1
|
Erin N, Tavşan E, Haksever S, Yerlikaya A, Riganti C. Targeting BMP-1 enhances anti-tumoral effects of doxorubicin in metastatic mammary cancer: common and distinct features of TGF-β inhibition. Breast Cancer Res Treat 2025; 210:563-574. [PMID: 39792296 PMCID: PMC11953206 DOI: 10.1007/s10549-024-07592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025]
Abstract
PURPOSE Mammary carcinoma is comprised heterogeneous groups of cells with different metastatic potential. 4T1 mammary carcinoma cells metastasized to heart (4THM), liver (4TLM) and brain (4TBM) and demonstrate cancer-stem cell phenotype. Using these cancer cells we found thatTGF-β is the top upstream regulator of metastatic process. In addition, secretion of bone morphogenetic protein 1 (BMP-1), which is crucial for the proteolytic release of TGF-β, was markedly high in metastatic mammary cancer cells compared to non-metastatic cells. Although TGF-β inhibitors are in clinical trials, systemic inhibition of TGF-β may produce heavy side effects. We here hypothesize that inhibition of BMP-1 proteolytic activity inhibits TGF-β activity and induces anti-tumoral effects. METHOD AND RESULTS Effects of specific BMP-1 inhibitor on liver and brain metastatic murine mammary cancer cells (4TLM and 4TBM), as well as on human mammary cancer MDA-MB-231 and MCF-7 cells, were examined and compared with the results of TGF-β inhibition. Inhibition of BMP-1 activity markedly suppressed proliferation of cancer cells and enhanced anti-tumoral effects of doxorubicin. Inhibition of BMP-1 activity but not of TGF-β activity decreased colony and spheroid formation. Differential effects of BMP-1 and TGF-β inhibitors on TGF-β secretion was also observed. CONCLUSIONS These results demonstrated for the first time that the inhibition of BMP-1 activity has therapeutic potential for treatment of metastatic mammary cancer and enhances the anti-tumoral effects of doxorubicin.
Collapse
Affiliation(s)
- Nuray Erin
- Department of Medical Pharmacology, Faculty of Medicine, Akdeniz University, Antalya, Turkey.
| | - Esra Tavşan
- Department of Medical Pharmacology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Seren Haksever
- Department of Medical Pharmacology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Azmi Yerlikaya
- Department of Medical Biology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Chiara Riganti
- Department of Oncology, University of Torino, Via Nizza 44, 10126, Turin, Italy
- Molecular Biotechnology Center "Guido Tarone", Via Nizza 44, 10126, Turin, Italy
- Interdepartmental Center "G.Scansetti" for the Study of Asbestos and Other Toxic Particulates, University of Torino, 10126, Turin, Italy
| |
Collapse
|
2
|
Jank BJ, Schnoell J, Kladnik K, Sparr C, Haas M, Gurnhofer E, Lein AL, Brunner M, Kenner L, Kadletz-Wanke L, Heiduschka G. Targeting TGF beta receptor 1 in head and neck squamous cell carcinoma. Oral Dis 2024; 30:1114-1127. [PMID: 37154295 DOI: 10.1111/odi.14594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/17/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023]
Abstract
OBJECTIVES The transforming growth factor-Beta (TGF-ß) pathway may be involved in the radioresistance of head and neck squamous cell carcinoma (HNSCC). This study analyzed TGF-ß receptor 1 (TGFBR1) expression in HNSCC patients and evaluated the antineoplastic and radiosensitizing effects of vactosertib, a novel TGFBR1 inhibitor, in vitro. MATERIALS AND METHODS TGFBR1 expression was examined in HNSCC patients at the mRNA level in silico and the protein level by immunohistochemistry, including surgical specimens of primary tumors, matched lymph node metastasis, and recurrent disease. Furthermore, a novel small molecule TGFBR1 inhibitor was evaluated in HNSCC cell lines. Finally, an indirect coculture model using patient-derived cancer-associated fibroblasts was applied to mimic the tumor microenvironment. RESULTS Patients with high TGFBR1 mRNA levels showed significantly worse overall survival in silico (OS, p = 0.024). At the protein level, an association between TGFBR1+ tumor and OS was observed for the subgroup with TGFBR1-stroma (p = 0.001). Those results prevailed in multivariable analysis. Inhibition of TGFBR1 showed antineoplastic effects in vitro. In combination with radiation, vactosertib showed synergistic effects. CONCLUSION Our results indicate a high risk of death in tumorTGFBR1+|stromaTGFBR1- expressing patients. In vitro data suggest a potential radiosensitizing effect of TGFBR1 inhibition by vactosertib.
Collapse
Affiliation(s)
- Bernhard J Jank
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Julia Schnoell
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Katharina Kladnik
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Carmen Sparr
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Markus Haas
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Elisabeth Gurnhofer
- Department of Experimental Pathology and Laboratory Animal Pathology Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Alexander L Lein
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Markus Brunner
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Lukas Kenner
- Department of Experimental Pathology and Laboratory Animal Pathology Department of Pathology, Medical University of Vienna, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics, Vienna, Austria
- CBmed GmbH - Center for Biomarker Research in Medicine, Graz, Austria
| | - Lorenz Kadletz-Wanke
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Gregor Heiduschka
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Dai T, Qiu S, Gao X, Zhao C, Ge Z, Yang Y, Tang C, Feng S. Circular RNA circWNK1 inhibits the progression of gastric cancer via regulating the miR-21-3p/SMAD7 axis. Cancer Sci 2024; 115:974-988. [PMID: 38287200 PMCID: PMC10921006 DOI: 10.1111/cas.16067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2023] [Accepted: 12/30/2023] [Indexed: 01/31/2024] Open
Abstract
Gastric cancer (GC) is a highly aggressive malignancy with limited treatment options for advanced-stage patients. Recent studies have highlighted the role of circular RNA (circRNA) as a novel regulator of cancer progression in various malignancies. However, the underlying mechanisms by which circRNA contributes to the development and progression of GC remain poorly understood. In this study, we utilized microarrays and real-time quantitative polymerase chain reaction (qRT-PCR) to identify and validate a downregulated circRNA, hsa_circ_0003251 (referred to as circWNK1), in paired GC and normal tissues. Through a series of in vitro and in vivo gain-of-function and loss-of-function assays, we demonstrated that circWNK1 exerts inhibitory effects on the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of GC cells. Additionally, we discovered that circWNK1 acts as a competitive endogenous RNA (ceRNA) for SMAD7 by sequestering miR-21-3p. Our findings were supported by comprehensive biological information analysis, as well as RNA pull-down, luciferase reporter gene, and western blot assays. Notably, the downregulation of circWNK1 in GC cells resulted in reduced SMAD7 expression, subsequently activating the TGF-β signaling pathway. Collectively, our study reveals that circWNK1 functions as a tumor suppressor in GC by regulating the miR-21-3p/SMAD7-mediated TGF-β signaling pathway. Furthermore, circWNK1 holds promise as a potential biomarker for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Ting Dai
- Department of Gastroenterology, Nantong First People's HospitalAffiliated Hospital 2 of Nantong UniversityNantongChina
| | - Shengkui Qiu
- Department of General Surgery, Nantong First People's HospitalAffiliated Hospital 2 of Nantong UniversityNantongChina
| | - Xuesong Gao
- Department of General Surgery, Nantong First People's HospitalAffiliated Hospital 2 of Nantong UniversityNantongChina
| | - Chengjin Zhao
- Department of Gastroenterology, Nantong First People's HospitalAffiliated Hospital 2 of Nantong UniversityNantongChina
| | - Zhenming Ge
- Department of Gastroenterology, Nantong First People's HospitalAffiliated Hospital 2 of Nantong UniversityNantongChina
| | - Yanmei Yang
- Department of Gastroenterology, Nantong First People's HospitalAffiliated Hospital 2 of Nantong UniversityNantongChina
| | - Chong Tang
- Department of General Surgery, Nantong First People's HospitalAffiliated Hospital 2 of Nantong UniversityNantongChina
- Nantong Clinical Medical CollegeKangda College of Nanjing Medical UniversityNantongChina
| | - Shichun Feng
- Department of General Surgery, Nantong First People's HospitalAffiliated Hospital 2 of Nantong UniversityNantongChina
| |
Collapse
|
4
|
Xu WB, Li S, Zheng CJ, Yang YX, Zhang C, Jin CH. Synthesis and Evaluation of Imidazole Derivatives Bearing Imidazo[2,1-b] [1,3,4]thiadiazole Moiety as Antibacterial Agents. Med Chem 2024; 20:40-51. [PMID: 37767798 DOI: 10.2174/0115734064248204230919074743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/19/2023] [Accepted: 07/27/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Drug-resistant infections kill hundreds of thousands of people globally every year. In previous work, we found that tri-methoxy- and pyridine-substituted imidazoles show strong antibacterial activities. OBJECTIVE The aim of this work was to investigate the antibacterial activities and bacterial resistances of imidazoles bearing an aromatic heterocyclic, alkoxy, or polycyclic moiety on the central ring. METHODS Three series of 2-cyclopropyl-5-(5-(6-methylpyridin-2-yl)-2-substituted-1H-imidazol-4- yl)-6-phenylimidazo[2,1-b][1,3,4]thiadiazoles (13a-e, 14a-d, and 15a-f) were synthesized and their antibacterial activity was evaluated. The structures were confirmed by their 1H NMR, 13C NMR, and HRMS spectra. All the synthesized compounds were screened against Gram-positive, Gramnegative, and multidrug-resistant bacterial strains. RESULTS More than half of the compounds showed moderate or strong antibacterial activity. Among them, compound 13e (MICs = 1-4 μg/mL) showed the strongest activity against Gram-positive and drug-resistant bacteria as well as high selectivity against Gram-negative bacteria. Furthermore, it showed no cytotoxicity against HepG2 cells, even at 100 μM, and no hemolysis at 20 μM. CONCLUSION These results indicate that compound 13e is excellent candicate for further study as a potential antibacterial agent.
Collapse
Affiliation(s)
- Wen-Bo Xu
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji 133002, P.R. China
| | - Siqi Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, P.R. China
| | - Chang-Ji Zheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, P.R. China
| | - Yu-Xuan Yang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, P.R. China
| | - Changhao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, P.R. China
| | - Cheng-Hua Jin
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji 133002, P.R. China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, P.R. China
| |
Collapse
|
5
|
Matsuoka T, Yashiro M. The Role of the Transforming Growth Factor-β Signaling Pathway in Gastrointestinal Cancers. Biomolecules 2023; 13:1551. [PMID: 37892233 PMCID: PMC10605301 DOI: 10.3390/biom13101551] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Transforming growth factor-β (TGF-β) has attracted attention as a tumor suppressor because of its potent growth-suppressive effect on epithelial cells. Dysregulation of the TGF-β signaling pathway is considered to be one of the key factors in carcinogenesis, and genetic alterations affecting TGF-β signaling are extraordinarily common in cancers of the gastrointestinal system, such as hereditary nonpolyposis colon cancer and pancreatic cancer. Accumulating evidence suggests that TGF-β is produced from various types of cells in the tumor microenvironment and mediates extracellular matrix deposition, tumor angiogenesis, the formation of CAFs, and suppression of the anti-tumor immune reaction. It is also being considered as a factor that promotes the malignant transformation of cancer, particularly the invasion and metastasis of cancer cells, including epithelial-mesenchymal transition. Therefore, elucidating the role of TGF-β signaling in carcinogenesis, cancer invasion, and metastasis will provide novel basic insight for diagnosis and prognosis and the development of new molecularly targeted therapies for gastrointestinal cancers. In this review, we outline an overview of the complex mechanisms and functions of TGF-β signaling. Furthermore, we discuss the therapeutic potentials of targeting the TGF-β signaling pathway for gastrointestinal cancer treatment and discuss the remaining challenges and future perspectives on targeting this pathway.
Collapse
Affiliation(s)
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan;
| |
Collapse
|
6
|
Singh S, Gouri V, Samant M. TGF-β in correlation with tumor progression, immunosuppression and targeted therapy in colorectal cancer. Med Oncol 2023; 40:335. [PMID: 37855975 DOI: 10.1007/s12032-023-02204-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
Colorectal cancer (CRC) is a complex malignancy responsible for the second-highest cancer deaths worldwide. TGF-β maintains normal cellular homeostasis by inhibiting the cell cycle and inducing apoptosis, but its elevated level is correlated with colorectal cancer progression, as TGF-β is a master regulator of the epithelial-to-mesenchymal transition, a critical step of metastasis. Tumors, including CRC, use elevated TGF-β levels to avoid immune surveillance by modulating immune cell differentiation, proliferation, and effector function. Presently, the treatment of advanced CRC is mainly based on chemotherapy, with multiple adverse effects. Thus, there is a need to develop alternate tactics because CRC continue to be mostly resistant to the present therapeutic regimen. TGF-β blockade has emerged as a promising therapeutic target in cancer therapy. Blocking TGF-β with phytochemicals and other molecules, such as antisense oligonucleotides, monoclonal antibodies, and bifunctional traps, alone or in combination, may be a safer and more effective way to treat CRC. Furthermore, combination immunotherapy comprising TGF-β blockers and immune checkpoint inhibitors is gaining popularity because both molecules work synergistically to suppress the immune system. Here, we summarize the current understanding of TGF-β as a therapeutic target for managing CRC and its context-dependent tumor-promoting or tumor-suppressing nature.
Collapse
Affiliation(s)
- Sumeet Singh
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India
| | - Vinita Gouri
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India
- Department of Zoology, Kumaun University, Nainital, Uttarakhand, India
| | - Mukesh Samant
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India.
| |
Collapse
|
7
|
Zhang Y, Wang B, Song H, Han M. GLIS3, a novel prognostic indicator of gastric adenocarcinoma, contributes to the malignant biological behaviors of tumor cells via modulating TGF-β1/TGFβR1/Smad1/5 signaling pathway. Cytokine 2023; 170:156342. [PMID: 37651918 DOI: 10.1016/j.cyto.2023.156342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/17/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
GLIS3 is highly expressed in multiple cancers, but it has not been studied in gastric adenocarcinoma (GAC). Based on bioinformatics analysis, the prognostic significance of GLIS3 in GAC was analyzed. GAC cells were transfected with small interfering (si)-GLIS3 and GLIS3 overexpression plasmid as well as treated with SB505124 [an inhibitor for transforming growth factor beta receptor 1 (TGFβR1)] and dorsomorphin [an inhibitor for bone morphogenetic protein receptor 1 (BMPR1)]. The GLIS3 expression was detected using qRT-PCR. The impacts of GLIS3 on the proliferation, invasion and migration of GAC cells were measured using cell function assays. The activation of phosphor (p)-Smad1/5 was tested by immunofluorescence. Western blot was utilized to measure the level of transforming growth factor (TGF)-β1/Smad1/5 signaling pathway-related proteins (TGF-β1, p-Smad1, Smad1, p-Smad5, Smad5). GLIS3 was expressed at high levels in GAC tissues and cell lines and its high expression could indicate the poor prognosis of GAC patients. GLIS3 inhibition declined the proliferative, invasive and migratory capabilities as well as TGF-β1 expression and phosphorylation of Smad1/5 in GAC cells. Overexpressed GLIS3 promoted proliferation, migration, invasion, TGF-β1 expression and Smad1/5 phosphorylation in GAC cells, with SB505124 reversing the effects of overexpressed GLIS3 on proliferation, migration, invasion and Smad1/5 phosphorylation whereas dorsomorphin exhibiting no influence on GLIS3-induced effects. GLIS3 facilitated the malignant phenotype of GAC cells via regulating TGF-β1/TGFβR1/Smad1/5 pathway, which may be a novel prognostic indicator of GAC and provided a target for GAC treatment.
Collapse
Affiliation(s)
- Yue Zhang
- Department of First Operating Room, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247, Beiyuan Street, Jinan City, Shandong Province, 250033, China
| | - Bo Wang
- Neonatal Intensive Care Unit, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247, Beiyuan Street, Jinan City, Shandong Province, 250033, China
| | - Hui Song
- Department of Operating Room, The First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Min Han
- Neonatal Intensive Care Unit, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247, Beiyuan Street, Jinan City, Shandong Province, 250033, China.
| |
Collapse
|
8
|
Chakraborty S, Banerjee S. Multidimensional computational study to understand non-coding RNA interactions in breast cancer metastasis. Sci Rep 2023; 13:15771. [PMID: 37737288 PMCID: PMC10516999 DOI: 10.1038/s41598-023-42904-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
Metastasis is a major breast cancer hallmark due to which tumor cells tend to relocate to regional or distant organs from their organ of origin. This study is aimed to decipher the interaction among 113 differentially expressed genes, interacting non-coding RNAs and drugs (614 miRNAs, 220 lncRNAs and 3241 interacting drugs) associated with metastasis in breast cancer. For an extensive understanding of genetic interactions in the diseased state, a backbone gene co-expression network was constructed. Further, the mRNA-miRNA-lncRNA-drug interaction network was constructed to identify the top hub RNAs, significant cliques and topological parameters associated with differentially expressed genes. Then, the mRNAs from the top two subnetworks constructed are considered for transcription factor (TF) analysis. 39 interacting miRNAs and 1641 corresponding TFs for the eight mRNAs from the subnetworks are also utilized to construct an mRNA-miRNA-TF interaction network. TF analysis revealed two TFs (EST1 and SP1) from the cliques to be significant. TCGA expression analysis of miRNAs and lncRNAs as well as subclass-based and promoter methylation-based expression, oncoprint and survival analysis of the mRNAs are also done. Finally, functional enrichment of mRNAs is also performed. Significant cliques identified in the study can be utilized for identification of newer therapeutic interventions for breast cancer. This work will also help to gain a deeper insight into the complicated molecular intricacies to reveal the potential biomarkers involved with breast cancer progression in future.
Collapse
Affiliation(s)
- Sohini Chakraborty
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Satarupa Banerjee
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
9
|
Fang C, Zhang Z, Han Y, Xu H, Zhu Z, Du Y, Hou P, Yuan L, Shao A, Zhang A, Lou M. URB2 as an important marker for glioma prognosis and immunotherapy. Front Pharmacol 2023; 14:1113182. [PMID: 37033651 PMCID: PMC10080038 DOI: 10.3389/fphar.2023.1113182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction: Glioma is the most common primary brain tumor and primary malignant tumor of the brain in clinical practice. Conventional treatment has not significantly altered the prognosis of patients with glioma. As research into immunotherapy continues, glioma immunotherapy has shown great potential. Methods: The clinical data were acquired from the Chinese Glioma Genome Atlas (CGGA) database and validated by the Gene Expression Omnibus (GEO) database, The Cancer Genome Atlas (TCGA) dataset, Clinical Proteomic Tumor Analysis Consortium (CPTAP) database, and Western blot (WB) analysis. By Cox regression analyses, we examined the association between different variables and overall survival (OS) and its potential as an independent prognostic factor. By constructing a nomogram that incorporates both clinicopathological variables and the expression of URB2, we provide a model for the prediction of prognosis. Moreover, we explored the relationship between immunity and URB2 and elucidated its underlying mechanism of action. Results: Our study shows that URB2 likely plays an oncogenic role in glioma and confirms that URB2 is a prognostic independent risk factor for glioma. Furthermore, we revealed a close relationship between immunity and URB2, which suggests a new approach for the immunotherapy of glioma. Conclusion: URB2 can be used for prognosis prediction and immunotherapy of glioma.
Collapse
Affiliation(s)
- Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeyu Zhang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongquan Han
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengyang Zhu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichao Du
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pinpin Hou
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Anke Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Meiqing Lou
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Sultana TN, Chaity NI, Hasan MM, Shrabonee II, Rivu SF, Aziz MA, Sahaba SA, Apu MNH, Nahid NA, Islam MS, Islam MS. TGFβ1 rs1800469 and SMAD4 rs10502913 polymorphisms and genetic susceptibility to colorectal cancer in Bangladeshi population. Mol Biol Rep 2023; 50:1393-1401. [PMID: 36469259 DOI: 10.1007/s11033-022-08146-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/22/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND Among Bangladeshi males and females, colorectal cancer is the fourth and fifth most prevalent cancer, respectively. Several studies have shown that the transforming growth factor beta 1 (TGFβ1) gene and SMAD4 gene have a great impact on colorectal cancer. OBJECTIVE The present study aimed to investigate whether TGFβ1 rs1800469 and SMAD4 rs10502913 genetic polymorphisms are associated with susceptibility to colorectal cancer in the Bangladeshi population. METHODS AND MATERIALS This case-control study was performed on 167 colorectal cancer patients and 162 healthy volunteers, and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was employed for genotyping. RESULTS In case of SMAD4 rs10502913 G > A polymorphism, the A allele reduced the colorectal cancer risk significantly (adjusted OR 0.35, 95% CI 0.23-0.52, p < 0.001) when compared to the G allele. It was also found that G/A and A/A genotypes of SMAD4 rs10502913 G > A polymorphism reduced the risk of colorectal cancer in comparison to the G/G genotype (G/A vs. G/G: adjusted OR 0.24, 95% CI 0.12-0.45, p < 0.001 and A/A vs. G/G: adjusted OR 0.06, 95% CI 0.02-0.21, p < 0.001). TGFβ1 rs1800469 C > T polymorphism showed an elevated risk of developing colorectal cancer, although the results were not statistically significant. CONCLUSION This study confirms the association of SMAD4 rs10502913 gene polymorphism with colorectal cancer susceptibility among the Bangladeshi population.
Collapse
Affiliation(s)
- Taposhi Nahid Sultana
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh.,Department of Pharmacy, University of Asia Pacific, Dhaka, 1205, Bangladesh.,Department of Pharmacy, Independent University, Bangladesh, Dhaka, 1229, Bangladesh
| | - Nusrat Islam Chaity
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Mehedi Hasan
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Ishrat Islam Shrabonee
- Department of Medicine, Mymensingh Medical College Hospital, Mymensingh, 2200, Bangladesh
| | - Sanzana Fareen Rivu
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh.,Department of Pharmacy, Faculty of Science and Engineering, East West University, Dhaka, 1212, Bangladesh
| | - Md Abdul Aziz
- Department of Pharmacy, Faculty of Pharmacy and Health Sciences, State University of Bangladesh, Dhaka, 1205, Bangladesh.,Bangladesh Pharmacogenomics Research Network (BD-PGRN), Dhaka, Bangladesh
| | - Shaid All Sahaba
- Department of Pharmacy, Faculty of Pharmacy and Health Sciences, State University of Bangladesh, Dhaka, 1205, Bangladesh
| | - Mohd Nazmul Hasan Apu
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Noor Ahmed Nahid
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Faculty of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh. .,Bangladesh Pharmacogenomics Research Network (BD-PGRN), Dhaka, Bangladesh.
| | - Md Saiful Islam
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
11
|
Zheng N, Wen R, Zhou L, Meng Q, Zheng K, Li Z, Cao F, Zhang W. Multiregion single cell analysis reveals a novel subtype of cancer-associated fibroblasts located in the hypoxic tumor microenvironment in colorectal cancer. Transl Oncol 2023; 27:101570. [PMID: 36371957 PMCID: PMC9660844 DOI: 10.1016/j.tranon.2022.101570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The tumor microenvironment (TME) plays a critical role in shaping tumor progression and determining the outcome of the therapeutic response. In this study, we aimed to generate a comprehensive cellular landscape of the colorectal cancer (CRC) TME. METHODS We generated a comprehensive single-cell atlas by collecting CRC cases that have been uploaded to the online database and conducting an in-depth secondary analysis. We then carried out spatial transcriptomic sequencing and multiple immunohistochemical analyses to verify the results of the single-cell analysis. Moreover, we applied our findings to the TCGA database and used tissue microarray (TMA) on CRC tissue specimens to validate clinical prognosis. FINDINGS We re-analyzed the transcriptomes of 23785 cells, revealing a pattern of cell heterogeneity in the tumor region, leading-edge region, and non-tumor region. A subtype of COL11A1+INHBA+ tumor-resident cancer-associated fibroblasts (CAFs) was identified, and marker genes, transcription factors, and tissue-specific expression differences were noted and suggested to have potential roles in promoting cancer. We further confirmed that COL11A1+INHBA+ tumor-resident CAFs are mainly located in the hypoxic TME and we propose that they interact with CD44+ CRC cells via INHBA. Elevation of INHBA in CRC is associated with a poor prognosis. INTERPRETATION Our results demonstrated a single cell landscape of CRC in different regions and identified in hypoxic TME a special subtype of CAFs producing INHBA, which promotes CRC development and correlates with poor prognosis. This special subtype of CAFs is a candidate target for translational research.
Collapse
Affiliation(s)
- Nanxin Zheng
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Rongbo Wen
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Leqi Zhou
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qingying Meng
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Kuo Zheng
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhixuan Li
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China.
| | - Fuao Cao
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Wei Zhang
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
12
|
Manni W, Min W. Signaling pathways in the regulation of cancer stem cells and associated targeted therapy. MedComm (Beijing) 2022; 3:e176. [PMID: 36226253 PMCID: PMC9534377 DOI: 10.1002/mco2.176] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/07/2022] Open
Abstract
Cancer stem cells (CSCs) are defined as a subpopulation of malignant tumor cells with selective capacities for tumor initiation, self-renewal, metastasis, and unlimited growth into bulks, which are believed as a major cause of progressive tumor phenotypes, including recurrence, metastasis, and treatment failure. A number of signaling pathways are involved in the maintenance of stem cell properties and survival of CSCs, including well-established intrinsic pathways, such as the Notch, Wnt, and Hedgehog signaling, and extrinsic pathways, such as the vascular microenvironment and tumor-associated immune cells. There is also intricate crosstalk between these signal cascades and other oncogenic pathways. Thus, targeting pathway molecules that regulate CSCs provides a new option for the treatment of therapy-resistant or -refractory tumors. These treatments include small molecule inhibitors, monoclonal antibodies that target key signaling in CSCs, as well as CSC-directed immunotherapies that harness the immune systems to target CSCs. This review aims to provide an overview of the regulating networks and their immune interactions involved in CSC development. We also address the update on the development of CSC-directed therapeutics, with a special focus on those with application approval or under clinical evaluation.
Collapse
Affiliation(s)
- Wang Manni
- Department of Biotherapy, Cancer Center, West China HospitalSichuan UniversityChengduP. R. China
| | - Wu Min
- Department of Biomedical Sciences, School of Medicine and Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| |
Collapse
|
13
|
Trelford CB, Dagnino L, Di Guglielmo GM. Transforming growth factor-β in tumour development. Front Mol Biosci 2022; 9:991612. [PMID: 36267157 PMCID: PMC9577372 DOI: 10.3389/fmolb.2022.991612] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/15/2022] [Indexed: 11/14/2022] Open
Abstract
Transforming growth factor-β (TGFβ) is a ubiquitous cytokine essential for embryonic development and postnatal tissue homeostasis. TGFβ signalling regulates several biological processes including cell growth, proliferation, apoptosis, immune function, and tissue repair following injury. Aberrant TGFβ signalling has been implicated in tumour progression and metastasis. Tumour cells, in conjunction with their microenvironment, may augment tumourigenesis using TGFβ to induce epithelial-mesenchymal transition, angiogenesis, lymphangiogenesis, immune suppression, and autophagy. Therapies that target TGFβ synthesis, TGFβ-TGFβ receptor complexes or TGFβ receptor kinase activity have proven successful in tissue culture and in animal models, yet, due to limited understanding of TGFβ biology, the outcomes of clinical trials are poor. Here, we review TGFβ signalling pathways, the biology of TGFβ during tumourigenesis, and how protein quality control pathways contribute to the tumour-promoting outcomes of TGFβ signalling.
Collapse
Affiliation(s)
- Charles B. Trelford
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Lina Dagnino
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Oncology, Children’s Health Research Institute and Lawson Health Research Institute, London, ON, Canada
| | - Gianni M. Di Guglielmo
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
14
|
Hirata N, Yamada S, Yanagida S, Ono A, Yasuhiko Y, Kanda Y. Transforming Growth Factor Beta Promotes the Expansion of Cancer Stem Cells <i>via</i> S1PR3 by Ligand-Independent Notch Activation. Biol Pharm Bull 2022; 45:649-658. [DOI: 10.1248/bpb.b22-00112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Naoya Hirata
- Division of Pharmacology, National Institute of Health Sciences
| | - Shigeru Yamada
- Division of Pharmacology, National Institute of Health Sciences
| | - Shota Yanagida
- Division of Pharmaceutical Sciences, Graduated School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Atsushi Ono
- Division of Pharmaceutical Sciences, Graduated School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Yukuto Yasuhiko
- Division of Pharmacology, National Institute of Health Sciences
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences
| |
Collapse
|
15
|
Metastasis prevention: targeting causes and roots. Clin Exp Metastasis 2022; 39:505-519. [PMID: 35347574 DOI: 10.1007/s10585-022-10162-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
The spread of tumor cells from the primary focus, metastasis, is the main cause of cancer mortality. Therefore, anticancer therapy should be focused on the prevention of metastatic disease. Key targets can be conditions in the primary tumor that are favorable for the appearance of metastatic cells and the first steps of the metastatic cascade. Here, we discuss different approaches for targeting metastasis causes (hypoxia, metabolism changes, and tumor microenvironment) and roots (angiogenesis, epithelial-mesenchymal transition, migration, and invasion). Also, we emphasize the challenges of the existing approaches for metastasis prevention and suggest opportunities to overcome them. In conclusion, we highlight the importance of clinical evaluation of the agents showing antimetastatic effects in vivo, especially in patients with early-stage cancers, the identification of metastatic seeds, and the development of therapeutics for their eradication.
Collapse
|
16
|
Baba AB, Rah B, Bhat GR, Mushtaq I, Parveen S, Hassan R, Hameed Zargar M, Afroze D. Transforming Growth Factor-Beta (TGF-β) Signaling in Cancer-A Betrayal Within. Front Pharmacol 2022; 13:791272. [PMID: 35295334 PMCID: PMC8918694 DOI: 10.3389/fphar.2022.791272] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/09/2022] [Indexed: 12/11/2022] Open
Abstract
A ubiquitously expressed cytokine, transforming growth factor-beta (TGF-β) plays a significant role in various ongoing cellular mechanisms. The gain or loss-of-function of TGF-β and its downstream mediators could lead to a plethora of diseases includes tumorigenesis. Specifically, at the early onset of malignancy TGF-β act as tumour suppressor and plays a key role in clearing malignant cells by reducing the cellular proliferation and differentiation thus triggers the process of apoptosis. Subsequently, TGF-β at an advanced stage of malignancy promotes tumorigenesis by augmenting cellular transformation, epithelial-mesenchymal-transition invasion, and metastasis. Besides playing the dual roles, depending upon the stage of malignancy, TGF-β also regulates cell fate through immune and stroma components. This oscillatory role of TGF-β to fight against cancer or act as a traitor to collaborate and crosstalk with other tumorigenic signaling pathways and its betrayal within the cell depends upon the cellular context. Therefore, the current review highlights and understands the dual role of TGF-β under different cellular conditions and its crosstalk with other signaling pathways in modulating cell fate.
Collapse
|
17
|
Wang Z, Zhang Y, Wang H, Wang X, Yu Z, Zhao L. Synthesis and Biological Evaluation of 4-(pyridine-4-oxy)-3-(tetrahydro-2H-pyran-4-yl)-pyrazole Derivatives as Novel, Potent of ALK5 Receptor Inhibitors. Bioorg Med Chem Lett 2022; 61:128552. [DOI: 10.1016/j.bmcl.2022.128552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 12/19/2022]
|
18
|
Rajagopal MU, Bansal S, Kaur P, Jain SK, Altadil T, Hinzman CP, Li Y, Moulton J, Singh B, Bansal S, Chauthe SK, Singh R, Banerjee PP, Mapstone M, Fiandaca MS, Federoff HJ, Unger K, Smith JP, Cheema AK. TGFβ Drives Metabolic Perturbations during Epithelial Mesenchymal Transition in Pancreatic Cancer: TGFβ Induced EMT in PDAC. Cancers (Basel) 2021; 13:cancers13246204. [PMID: 34944824 PMCID: PMC8699757 DOI: 10.3390/cancers13246204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Pancreatic cancer is an aggressive disease with most patients diagnosed at late stages resulting in poor outcomes. While it is known that pancreatic tumor cells undergo epithelial to mesenchymal transition, the metabolic alterations accompanying that transition are not characterized. This study leveraged a metabolomics approach to understand the small molecule and biochemical perturbations that can be targeted for designing strategies for improving outcomes in pancreatic cancer. Abstract Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy wherein a majority of patients present metastatic disease at diagnosis. Although the role of epithelial to mesenchymal transition (EMT), mediated by transforming growth factor beta (TGFβ), in imparting an aggressive phenotype to PDAC is well documented, the underlying biochemical pathway perturbations driving this behaviour have not been elucidated. We used high-resolution mass spectrometry (HRMS) based molecular phenotyping approach in order to delineate metabolic changes concomitant to TGFβ-induced EMT in pancreatic cancer cells. Strikingly, we observed robust changes in amino acid and energy metabolism that may contribute to tumor invasion and metastasis. Somewhat unexpectedly, TGFβ treatment resulted in an increase in intracellular levels of retinoic acid (RA) that in turn resulted in increased levels of extracellular matrix (ECM) proteins including fibronectin (FN) and collagen (COL1). These findings were further validated in plasma samples obtained from patients with resectable pancreatic cancer. Taken together, these observations provide novel insights into small molecule dysregulation that triggers a molecular cascade resulting in increased EMT-like changes in pancreatic cancer cells, a paradigm that can be potentially targeted for better clinical outcomes.
Collapse
Affiliation(s)
- Meena U. Rajagopal
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA; (M.U.R.); (S.B.); (Y.L.); (J.M.); (B.S.); (S.B.)
| | - Shivani Bansal
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA; (M.U.R.); (S.B.); (Y.L.); (J.M.); (B.S.); (S.B.)
| | - Prabhjit Kaur
- Department of Botany, Khalsa College, Amritsar 143002, India; (P.K.); (R.S.)
| | - Shreyans K. Jain
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India;
| | - Tatiana Altadil
- Biomedical Research Group in Gynaecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| | - Charles P. Hinzman
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA; (C.P.H.); (P.P.B.)
| | - Yaoxiang Li
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA; (M.U.R.); (S.B.); (Y.L.); (J.M.); (B.S.); (S.B.)
| | - Joanna Moulton
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA; (M.U.R.); (S.B.); (Y.L.); (J.M.); (B.S.); (S.B.)
| | - Baldev Singh
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA; (M.U.R.); (S.B.); (Y.L.); (J.M.); (B.S.); (S.B.)
| | - Sunil Bansal
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA; (M.U.R.); (S.B.); (Y.L.); (J.M.); (B.S.); (S.B.)
| | - Siddheshwar Kisan Chauthe
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 380054, India;
| | - Rajbir Singh
- Department of Botany, Khalsa College, Amritsar 143002, India; (P.K.); (R.S.)
| | - Partha P. Banerjee
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA; (C.P.H.); (P.P.B.)
| | - Mark Mapstone
- Department of Neurology, University of California, Irvine, CA 92697, USA; (M.M.); (M.S.F.); (H.J.F.)
| | - Massimo S. Fiandaca
- Department of Neurology, University of California, Irvine, CA 92697, USA; (M.M.); (M.S.F.); (H.J.F.)
- Department of Neurological Surgery, University of California, Irvine, CA 92697, USA
| | - Howard J. Federoff
- Department of Neurology, University of California, Irvine, CA 92697, USA; (M.M.); (M.S.F.); (H.J.F.)
| | - Keith Unger
- Radiation Medicine, Med-Star Georgetown University Hospital, Washington, DC 20057, USA;
| | - Jill P. Smith
- Department of Medicine, Georgetown University Medical Center, Washington, DC 20057, USA;
| | - Amrita K. Cheema
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA; (M.U.R.); (S.B.); (Y.L.); (J.M.); (B.S.); (S.B.)
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA; (C.P.H.); (P.P.B.)
- Correspondence: ; Tel.: +1-202-687-2756; Fax: +1-202-687-8860
| |
Collapse
|
19
|
Luo F, Huang Y, Li Y, Zhao X, Xie Y, Zhang Q, Mei J, Liu X. A narrative review of the relationship between TGF-β signaling and gynecological malignant tumor. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1601. [PMID: 34790807 PMCID: PMC8576662 DOI: 10.21037/atm-21-4879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022]
Abstract
Objective This paper reviews the association between transforming growth factor-β (TGF-β) and its receptor and tumor, focusing on gynecological malignant tumors. we hope to provide more methods to help increase the potential of TGF-β signaling targeted treatment of specific cancers. Background The occurrence of a malignant tumor is a complex process of multi-step, multi-gene regulation, and its progression is affected by various components of the tumor cells and/or tumor microenvironment. The occurrence of gynecological diseases not only affect women's health, but also bring some troubles to their normal life. Especially when gynecological malignant tumors occur, the situation is more serious, which will endanger the lives of patients. Due to differences in environmental and economic conditions, not all women have access to assistance and treatment specifically meeting their needs. TGF-β is a multi-potent growth factor that maintains homeostasis in mammals by inhibiting cell growth and promoting apoptosis in vivo. TGF-β signaling is fundamental to inflammatory disease and favors the emergence of tumors, and it also plays an important role in immunosuppression in the tumor microenvironment. In the early stages of the tumor, TGF-β acts as a tumor inhibitor, whereas in advanced tumors, mutations or deletion of the TGF-β signaling core component initiate neogenesis. Methods Literatures about TGF-β and gynecological malignant tumor were extensively reviewed to analyze and discuss. Conclusions We discussed the role of TGF-β signaling in different types of gynecological tumor cells, thus demonstrating that targeted TGF-β signaling may be an effective tumor treatment strategy.
Collapse
Affiliation(s)
- Fangyuan Luo
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China.,Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Yu Huang
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Yilin Li
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Xiaolan Zhao
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Yao Xie
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Qianwen Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Jie Mei
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Xinghui Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Babyshkina N, Dronova T, Erdyneeva D, Gervas P, Cherdyntseva N. Role of TGF-β signaling in the mechanisms of tamoxifen resistance. Cytokine Growth Factor Rev 2021; 62:62-69. [PMID: 34635390 DOI: 10.1016/j.cytogfr.2021.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 12/24/2022]
Abstract
The transforming growth factor beta (TGF-β) signaling pathway plays complex role in the regulation of cell proliferation, apoptosis and differentiation in breast cancer. TGF-β activation can lead to multiple cellular responses mediating the drug resistance evolution, including the resistance to antiestrogens. Tamoxifen is the most commonly prescribed antiestrogen that functionally involved in regulation of TGF-β activity. In this review, we focus on the role of TGF-β signaling in the mechanisms of tamoxifen resistance, including its interaction with estrogen receptors alfa (ERα) pathway and breast cancer stem cells (BCSCs). We summarize the current reported data regarding TGF-β signaling components as markers of tamoxifen resistance and review current approaches to overcoming tamoxifen resistance based on studies of TGF-β signaling.
Collapse
Affiliation(s)
- Nataliya Babyshkina
- Department of Molecular Oncology and Immunology, Саncеr Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russian Federation; Siberian State Medical University, Tomsk 634050, Russian Federation.
| | - Tatyana Dronova
- Department of Biology of Tumor Progression, Саncеr Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russian Federation
| | - Daiana Erdyneeva
- Department of Molecular Oncology and Immunology, Саncеr Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russian Federation
| | - Polina Gervas
- Department of Molecular Oncology and Immunology, Саncеr Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russian Federation
| | - Nadejda Cherdyntseva
- Department of Molecular Oncology and Immunology, Саncеr Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russian Federation
| |
Collapse
|
21
|
Tafesse TB, Bule MH, Khan F, Abdollahi M, Amini M. Developing Novel Anticancer Drugs for Targeted Populations: An Update. Curr Pharm Des 2021; 27:250-262. [PMID: 33234093 DOI: 10.2174/1381612826666201124111748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Due to higher failure rates, lengthy time and high cost of the traditional de novo drug discovery and development process, the rate of opportunity to get new, safe and efficacious drugs for the targeted population, including pediatric patients with cancer, becomes sluggish. OBJECTIVES This paper discusses the development of novel anticancer drugs focusing on the identification and selection of targeted anticancer drug development for the targeted population. METHODS Information presented in this review was obtained from different databases, including PUBMED, SCOPUS, Web of Science, and EMBASE. Various keywords were used as search terms. RESULTS The pharmaceutical companies currently are executing drug repurposing as an alternative means to accelerate the drug development process that reduces the risk of failure, time and cost, which take 3-12 years with almost 25% overall probability of success as compared to de novo drug discovery and development process (10- 17 years) which has less than 10% probability of success. An alternative strategy to the traditional de novo drug discovery and development process, called drug repurposing, is also presented. CONCLUSION Therefore, to continue with the progress of developing novel anticancer drugs for the targeted population, identification and selection of target to specific disease type is important. Considering the aspects of the age of the patient and the disease stages such as each cancer types are different when we study the disease at a molecular level. Drug repurposing technique becomes an influential alternative strategy to discover and develop novel anticancer drug candidates.
Collapse
Affiliation(s)
- Tadesse B Tafesse
- Department of Medicinal Chemistry, School of Pharmacy, Drug Design and Development Research Center and The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammed H Bule
- Department of Medicinal Chemistry, School of Pharmacy, Drug Design and Development Research Center and The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazlullah Khan
- Department of Allied Health Sciences, Bashir Institute of Health Sciences, Bhara Kahu Islamabad, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, School of Pharmacy, Drug Design and Development Research Center and The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Kumari A, Shonibare Z, Monavarian M, Arend RC, Lee NY, Inman GJ, Mythreye K. TGFβ signaling networks in ovarian cancer progression and plasticity. Clin Exp Metastasis 2021; 38:139-161. [PMID: 33590419 PMCID: PMC7987693 DOI: 10.1007/s10585-021-10077-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Epithelial ovarian cancer (EOC) is a leading cause of cancer-related death in women. Late-stage diagnosis with significant tumor burden, accompanied by recurrence and chemotherapy resistance, contributes to this poor prognosis. These morbidities are known to be tied to events associated with epithelial-mesenchymal transition (EMT) in cancer. During EMT, localized tumor cells alter their polarity, cell-cell junctions, cell-matrix interactions, acquire motility and invasiveness and an exaggerated potential for metastatic spread. Key triggers for EMT include the Transforming Growth Factor-β (TGFβ) family of growth factors which are actively produced by a wide array of cell types within a specific tumor and metastatic environment. Although TGFβ can act as either a tumor suppressor or promoter in cancer, TGFβ exhibits its pro-tumorigenic functions at least in part via EMT. TGFβ regulates EMT both at the transcriptional and post-transcriptional levels as outlined here. Despite recent advances in TGFβ based therapeutics, limited progress has been seen for ovarian cancers that are in much need of new therapeutic strategies. Here, we summarize and discuss several recent insights into the underlying signaling mechanisms of the TGFβ isoforms in EMT in the unique metastatic environment of EOCs and the current therapeutic interventions that may be relevant.
Collapse
Affiliation(s)
- Asha Kumari
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Zainab Shonibare
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Mehri Monavarian
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Rebecca C Arend
- Department of Obstetrics and Gynecology-Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Nam Y Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Gareth J Inman
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Karthikeyan Mythreye
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA.
| |
Collapse
|
23
|
Abdel Mouti M, Pauklin S. TGFB1/INHBA Homodimer/Nodal-SMAD2/3 Signaling Network: A Pivotal Molecular Target in PDAC Treatment. Mol Ther 2021; 29:920-936. [PMID: 33429081 PMCID: PMC7934636 DOI: 10.1016/j.ymthe.2021.01.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/17/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer remains a grueling disease that is projected to become the second-deadliest cancer in the next decade. Standard treatment of pancreatic cancer is chemotherapy, which mainly targets the differentiated population of tumor cells; however, it paradoxically sets the roots of tumor relapse by the selective enrichment of intrinsically chemoresistant pancreatic cancer stem cells that are equipped with an indefinite capacity for self-renewal and differentiation, resulting in tumor regeneration and an overall anemic response to chemotherapy. Crosstalk between pancreatic tumor cells and the surrounding stromal microenvironment is also involved in the development of chemoresistance by creating a supportive niche, which enhances the stemness features and tumorigenicity of pancreatic cancer cells. In addition, the desmoplastic nature of the tumor-associated stroma acts as a physical barrier, which limits the intratumoral delivery of chemotherapeutics. In this review, we mainly focus on the transforming growth factor beta 1 (TGFB1)/inhibin subunit beta A (INHBA) homodimer/Nodal-SMAD2/3 signaling network in pancreatic cancer as a pivotal central node that regulates multiple key mechanisms involved in the development of chemoresistance, including enhancement of the stem cell-like properties and tumorigenicity of pancreatic cancer cells, mediating cooperative interactions between pancreatic cancer cells and the surrounding stroma, as well as regulating the deposition of extracellular matrix proteins within the tumor microenvironment.
Collapse
Affiliation(s)
- Mai Abdel Mouti
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Headington, University of Oxford, Oxford OX3 7LD, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Headington, University of Oxford, Oxford OX3 7LD, UK.
| |
Collapse
|
24
|
Secchi C, Benaglio P, Mulas F, Belli M, Stupack D, Shimasaki S. FOXO1 mitigates the SMAD3/FOXL2 C134W transcriptomic effect in a model of human adult granulosa cell tumor. J Transl Med 2021; 19:90. [PMID: 33639972 PMCID: PMC7913442 DOI: 10.1186/s12967-021-02754-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/16/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Adult granulosa cell tumor (aGCT) is a rare type of stromal cell malignant cancer of the ovary characterized by elevated estrogen levels. aGCTs ubiquitously harbor a somatic mutation in FOXL2 gene, Cys134Trp (c.402C < G); however, the general molecular effect of this mutation and its putative pathogenic role in aGCT tumorigenesis is not completely understood. We previously studied the role of FOXL2C134W, its partner SMAD3 and its antagonist FOXO1 in cellular models of aGCT. METHODS In this work, seeking more comprehensive profiling of FOXL2C134W transcriptomic effects, we performed an RNA-seq analysis comparing the effect of FOXL2WT/SMAD3 and FOXL2C134W/SMAD3 overexpression in an established human GC line (HGrC1), which is not luteinized, and bears normal alleles of FOXL2. RESULTS Our data shows that FOXL2C134W/SMAD3 overexpression alters the expression of 717 genes. These genes include known and novel FOXL2 targets (TGFB2, SMARCA4, HSPG2, MKI67, NFKBIA) and are enriched for neoplastic pathways (Proteoglycans in Cancer, Chromatin remodeling, Apoptosis, Tissue Morphogenesis, Tyrosine Kinase Receptors). We additionally expressed the FOXL2 antagonistic Forkhead protein, FOXO1. Surprisingly, overexpression of FOXO1 mitigated 40% of the altered genome-wide effects specifically related to FOXL2C134W, suggesting it can be a new target for aGCT treatment. CONCLUSIONS Our transcriptomic data provide novel insights into potential genes (FOXO1 regulated) that could be used as biomarkers of efficacy in aGCT patients.
Collapse
Affiliation(s)
- Christian Secchi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Paola Benaglio
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Francesca Mulas
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Martina Belli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Dwayne Stupack
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Shunichi Shimasaki
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
25
|
Chandra Jena B, Kanta Das C, Banerjee I, Das S, Bharadwaj D, Majumder R, Mandal M. Paracrine TGF-β1 from breast cancer contributes to chemoresistance in cancer associated fibroblasts via upregulation of the p44/42 MAPK signaling pathway. Biochem Pharmacol 2021; 186:114474. [PMID: 33607074 DOI: 10.1016/j.bcp.2021.114474] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022]
Abstract
Conventionally, Cancer-associated fibroblasts (CAFs) are considered as an inducer of chemoresistance in cancer cells. However, the underlying mechanism by which carcinomas induce chemoresistance in CAFs through tumor-stroma cross-talk is largely unknown. Henceforth, we uncovered a network of paracrine signals between carcinoma and CAFs that drives chemoresistance in CAFs. Acquired tamoxifen and 5-Fu resistant cell lines MCF-7 and MDA-MB-468 respectively showed higher apoptotic resistance compared to the parental cell. Besides, chemoresistant breast cancer cells showed overexpression of TGF-β1 and have the higher potential to induce CAF phenotype in the normal dermal fibroblasts in a paracrine manner through the TGF-β1 cytokine, compared to their parental cell. Moreover, the chemoresistant cancer cells augmented the EMT markers with a reduction of E-cadherin in the CAFs. Importantly we found out that the TGF- β1 enriched conditioned media from both of the resistant cells triggered chemoresistance in the CAFs by p44/42 MAPK signaling axis. Mechanistically, pharmacological and genetic blockade of TGF-β1 inhibits p44/42 MAPK activation with the subsequent restoration of chemosensitivity in the CAFs. Altogether we ascertained that chemoresistant cancer cells have tremendous potential to modulate the CAFs compared to the parental counterpart. Targeting TGF-β1 and p44/42 MAPK signaling in the future may help to abrogate the chemoresistance in the CAFs.
Collapse
Affiliation(s)
- Bikash Chandra Jena
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Chandan Kanta Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Indranil Banerjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Subhayan Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Deblina Bharadwaj
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Ranabir Majumder
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India.
| |
Collapse
|
26
|
Ma D, Qiao L, Guo B. Smad7 suppresses melanoma lung metastasis by impairing Tregs migration to the tumor microenvironment. Am J Transl Res 2021; 13:719-731. [PMID: 33594321 PMCID: PMC7868836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Transforming growth factor β (TGF-β) signaling plays critical roles in both physiological and pathological conditions. In the tumor microenvironment, TGF-β are well demonstrated as a tumor inducer, which also promote tumor growth and metastasis. SMAD family is an important TGF-β signalling transducer, which consists of receptor-regulated SMADs (R-SMADs), common-mediator SMADs (co-SMADs), and inhibitory SMADs (I-SMADs). Smad7 is one of the I-SMADs which has been proved to block TGF-β signalling transduction in both tumor cells and immune cells. Accumulated evidence has suggested SMAD7 acted as a tumor suppressor in various cancer types, such as colorectal cancer, pancreatic cancer and skin melanoma, etc. However, the role of SMAD7 in melanoma lung metastasis has not been well studied. Here, we first investigated the role of SMAD7 on tumor cell viability by overexpressing SMAD7 in murine melanoma cell line B16-F10. Our results showed that SMAD7 overexpression slightly impaired B16-F10 cells growth, promoted cell apoptosis and arrested the cell cycle at S phase. In vivo study showed that SMAD7 overexpression inhibited B16-F10 lung metastasis. Further mechanism study suggested that SMAD7 promoted T cells activation by decreasing regulatory T cells (Tregs) infiltrating into the tumor microenvironment. In summary, our results proved that tumor cell derived SMAD7 inhibited melanoma lung metastasis by impairing the migration capacity of Tregs.
Collapse
Affiliation(s)
- Deliang Ma
- Department of Oncology, Linyi Central HospitalLinyi 276400, Shandong, China
| | - Li Qiao
- Department of Oncology, Linyi Central HospitalLinyi 276400, Shandong, China
| | - Bingnan Guo
- Jiangsu Institute of Health Emergency, Xuzhou Medical UniversityXuzhou, Jiangsu, China
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical UniversityXuzhou 221000, Jiangsu, China
| |
Collapse
|
27
|
Rosas E, Roberts JT, O’Neill KI, Christenson JL, Williams MM, Hanamura T, Spoelstra NS, Vahrenkamp JM, Gertz J, Richer JK. A Positive Feedback Loop Between TGFβ and Androgen Receptor Supports Triple-negative Breast Cancer Anoikis Resistance. Endocrinology 2021; 162:6027912. [PMID: 33294922 PMCID: PMC7806239 DOI: 10.1210/endocr/bqaa226] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Indexed: 12/13/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype with peak recurrence as metastatic disease within the first few years of diagnosis. Androgen receptor (AR) expression is increased in anchorage-independent cells in TNBC preclinical models. Both AR knockdown and inhibition lead to reduced TNBC invasion in vitro, reduced tumorigenicity, and less recurrence in vivo in preclinical models. Transforming growth factor β (TGFβ) pathway gene signatures also increased during anchorage-independent survival both in vitro and in vivo in preclinical models and in circulating tumor cells (CTCs) from patients during emergence of chemo resistant disease. We hypothesized that a positive loop between AR and TGFβ signaling facilitates TNBC anchorage-independent survival. We find that multiple components of the TGFβ pathway, including TGFβ1 and 3, as well as pathway activity measured by nuclear localization and transcriptional activity of phosphorylated Smad3, are enhanced in anchorage-independent conditions. Further, exogenous TGFβ increased AR protein while TGFβ inhibition decreased AR and TNBC viability, particularly under anchorage-independent culture conditions. ChIP-seq experiments revealed AR binding to TGFB1 and SMAD3 regulatory regions in MDA-MB-453 cells. In clinical datasets, TGFB3 and AR positively correlate and high expression of both genes together corresponded to significantly worse recurrence-free and overall survival in both ER-negative and basal-like breast cancer. Finally, inhibiting both AR and TGFβ decreased cell survival, particularly under anchorage-independent conditions. These findings warrant further investigations into whether combined inhibition of AR and TGFβ pathways might decrease metastatic recurrence rates and mortality from TNBC.
Collapse
Affiliation(s)
- Emmanuel Rosas
- Molecular Biology Graduate Program, Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Justin T Roberts
- Molecular Biology Graduate Program, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kathleen I O’Neill
- Molecular Biology Graduate Program, Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jessica L Christenson
- Molecular Biology Graduate Program, Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michelle M Williams
- Molecular Biology Graduate Program, Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Toru Hanamura
- Molecular Biology Graduate Program, Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nicole S Spoelstra
- Molecular Biology Graduate Program, Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jeffery M Vahrenkamp
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jennifer K Richer
- Molecular Biology Graduate Program, Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Correspondence: Jennifer K. Richer, Department of Pathology, University of Colorado Anschutz Medical Campus, 12800 E 19th Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
28
|
Yu T, Tang Q, Chen X, Fan W, Zhou Z, Huang W, Liang F. TGF-β1 and IL-17A comediate the protumor phenotype of neutrophils to regulate the epithelial-mesenchymal transition in oral squamous cell carcinoma. J Oral Pathol Med 2021; 50:353-361. [PMID: 33164231 DOI: 10.1111/jop.13122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND The role of neutrophils in cancer has been the subject of intense research in recent years. One major theme that has emerged is that not all neutrophils are equal in the field of cancer. However, it remains unclear what induces the protumorigenic or antitumorigenic phenotype predominate in tumor. Therefore, this study aimed to investigate what factors induce which of these two phenotypes of neutrophil predominate in OSCC and to explore the role of neutrophil polarization on tumor. METHODS Immunofluorescence and immunohistochemistry staining were used to observe neutrophil infiltration and the expression of TGF-β1 and IL-17A in OSCC tissues. Recombinant human TGF-β1 and IL-17A were used to modulate neutrophil polarization. OSCC cell (SCC9 and SAS cell lines) migration, proliferation, invasion, stemness, and EMT were analyzed after treatment with conditioned medium from TGF-β1/IL-17A-activated neutrophils. The levels of neutrophil-associated markers in OSCC tissues and peripheral blood were examined by immunofluorescence staining and quantitative PCR. RESULTS Our data showed neutrophil infiltration and elevated expression of TGF-β1 and IL-17A in OSCC tissues. The cooperative effect of TGF-β1 and IL-17A promoted neutrophils to take on a protumor phenotype in vitro. TGF-β1/IL-17A-activated neutrophils remarkably induced cell migration, proliferation, invasion, stemness, and EMT in OSCC cells. Additionally, OSCC patients showed increased expression of MMP9 and decreased expression of CCL3 in circulating neutrophils. CONCLUSION TGF-β1 and IL-17A cooperated to augment the protumor functions of neutrophils, thereby promoting the progression of OSCC cells. In addition, the combination of neutrophil-associated markers may serve as a predictive method to screen for patients with OSCC.
Collapse
Affiliation(s)
- Tao Yu
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| | - Qinchao Tang
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| | - Xueru Chen
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| | - Wan Fan
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| | - Zhuoqian Zhou
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| | - Wanqian Huang
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Feixin Liang
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| |
Collapse
|
29
|
Identification of Potential Serum Protein Biomarkers and Pathways for Pancreatic Cancer Cachexia Using an Aptamer-Based Discovery Platform. Cancers (Basel) 2020; 12:cancers12123787. [PMID: 33334063 PMCID: PMC7765482 DOI: 10.3390/cancers12123787] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/20/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Patients with pancreatic cancer and other advanced cancers suffer from progressive weight loss that reduces treatment response and quality of life and increases treatment toxicity and mortality. Effective interventions to prevent such weight loss, known as cachexia, require molecular markers to diagnose, stage, and monitor cachexia. No such markers are currently validated or in clinical use. This study used a discovery platform to measure changes in plasma proteins in patients with pancreatic cancer compared with normal controls. We found proteins specific to pancreatic cancer and cancer stage, as well as proteins that correlate with cachexia. These include some previously known proteins along with novel ones and implicates both well-known and new molecular mechanisms. Thus, this study provides novel insights into the molecular processes underpinning cancer and cachexia and affords a basis for future validation studies in larger numbers of patients with pancreatic cancer and cachexia. Abstract Patients with pancreatic ductal adenocarcinoma (PDAC) suffer debilitating and deadly weight loss, known as cachexia. Development of therapies requires biomarkers to diagnose, and monitor cachexia; however, no such markers are in use. Via Somascan, we measured ~1300 plasma proteins in 30 patients with PDAC vs. 11 controls. We found 60 proteins specific to local PDAC, 46 to metastatic, and 67 to presence of >5% cancer weight loss (FC ≥ |1.5|, p ≤ 0.05). Six were common for cancer stage (Up: GDF15, TIMP1, IL1RL1; Down: CCL22, APP, CLEC1B). Four were common for local/cachexia (C1R, PRKCG, ELANE, SOST: all oppositely regulated) and four for metastatic/cachexia (SERPINA6, PDGFRA, PRSS2, PRSS1: all consistently changed), suggesting that stage and cachexia status might be molecularly separable. We found 71 proteins that correlated with cachexia severity via weight loss grade, weight loss, skeletal muscle index and radiodensity (r ≥ |0.50|, p ≤ 0.05), including some known cachexia mediators/markers (LEP, MSTN, ALB) as well as novel proteins (e.g., LYVE1, C7, F2). Pathway, correlation, and upstream regulator analyses identified known (e.g., IL6, proteosome, mitochondrial dysfunction) and novel (e.g., Wnt signaling, NK cells) mechanisms. Overall, this study affords a basis for validation and provides insights into the processes underpinning cancer cachexia.
Collapse
|
30
|
Babapoor-Farrokhran S, Tarighati Rasekhi R, Gill D, Alzubi J, Mainigi SK. How transforming growth factor contributes to atrial fibrillation? Life Sci 2020; 266:118823. [PMID: 33309721 DOI: 10.1016/j.lfs.2020.118823] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022]
Abstract
Atrial fibrillation (AF) is the most common clinically significant arrhythmia. There are four fundamental pathophysiological mechanisms of AF including: electrical remodeling, structural remodeling, autonomic nervous system changes, and Ca2+ handling abnormalities. The transforming growth factor-β (TGF-β) superfamily are cytokines that have the ability to regulate numerous cell functions including proliferation, differentiation, apoptosis, epithelial-mesenchymal transition, and production of extracellular matrix. During the last decade numerous studies have demonstrated that TGF-β affects the architecture of the heart. TGF-β1 has been shown to be involved in the development and propagation of atrial fibrillation (AF). Investigators have studied TGF-β signaling in AF with the aim of discovering potential therapeutic agents. In this review we discuss the role of TGF-β in atrial fibrillation and specifically its role in atrial structural and electrical remodeling.
Collapse
Affiliation(s)
| | - Roozbeh Tarighati Rasekhi
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Deanna Gill
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jafar Alzubi
- Department of Medicine, Division of Cardiology, Einstein Medical Center, Philadelphia, PA 19141, USA
| | - Sumeet K Mainigi
- Department of Medicine, Division of Cardiology, Einstein Medical Center, Philadelphia, PA 19141, USA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
31
|
Yetkin-Arik B, Kastelein AW, Klaassen I, Jansen CHJR, Latul YP, Vittori M, Biri A, Kahraman K, Griffioen AW, Amant F, Lok CAR, Schlingemann RO, van Noorden CJF. Angiogenesis in gynecological cancers and the options for anti-angiogenesis therapy. Biochim Biophys Acta Rev Cancer 2020; 1875:188446. [PMID: 33058997 DOI: 10.1016/j.bbcan.2020.188446] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023]
Abstract
Angiogenesis is required in cancer, including gynecological cancers, for the growth of primary tumors and secondary metastases. Development of anti-angiogenesis therapy in gynecological cancers and improvement of its efficacy have been a major focus of fundamental and clinical research. However, survival benefits of current anti-angiogenic agents, such as bevacizumab, in patients with gynecological cancer, are modest. Therefore, a better understanding of angiogenesis and the tumor microenvironment in gynecological cancers is urgently needed to develop more effective anti-angiogenic therapies, either or not in combination with other therapeutic approaches. We describe the molecular aspects of (tumor) blood vessel formation and the tumor microenvironment and provide an extensive clinical overview of current anti-angiogenic therapies for gynecological cancers. We discuss the different phenotypes of angiogenic endothelial cells as potential therapeutic targets, strategies aimed at intervention in their metabolism, and approaches targeting their (inflammatory) tumor microenvironment.
Collapse
Affiliation(s)
- Bahar Yetkin-Arik
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands; Department of Medical Biology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Arnoud W Kastelein
- Department of Obstetrics and Gynaecology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands.
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands; Department of Medical Biology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Charlotte H J R Jansen
- Department of Obstetrics and Gynaecology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Yani P Latul
- Department of Obstetrics and Gynaecology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Miloš Vittori
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Aydan Biri
- Department of Obstetrics and Gynecology, Koru Ankara Hospital, Ankara, Turkey
| | - Korhan Kahraman
- Department of Obstetrics and Gynecology, Bahcesehir University School of Medicine, Istanbul, Turkey
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Frederic Amant
- Department of Oncology, KU Leuven, Leuven, Belgium; Center for Gynaecological Oncology, Antoni van Leeuwenhoek, Amsterdam, the Netherlands; Center for Gynaecological Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Center for Gynaecological Oncology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Christianne A R Lok
- Center for Gynaecological Oncology, Antoni van Leeuwenhoek, Amsterdam, the Netherlands
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands; Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Cornelis J F van Noorden
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands; Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
32
|
Verma P, Mittal P, Singh A, Singh IK. New Entrants into Clinical Trials for Targeted Therapy of Breast Cancer: An Insight. Anticancer Agents Med Chem 2020; 19:2156-2176. [PMID: 31656157 DOI: 10.2174/1871520619666191018172926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 02/08/2023]
Abstract
Breast cancer is too complex with various different molecular alterations involved in its pathogenesis and progression. Over the decade, we have seen a surge in the development of drugs for bimolecular targets and for the signal transduction pathways involved in the treatment line of breast cancer. These drugs, either alone or in combination with conventional treatments like chemotherapy, hormone therapy and radiotherapy, will help oncologists to get a better insight and do the needful treatment. These novel therapies bring various challenges along with them, which include the dosage selection, patient selection, schedule of treatment and weighing of clinical benefits over side effects. In this review, we highlight the recently studied target molecules that have received indications in breast carcinoma, both in the localized and in an advanced state and about their inhibitors which are in clinical development which can give the immense potential to clinical care in the near future.
Collapse
Affiliation(s)
- Priyanka Verma
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India
| | - Pooja Mittal
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, New Delhi, 110007, India.,Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Indrakant K Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India.,Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| |
Collapse
|
33
|
Xu B, Cui Y, Wang W, Li S, Lyu C, Wang S, Bao W, Wang H, Qin M, Liu Z, Wei W, Liu H. Immunomodulation-Enhanced Nanozyme-Based Tumor Catalytic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003563. [PMID: 32627937 DOI: 10.1002/adma.202003563] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Indexed: 05/23/2023]
Abstract
Nanozyme-based tumor catalytic therapy has attracted widespread attention in recent years. However, its therapeutic outcomes are diminished by many factors in the tumor microenvironment (TME), such as insufficient endogenous hydrogen peroxide (H2 O2 ) concentration, hypoxia, and immunosuppressive microenvironment. Herein, an immunomodulation-enhanced nanozyme-based tumor catalytic therapy strategy is first proposed to achieve the synergism between nanozymes and TME regulation. TGF-β inhibitor (TI)-loaded PEGylated iron manganese silicate nanoparticles (IMSN) (named as IMSN-PEG-TI) are constructed to trigger the therapeutic modality. The results show that IMSN nanozyme exhibits both intrinsic peroxidase-like and catalase-like activities under acidic TME, which can decompose H2 O2 into hydroxyl radicals (•OH) and oxygen (O2 ), respectively. Besides, it is demonstrated that both IMSN and TI can regulate the tumor immune microenvironment, resulting in macrophage polarization from M2 to M1, and thus inducing the regeneration of H2 O2 , which can promote catalytic activities of IMSN nanozyme. The potent antitumor effect of IMSN-PEG-TI is proved by in vitro multicellular tumor spheroids (MCTS) and in vivo CT26-tumor-bearing mice models. It is believed that the immunomodulation-enhanced nanozyme-based tumor treatment strategy is a promising tool to kill cancer cells.
Collapse
Affiliation(s)
- Bolong Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yan Cui
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weiwei Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shanshan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chengliang Lyu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weier Bao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongyu Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Meng Qin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhen Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
34
|
Oxidative stress and TGF-β1 induction by metformin in MCF-7 and MDA-MB-231 human breast cancer cells are accompanied with the downregulation of genes related to cell proliferation, invasion and metastasis. Pathol Res Pract 2020; 216:153135. [PMID: 32853957 DOI: 10.1016/j.prp.2020.153135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022]
Abstract
High doses of metformin induces oxidative stress (OS) and transforming growth factor β1 (TGF-β1) in breast cancer cells, which was associated with increased cancer stem cell population, local invasion, liver metastasis and treatment resistance. Considering the impact of TGF- β1 and OS in breast cancer and the interrelation between these two pathways, the objective of this work was to investigate the effects of consecutive metformin treatments, at a non-cytotoxic dosage, in TGF- β1 targets in MCF-7 and MDA-MB-231 cells. Cells were exposed to 6 μM of metformin for seven consecutive passages. Samples were collected to immunocytochemistry (evaluation of p53, Nf-кB, NRF2 and TGF-β1), biochemical (determination of lipoperoxidation, total thiols and nitric oxide/peroxynitrite levels) and molecular biology analyzes (microarray and Real-time quantitative array PCR). Microarray analysis confirmed alterations in genes related to OS and TGF-β1. Treatment interfered in several TGF-β1 target-genes. Metformin upregulated genes involved in OS generation and apoptosis, and downregulated genes associated with metastasis and epithelial mesenchymal transition in MCF-7 cells. In MDA-MB-231 cells, metformin downregulated genes involved with cell invasion, viability and proliferation. The results shows that even a non-cytotoxic dosage of metformin can promote a less aggressive profile of gene expression in breast cancer cells.
Collapse
|
35
|
Elsafadi M, Manikandan M, Almalki S, Mahmood A, Shinwari T, Vishnubalaji R, Mobarak M, Alfayez M, Aldahmash A, Kassem M, Alajez NM. Transgelin is a poor prognostic factor associated with advanced colorectal cancer (CRC) stage promoting tumor growth and migration in a TGFβ-dependent manner. Cell Death Dis 2020; 11:341. [PMID: 32393769 PMCID: PMC7214449 DOI: 10.1038/s41419-020-2529-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is the fourth most common cancer type globally. Investigating the signaling pathways that maintain cancer cell phenotype can identify new biomarkers for targeted therapy. Aberrant transforming growth factor-β (TGFβ) signaling has been implicated in CRC progression, however, the exact mechanism by which TGFβ exerts its function is still being unraveled. Herein, we investigated TAGLN expression, prognostic value, and its regulation by TGFβ in CRC. While TAGLN was generally found to be downregulated in CRC, elevated expression of TAGLN was associated with advanced CRC stage and predicted poor overall survival (hazard ratio (HR) = 1.8, log-rank test P-value = 0.014) and disease-free survival (HR = 1.6, log-rank test P-value = 0.046), hence implicating TAGLN as poor prognostic factor in CRC. Forced expression of TAGLN was associated with enhanced CRC cell proliferation, clonogenic growth, cell migration and in vivo tumor formation in immunocompromised mice, while targeted depletion of TAGLN exhibited opposing biological effects. Global gene expression profiling of TAGLN-overexpressing or TAGLN-deficient CRC cell lines revealed deregulation of multiple cancer-related genes and signaling pathways. Transmission electron microscopy (TEM) revealed ultrastructural changes due to loss of TAGLN, including disruption of actin cytoskeleton organization and aberrant actin filament distribution. Hierarchical clustering, principle component, and ingenuity pathway analyses revealed distinct molecular profile associated with TAGLNhigh CRC patients with remarkable activation of a number of mechanistic networks, including SMARCA4, TGFβ1, and P38 MAPK. The P38 MAPK was the top predicted upstream regulator network promoting cell movement through regulation of several intermediate molecules, including TGFβ1. Concordantly, functional categories associated with cellular movement and angiogenesis were also enriched in TAGLNhigh CRC, supporting a model for the molecular mechanisms linking TGFβ-induced upregulation of TAGLN and CRC tumor progression and suggesting TAGLN as potential prognostic marker associated with advanced CRC pathological stage.
Collapse
Affiliation(s)
- Mona Elsafadi
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Muthurangan Manikandan
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Sami Almalki
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Amer Mahmood
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Tasneem Shinwari
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Radhakrishnan Vishnubalaji
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Mohammad Mobarak
- Department of Histopathology, College of Medicine, King Saud University, Riyadh, 11461, Saudi Arabia
| | - Musaad Alfayez
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Abdullah Aldahmash
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Moustapha Kassem
- Molecular Endocrinology Unit (KMEB), Department of Endocrinology, University Hospital of Odense and University of Southern Denmark, Odense, Denmark
| | - Nehad M Alajez
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.
| |
Collapse
|
36
|
Piperine Inhibits TGF-β Signaling Pathways and Disrupts EMT-Related Events in Human Lung Adenocarcinoma Cells. MEDICINES 2020; 7:medicines7040019. [PMID: 32276474 PMCID: PMC7235759 DOI: 10.3390/medicines7040019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023]
Abstract
Background: Piperine, an amide extracted from the Piper spices, exhibits strong anti-tumor properties. However, its effect on the epithelial–mesenchymal transition (EMT) process has never been investigated. Herein, we evaluate the toxic effect of piperine on lung adenocarcinoma (A549), breast adenocarcinoma (MDA-MB-231) and hepatocellular carcinoma (HepG2) cell lines, as well as its ability to inhibit EMT-related events induced by TGF-β1 treatment. Methods: The cell viability was investigated by MTT assay. Protein expression was evaluated by Western blot. Gene expression was monitored by real-time PCR. Zymography assay was employed to detect metalloproteinase (MMP) activity in conditioned media. Cell motility was assessed by the wound-healing and phagokinetic gold sol assays. Results: The results revealed that piperine was cytotoxic in concentrations over 100 µM, showing IC50 values for HepG2, MDA-MB-231 and A549 cell lines of 214, 238 and 198 µM, respectively. In order to investigate whether piperine would reverse the TGF-β1 induced-EMT, the A549 cell line was pretreated with sublethal concentrations of the natural amide followed by the addition of TGF-β1. Besides disrupting EMT-related events, piperine also inhibited both ERK 1/2 and SMAD 2 phosphorylation. Conclusions: These results suggest that piperine might be further used in therapeutic strategies for metastatic cancer and EMT-related disorders.
Collapse
|
37
|
Wang H, Chen M, Sang X, You X, Wang Y, Paterson IC, Hong W, Yang X. Development of small molecule inhibitors targeting TGF-β ligand and receptor: Structures, mechanism, preclinical studies and clinical usage. Eur J Med Chem 2020; 191:112154. [PMID: 32092587 DOI: 10.1016/j.ejmech.2020.112154] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/06/2020] [Accepted: 02/16/2020] [Indexed: 12/14/2022]
Abstract
Transforming growth factor-β (TGF-β) is a member of a superfamily of pleiotropic proteins that regulate multiple cellular processes such as growth, development and differentiation. Following binding to type I and II TGF-β serine/threonine kinase receptors, TGF-β activates downstream signaling cascades involving both SMAD-dependent and -independent pathways. Aberrant TGF-β signaling is associated with a variety of diseases, such as fibrosis, cardiovascular disease and cancer. Hence, the TGF-β signaling pathway is recognized as a potential drug target. Various organic molecules have been designed and developed as TGF-β signaling pathway inhibitors and they function by either down-regulating the expression of TGF-β or by inhibiting the kinase activities of the TGF-β receptors. In this review, we discuss the current status of research regarding organic molecules as TGF-β inhibitors, focusing on the biological functions and the binding poses of compounds that are in the market or in the clinical or pre-clinical phases of development.
Collapse
Affiliation(s)
- Hao Wang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Meiling Chen
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, China; Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China
| | - Xiaohong Sang
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xuefu You
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yucheng Wang
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ian C Paterson
- Department of Oral and Craniofacial Sciences and Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Wei Hong
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, China; Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China.
| | - Xinyi Yang
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
38
|
Moradi-Marjaneh R, Khazaei M, Ferns GA, Aghaee-Bakhtiari SH. The Role of TGF-β Signaling Regulatory MicroRNAs in the Pathogenesis of Colorectal Cancer. Curr Pharm Des 2019; 24:4611-4618. [PMID: 30636580 DOI: 10.2174/1381612825666190110150705] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/24/2018] [Accepted: 12/31/2018] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is one of the most common cancers globally and is associated with a high mortality rate. The transforming growth factor beta (TGF-β) signaling pathway plays an important role in normal intestinal tissue function, but has also been implicated in the development of CRC. MicroRNAs (miRNAs) have also recently emerged as important regulators of cancer development and progression. They act by targeting multiple signaling pathways including the TGF-β signaling pathway. There is growing evidence demonstrating that miRNAs target various components of the TGF-β signaling pathway, including TGF-β1, TGF-β2, regulatory SMADs (SMAD1, 2, 3, 5 and 9), co-mediator SMAD4, inhibitory SMADs (SMAD6 and 7) and the TGF-β receptors, and thereby alter the proliferation and migration of CRC cells. In this review, we summarize the data concerning the interaction between TGF-β signaling pathway and miRNAs with the aim to better understanding the CRC molecular mechanisms and hence better management of this disease.
Collapse
Affiliation(s)
- Reyhaneh Moradi-Marjaneh
- Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, United Kingdom
| | - Seyed H Aghaee-Bakhtiari
- Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
Mehdipour M, Etienne J, Chen CC, Gathwala R, Rehman M, Kato C, Liu C, Liu Y, Zuo Y, Conboy MJ, Conboy IM. Rejuvenation of brain, liver and muscle by simultaneous pharmacological modulation of two signaling determinants, that change in opposite directions with age. Aging (Albany NY) 2019; 11:5628-5645. [PMID: 31422380 PMCID: PMC6710051 DOI: 10.18632/aging.102148] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
We hypothesize that altered intensities of a few morphogenic pathways account for most/all the phenotypes of aging. Investigating this has revealed a novel approach to rejuvenate multiple mammalian tissues by defined pharmacology. Specifically, we pursued the simultaneous youthful in vivo calibration of two determinants: TGF-beta which activates ALK5/pSmad 2,3 and goes up with age, and oxytocin (OT) which activates MAPK and diminishes with age. The dose of Alk5 inhibitor (Alk5i) was reduced by 10-fold and the duration of treatment was shortened (to minimize overt skewing of cell-signaling pathways), yet the positive outcomes were broadened, as compared with our previous studies. Alk5i plus OT quickly and robustly enhanced neurogenesis, reduced neuro-inflammation, improved cognitive performance, and rejuvenated livers and muscle in old mice. Interestingly, the combination also diminished the numbers of cells that express the CDK inhibitor and marker of senescence p16 in vivo. Summarily, simultaneously re-normalizing two pathways that change with age in opposite ways (up vs. down) synergistically reverses multiple symptoms of aging.
Collapse
Affiliation(s)
- Melod Mehdipour
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jessy Etienne
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chia-Chien Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Ranveer Gathwala
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Maryam Rehman
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Cameron Kato
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chao Liu
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yutong Liu
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Michael J Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Irina M Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
40
|
Scientific reports concerning the impact of interleukin 4, interleukin 10 and transforming growth factor β on cancer cells. Cent Eur J Immunol 2019; 44:190-200. [PMID: 31530989 PMCID: PMC6745546 DOI: 10.5114/ceji.2018.76273] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/12/2018] [Indexed: 02/07/2023] Open
Abstract
Cytokines are signalling proteins generated in most part by immune cells that have critical functions in cellular lifespan. Here we present recent data on three selected anti-inflammatory cytokines: interleukin (IL)-10, IL-4 and transforming growth factor β (TGF-β). IL-10 inhibits the synthesis of major pro-inflammatory cytokines, chemokines, and mediates anti-inflammatory reactions. IL-4 is a multifunctional cytokine which plays a crucial role in the regulation of immune responses and is involved in processes associated with development and differentiation of lymphocytes and regulation of T cell survival. Transforming TGF-β, which in normal cells or pre-cancerous cells, promotes proliferation arrest which represses tumour growth. In this review, we focus on the influence of IL-10, IL-4 and TGF-β on various types of cancer as well as potential of these selected cytokines to serve as new biomarkers which can support effective therapies for cancer patients. This article is presented based on a review of the newest research results.
Collapse
|
41
|
Jung SY, Hwang S, Clarke JM, Bauer TM, Keedy VL, Lee H, Park N, Kim SJ, Lee JI. Pharmacokinetic characteristics of vactosertib, a new activin receptor-like kinase 5 inhibitor, in patients with advanced solid tumors in a first-in-human phase 1 study. Invest New Drugs 2019; 38:812-820. [PMID: 31300967 DOI: 10.1007/s10637-019-00835-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/05/2019] [Indexed: 01/05/2023]
Abstract
Purposes Vactosertib is a new investigational inhibitor of activin receptor-like kinase 5. The objective of this study was to characterize vactosertib pharmacokinetics that are to be applied for subsequent clinical studies. Methods Vactosertib plasma concentration-time data were obtained from a multicenter, dose-escalation, first-in-human phase 1 study conducted in patients with advanced solid tumors. Each patient orally received a fixed dose of vactosertib with the range of 30 mg to 340 mg once daily under fasted condition. Pharmacokinetic analysis was performed using a non-compartmental method. Results Pharmacokinetic data were evaluable in 29 patients. Vactosertib was rapidly absorbed after the first dose with a median time to maximum concentration (tmax) of 1.2 h (interquartile range, 0.8-1.8 h) and quickly eliminated with a median terminal half-life (t1/2) of 3.2 h (2.2-4.2 h) over the dose range studied. Such trend was also observed after repeated doses for five days (median tmax, 1.5 h; median t1/2, 3.0 h). The area under the concentration-time curve within a dosing interval increased in proportion to dose. The median values of apparent clearance and volume of distribution were 29 L/h (21-44 L/h) and 133 L (77-222 L), respectively. The median accumulation ratio after repeated once-daily doses for five days was 0.87 (0.69-1.07). Conclusions Vactosertib pharmacokinetics were dose-proportional within tested dose range with negligible accumulation when administered once daily for five days. Considering the short half-life, it seems necessary to administer vactosertib twice- or thrice-daily to maintain its concentrations above minimum effective level over a dosing interval.
Collapse
Affiliation(s)
- Su Young Jung
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.,Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | | | | | - Todd M Bauer
- Sarah Cannon Research Institute/Tennessee Oncology PLLC, Nashville, TN, USA
| | - Vicki L Keedy
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hukeun Lee
- National OncoVenture, National Cancer Center, Goyang, Republic of Korea
| | - Neunggyu Park
- National OncoVenture, National Cancer Center, Goyang, Republic of Korea
| | | | - Jangik I Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea. .,Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
42
|
Title Prognosis Significance of ZEB2 and TGF-β1 as well as Other Clinical Characteristics in Epithelial Ovarian Cancer. Int J Gynecol Cancer 2019; 27:1343-1349. [PMID: 30814239 DOI: 10.1097/igc.0000000000001037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/08/2017] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE This study aimed to evaluate the prognosis significance of zinc-finger E-box binding homeobox 2 (ZEB2) and transforming growth factor β1 (TGF-β1) as well as other clinical characteristics in epithelial ovarian cancer (EOC). METHODS This retrospective study examined the expressions of ZEB2 and TGF-β1 in 64 EOC specimens, 36 benign ovarian tumor specimens, and 28 normal ovarian specimens by immunohistochemistry. The correlation of the expressions of ZEB2 and TGF-β1 was analyzed by the Spearman rank correlation analysis. The Kaplan-Meier method was used to construct crude survival curves, and the prognostic roles of ZEB2 and TGF-β1 as well as clinical characteristics were evaluated by Cox proportional hazards regression analysis. RESULTS The positive expression rates of ZEB2 and TGF-β1 were increased in EOC specimens compared with benign ovarian tumor and normal ovary specimens (P < 0.05), and ZEB2 expression was positively correlated with TGF-β1 expression (r = 0.538, P = 0.000). In addition, the overall survival rate of EOC patients was associated with the expressions of ZEB2 and TGF-β1, age, differentiated grade, International Federation of Gynecology and Obstetrics (FIGO) stage, preoperative serum CA125 level, postoperative start time of chemotherapy, and treatment course (all P < 0.05). Multivariate Cox regression demonstrated that FIGO stage (P = 0.033), TGF-β1 expression (P = 0.043), postoperative start time of chemotherapy (P = 0.009), and treatment course (P = 0.000) were prognostic factors for EOC. CONCLUSIONS ZEB2 and TGF-β1 may promote EOC progression, and FIGO stage, TGF-β1 expression, postoperative start time of chemotherapy, and treatment course may be associated with the prognosis of EOC.
Collapse
|
43
|
Roane BM, Arend RC, Birrer MJ. Review: Targeting the Transforming Growth Factor-Beta Pathway in Ovarian Cancer. Cancers (Basel) 2019; 11:cancers11050668. [PMID: 31091744 PMCID: PMC6562901 DOI: 10.3390/cancers11050668] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 02/07/2023] Open
Abstract
Despite extensive efforts, there has been limited progress in optimizing treatment of ovarian cancer patients. The vast majority of patients experience recurrence within a few years despite a high response rate to upfront therapy. The minimal improvement in overall survival of ovarian cancer patients in recent decades has directed research towards identifying specific biomarkers that serve both as prognostic factors and targets for therapy. Transforming Growth Factor-β (TGF-β) is a superfamily of proteins that have been well studied and implicated in a wide variety of cellular processes, both in normal physiologic development and malignant cellular growth. Hypersignaling via the TGF-β pathway is associated with increased tumor dissemination through various processes including immune evasion, promotion of angiogenesis, and increased epithelial to mesenchymal transformation. This pathway has been studied in various malignancies, including ovarian cancer. As targeted therapy has become increasingly prominent in drug development and clinical research, biomarkers such as TGF-β are being studied to improve outcomes in the ovarian cancer patient population. This review article discusses the role of TGF-β in ovarian cancer progression, the mechanisms of TGF-β signaling, and the targeted therapies aimed at the TGF-β pathway that are currently being studied.
Collapse
Affiliation(s)
- Brandon M Roane
- Department of Obstetrics and Gynecology-Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Rebecca C Arend
- Department of Obstetrics and Gynecology-Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Michael J Birrer
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
44
|
Amerizadeh F, Bahrami A, Khazaei M, Hesari A, Rezayi M, Talebian S, Maftouh M, Moetamani-Ahmadi M, Seifi S, Shahidsales S, Joudi-Mashhad M, Ferns GA, Ghasemi F, Avan A. Current status and future prospects of transforming growth factor-β as a potential prognostic and therapeutic target in the treatment of breast cancer. J Cell Biochem 2019; 120:6962-6971. [PMID: 30672016 DOI: 10.1002/jcb.27831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 09/14/2018] [Indexed: 01/24/2023]
Abstract
The transforming growth factor-β (TGF-β) signaling pathway is one of the important pathways involved in the cancer cell proliferation, invasion, migration, angiogenesis, apoptosis, as well as in metastasis by agitation or invasion of metastasis-related factors, including matrix metalloproteinase (MMP), epithelial-to-mesenchymal transition (EMT), tumor microenvironment (TME), cancer stem cells (CSCs), and cell adhesion molecules (CAMs). These data suggest its potential value as a therapeutic object in the treatment of malignancies including breast cancer. Several pharmacological approaches have been established to suppress TGF-β pathway; such as vaccines, small molecular inhibitors, antisense oligonucleotides, and monoclonal antibodies. Some of these are now approved by the US Food and Drug Administration for targeting the TGF-β signaling pathway. This study attempts to summarize the current data about the functions of TGF-β in cancer cells, and their probable application in the cancer therapy with a specific emphasis on recent preclinical and clinical research in the treatment of breast cancer and its prognostic value.
Collapse
Affiliation(s)
- Forouzan Amerizadeh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - AmirReza Hesari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Talebian
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Maftouh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Sima Seifi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mona Joudi-Mashhad
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Brighton, UK
| | - Faezeh Ghasemi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
45
|
Khoshakhlagh M, Soleimani A, Binabaj MM, Avan A, Ferns GA, Khazaei M, Hassanian SM. Therapeutic potential of pharmacological TGF-β signaling pathway inhibitors in the pathogenesis of breast cancer. Biochem Pharmacol 2019; 164:17-22. [PMID: 30905655 DOI: 10.1016/j.bcp.2019.03.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/20/2019] [Indexed: 01/01/2023]
Abstract
The TGF-β signaling pathway plays an important role in cancer cell proliferation, growth, inflammation, angiogenesis, and metastasis. The role of TGF-β signaling in the pathogenesis of breast cancer is complex. TGF-β acts as a tumor suppressor in the early stages of disease, and as a tumor promoter in its later stages. Over-activation of the TGF-β signaling pathway and over-expression of the TGF-β receptors are frequently found in breast tumors. Suppression of TGF-β pathway using biological or pharmacological inhibitors is a potentially novel therapeutic approach for breast cancer treatment. This review summarizes the regulatory role of TGF-β signaling in the pathogenesis of breast cancer for a better understanding and hence a better management of this disease.
Collapse
Affiliation(s)
- Mahdieh Khoshakhlagh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atena Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Moradi Binabaj
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
46
|
LY2157299 Monohydrate, a TGF-βR1 Inhibitor, Suppresses Tumor Growth and Ascites Development in Ovarian Cancer. Cancers (Basel) 2018; 10:cancers10080260. [PMID: 30087253 PMCID: PMC6115954 DOI: 10.3390/cancers10080260] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/26/2018] [Accepted: 08/03/2018] [Indexed: 12/25/2022] Open
Abstract
Transforming growth factor beta (TGF-β) signaling has pleiotropic functions regulating cancer initiation, development, and metastasis, and also plays important roles in the interaction between stromal and cancer cells, making the pathway a potential therapeutic target. LY2157299 monohydrate (LY), an inhibitor of TGF-β receptor I (TGFBRI), was examined for its ability to inhibit ovarian cancer (OC) growth both in high-grade serous ovarian cancer (HGSOC) cell lines and xenograft models. Immunohistochemistry, qRT-PCR, and Western blot were performed to study the effect of LY treatment on expression of cancer- and fibroblast-derived genes. Results showed that exposure to TGF-β1 induced phosphorylation of SMAD2 and SMAD3 in all tested OC cell lines, but this induction was suppressed by pretreatment with LY. LY alone inhibited the proliferation, migration, and invasion of HGSOC cells in vitro. TGF-β1-induced fibroblast activation was blocked by LY. LY also delayed tumor growth and suppressed ascites formation in vivo. In addition, independent of tumor inhibition, LY reduces ascites formation in vivo. Using OVCAR8 xenograft specimens we confirmed the inhibitory effect of LY on TGF-β signaling and tumor stromal expression of collagen type XI chain 1 (COL11A1) and versican (VCAN). These observations suggest a role for anti-TGF-β signaling-directed therapy in ovarian cancer.
Collapse
|
47
|
ALK5 transfection of bone marrow mesenchymal stem cells to repair osteoarthritis of knee joint. Biodes Manuf 2018. [DOI: 10.1007/s42242-018-0012-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
48
|
Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, Dimitriadoy S, Liu DL, Kantheti HS, Saghafinia S, Chakravarty D, Daian F, Gao Q, Bailey MH, Liang WW, Foltz SM, Shmulevich I, Ding L, Heins Z, Ochoa A, Gross B, Gao J, Zhang H, Kundra R, Kandoth C, Bahceci I, Dervishi L, Dogrusoz U, Zhou W, Shen H, Laird PW, Way GP, Greene CS, Liang H, Xiao Y, Wang C, Iavarone A, Berger AH, Bivona TG, Lazar AJ, Hammer GD, Giordano T, Kwong LN, McArthur G, Huang C, Tward AD, Frederick MJ, McCormick F, Meyerson M, Van Allen EM, Cherniack AD, Ciriello G, Sander C, Schultz N. Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell 2018; 173:321-337.e10. [PMID: 29625050 PMCID: PMC6070353 DOI: 10.1016/j.cell.2018.03.035] [Citation(s) in RCA: 2042] [Impact Index Per Article: 291.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/28/2018] [Accepted: 03/15/2018] [Indexed: 02/08/2023]
Abstract
Genetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of alterations in these pathways differ between individual tumors and tumor types. Using mutations, copy-number changes, mRNA expression, gene fusions and DNA methylation in 9,125 tumors profiled by The Cancer Genome Atlas (TCGA), we analyzed the mechanisms and patterns of somatic alterations in ten canonical pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFβ signaling, p53 and β-catenin/Wnt. We charted the detailed landscape of pathway alterations in 33 cancer types, stratified into 64 subtypes, and identified patterns of co-occurrence and mutual exclusivity. Eighty-nine percent of tumors had at least one driver alteration in these pathways, and 57% percent of tumors had at least one alteration potentially targetable by currently available drugs. Thirty percent of tumors had multiple targetable alterations, indicating opportunities for combination therapy.
Collapse
Affiliation(s)
- Francisco Sanchez-Vega
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marco Mina
- Department of Computational Biology, University of Lausanne (UNIL), 1011 Lausanne, Vaud, Switzerland and Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Joshua Armenia
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Walid K Chatila
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Augustin Luna
- cBio Center, Dana-Farber Cancer Institute, Boston, MA; Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Konnor C La
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - David L Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, US
| | | | - Sadegh Saghafinia
- Department of Computational Biology, University of Lausanne (UNIL), 1011 Lausanne, Vaud, Switzerland and Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Debyani Chakravarty
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Foysal Daian
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Qingsong Gao
- Department of Medicine and McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | - Matthew H Bailey
- Department of Medicine and McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | - Wen-Wei Liang
- Department of Medicine and McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | - Steven M Foltz
- Department of Medicine and McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | | | - Li Ding
- Department of Medicine and McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri, 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zachary Heins
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Angelica Ochoa
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Benjamin Gross
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jianjiong Gao
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hongxin Zhang
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ritika Kundra
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cyriac Kandoth
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Istemi Bahceci
- Computer Engineering Department, Bilkent University, Ankara 06800, Turkey
| | - Leonard Dervishi
- Computer Engineering Department, Bilkent University, Ankara 06800, Turkey
| | - Ugur Dogrusoz
- Computer Engineering Department, Bilkent University, Ankara 06800, Turkey
| | - Wanding Zhou
- Van Andel Research Institute, 333 Bostwick Ave NE, Grand Rapids Michigan, 49503, USA
| | - Hui Shen
- Van Andel Research Institute, 333 Bostwick Ave NE, Grand Rapids Michigan, 49503, USA
| | - Peter W Laird
- Van Andel Research Institute, 333 Bostwick Ave NE, Grand Rapids Michigan, 49503, USA
| | - Gregory P Way
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Casey S Greene
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Chen Wang
- Department of Health Sciences Research and Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Department of Neurology and Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Alice H Berger
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Trever G Bivona
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1450 3rd Street, San Francisco, California 94143, USA
| | - Alexander J Lazar
- Departments of Pathology, Genomic Medicine & Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd-Unit 85, Houston, Texas 77030, USA
| | - Gary D Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, Endocrine Oncology Program, University of Michigan, Ann Arbor, Michigan, MI 48105, USA
| | - Thomas Giordano
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI; Department of Internal Medicine, Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI; Comprehensive Cancer Center, Michigan Medicine, Ann Arbor, MI, USA
| | - Lawrence N Kwong
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Grant McArthur
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; University of Melbourne, Melbourne, VIC, Australia
| | - Chenfei Huang
- Dept. of Otolaryngology, Baylor College of Medicine, USA
| | - Aaron D Tward
- University of California, San Francisco Department of Otolaryngology-Head and Neck Surgery. 2233 Post Street, San Francisco, CA, 94143, USA
| | | | - Frank McCormick
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1450 3rd Street, San Francisco, CA 94143, USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, US
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, US
| | - Andrew D Cherniack
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, US
| | - Giovanni Ciriello
- Department of Computational Biology, University of Lausanne (UNIL), 1011 Lausanne, Vaud, Switzerland and Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| | - Chris Sander
- cBio Center, Dana-Farber Cancer Institute, Boston, MA; Department of Cell Biology, Harvard Medical School, Boston, MA.
| | - Nikolaus Schultz
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Departments of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
49
|
Erin N, Ogan N, Yerlikaya A. Secretomes reveal several novel proteins as well as TGF-β1 as the top upstream regulator of metastatic process in breast cancer. Breast Cancer Res Treat 2018; 170:235-250. [PMID: 29557524 DOI: 10.1007/s10549-018-4752-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/13/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE Metastatic breast cancer is resistant to many conventional treatments and novel therapeutic targets are needed. We previously isolated subsets of 4T1 murine breast cancer cells which metastasized to liver (4TLM), brain (4TBM), and heart (4THM). Among these cells, 4TLM is the most aggressive one, demonstrating mesenchymal phenotype. Here we compared secreted proteins from 4TLM, 4TBM, and 4THM cells and compared with that of hardly metastatic 67NR cells to detect differentially secreted factors involved in organ-specific metastasis. METHOD AND RESULTS Label-free LC-MS/MS proteomic technique was used to detect the differentially secreted proteins. Eighty-five of over 500 secreted proteins were significantly altered in metastatic breast cancer cells. Differential expression of several proteins such as fibulin-4, Bone Morphogenetic Protein 1, TGF-β1 MMP-3, MMP-9, and Thymic Stromal Lymphopoietin were further verified using ELISA or Western blotting. Many of these identified proteins were also present in human metastatic breast carcinomas. Annexin A1 and A5, laminin beta 1, Neutral alpha-glucosidase AB were commonly found at least in three out of six studies examined here. Ingenuity Pathway Analysis showed that proteins differentially secreted from metastatic cells are involved primarily in carcinogenesis and TGF-β1 is the top upstream regulator in all metastatic cells. CONCLUSIONS Cells metastasized to different organs displayed significant differences in several of secreted proteins. Proteins differentially altered were fibronectin, insulin-like growth factor-binding protein 7, and Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1. On the other hand, many exosomal proteins were also common to all metastatic cells, demonstrating involvement of key universal factors in distant metastatic process.
Collapse
Affiliation(s)
- Nuray Erin
- Department of Medical Pharmacology, School of Medicine, Akdeniz University, B-blok kat 1, SBAUM/Immunoloji Lab, Antalya, Turkey.
| | - Nur Ogan
- Department of Medical Pharmacology, School of Medicine, Akdeniz University, B-blok kat 1, SBAUM/Immunoloji Lab, Antalya, Turkey
| | - Azmi Yerlikaya
- Department of Medical Biology, School of Medicine, Dumlupınar University, Kütahya, Turkey
| |
Collapse
|
50
|
Jing H, Song J, Zheng J. Discoidin domain receptor 1: New star in cancer-targeted therapy and its complex role in breast carcinoma. Oncol Lett 2018; 15:3403-3408. [PMID: 29467865 DOI: 10.3892/ol.2018.7795] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/07/2017] [Indexed: 12/13/2022] Open
Abstract
Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase activated by various types of collagens that performs a critical role in cell attachment, migration, survival and proliferation. The functions of DDR1 in various types of tumor have been studied extensively. However, in breast carcinoma, the roles of collagen-evoked DDR1 remain ill defined. Although a number of studies have reported that DDR1 promotes apoptosis and inhibits migration in breast carcinoma, it has also been reported to be associated with tumor cell survival, chemoresistance to genotoxic drugs and the facilitation of invasion. The present review summarizes current progress and the complex effects of DDR1 in the field of breast carcinoma, and presents DDR1 as a promising therapeutic target.
Collapse
Affiliation(s)
- Hui Jing
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Jingyuan Song
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou, Jiangsu 221002, P.R. China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou, Jiangsu 221002, P.R. China.,Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|