisms of stemness and pluripotency in lung cancers. We documented key hallmarks of reprogramming in lung iPSCs (Lu-iPSC) that coincided with modulation of more than 15,000 genes relative to parental SAECs. Of particular novelty, we identified the PRC2-associated protein, ASXL3, which was markedly upregulated in Lu-iPSCs and small cell lung cancer (SCLC) lines and clinical specimens. ASXL3 overexpression correlated with increased genomic copy number in SCLC lines. ASXL3 silencing inhibited proliferation, clonogenicity, and teratoma formation by Lu-iPSCs, and diminished clonogenicity and malignant growth of SCLC cells in vivo Collectively, our studies validate the utility of the Lu-iPSC model for elucidating epigenetic mechanisms contributing to pulmonary carcinogenesis and highlight ASXL3 as a novel candidate target for SCLC therapy. Cancer Res; 77(22); 6267-81. ©2017 AACR.
Collapse
Affiliation(s)
- Vivek Shukla
- Thoracic Epigenetics Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Rockville, Maryland
| | - Mahadev Rao
- Thoracic Epigenetics Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Rockville, Maryland
| | - Hongen Zhang
- Genetics Branch, Center for Cancer Research, NCI, Rockville, Maryland
| | | | - Darawalee Wangsa
- Genetics Branch, Center for Cancer Research, NCI, Rockville, Maryland
| | - Danny Wangsa
- Genetics Branch, Center for Cancer Research, NCI, Rockville, Maryland
| | | | - Yonghong Wang
- Genetics Branch, Center for Cancer Research, NCI, Rockville, Maryland
| | - Zhiya Yu
- Laboratory of Pathology, Center for Cancer Research, NCI, Rockville, Maryland
| | - Holly S Stevenson
- Genetics Branch, Center for Cancer Research, NCI, Rockville, Maryland
| | - Emily S Reardon
- Thoracic Epigenetics Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Rockville, Maryland
| | - Kaitlin C McLoughlin
- Thoracic Epigenetics Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Rockville, Maryland
| | - Andrew S Kaufman
- Thoracic Epigenetics Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Rockville, Maryland
| | - Eden C Payabyab
- Thoracic Epigenetics Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Rockville, Maryland
| | - Julie A Hong
- Thoracic Epigenetics Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Rockville, Maryland
| | - Mary Zhang
- Thoracic Epigenetics Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Rockville, Maryland
| | - Sean Davis
- Genetics Branch, Center for Cancer Research, NCI, Rockville, Maryland
| | - Daniel Edelman
- Genetics Branch, Center for Cancer Research, NCI, Rockville, Maryland
| | | | - Markku M Miettinen
- Laboratory of Pathology, Center for Cancer Research, NCI, Rockville, Maryland
| | | | - Thomas Ried
- Genetics Branch, Center for Cancer Research, NCI, Rockville, Maryland
| | - Paul A Meltzer
- Genetics Branch, Center for Cancer Research, NCI, Rockville, Maryland
| | - David S Schrump
- Thoracic Epigenetics Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Rockville, Maryland.
| |
Collapse
|
20
|
Park S, Sung Y, Jeong J, Choi M, Lee J, Kwon W, Jang S, Park SJ, Kim JY, Kim SH, Yoon D, Ryoo ZY, Kim MO. Critical roles of hMAGEA2 in induced pluripotent stem cell pluripotency, proliferation, and differentiation. Cell Biochem Funct 2017; 35:392-400. [PMID: 28895148 DOI: 10.1002/cbf.3286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/30/2017] [Accepted: 07/07/2017] [Indexed: 12/20/2022]
Abstract
Induced pluripotent stem (iPS) cells are important for clinical application and stem cell research. Although human melanoma-associated antigen A2 (hMAGEA2) expression is known to affect differentiation in embryonic stem cells, its specific role in iPS cells remains unclear. To evaluate the function of hMAGEA2 and its characteristics in iPS cells, we produced hMAGEA2-overexpressing iPS cells from hMAGEA2-overexpressing transgenic mice. Although the iPS cells with overexpressed hMAGEA2 did not differ in morphology, their pluripotency, and self-renewal related genes (Nanog, Oct3/4, Sox2, and Stat3), expression level was significantly upregulated. Moreover, hMAGEA2 contributed to the promotion of cell cycle progression, thereby accelerating cell proliferation. Through embryoid body formation in vitro and teratoma formation in vivo, we demonstrated that hMAGEA2 critically decreases the differentiation ability of iPS cells. These data indicate that hMAGEA2 intensifies the self-renewal, pluripotency, and degree of proliferation of iPS cells, while significantly repressing their differentiation efficiency. Therefore, our findings prove that hMAGEA2 plays key roles in iPS cells.
Collapse
Affiliation(s)
- Song Park
- School of Life Science, BK21 plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea.,Core Protein Resources Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Yonghun Sung
- School of Life Science, BK21 plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jain Jeong
- School of Life Science, BK21 plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Minjee Choi
- School of Life Science, BK21 plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jinhee Lee
- School of Life Science, BK21 plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Wookbong Kwon
- School of Life Science, BK21 plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Soyoung Jang
- School of Life Science, BK21 plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Si Jun Park
- School of Life Science, BK21 plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jae Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Sung Hyun Kim
- China-US (Henan) Hormel Cancer Institute, No.127 Dongming Road, Zhengzhou, Henan 450008, China
| | - Duhak Yoon
- The School of Animal BT Science, Kyungpook National University, Sangju-si, Gyeongsangbuk-do, South Korea
| | - Zae Young Ryoo
- School of Life Science, BK21 plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Myoung Ok Kim
- The School of Animal BT Science, Kyungpook National University, Sangju-si, Gyeongsangbuk-do, South Korea
| |
Collapse
|
21
|
Gordeeva OF, Pochaev VA. Expression of cancer-testis antigens of the Mage family in mouse oocytes and early embryos. Russ J Dev Biol 2017. [DOI: 10.1134/s1062360417040051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Conteduca G, Fenoglio D, Parodi A, Battaglia F, Kalli F, Negrini S, Tardito S, Ferrera F, Salis A, Millo E, Pasquale G, Barra G, Damonte G, Indiveri F, Ferrone S, Filaci G. AIRE polymorphism, melanoma antigen-specific T cell immunity, and susceptibility to melanoma. Oncotarget 2016; 7:60872-60884. [PMID: 27563821 PMCID: PMC5308622 DOI: 10.18632/oncotarget.11506] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 08/08/2016] [Indexed: 12/28/2022] Open
Abstract
AIRE is involved in susceptibility to melanoma perhaps regulating T cell immunity against melanoma antigens (MA). To address this issue, AIRE and MAGEB2 expressions were measured by real time PCR in medullary thymic epithelial cells (mTECs) from two strains of C57BL/6 mice bearing either T or C allelic variant of the rs1800522 AIRE SNP. Moreover, the extent of apoptosis induced by mTECs in MAGEB2-specific T cells and the susceptibility to in vivo melanoma B16F10 cell challenge were compared in the two mouse strains.The C allelic variant, protective in humans against melanoma, induced lower AIRE and MAGEB2 expression in C57BL/6 mouse mTECs than the T allele. Moreover, mTECs expressing the C allelic variant induced lower extent of apoptosis in MAGEB2-specific syngeneic T cells than mTECs bearing the T allelic variant (p < 0.05). Vaccination against MAGEB2 induced higher frequency of MAGEB2-specific CTL and exerted higher protective effect against melanoma development in mice bearing the CC AIRE genotype than in those bearing the TT one (p < 0.05). These findings show that allelic variants of one AIRE SNP may differentially shape the MA-specific T cell repertoire potentially influencing susceptibility to melanoma.
Collapse
Affiliation(s)
| | - Daniela Fenoglio
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS AOU San Martino – IST, Genoa, Italy
| | - Alessia Parodi
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Florinda Battaglia
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Francesca Kalli
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Simone Negrini
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Samuele Tardito
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Francesca Ferrera
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Annalisa Salis
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Enrico Millo
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Giuseppe Pasquale
- Department of Clinical and Experimental Medicine, Second University of Naples, Naples, Italy
| | - Giusi Barra
- Department of Clinical and Experimental Medicine, Second University of Naples, Naples, Italy
| | - Gianluca Damonte
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Francesco Indiveri
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gilberto Filaci
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS AOU San Martino – IST, Genoa, Italy
| |
Collapse
|
23
|
Salmaninejad A, Zamani MR, Pourvahedi M, Golchehre Z, Hosseini Bereshneh A, Rezaei N. Cancer/Testis Antigens: Expression, Regulation, Tumor Invasion, and Use in Immunotherapy of Cancers. Immunol Invest 2016; 45:619-40. [DOI: 10.1080/08820139.2016.1197241] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
24
|
Expression of Cancer Testis Antigens in Colorectal Cancer: New Prognostic and Therapeutic Implications. DISEASE MARKERS 2016; 2016:1987505. [PMID: 27635108 PMCID: PMC5007337 DOI: 10.1155/2016/1987505] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/28/2016] [Indexed: 12/11/2022]
Abstract
Background. While cancer/testis antigens (CTAs) are restricted in postnatal tissues to testes and germ line-derived cells, their role in cancer development and the clinical significance of their expression still remain to be better defined. Objective. The aim of this study was to investigate the level of CTA expression in colon samples from patients with colorectal cancer (CRC) in relation to patient clinical status. Methods. Forty-five patients with newly diagnosed colorectal cancer were included in the study. We selected a panel of 18 CTAs that were previously detected in CRC as well as some new gene candidates, and their expression was detected at the mRNA level by employing RQ-PCR. Additionally, we evaluated CTA expression in three colon cancer cell lines (CL-188, HTB-39, and HTB-37) after exposure to the DNA methylation-modifying drug 5-azacytidine. Results. We report that 6 out of 18 (33%) CTAs tested (MAGEA3, OIP5, TTK, PLU1, DKKL1, and FBXO39) were significantly (p < 0.05) overexpressed in tumor tissue compared with healthy colon samples isolated from the same patients. Conclusions. Moreover, we found that MAGEA3, PLU-1, and DKKL expression positively correlated with disease progression, evaluated according to the Dukes staging system. Finally, 5-azacytidine exposure significantly upregulated expression of CTAs on CRC cells, which indicates that this demethylation agent could be employed therapeutically to enhance the immune response against tumor cells.
Collapse
|
25
|
PONIEWIERSKA-BARAN AGATA, SCHNEIDER GABRIELA, SUN WENYUE, ABDELBASET-ISMAIL AHMED, BARR FREDERICG, RATAJCZAK MARIUSZZ. Human rhabdomyosarcoma cells express functional pituitary and gonadal sex hormone receptors: Therapeutic implications. Int J Oncol 2016; 48:1815-1824. [PMID: 26983595 PMCID: PMC4809652 DOI: 10.3892/ijo.2016.3439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/20/2016] [Indexed: 12/16/2022] Open
Abstract
Evidence has accumulated that sex hormones play an important role in several types of cancer. Because they are also involved in skeletal muscle development and regeneration, we were therefore interested in their potential involvement in the pathogenesis of human rhabdomyosarcoma (RMS), a skeletal muscle tumor. In the present study, we employed eight RMS cell lines (three fusion positive and five fusion negative RMS cell lines) and mRNA samples obtained from RMS patients. The expression of sex hormone receptors was evaluated by RT-PCR and their functionality by chemotaxis, adhesion and direct cell proliferation assays. We report here for the first time that follicle-stimulating hormone (FSH) and luteinizing hormone (LH) receptors are expressed in established human RMS cell lines as well as in primary tumor samples isolated from RMS patients. We also report that human RMS cell lines responded both to pituitary and gonadal sex hormone stimulation by enhanced proliferation, chemotaxis, cell adhesion and phosphorylation of MAPKp42/44 and AKT. In summary, our results indicate that sex hormones are involved in the pathogenesis and progression of RMS, and therefore, their therapeutic application should be avoided in patients that have been diagnosed with RMS.
Collapse
Affiliation(s)
- AGATA PONIEWIERSKA-BARAN
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - GABRIELA SCHNEIDER
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - WENYUE SUN
- Department of Regenerative Medicine, Warsaw Medical University, Warsaw, Poland
| | - AHMED ABDELBASET-ISMAIL
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - FREDERIC G. BARR
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - MARIUSZ Z. RATAJCZAK
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Department of Regenerative Medicine, Warsaw Medical University, Warsaw, Poland
| |
Collapse
|
26
|
Kozakova L, Vondrova L, Stejskal K, Charalabous P, Kolesar P, Lehmann AR, Uldrijan S, Sanderson CM, Zdrahal Z, Palecek JJ. The melanoma-associated antigen 1 (MAGEA1) protein stimulates the E3 ubiquitin-ligase activity of TRIM31 within a TRIM31-MAGEA1-NSE4 complex. Cell Cycle 2015; 14:920-30. [PMID: 25590999 PMCID: PMC4614679 DOI: 10.1080/15384101.2014.1000112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The MAGE (Melanoma-associated antigen) protein family members are structurally related to each other by a MAGE-homology domain comprised of 2 winged helix motifs WH/A and WH/B. This family specifically evolved in placental mammals although single homologs designated NSE3 (non-SMC element) exist in most eukaryotes. NSE3, together with its partner proteins NSE1 and NSE4 form a tight subcomplex of the structural maintenance of chromosomes SMC5–6 complex. Previously, we showed that interactions of the WH/B motif of the MAGE proteins with their NSE4/EID partners are evolutionarily conserved (including the MAGEA1-NSE4 interaction). In contrast, the interaction of the WH/A motif of NSE3 with NSE1 diverged in the MAGE paralogs. We hypothesized that the MAGE paralogs acquired new RING-finger-containing partners through their evolution and form MAGE complexes reminiscent of NSE1-NSE3-NSE4 trimers. In this work, we employed the yeast 2-hybrid system to screen a human RING-finger protein library against several MAGE baits. We identified a number of potential MAGE-RING interactions and confirmed several of them (MDM4, PCGF6, RNF166, TRAF6, TRIM8, TRIM31, TRIM41) in co-immunoprecipitation experiments. Among these MAGE-RING pairs, we chose to examine MAGEA1-TRIM31 in detail and showed that both WH/A and WH/B motifs of MAGEA1 bind to the coiled-coil domain of TRIM31 and that MAGEA1 interaction stimulates TRIM31 ubiquitin-ligase activity. In addition, TRIM31 directly binds to NSE4, suggesting the existence of a TRIM31-MAGEA1-NSE4 complex reminiscent of the NSE1-NSE3-NSE4 trimer. These results suggest that MAGEA1 functions as a co-factor of TRIM31 ubiquitin-ligase and that the TRIM31-MAGEA1-NSE4 complex may have evolved from an ancestral NSE1-NSE3-NSE4 complex.
Collapse
Affiliation(s)
- Lucie Kozakova
- a From the Mendel Center for Plant Genomics and Proteomics; Central European Institute of Technology; Masaryk University ; Brno , Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gordeeva OF. Expression of cancer-testis antigens of Mage-a and Mage-b families in mouse embryonic fibroblasts cultured in vitro. Russ J Dev Biol 2015. [DOI: 10.1134/s1062360415030030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Kim SW, Yang HG, Kang MC, Lee S, Namkoong H, Lee SW, Sung YC. KIAA1114, a full-length protein encoded by the trophinin gene, is a novel surface marker for isolating tumor-initiating cells of multiple hepatocellular carcinoma subtypes. Oncotarget 2015; 5:1226-40. [PMID: 24713374 PMCID: PMC4012722 DOI: 10.18632/oncotarget.1677] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Identification of novel biomarkers for tumor-initiating cells (TICs) is of critical importance for developing diagnostic and therapeutic strategies against cancers. Here we identified the role of KIAA1114, a full-length translational product of the trophinin gene, as a distinctive marker for TICs in human liver cancer by developing a DNA vaccine-induced monoclonal antibody targeting the putative extracellular domain of KIAA1114. Compared with other established markers of liver TICs, KIAA1114 was unique in that its expression was detected in both alpha fetoprotein (AFP)-positive and AFP-negative hepatocellular carcinoma (HCC) cell lines with the expression levels of KIAA1114 being positively correlated to their tumorigenic potentials. Notably, KIAA1114 expression was strongly detected in primary hepatic tumor, but neither in the adjacent non-tumorous tissue from the same patient nor normal liver tissue. KIAA1114high cells isolated from HCC cell lines displayed TIC-like features with superior functional and phenotypic traits compared to their KIAA1114low counterparts, including tumorigenic abilities in xenotransplantation model, in vitro colony- and spheroid-forming capabilities, expression of stemness-associated genes, and migratory capacity. Our findings not only address the value of a novel antigen, KIAA1114, as a potential diagnostic factor of human liver cancer, but also as an independent biomarker for identifying TIC populations that could be broadly applied to the heterogeneous HCC subtypes.
Collapse
Affiliation(s)
- Sae Won Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
29
|
Darrow EM, Chadwick BP. A novel tRNA variable number tandem repeat at human chromosome 1q23.3 is implicated as a boundary element based on conservation of a CTCF motif in mouse. Nucleic Acids Res 2014; 42:6421-35. [PMID: 24753417 PMCID: PMC4041453 DOI: 10.1093/nar/gku280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 01/08/2023] Open
Abstract
The human genome contains numerous large tandem repeats, many of which remain poorly characterized. Here we report a novel transfer RNA (tRNA) tandem repeat on human chromosome 1q23.3 that shows extensive copy number variation with 9-43 repeat units per allele and displays evidence of meiotic and mitotic instability. Each repeat unit consists of a 7.3 kb GC-rich sequence that binds the insulator protein CTCF and bears the chromatin hallmarks of a bivalent domain in human embryonic stem cells. A tRNA containing tandem repeat composed of at least three 7.6-kb GC-rich repeat units reside within a syntenic region of mouse chromosome 1. However, DNA sequence analysis reveals that, with the exception of the tRNA genes that account for less than 6% of a repeat unit, the remaining 7.2 kb is not conserved with the notable exception of a 24 base pair sequence corresponding to the CTCF binding site, suggesting an important role for this protein at the locus.
Collapse
Affiliation(s)
- Emily M Darrow
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | - Brian P Chadwick
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| |
Collapse
|
30
|
Gordeeva OF, Nikonova TM. Development of Experimental Tumors Formed by Mouse and Human Embryonic Stem and Teratocarcinoma Cells after Subcutaneous and Intraperitoneal Transplantations into Immunodeficient and Immunocompetent Mice. Cell Transplant 2013; 22:1901-14. [DOI: 10.3727/096368912x657837] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pluripotent stem cells represent an attractive cell source for regenerative medicine. However, the risk of teratoma formation after transplantation restricts their clinical application. Therefore, to adequately evaluate the potential risk of tumorigenicity after cell transplantation into human tissues, effective animal transplantation assays need to be developed. We performed a multiparameter (cell number, transplantation site, cell type, host) comparative analysis of the efficiency of tumor development after transplantation of mouse and human embryonic stem (ES) cells and their malignant counterparts, teratocarcinoma (EC) cells, into animal recipients and revealed several key correlations. We found that the efficiency of tumor growth was higher after intra-peritoneal than after subcutaneous transplantations of all cell lines studied. The minimal cell numbers sufficient for tumor growth in immunodeficient nude mice were 100-fold lower for intraperitoneal than for subcutaneous transplantations of mouse and human ES cells (103 vs. 105 and 104 vs. 106, respectively). Moreover, mouse ES and EC cells formed tumors in immunodeficient and immunocompetent mice more effectively than human ES and EC cells. After intraperitoneal transplantation of 103, 104, and 105 mouse ES cells, teratomas developed in 83%, 100%, and 100% of nude mice, whereas after human ES cell transplantation, teratomas developed in 0%, 17%, and 60%, respectively. In addition, malignant mouse and human EC cells initiated tumor growth after intraperitoneal transplantation significantly faster and more effectively than ES cells. Mouse and human ES cells formed different types of teratomas containing derivatives of three germ layers but different numbers of undifferentiated cells. ES cell-like sublines with differentiation potential similar to the parental cell line were recloned only from mouse, but not from human, ES cell teratomas. These findings provide new information about the possibility and efficiency of tumor growth after transplantation of pluripotent stem cells. This information allows one to predict and possibly prevent the possible risks of tumorigenicity that could arise from stem cell therapeutics.
Collapse
Affiliation(s)
- O. F. Gordeeva
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - T. M. Nikonova
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
31
|
Kim R, Kulkarni P, Hannenhalli S. Derepression of Cancer/testis antigens in cancer is associated with distinct patterns of DNA hypomethylation. BMC Cancer 2013; 13:144. [PMID: 23522060 PMCID: PMC3618251 DOI: 10.1186/1471-2407-13-144] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/14/2013] [Indexed: 01/29/2023] Open
Abstract
Background The Cancer/Testis Antigens (CTAs) are a heterogeneous group of proteins whose expression is typically restricted to the testis. However, they are aberrantly expressed in most cancers that have been examined to date. Broadly speaking, the CTAs can be divided into two groups: the CTX antigens that are encoded by the X-linked genes and the non-X CT antigens that are encoded by the autosomes. Unlike the non-X CTAs, the CTX antigens form clusters of closely related gene families and their expression is frequently associated with advanced disease with poorer prognosis. Regardless however, the mechanism(s) underlying their selective derepression and stage-specific expression in cancer remain poorly understood, although promoter DNA demethylation is believed to be the major driver. Methods Here, we report a systematic analysis of DNA methylation profiling data from various tissue types to elucidate the mechanism underlying the derepression of the CTAs in cancer. We analyzed the methylation profiles of 501 samples including sperm, several cancer types, and their corresponding normal somatic tissue types. Results We found strong evidence for specific DNA hypomethylation of CTA promoters in the testis and cancer cells but not in their normal somatic counterparts. We also found that hypomethylation was clustered on the genome into domains that coincided with nuclear lamina-associated domains (LADs) and that these regions appeared to be insulated by CTCF sites. Interestingly, we did not observe any significant differences in the hypomethylation pattern between the CTAs without CpG islands and the CTAs with CpG islands in the proximal promoter. Conclusion Our results corroborate that widespread DNA hypomethylation appears to be the driver in the derepression of CTA expression in cancer and furthermore, demonstrate that these hypomethylated domains are associated with the nuclear lamina-associated domains (LADS). Taken together, our results suggest that wide-spread methylation changes in cancer are linked to derepression of germ-line-specific genes that is orchestrated by the three dimensional organization of the cancer genome.
Collapse
Affiliation(s)
- Robert Kim
- James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
32
|
Kulkarni P, Shiraishi T, Rajagopalan K, Kim R, Mooney SM, Getzenberg RH. Cancer/testis antigens and urological malignancies. Nat Rev Urol 2012; 9:386-96. [PMID: 22710665 DOI: 10.1038/nrurol.2012.117] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cancer/testis antigens (CTAs) are a group of tumour-associated antigens (TAAs) that display normal expression in the adult testis--an immune-privileged organ--but aberrant expression in several types of cancers, particularly in advanced cancers with stem cell-like characteristics. There has been an explosion in CTA-based research since CTAs were first identified in 1991 and MAGE-1 was shown to elicit an autologous cytotoxic T-lymphocyte (CTL) response in a patient with melanoma. The resulting data have not only highlighted a role for CTAs in tumorigenesis, but have also underscored the translational potential of these antigens for detecting and treating many types of cancers. Studies that have investigated the use of CTAs for the clinical management of urological malignancies indicate that these TAAs have potential roles as novel biomarkers, with increased specificity and sensitivity compared to those currently used in the clinic, and therapeutic targets for cancer immunotherapy. Increasing evidence supports the utilization of these promising tools for urological indications.
Collapse
Affiliation(s)
- Prakash Kulkarni
- James Buchanan Brady Urological Institute, 600 North Wolfe Street, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Ghafouri-Fard S, Modarressi MH. Expression of cancer-testis genes in brain tumors: implications for cancer immunotherapy. Immunotherapy 2012; 4:59-75. [PMID: 22150001 DOI: 10.2217/imt.11.145] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cancer-testis (CT) genes have a restricted expression in normal tissues except testis and a wide range of tumor types. Testis is an immune-privileged site as a result of a blood barrier and lack of HLA class I expression on the surface of germ cells. Hence, if testis-specific genes are expressed in other tissues, they can be immunogenic. Expression of some CT genes in a high percentage of brain tumors makes them potential targets for immunotherapy. In addition, expression of CT genes in cancer stem cells may provide special targets for treatment of cancer recurrences and metastasis. The presence of antibodies against different CT genes in patients with advanced tumors has raised the possibility of polyvalent antitumor vaccine application.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran.
| | | |
Collapse
|
34
|
Jackson TR, Salmina K, Huna A, Inashkina I, Jankevics E, Riekstina U, Kalnina Z, Ivanov A, Townsend PA, Cragg MS, Erenpreisa J. DNA damage causes TP53-dependent coupling of self-renewal and senescence pathways in embryonal carcinoma cells. Cell Cycle 2012; 12:430-41. [PMID: 23287532 PMCID: PMC3587444 DOI: 10.4161/cc.23285] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent studies have highlighted an apparently paradoxical link between self-renewal and senescence triggered by DNA damage in certain cell types. In addition, the finding that TP53 can suppress senescence has caused a re-evaluation of its functional role in regulating these outcomes. To investigate these phenomena and their relationship to pluripotency and senescence, we examined the response of the TP53-competent embryonal carcinoma (EC) cell line PA-1 to etoposide-induced DNA damage. Nuclear POU5F1/OCT4A and P21CIP1 were upregulated in the same cells following etoposide-induced G 2M arrest. However, while accumulating in the karyosol, the amount of OCT4A was reduced in the chromatin fraction. Phosphorylated CHK2 and RAD51/γH2AX-positive nuclear foci, overexpression of AURORA B kinase and moderate macroautophagy were evident. Upon release from G 2M arrest, cells with repaired DNA entered mitoses, while the cells with persisting DNA damage remained at this checkpoint or underwent mitotic slippage and gradually senesced. Reduction of TP53 using sh- or si-RNA prevented the upregulation of OCT4A and P21CIP1 and increased DNA damage. Subsequently, mitoses, micronucleation and senescence were all enhanced after TP53 reduction with senescence confirmed by upregulation of CDKN2A/P16INK4A and increased sa-β-galactosidase positivity. Those mitoses enhanced by TP53 silencing were shown to be multicentrosomal and multi-polar, containing fragmented and highly deranged chromosomes, indicating a loss of genome integrity. Together, these data suggest that TP53-dependent coupling of self-renewal and senescence pathways through the DNA damage checkpoint provides a mechanism for how embryonal stem cell-like EC cells safeguard DNA integrity, genome stability and ultimately the fidelity of self-renewal.
Collapse
Affiliation(s)
- Thomas R Jackson
- Cancer Sciences Unit, Southampton University Faculty of Medicine, General Hospital, Southampton, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|