1
|
Mottaghi S, Abbaszadeh H, Valizadeh A, Hafezi K. The polyphenolic compound, α-conidendrin, exerts anti-colon cancer and anti-angiogenic effects by targeting several signaling molecules. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04090-2. [PMID: 40208320 DOI: 10.1007/s00210-025-04090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/21/2025] [Indexed: 04/11/2025]
Abstract
Our previous study indicated that α-conidendrin had considerable anti-proliferative activities against breast cancer cell lines. The present study aimed to evaluate the anti-colon cancer and anti-angiogenic influences of α-conidendrin as well as its molecular mechanisms. The findings of the current study demonstrate that α-conidendrin possesses potent anti-colon cancer and anti-angiogenic effects. α-Conidendrin significantly inhibited the proliferation of colon cancer cells. This polyphenolic compound induced caspase-mediated apoptosis in HT-29 cells by modulating the PTEN/PI3K/Akt/mTOR signaling pathway. α-Conidendrin markedly upregulated the protein expression of PTEN and downregulated the protein expression of p-PI3K, p-AKt, and p-mTOR. The protein expression of caspase-3 and caspase-9 enhanced in colon cancer cells following treatment with α-conidendrin. This study also revealed the anti-angiogenic activities of α-conidendrin in the ex vivo and in vitro models. α-Conidendrin significantly downregulated the mRNA expression of HIF-1α, VEGF, MMP-2, and MMP-9 in endothelial cells. These data highlight that α-conidendrin can act as a novel and promising anti-cancer and anti-angiogenic agent for treatment of colon cancer.
Collapse
Affiliation(s)
- Sayeh Mottaghi
- Department of Pediatrics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Abbaszadeh
- Department of Pharmacology, Faculty of Pharmacy, Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Armita Valizadeh
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Katayoon Hafezi
- Department of Pharmacology, Faculty of Pharmacy, Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
2
|
Du P, Li Y, Han A, Wang M, Liu J, Piao Y, Chen L. β-lapachone suppresses carcinogenesis of cervical cancer via interaction with AKT1. Front Pharmacol 2025; 16:1509568. [PMID: 40051559 PMCID: PMC11882534 DOI: 10.3389/fphar.2025.1509568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/31/2025] [Indexed: 03/09/2025] Open
Abstract
Introduction Cervical cancer is one of the most prevalent malignant tumors affecting women worldwide, and affected patients often face a poor prognosis due to its high drug resistance and recurrence rates. β-lapachone, a quinone compound originally extracted from natural plants, is an antitumor agent that specifically targets NQO1. Methods CC cells were treated with varying concentrations of β-lapachone to examine its effects on glucose metabolism, proliferation, metastasis, angiogenesis, and EMT in vitro. The targets and action pathways of β-lapachone were identified using network pharmacology and molecular docking, with KEGG pathway enrichment analysis. Its effects and toxicity were verified in vivo using a nude mouse xenograft model. Results β-lapachone significantly inhibited the proliferation and metastasis of cervical cancer cells by regulating glucose metabolism, reducing tumor angiogenesis, and suppressing epithelial-mesenchymal transition (EMT) in cells with high NQO1 expression. Furthermore, we identified the inactivation of the PI3K/AKT/mTOR pathway as the key mechanism underlying these effects. AKT1 was identified as a potential target of β-lapachone in modulating glucose metabolism and EMT in cervical cancer cells. Conclusion These findings suggest that β-lapachone inhibits the malignant progression of cervical cancer by targeting AKT1 to regulate glucose metabolism in NQO1-overexpressing cells, providing a theoretical basis for developing novel therapeutic strategies for cervical cancer.
Collapse
Affiliation(s)
- Pan Du
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, China
| | - Yue Li
- Changchun Center for Disease Control and Prevention, Changchun, China
| | - Anna Han
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, China
| | - Mengying Wang
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, China
| | - Jiajing Liu
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, China
| | - Yingshi Piao
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, China
- Cancer Research Center, Yanbian University, Yanji, China
| | - Liyan Chen
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, China
- Cancer Research Center, Yanbian University, Yanji, China
| |
Collapse
|
3
|
Jung EJ, Kim HJ, Shin SC, Kim GS, Jung JM, Hong SC, Kim CW, Lee WS. Artemisia annua L. Polyphenols Enhance the Anticancer Effect of β-Lapachone in Oxaliplatin-Resistant HCT116 Colorectal Cancer Cells. Int J Mol Sci 2023; 24:17505. [PMID: 38139333 PMCID: PMC10743427 DOI: 10.3390/ijms242417505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Recent studies suggest that the anticancer activity of β-lapachone (β-Lap) could be improved by different types of bioactive phytochemicals. The aim of this study was to elucidate how the anticancer effect of β-Lap is regulated by polyphenols extracted from Korean Artemisia annua L. (pKAL) in parental HCT116 and oxaliplatin-resistant (OxPt-R) HCT116 colorectal cancer cells. Here, we show that the anticancer effect of β-Lap is more enhanced by pKAL in HCT116-OxPt-R cells than in HCT116 cells via a CCK-8 assay, Western blot, and phase-contrast microscopy analysis of hematoxylin-stained cells. This phenomenon was associated with the suppression of OxPt-R-related upregulated proteins including p53 and β-catenin, the downregulation of cell survival proteins including TERT, CD44, and EGFR, and the upregulation of cleaved HSP90, γ-H2AX, and LC3B-I/II. A bioinformatics analysis of 21 proteins regulated by combined treatment of pKAL and β-Lap in HCT116-OxPt-R cells showed that the enhanced anticancer effect of β-Lap by pKAL was related to the inhibition of negative regulation of apoptotic process and the induction of DNA damage through TERT, CD44, and EGFR-mediated multiple signaling networks. Our results suggest that the combination of pKAL and β-Lap could be used as a new therapy with low toxicity to overcome the OxPt-R that occurred in various OxPt-containing cancer treatments.
Collapse
Affiliation(s)
- Eun Joo Jung
- Department of Internal Medicine, Institute of Medical Science, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, 15 Jinju-daero 816 Beon-gil, Jinju 52727, Republic of Korea;
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Medical Science, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
| | - Sung Chul Shin
- Department of Chemistry, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Gon Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Jin-Myung Jung
- Department of Neurosurgery, Institute of Medical Science, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea;
| | - Soon Chan Hong
- Department of Surgery, Institute of Medical Science, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea;
| | - Choong Won Kim
- Department of Biochemistry, Institute of Medical Science, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea;
| | - Won Sup Lee
- Department of Internal Medicine, Institute of Medical Science, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, 15 Jinju-daero 816 Beon-gil, Jinju 52727, Republic of Korea;
| |
Collapse
|
4
|
Singla M, Smriti, Gupta S, Behal P, Singh SK, Preetam S, Rustagi S, Bora J, Mittal P, Malik S, Slama P. Unlocking the power of nanomedicine: the future of nutraceuticals in oncology treatment. Front Nutr 2023; 10:1258516. [PMID: 38045808 PMCID: PMC10691498 DOI: 10.3389/fnut.2023.1258516] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/11/2023] [Indexed: 12/05/2023] Open
Abstract
Cancer, an intricate and multifaceted disease, is characterized by the uncontrolled proliferation of cells that can lead to serious health complications and ultimately death. Conventional therapeutic strategies mainly target rapidly dividing cancer cells, but often indiscriminately harm healthy cells in the process. As a result, there is a growing interest in exploring novel therapies that are both effective and less toxic to normal cells. Herbs have long been used as natural remedies for various diseases and conditions. Some herbal compounds exhibit potent anti-cancer properties, making them potential candidates for nutraceutical-based treatments. However, despite their promising efficacy, there are considerable limitations in utilizing herbal preparations due to their poor solubility, low bioavailability, rapid metabolism and excretion, as well as potential interference with other medications. Nanotechnology offers a unique platform to overcome these challenges by encapsulating herbal compounds within nanoparticles. This approach not only increases solubility and stability but also enhances the cellular uptake of nutraceuticals, allowing for controlled and targeted delivery of therapeutic agents directly at tumor sites. By harnessing the power of nanotechnology-enabled therapy, this new frontier in cancer treatment presents an opportunity to minimize toxicity while maximizing efficacy. In conclusion, this manuscript provides compelling evidence for integrating nanotechnology with nutraceuticals derived from herbal sources to optimize cancer therapy outcomes. We explore the roadblocks associated with traditional herbal treatments and demonstrate how nanotechnology can help circumvent these issues, paving the way for safer and more effective cancer interventions in future oncological practice.
Collapse
Affiliation(s)
- Madhav Singla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Smriti
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Saurabh Gupta
- Department of Pharmacology, Chameli Devi Institute of Pharmacy, Indore, Madhya Pradesh, India
| | - Prateek Behal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
| | | | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Jutishna Bora
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
| | - Pooja Mittal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
- Department of Biotechnology, University Center for Research & Development (UCRD), Chandigarh University, Mohali, Punjab, India
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of Agri Sciences, Mendel University in Brno, Zemedelska, Brno, Czechia
| |
Collapse
|
5
|
Zhao M, Yang Y, Nian Q, Shen C, Xiao X, Liao W, Zheng Q, Zhang G, Chen N, Gong D, Tang J, Wen Y, Zeng J. Phytochemicals and mitochondria: Therapeutic allies against gastric cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154608. [PMID: 36586205 DOI: 10.1016/j.phymed.2022.154608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Mitochondria are the energy factories of cells with the ability to modulate the cell cycle, cellular differentiation, signal transduction, growth, and apoptosis. Existing drugs targeting mitochondria in cancer treatment have disadvantages of drug resistance and side effects. Phytochemicals, which are widely found in plants, are bioactive compounds that could facilitate the development of new drugs for gastric cancer. Studies have shown that some phytochemicals can suppress the development of gastric cancer. METHODS We searched for data from PubMed, China National Knowledge Infrastructure, Web of Science, and Embase databases from initial establishment to December 2021 to review the mechanism by which phytochemicals suppress gastric cancer cell growth by modulating mitochondrial function. Phytochemicals were classified and summarized by their mechanisms of action. RESULTS Phytochemicals can interfere with mitochondria through several mechanisms to reach the goal of promoting apoptosis in gastric cancer cells. Some phytochemicals, e.g., daidzein and tetrandrine promoted cytochrome c spillover into the cytoplasm by modulating the members of the B-cell lymphoma-2 protein family and induced apoptotic body activity by activating the caspase protein family. Phytochemicals (e.g., celastrol and shikonin) could promote the accumulation of reactive oxygen species and reduce the mitochondrial membrane potential. Several phytochemicals (e.g., berberine and oleanolic acid) activated mitochondrial apoptotic submission via the phosphatidylinositol-3-kinase/Akt signaling pathway, thereby triggering apoptosis in gastric cancer cells. Several well-known phytochemicals that target mitochondria, including berberine, ginsenoside, and baicalein, showed the advantages of multiple targets, high efficacy, and fewer side effects. CONCLUSIONS Phytochemicals could target the mitochondria in the treatment of gastric cancer, providing potential directions and evidence for clinical translation. Drug discovery focused on phytochemicals has great potential to break barriers in cancer treatment.
Collapse
Affiliation(s)
- Maoyuan Zhao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Yi Yang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Qing Nian
- Department of Blood Transfusion, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, PR China
| | - Caifei Shen
- Department of Endoscopy center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Xiaolin Xiao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Wenhao Liao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Qiao Zheng
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Gang Zhang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Nianzhi Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Daoyin Gong
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China.
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China; Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China.
| |
Collapse
|
6
|
MA P, WU Y, TAO L, HAN J. Effect of gardenia tea on apoptosis of human thyroid cancer cell line SW579 through PI3K-Akt pathway. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.73122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Peng MA
- Third Hospital of Shanxi Medical University, China; Huazhong University of Science and Technology, China
| | - Yi WU
- Shanxi Academy of Medical Sciences, China
| | - Lin TAO
- Yuncheng Central Hospital, China
| | - Jianli HAN
- Shanxi Academy of Medical Sciences, China
| |
Collapse
|
7
|
Zheng Y, Zhang H, Guo Y, Chen Y, Chen H, Liu Y. X-ray repair cross-complementing protein 1 (XRCC1) loss promotes β-lapachone -induced apoptosis in pancreatic cancer cells. BMC Cancer 2021; 21:1234. [PMID: 34789190 PMCID: PMC8600733 DOI: 10.1186/s12885-021-08979-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022] Open
Abstract
Background β-lapachone (β-lap), the NQO1 bioactivatable drug, is thought to be a promising anticancer agent. However, the toxic side effects of β-lap limit the drug use, highlighting the need for a thorough understanding of β-lap’s mechanism of action. β-lap undergoes NQO1-dependent futile redox cycling, generating massive ROS and oxidative DNA lesions, leading to cell death. Thus, base excision repair (BER) pathway is an important resistance factor. XRCC1, a scaffolding component, plays a critical role in BER. Methods We knocked down XRCC1 expression by using pLVX-shXRCC1 in the MiaPaCa2 cells and BxPC3 cells and evaluated β-lap-induced DNA lesions by γH2AX foci formation and alkaline comet assay. The cell death induced by XRCC1 knockdown + β-lap treatment was analysed by relative survival, flow cytometry and Western blotting analysis. Results We found that knockdown of XRCC1 significantly increased β-lap-induced DNA double-strand breaks, comet tail lengths and cell death in PDA cells. Furthermore, we observed combining XRCC1 knockdown with β-lap treatment switched programmed necrosis with β-lap monotherapy to caspase-dependent apoptosis. Conclusions These results indicate that XRCC1 is involved in the repair of β-lap-induced DNA damage, and XRCC1 loss amplifies sensitivity to β-lap, suggesting targeting key components in BER pathways may have the potential to expand use and efficacy of β-lap for gene-based therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08979-y.
Collapse
Affiliation(s)
- Yansong Zheng
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Hengce Zhang
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University/School of Basic Medical Science, Fujian Medical University, Fuzhou City, 350122, Fujian Province, China
| | - Yueting Guo
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University/School of Basic Medical Science, Fujian Medical University, Fuzhou City, 350122, Fujian Province, China
| | - Yuan Chen
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University/School of Basic Medical Science, Fujian Medical University, Fuzhou City, 350122, Fujian Province, China
| | - Hanglong Chen
- Fujian University of Traditional Chinese Medicine, Fuzhou City, 350122, Fujian Province, China
| | - Yingchun Liu
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University/School of Basic Medical Science, Fujian Medical University, Fuzhou City, 350122, Fujian Province, China.
| |
Collapse
|
8
|
Franca L, Ferraz M, Barros MC, Gibson V, Xavier-Júnior FH, Magalhães NSS, Lira-Nogueira M. ConA-Coated Liposomes as a System to Delivery β-Lapachone to Breast Cancer Cells. Anticancer Agents Med Chem 2021; 22:968-977. [PMID: 34170812 DOI: 10.2174/1871520621666210624112452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Target treatment using site-specific nanosystems is a hot topic for treating several diseases, especially cancer. OBJECTIVE The study was set out to develop site-specific liposomes using ConcanavalinA (ConA) to target β-lapachone(β-lap) to human breast cancer cells. METHODS Liposomes were prepared and characterized according to diameter size, zeta potential, ConA conjugation(%), and β-lap encapsulation efficiency (%). Isothermal Titration Calorimetry evaluated the binding energy between the biomolecules, which compose the liposomes. ConA avidity was assessed before and after conjugation. Cytotoxicity was evaluated, and fluorescence microscopy was performed to investigate the influence of ConA influenced on MCF-7 uptake. RESULTS Uncoated and ConA-coated liposomes presented size, and zeta potential values from 97.46 ± 2.01 to 152.23 ± 2.73nm, and -6.83 ± 0.28 to -17.23 ±0.64mV, respectively. Both ConA conjugation and β-lap encapsulation efficiency were approximately 100%. The favorable and spontaneous process confirmed the binding between ConA and the lipid. Hemagglutination assay confirmed ConA avidity once Lipo-ConA and Lipo-PEG-ConA were able to hemagglutinate the red blood cells at 128-1 and 256-1, respectively. Lipo-ConA was not cytotoxic, and the site-specific liposomes presented the highest toxicity. ConA-coated liposomes were more internalized by MCF7 than uncoated liposomes. CONCLUSION Therefore, the presence of ConA on the surface of liposomes influenced MCF7 uptake, suggesting that it could be used as a promising site-specific system to target β-lap to cancer cells.
Collapse
Affiliation(s)
- Larissa Franca
- Laboratório de Imunopatologia Keizo-Asami, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Milena Ferraz
- Laboratório de Imunopatologia Keizo-Asami, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Maria Clara Barros
- Laboratório de Imunopatologia Keizo-Asami, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Victor Gibson
- Laboratório de Imunopatologia Keizo-Asami, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | - Mariane Lira-Nogueira
- Laboratório de Imunopatologia Keizo-Asami, Universidade Federal de Pernambuco, Recife, PE, Brazil
| |
Collapse
|
9
|
Zhang Z, Sun X, Wang K, Yu Y, Zhang L, Zhang K, Gu J, Yuan X, Song G. Hydrogen-saturated saline mediated neuroprotection through autophagy via PI3K/AKT/mTOR pathway in early and medium stages of rotenone-induced Parkinson's disease rats. Brain Res Bull 2021; 172:1-13. [PMID: 33838212 DOI: 10.1016/j.brainresbull.2021.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/20/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023]
Abstract
Some cardiovascular symptoms in the early stage of Parkinson's disease (PD) were related to degeneration of the rostral ventrolateral medulla (RVLM) catecholaminergic neurons. To date, little is known about the effects of hydrogen water on early stage of PD. Here, protective actions of hydrogen-saturated saline (HS) on rotenone-induced PD rats, as well as its underlying mechanisms were investigated. HS was used to treat PD rats at three general stages; early, medium and late, which were represented by rotenone induced rats for 0, 7 and 14 days. HS treatment significantly alleviated the cardiovascular and motor symptoms in rotenone-induced PD rats, improved the survival number of RVLM catecholaminergic neurons and nigral dopamine neurons only in early and medium stages of PD rats. Decreased levels of reactive oxygen species (ROS) and alpha-synuclein (α-Syn), transformation of microtubule associated protein 1 light chain 3 (LC3)-I/II and degradation of sequestosome 1 (p62) were detected, as well as increased expression level of autophagy related protein 5 (ATG5) and B-cell lymphoma-2 interacting protein 1 (Beclin-1) in the RVLM and substantia nigra (SN) after HS treatment in early and medium stages of PD rats. In addition, phosphorylation levels of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt) and mammalian rapamycin target protein (mTOR) decreased after HS treatment in early and medium stages of PD rats. The results suggested that HS treatment exerted beneficial effects in early and medium stages before motor impairments emerged but not in the late stage of rotenone-induced PD rats. It exerted neuroprotection with RVLM catecholaminergic neurons and nigral dopamine neurons, mediated in part by decreasing levels of ROS and α-Syn through increasing autophagy machinery which were partly via inhibiting PI3K-Akt-mTOR pathway.
Collapse
Affiliation(s)
- Zhaoqiang Zhang
- Department of Physiology, Basic Medical College of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Xiao Sun
- Department of Nephrology, Taian City Central Hospital, Taian, 271000, China
| | - Kun Wang
- Postdoctoral Workstation, Taian City Central Hospital, Taian, 271000, China
| | - Yang Yu
- Life Science Research Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Li Zhang
- Department of Electrocardiogram, Taian Traditional Chinese Medicine Hospital, Taian, 271000, China
| | - Keping Zhang
- Department of Physiology, Basic Medical College of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Jinglongfei Gu
- Department of Physiology, Basic Medical College of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Xiaofan Yuan
- Department of Physiology, Basic Medical College of Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Guohua Song
- Life Science Research Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China.
| |
Collapse
|
10
|
Santos MCD, Bicas JL. Natural blue pigments and bikaverin. Microbiol Res 2020; 244:126653. [PMID: 33302226 DOI: 10.1016/j.micres.2020.126653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/26/2020] [Accepted: 11/13/2020] [Indexed: 10/22/2022]
Abstract
In last years, the main studied microbial sources of natural blue pigments have been the eukaryotic algae, Rhodophytes and Cryptophytes, and the cyanobacterium Arthrospira (Spirulina) platensis, responsible for the production of phycocyanin, one of the most important blue compounds approved for food and cosmetic use. Recent research also includes the indigoidine pigment from the bacteria Erwinia, Streptomyces and Photorhabdus. Despite these advances, there are still few options of microbial blue pigments reported so far, but the interest in these products is high due to the lack of stable natural blue pigments in nature. Filamentous fungi are particularly attractive for their ability to produce pigments with a wide range of colors. Bikaverin is a red metabolite present mainly in species of the genus Fusarium. Although originally red, the biomass containing bikaverin changes its color to blue after heat treatment, through a mechanism still unknown. In addition to the special behavior of color change by thermal treatment, bikaverin has beneficial biological properties, such as antimicrobial and antiproliferative activities, which can expand its use for the pharmaceutical and medical sectors. The present review addresses the production natural blue pigments and focuses on the properties of bikaverin, which can be an important source of blue pigment with potential applications in the food industry and in other industrial sectors.
Collapse
|
11
|
Anticancer Potential of Resveratrol, β-Lapachone and Their Analogues. Molecules 2020; 25:molecules25040893. [PMID: 32085381 PMCID: PMC7070981 DOI: 10.3390/molecules25040893] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 01/19/2023] Open
Abstract
This review aims to explore the potential of resveratrol, a polyphenol stilbene, and beta-lapachone, a naphthoquinone, as well as their derivatives, in the development of new drug candidates for cancer. A brief history of these compounds is reviewed along with their potential effects and mechanisms of action and the most recent attempts to improve their bioavailability and potency against different types of cancer.
Collapse
|
12
|
Sun R, Sun X, Liu H, Li P. Knockdown of lncRNA TDRG1 Inhibits Tumorigenesis in Endometrial Carcinoma Through the PI3K/AKT/mTOR Pathway. Onco Targets Ther 2019; 12:10863-10872. [PMID: 31849490 PMCID: PMC6912007 DOI: 10.2147/ott.s228168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/21/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Endometrial carcinoma (EC) is one of the most frequently diagnosed malignancies in females. Dysregulation of lncRNA TDRG1 has been widely documented in several cancers, including EC. However, the mechanism of this lncRNA involving in EC progression remains to be further elucidated. MATERIALS AND METHODS The enrichment levels of TDRG1 in EC tissues and cell lines were examined by RT-qPCR. Flow cytometry, cell counting kit-8 (CCK-8), transwell, and Western blot assays were conducted to assess whether TDRG1 knockdown could affect cell cycle arrest, proliferation, migration, invasion, and apoptosis of EC cells. The phosphorylation levels of mTOR, AKT and PI3K that associated with PI3K/Akt/mTOR pathway were determined by Western blot assay. RESULTS TDRG1 expression was markedly upregulated in EC tissues and cell lines. Knockdown of TDRG1 significantly induced cell cycle arrest and apoptosis, inhibited cell proliferation, restrained the invasion and migration abilities in EC cells. Moreover, TDRG1 silencing decreased the protein levels of p-AKT, p-PI3K, and p-mTOR of EC cells. CONCLUSION Our data underlined the implication of TDRG1 in EC progression, proposing that targeting TDRG1 might be a potential therapeutic avenue in EC.
Collapse
Affiliation(s)
- Ruimei Sun
- Department of Radiotherapy, The Affiliated Hospital of Weifang Medical University, Weifang261041, People’s Republic of China
| | - Xiujiang Sun
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Weifang Medical University, Weifang261041, People’s Republic of China
| | - Hua Liu
- Department of Gynaecology, The Affiliated Hospital of Weifang Medical University, Weifang261041, People’s Republic of China
| | - Peirui Li
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Weifang Medical University, Weifang261041, People’s Republic of China
| |
Collapse
|
13
|
Li P, Hu T, Wang H, Tang Y, Ma Y, Wang X, Xu Y, Chen G. Upregulation of EPS8L3 is associated with tumorigenesis and poor prognosis in patients with liver cancer. Mol Med Rep 2019; 20:2493-2499. [PMID: 31322213 DOI: 10.3892/mmr.2019.10471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 05/23/2019] [Indexed: 12/24/2022] Open
Abstract
Epidermal growth factor receptor kinase substrate 8 (EPS8) plays critical roles in a variety of solid tumors. However, the biologic functions and clinical significance of EPS8‑like 3 (EPS8L3), an EPS8‑related protein, in liver cancer remain unclear. To measure EPS8L3 expression in liver cancer cell lines, reverse transcription‑quantitative PCR and western blot analyses were performed. The correlation between 338 patients with liver cancer and various clinicopathological factors obtained from the Oncomine database were evaluated using the χ2 test. Survival of patients with different expression of EPS8L3 was determined using Kaplan‑Meier survival analysis with a log rank test, and Cox regression analysis was performed to estimate the prognostic significance of EPS8L3 expression. Additionally, cell proliferation and migration were determined using Cell Counting Kit‑8 and wound healing assays. The results revealed that EPS8L3 expression was significantly upregulated in liver cancer tissues and cell lines (P<0.01), and that the expression of EPS8L3 was closely associated with grade (P=0.024) and mortality (P=0.011). Furthermore, survival analysis suggested patients with high EPS8L3 expression exhibited shorter survival compared with those with low EPS8L3 expression. Cox regression analysis indicated that EPS8L3 could be regarded as a prognostic biomarker in patients with liver cancer (hazard ratio, 1.58; 95% confidence interval, 1.085‑2.301; P=0.017). Additionally, in vitro assays revealed that EPS8L3 depletion significantly inhibited liver cancer cell proliferation and migration, and reduced the levels of phosphorylated PI3K and AKT in the PI3K/AKT signaling pathway. Collectively, the results of the present study, for the first time to the best of our knowledge, demonstrated that EPS8L3 serves as an oncogene in liver cancer development; therefore, EPS8L3 may be a valuable prognostic predictor for patients with liver cancer.
Collapse
Affiliation(s)
- Peng Li
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Beihua University, Jilin 132001, P.R. China
| | - Ting Hu
- Department of Oncology, The First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Hongsheng Wang
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Beihua University, Jilin 132001, P.R. China
| | - Ying Tang
- Department of Nursing, Affiliated Hospital of Beihua University, Jilin 132001, P.R. China
| | - Yue Ma
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Beihua University, Jilin 132001, P.R. China
| | - Xiaodong Wang
- Medical Department, Huailai County Hospital of Traditional Chinese Medicine, Zhangjiakou, Hebei 075400, P.R. China
| | - Yansong Xu
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Beihua University, Jilin 132001, P.R. China
| | - Guangyu Chen
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Beihua University, Jilin 132001, P.R. China
| |
Collapse
|
14
|
Rocha TA, Moura DFD, Silva MMD, Dos Santos Souza TG, Lira MADCD, Barros DDM, da Silva AG, Ximenes RM, Falcão EPDS, Chagas CA, Júnior FCADA, Santos NPDS, Silva MVD, Correia MTDS. Evaluation of cytotoxic potential, oral toxicity, genotoxicity, and mutagenicity of organic extracts of Pityrocarpa moniliformis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:216-231. [PMID: 30849290 DOI: 10.1080/15287394.2019.1576563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The objective of this study was to determine the cytotoxicity of organic extracts of P. moniliformis in vitro and identify the acute toxicity and genotoxicity in vivo. The leaves were extracted using three organic solvents (cyclohexane [EP1], ethyl acetate [EP2], and methanol [EP3]). Phytochemical qualitative analysis was performed by thin layer chromatography (TLC). Cytotoxicity tests were performed on human embryonic kidney (HEK) cells and J774 murine macrophages. Acute toxicity in mice was measured after intraperitoneal (ip) administration of 2000 mg/kg, while evaluation of genotoxicity and mutagenicity were assessed using the comet assay and the micronucleus (MN) test, respectively. The TLC analysis of the extracts revealed the presence of flavonoids, triterpenes, steroids, and saponins. In the cytotoxicity assay, extracts EP1 and EP3 altered proliferation of HEK cells, and all organic extracts increased the viability of J774 cells. In the toxicity tests, no deaths or behavioral alterations were observed in mice exposed to the acute dose of the extracts. Although some extracts led to changes in hematological and histological parameters, these results did not indicate physiological changes. In relation to the MN test and comet assay, no significant changes were detected in the DNA of the animals tested with the extracts EP1, EP2, and EP3. Thus, extracts of P. moniliformis were not considered to be toxic and did not induce formation of MN or damage to cellular DNA in the genotoxicity tests.
Collapse
Affiliation(s)
- Tamiris Alves Rocha
- a Laboratório de Biologia Molecular, Departamento de Bioquímica , Universidade Federal de Pernambuco , Recife , Brazil
| | - Danielle Feijó de Moura
- a Laboratório de Biologia Molecular, Departamento de Bioquímica , Universidade Federal de Pernambuco , Recife , Brazil
| | - Marllyn Marques da Silva
- b Laboratório de Nanotecnologia, Biotecnologia e Cultura de Células (NANOBIOCEL), Centro Acadêmico de Vitória , Universidade Federal de Pernambuco , Brazil
| | - Talita Giselly Dos Santos Souza
- c Laboratório de Biotecnologia e Fármacos, Centro Acadêmico de Vitória , Universidade Federal de Pernambuco , Vitória de Santo Antão , Brazil
| | - Maria Aparecida da Conceição de Lira
- d Laboratório de Síntese e Isolamento Molecular (SIM). Centro Acadêmico de Vitória , Universidade Federal de Pernambuco , Vitória de Santo Antão
| | - Dayane de Melo Barros
- e Laboratório de Microbiologia de Alimentos, Centro Acadêmico de Vitória , Universidade Federal de Pernambuco , Brazil
| | - Alexandre Gomes da Silva
- f Departamento de Antibióticos , Universidade Federal de Pernambuco , Recife , Pernambuco , Brazil
- g Núcleo de Bioprospecção da Caatinga , Instituto Nacional do Semiárido , Paraíba , Brazil
| | - Rafael Matos Ximenes
- b Laboratório de Nanotecnologia, Biotecnologia e Cultura de Células (NANOBIOCEL), Centro Acadêmico de Vitória , Universidade Federal de Pernambuco , Brazil
| | - Emerson Peter da Silva Falcão
- d Laboratório de Síntese e Isolamento Molecular (SIM). Centro Acadêmico de Vitória , Universidade Federal de Pernambuco , Vitória de Santo Antão
| | - Cristiano Aparecido Chagas
- h Laboratório de Biotecnologia e Fármacos, Centro Acadêmico de Vitória , Universidade Federal de Pernambuco , Vitória de Santo Antão , Brazil
| | | | - Noêmia Pereira da Silva Santos
- b Laboratório de Nanotecnologia, Biotecnologia e Cultura de Células (NANOBIOCEL), Centro Acadêmico de Vitória , Universidade Federal de Pernambuco , Brazil
| | - Marcia Vanusa da Silva
- a Laboratório de Biologia Molecular, Departamento de Bioquímica , Universidade Federal de Pernambuco , Recife , Brazil
- g Núcleo de Bioprospecção da Caatinga , Instituto Nacional do Semiárido , Paraíba , Brazil
| | - Maria Tereza Dos Santos Correia
- a Laboratório de Biologia Molecular, Departamento de Bioquímica , Universidade Federal de Pernambuco , Recife , Brazil
- g Núcleo de Bioprospecção da Caatinga , Instituto Nacional do Semiárido , Paraíba , Brazil
| |
Collapse
|
15
|
Crunfli F, Vrechi TA, Costa AP, Torrão AS. Cannabinoid Receptor Type 1 Agonist ACEA Improves Cognitive Deficit on STZ-Induced Neurotoxicity Through Apoptosis Pathway and NO Modulation. Neurotox Res 2019; 35:516-529. [PMID: 30607903 DOI: 10.1007/s12640-018-9991-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 12/20/2022]
Abstract
The cannabinoid system has the ability to modulate cellular and molecular mechanisms, including excitotoxicity, oxidative stress, apoptosis, and inflammation, acting as a neuroprotective agent, by its relationship with signaling pathways associated to the control of cell proliferation, differentiation, and survival. Recent reports have raised new perspectives on the possible role of cannabinoid system in neurodegenerative diseases like Alzheimer disease's (AD). AD is a neurodegenerative disorder characterized by the presence of amyloid plaques, neurofibrillary tangles, neuronal death, and progressive cognitive loss, which could be caused by energy metabolism impairment, changes in insulin signaling, chronic oxidative stress, neuroinflammation, Tau hyperphosphorylation, and Aβ deposition in the brain. Thus, we investigated the presumptive protective effect of the cannabinoid type 1 (CB1)-selective receptor agonist arachidonyl-2'-chloroethylamide (ACEA) against streptozotocin (STZ) exposure stimuli in an in vitro neuronal model (Neuro-2a neuroblastoma cells) and in vivo model (intracerebroventricular STZ injection), experimental models of sporadic AD. Our results demonstrated that ACEA treatment reversed cognitive impairment and increased activity of Akt and ERK triggered by STZ, and increased IR expression and increased the anti-apoptotic proteins levels, Bcl-2. In the in vitro model, ACEA was able to rescue cells from STZ-triggered death and modulated the NO release by STZ. Our study has demonstrated a participation of the cannabinoid system in cellular survival, involving the CB1 receptor, which occurs by positive regulation of the anti-apoptotic proteins, suggesting the participation of this system in neurodegenerative processes. Our data suggest that the cannabinoid system is an interesting therapeutic target for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Fernanda Crunfli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, 05508-000, Brazil.
| | - Talita A Vrechi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, 05508-000, Brazil
| | - Andressa P Costa
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, 05508-000, Brazil
| | - Andréa S Torrão
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, 05508-000, Brazil
| |
Collapse
|
16
|
Cruz VS, Rodrigues FA, Braga KM, Machado PA, Bianchi Filho C, Prado YC, Araújo EG. β Lapachone blocks the cell cycle and induces apoptosis in canine osteosarcoma cells. PESQUISA VETERINÁRIA BRASILEIRA 2018. [DOI: 10.1590/1678-5150-pvb-5524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT: Osteosarcoma is a malignant tumor of primitive bone cells with a high incidence in dogs and humans. The need for more effective drugs with less adverse consequences has pushed the development of chemotherapeutic agents from plants and other natural sources. The aim of this study was to verify the cytotoxic effects of β-lapachone, a compound present in the sawdust of Tabebuia sp. (popularly known as ipê) wood, on canine osteosarcoma cells subcultured and treated in different concentrations (0.1μm, 0.3μm e 1.0μm) and exposure times (24h, 48h e 72h). Results were obtained through Trypan blue dye exclusion, tetrazolium reducing method, cell survival assay, Annexin V-FITC and Propidium Iodine labeling, JC-1 dye labeling and cell cycle kinetics e analysis. The group treated with 0.3μm β-lapachone presented higher decrease in cell viability (80.27%, 24h, 47.41%, 48h and 35.19%, 72h) and greater progression of cytotoxicity (19.73%, 24h, 52.59%, 48h and 64.81%, 72h). The lower IC50 (0.180μm) was verified in the group treated for 72 hours. Cell growth after treatment decreased as concentration and time of exposure increased, with 0.50% survival fraction at the concentration of 1.0μm. Initial apoptosis was the most frequent type of cell death in all groups, reaching bottom in the 24-hour group treated with 0.1μm (4.26%) and peaking in the 72-hour group treated with 1.0μm (85.89%). Mitochondrial depolarization demonstrated a dose-dependent phenomenon, indicating the intrinsic apoptosis. Cell growth inhibition by blocking cell cycle in the G0/G1 phase related to the exposure the time. β-lapachone is cytotoxic for canine osteosarcoma cells, induces apoptosis and promotes cell cycle arrest in G0/G1 phase.
Collapse
|
17
|
Kim DW, Cho JY. NQO1 is Required for β-Lapachone-Mediated Downregulation of Breast-Cancer Stem-Cell Activity. Int J Mol Sci 2018; 19:ijms19123813. [PMID: 30513573 PMCID: PMC6321092 DOI: 10.3390/ijms19123813] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) exhibit self-renewal activity and give rise to other cell types in tumors. Due to the infinite proliferative potential of CSCs, drugs targeting these cells are necessary to completely inhibit cancer development. The β-lapachone (bL) compound is widely used to treat cancer development; however, its effect on cancer stem cells remain elusive. Thus, we investigated the effect of bL on mammosphere formation using breast-cancer stem-cell (BCSC) marker-positive cells, MDA-MB-231. MDA-MB-231 cells, which are negative for reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H):quinone oxidoreductase (NQO1) expression, were constructed to stably express NQO1 (NQO1 stable cells). The effect of bL on these cells was evaluated by wound healing and Transwell cell-culture chambers, ALDEFLUOR assay, and mammosphere formation assay. Here, we show that bL inhibited the proliferative ability of mammospheres derived from BCSC marker-positive cells, MDA-MB-231, in an NQO1-dependent manner. The bL treatment efficiently downregulated the expression level of BCSC markers cluster of differentiation 44 (CD44), aldehyde dehydrogenase 1 family member A1 (ALDH1A1), and discs large (DLG)-associated protein 5 (DLGAP5) that was recently identified as a stem-cell proliferation marker in both cultured cells and mammosphered cells. Moreover, bL efficiently downregulated cell proliferation and migration activities. These results strongly suggest that bL could be a therapeutic agent for targeting breast-cancer stem-cells with proper NQO1 expression.
Collapse
Affiliation(s)
- Dong Wook Kim
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
18
|
Dias RB, de Araújo TBS, de Freitas RD, Rodrigues ACBDC, Sousa LP, Sales CBS, Valverde LDF, Soares MBP, Dos Reis MG, Coletta RD, Ramos EAG, Camara CA, Silva TMS, Filho JMB, Bezerra DP, Rocha CAG. β-Lapachone and its iodine derivatives cause cell cycle arrest at G 2/M phase and reactive oxygen species-mediated apoptosis in human oral squamous cell carcinoma cells. Free Radic Biol Med 2018; 126:87-100. [PMID: 30071298 DOI: 10.1016/j.freeradbiomed.2018.07.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/27/2018] [Accepted: 07/28/2018] [Indexed: 01/05/2023]
Abstract
β-Lapachone is a natural naphthoquinone originally obtained from the bark of the purple Ipe (Tabebuia avellanedae Lor, Bignoniaceae) and its therapeutic potential in human cancer cells has been evaluated in several studies. In this study, we examined the effects of β-lapachone and its 3-iodine derivatives (3-I-α-lapachone and 3-I-β-lapachone) on cell proliferation, cell death, and cancer-related gene expression in human oral squamous cell carcinoma cells. β-Lapachone and its 3-iodine derivatives showed potent cytotoxicity against different types of human cancer cell lines. Indeed, treatment with these compounds induced cell cycle arrest at G2/M phase, followed by internucleosomal DNA fragmentation, and caused significant increases in phosphatidylserine externalization, caspase-8 and -9 activation, mitochondrial membrane depolarization, reactive oxygen species (ROS) production, and apoptotic cell death morphology. The apoptosis induced by the compounds was prevented by pretreatment with a pan-caspase inhibitor (Z-VAD-FMK) and an antioxidant (N-acetyl-l-cysteine). In vivo, β-lapachone and its 3-iodine derivatives significantly reduced tumor burden and did not alter any of the biochemical, hematological, or histological parameters of the animals. Overall, β-lapachone and its 3-iodine derivatives showed promising cytotoxic activity due to their ability to induce cell cycle arrest at G2/M phase and promote caspase- and ROS-mediated apoptosis. In addition, β-lapachone and its 3-iodine derivatives were able to suppress tumor growth in vivo, indicating that these compounds may be new antitumor drug candidates.
Collapse
Affiliation(s)
- Rosane Borges Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil
| | | | - Raíza Dias de Freitas
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil
| | | | - Letícia Palmeira Sousa
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil
| | | | | | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil; Center of Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Bahia, Brazil
| | - Mitermayer Galvão Dos Reis
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil; Department of Pathology and Forensic Medicine, School of Medicine of the Federal University of Bahia, Salvador, Bahia, Brazil
| | - Ricardo Della Coletta
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Eduardo Antônio Gonçalves Ramos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil; Department of Pathology and Forensic Medicine, School of Medicine of the Federal University of Bahia, Salvador, Bahia, Brazil
| | - Celso Amorim Camara
- Department of Chemistry, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | | | - José Maria Barbosa Filho
- Pharmaceutical Technology Laboratory, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Daniel Pereira Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil.
| | - Clarissa Araújo Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil; Laboratory of Oral Surgical Pathology, School of Dentistry of the Federal University of Bahia, Bahia, Brazil.
| |
Collapse
|
19
|
Cao X, He GZ. Knockdown of CLDN6 inhibits cell proliferation and migration via PI3K/AKT/mTOR signaling pathway in endometrial carcinoma cell line HEC-1-B. Onco Targets Ther 2018; 11:6351-6360. [PMID: 30319275 PMCID: PMC6171518 DOI: 10.2147/ott.s174618] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUD Dysregulation of claudin-6 (CLDN6) expression in cancers has been widely documented. However, no study has reported a complete mechanistic understanding of CLDN6 regulation and function in endometrial carcinoma (EC) progression. In the current study, we aimed to assess the expression and biological functions of CLDN6 in EC. METHODS Firstly, the expression level of CLDN6 in EC was measured based on The Cancer Genome Atlas (TCGA) database. Then, qRT-PCR and western blotting were implemented to detect the expression levels of CLDN6 in 82 pairs of EC tissues and corresponding non-tumor tissues, as well as EC cell line HEC-1B. After knockdown of CLDN6, with the attempt to assess whether CLDN6 reduction had positive effects on the cell proliferation, clone formation, invasion and migration abilities of HLC-1Bs, cell counting kit-8 (CCK-8) assay (24, 48, 72 and 96 hours post-transfection), clone experiment, and invasion and migration assays were conducted. Through western blotting analysis, CLDN6-mediated phosphatidylinositol 3-kinase (PI3K) pathway was evaluated. RESULTS Based on the data of TCGA database, clinical patients and cell line HEC-1B, CLDN6 was up-regulated in EC compared with normal. Univariate as well as multivariate COX analysis indicated that CLDN6 expression can act as an independent prognostic factor for overall survival of EC. Further, knockdown of CLDN6 significantly inhibited HEC-1B cell proliferation, suppressed the colony numbers of HEC-1-B cells, and restrained the invasive and migratory ability of HEC-1-B cells. Importantly, through western blot analysis, we found that inhibition of CLDN6 remarkably decreased p-AKT, p-PI3K, and mTOR expression level in EC HEC-1B cell line. CONCLUSION Our data underscore the significance of CLDN6 in EC progression, and CLDN6 is a new candidate oncogene in EC. Our findings propose that targeting CLDN6 might offer future clinical utility in EC.
Collapse
Affiliation(s)
- Xia Cao
- Department of Gynaecology, Danyang People's Hospital of Jiangsu Province, Danyang 212300, Jiangsu Province, China,
| | - Guo-Zhao He
- Department of Gynaecology, Danyang People's Hospital of Jiangsu Province, Danyang 212300, Jiangsu Province, China,
| |
Collapse
|
20
|
Zhao Y, Sun H, Feng M, Zhao J, Zhao X, Wan Q, Cai D. Metformin is associated with reduced cell proliferation in human endometrial cancer by inbibiting PI3K/AKT/mTOR signaling. Gynecol Endocrinol 2018; 34:428-432. [PMID: 29182407 DOI: 10.1080/09513590.2017.1409714] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Metformin recently gained traction as potential anti-endometrial cancer agent for its new applications. However, the underlying mechanisms of the anti-cancer effect of metformin in the endometrial cancer have not yet been fully elucidated. Sixty-five patients diagnosed as endometrial carcinoma were grouped into (n = 33) and non-treatment mixed (n = 32) for analysis. Thirty healthy donors were recruited as controls. We attempt to investigate the effect of metformin on Ki-67, PI3K, p-AKT, p-S6K1, and p-4EBP1 staining in human endometrial cancer by immunohistochemical staining. We found that increased Ki-67 expression in women with endometrial cancer, which were reversed by conventional anti-diabetic doses of metformin in present work. In parallel, the reduced PI3K, p-AKT, p-S6K1, and p-4EBP1 staining induced by metformin appeared to play an important role for the anti-proliferative effects of metformin in endometrial cancer patients. Metformin significantly decreased proliferation in human endometrial cancer may by inhibiting PI3K/AKT/mTOR signaling. Our present results add to the growing body of evidence supporting metformin as a potential anti-cancer agent in endometrial cancer.
Collapse
Affiliation(s)
- Yan Zhao
- a Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , PR China
| | - Hongli Sun
- b Shaanxi Institute of Pediatric Diseases , The Affiliated children's hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , PR China
| | - Minjuan Feng
- a Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , PR China
| | - Jinyan Zhao
- a Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , PR China
| | - Xiaogui Zhao
- a Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , PR China
| | - Qiuyuan Wan
- a Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , PR China
| | - Dongge Cai
- a Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , PR China
| |
Collapse
|
21
|
Zhang H, Cao Y, Chen Y, Li G, Yu H. Apatinib promotes apoptosis of the SMMC-7721 hepatocellular carcinoma cell line via the PI3K/Akt pathway. Oncol Lett 2018; 15:5739-5743. [PMID: 29552208 PMCID: PMC5840725 DOI: 10.3892/ol.2018.8031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/09/2018] [Indexed: 12/12/2022] Open
Abstract
The present study investigated the inhibitory effects of apatinib on the proliferation of the SMMC-7721 hepatocellular carcinoma cell line to explore the possible mechanism. The MTT assay was used to detect the inhibitory effects of the different concentrations of apatinib on the proliferation of SMMC-7721 cells. Annexin V/PI double staining was performed to investigate the effects of apatinib on the apoptosis of SMMC-7721 cells. Expression of the apoptosis-related genes Bcl-2, Bax and caspase-9 after apatinib treatment was detected by reverse transcription-quantitative PCR (RT-qPCR) and western blot analysis. Expression of the PI3K, p-PI3K, Akt and p-Akt proteins after apatinib treatment was detected using western blot analysis. The MTT results showed that apatinib inhibited the in vitro proliferation of SMMC-7721 cells. Annexin V/PI double staining showed that apatinib induced the apoptosis of SMMC-7721 cells in a concentration-dependent manner. Results of RT-qPCR and western blot analysis showed that apatinib was able to induce the expression of pro-apoptotic genes Bax and caspase-9 and inhibited the expression of anti-apoptotic gene Bcl-2. In addition, the western blot analysis revealed that p-PI3K and p-Akt was significantly decreased following apatinib treatment, while no significant differences were found in the total protein levels of PI3K and Akt. The results of the present show that apatinib is capable of promoting the apoptosis of SMMC-7721 cells by inhibiting the PI3K/Akt signal transduction pathway, upregulating the expression of pro-apoptotic genes Bax and caspase-9, and downregulating the expression level of the anti-apoptotic gene Bcl-2.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Interventional Radiology, Heze Municipal Hospital, Heze, Shandong 274000, P.R. China
| | - Yumei Cao
- Heze Municipal Hospital, Heze, Shandong 274000, P.R. China
| | - Yuru Chen
- Department of Oncology, Heze Municipal Hospital, Heze, Shandong 274000, P.R. China
| | - Guangxi Li
- Heze Municipal Hospital, Heze, Shandong 274000, P.R. China
| | - Hanshu Yu
- Department of Pediatrics, Heze Medical College, Heze, Shandong 274000, P.R. China
| |
Collapse
|
22
|
Miyata S, Wang LY, Kitanaka S. 3EZ, 20Ac-ingenol induces cell-specific apoptosis in cyclin D1 over-expression through the activation of ATR and downregulation of p-Akt. Leuk Res 2017; 64:46-51. [PMID: 29179029 DOI: 10.1016/j.leukres.2017.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/13/2017] [Accepted: 08/14/2017] [Indexed: 10/19/2022]
Abstract
Acute lymphoblastic leukemia (ALL) samples exhibit an activated PI3K/Akt pathway, which suggests a general role of Akt in the development of leukemia. We have previously used western blot analysis to show that the catalytic topoisomerase (topo) inhibitor, 3EZ, 20Ac-ingenol, induced DNA damage response (DDR), which activated ATR, downregulated p-Akt through upregulation of PTEN level, and led to cell cycle arrest or apoptosis. In this study, we used ATR or PTEN siRNA and observed that the specific cell arrest and apoptosis of BALL-1 cells in DDR caused by 3EZ, 20Ac-ingenol was dependant on activation of ATR and downregulation of nuclear p-Akt through upregulation of PTEN. Moreover, some B cell lymphomas among ALLs overexpress cyclin D1. The DDR induced during the S-phase with 3EZ, 20Ac-ingenol treatment was increased by the intra S-phase checkpoint response that was triggered by the loss of nuclear cyclin D1 regulation in BALL-1 cells overexpressing cyclin D1. Although topo 1 catalytic inhibitors induce a decatenation checkpoint and subsequent G2/M phase arrest, the decatenation checkpoint caused by 3EZ, 20Ac-ingenol induced apoptosis only in the BALL-1 cells that accumulated cyclin D1.
Collapse
Affiliation(s)
- Shohei Miyata
- Department of Chemistry, College of Humanities and Sciences, Nihon University, Tokyo 156-8550, Japan.
| | - Li-Yan Wang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | | |
Collapse
|
23
|
Yang Y, Zhou X, Xu M, Piao J, Zhang Y, Lin Z, Chen L. β-lapachone suppresses tumour progression by inhibiting epithelial-to-mesenchymal transition in NQO1-positive breast cancers. Sci Rep 2017; 7:2681. [PMID: 28578385 PMCID: PMC5457413 DOI: 10.1038/s41598-017-02937-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/20/2017] [Indexed: 01/28/2023] Open
Abstract
NQO1 is a FAD-binding protein that can form homodimers and reduce quinones to hydroquinones, and a growing body of evidence currently suggests that NQO1 is dramatically elevated in solid cancers. Here, we demonstrated that NQO1 was elevated in breast cancer and that its expression level was positively correlated with invasion and reduced disease free survival (DFS) and overall survival (OS) rates. Next, we found that β-lapachone exerted significant anti-proliferation and anti-metastasis effects in breast cancer cell lines due to its effects on NQO1 expression. Moreover, we revealed that the anti-cancer effects of β-lapachone were mediated by the inactivation of the Akt/mTOR pathway. In conclusion, these results demonstrated that NQO1 could be a useful prognostic biomarker for patients with breast cancer, and its bioactivatable drug, β-lapachone represented a promising new development and an effective strategy for indicating the progression of NQO1-positive breast cancers.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China
| | - Xianchun Zhou
- Department of Internal Medicine, Yanbian University Hospital, Yanji, 133000, China
| | - Ming Xu
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China
| | - Junjie Piao
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China.,Department of Internal Medicine, Yanbian University Hospital, Yanji, 133000, China
| | - Yuan Zhang
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China
| | - Zhenhua Lin
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China.
| | - Liyan Chen
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China.
| |
Collapse
|
24
|
Kee JY, Han YH, Park J, Kim DS, Mun JG, Ahn KS, Kim HJ, Um JY, Hong SH. β-Lapachone Inhibits Lung Metastasis of Colorectal Cancer by Inducing Apoptosis of CT26 Cells. Integr Cancer Ther 2016; 16:585-596. [PMID: 27923905 PMCID: PMC5739146 DOI: 10.1177/1534735416681638] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background: β-Lapachone is a quinone-containing compound found in red lapacho (Tabebuia impetiginosa, syn. T avellanedae) trees. Lapacho has been used in traditional medicine by several South and Central American indigenous people to treat various types of cancer. The purpose of this study was to investigate the antimetastatic properties of β-lapachone and the underlying mechanisms using colon cancer cells. Methods: This research used metastatic murine colon cancer cell lines, colon 26 (CT26) and colon 38 (MC38). A WST assay, annexin V assay, cell cycle analysis, wound healing assay, invasion assay, western blot analysis, and real-time reverse transcription–polymerase chain reaction were performed to examine the effects of β-lapachone on metastatic phenotypes and molecular mechanisms. The effect of β-lapachone on lung metastasis was assessed in a mouse experimental metastasis model. Results: We found that the inhibition of proliferation of the colon cancer cell lines by β-lapachone was due to the induction of apoptosis and cell cycle arrest. β-Lapachone induced the apoptosis of CT26 cells through caspase-3, -8, and -9 activation; poly(ADP-ribose) polymerase cleavage; and downregulation of the Bcl-2 family in a dose- and time-dependent manner. In addition, a low concentration of β-lapachone decreased the cell migration and invasion by decreasing the expression of matrix metalloproteinases-2 and -9, and increased the expression of tissue inhibitors of metalloproteinases-1 and -2. Moreover, β-lapachone treatment regulated the expression of epithelial-mesenchymal transition markers such as E- and N-cadherin, vimentin, β-catenin, and Snail in CT26 cells. In the mouse experimental metastasis model, β-lapachone significantly inhibited the lung metastasis of CT26 cells. Conclusions: Our results demonstrated the inhibitory effect of β-lapachone on colorectal lung metastasis. This compound may be useful for developing therapeutic agents to treat metastatic cancer.
Collapse
Affiliation(s)
- Ji-Ye Kee
- 1 Wonkwang University, Iksan, Republic of Korea
| | - Yo-Han Han
- 1 Wonkwang University, Iksan, Republic of Korea
| | - Jinbong Park
- 2 Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | - Hyun-Jung Kim
- 3 Dong-eui Institute of Technology, Busan, Republic of Korea
| | - Jae-Young Um
- 2 Kyung Hee University, Seoul, Republic of Korea
| | | |
Collapse
|
25
|
Bermejo M, Mangas-Sanjuan V, Gonzalez-Alvarez I, Gonzalez-Alvarez M. Enhancing Oral Absorption of β-Lapachone: Progress Till Date. Eur J Drug Metab Pharmacokinet 2016; 42:1-10. [DOI: 10.1007/s13318-016-0369-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Li Y, Zhang Z, Zhang X, Lin Y, Luo T, Xiao Z, Zhou Q. A dual PI3K/AKT/mTOR signaling inhibitor miR-99a suppresses endometrial carcinoma. Am J Transl Res 2016; 8:719-731. [PMID: 27158364 PMCID: PMC4846921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 11/24/2015] [Indexed: 06/05/2023]
Abstract
Activation of the PI3K/AKT/mTOR signaling pathway, a common mechanism in all subtypes of endometrial cancers (EC), plays an important role in the initiation and progression of many cancers. Inhibitors against various components of this pathway might promise a novel effective approach for targeted therapy for EC in the future. Intriguingly, two major members of this pathway, AKT1 and mTOR, were both reported to be the putative target genes of miR-99a, which were widely reported to function as a tumor suppressor in a variety of cancers. However, the direct role of miR-99a in endometrial cancer progression and the signaling pathways might been involved have never been deciphered. In this paper, we demonstrate that the expression of miR-99a was significantly suppressed in the EC tissues and was negatively correlated with the differentiation of tumors. Furthermore, we find that overexpression of miR-99a in EC cells induced a complex phenotype, namely an inhibition of cell proliferation, block of G1/S phase transition, induction of cell apoptosis, suppression of cell invasion, and inhibition of tumor growth in vivo, which was mediated, at least partially, through dual-suppression of PI3K/AKT/mTOR pathway. This finding not only helps us understand the molecular mechanism of endometrial carcinogenesis, but also gives us a strong rationale to further investigate miR-99a as a potential biomarker and therapeutic target for EC.
Collapse
Affiliation(s)
- Yunyun Li
- Department of Gynecology and Obstetrics, The Yongchuan Hospital of Chongqing Medical UniversityChongqing 402160, PR China
| | - Zhongzu Zhang
- Department of Orthopedics, The Yongchuan Hospital of Chongqing Medical UniversityChongqing 402160, PR China
| | - Xiaojing Zhang
- Department of Gynecology and Obstetrics, The Yongchuan Hospital of Chongqing Medical UniversityChongqing 402160, PR China
| | - Ying Lin
- Department of Gynecology and Obstetrics, The Yongchuan Hospital of Chongqing Medical UniversityChongqing 402160, PR China
| | - Tangshu Luo
- Department of Gynecology and Obstetrics, The Yongchuan Hospital of Chongqing Medical UniversityChongqing 402160, PR China
| | - Zhenghua Xiao
- Department of Gynecology and Obstetrics, The Yongchuan Hospital of Chongqing Medical UniversityChongqing 402160, PR China
| | - Qin Zhou
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 402160, PR China
| |
Collapse
|
27
|
Bang W, Jeon YJ, Cho JH, Lee RH, Park SM, Shin JC, Choi NJ, Choi YH, Cho JJ, Seo JM, Lee SY, Shim JH, Chae JI. β-lapachone suppresses the proliferation of human malignant melanoma cells by targeting specificity protein 1. Oncol Rep 2016; 35:1109-16. [PMID: 26718788 DOI: 10.3892/or.2015.4439] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/06/2015] [Indexed: 11/06/2022] Open
Abstract
β-lapachone (β-lap), a novel natural quinone derived from the bark of the Pink trumpet tree (Tabebuia avellanedae) has been demonstrated to have anticancer activity. In this study, we investigated whether β-lap exhibits anti-proliferative effects on two human malignant melanoma (HMM) cell lines, G361 and SK-MEL-28. The effects of β-lap on the HMM cell lines were investigated using 3-(4,5-dimethylthiazol-2-yl)‑5-(3-carboxymethoxyphenyl)‑2-(4-sulfophenyl-2H-tetrazolium (MTS) assay, 4',6-diamidino-2-phenylindole (DAPI) staining, Annexin V and Dead cell assay, mitochondrial membrane potential (MMP) assay and western blot analysis. We demonstrated that β-lap significantly induced apoptosis and suppressed cell viability in the HMM cells. Intriguingly, the transcription factor specificity protein 1 (Sp1) was significantly downregulated by β-lap in a dose- and time-dependent manner. Furthermore, β-lap modulated the protein expression level of the Sp1 regulatory genes including cell cycle regulatory proteins and apoptosis-associated proteins. Taken together, our findings indicated that β-lap modulates Sp1 transactivation and induces apoptotic cell death through the regulation of cell cycle- and apoptosis-associated proteins. Thus, β-lap may be used as a promising anticancer drug for cancer prevention and may improve the clinical outcome of patients with cancer.
Collapse
Affiliation(s)
- Woong Bang
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Young-Joo Jeon
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Jin Hyoung Cho
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Ra Ham Lee
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Seon-Min Park
- Pohang Center for Evaluation of Biomaterials, Pohang, Gyeongbuk 790‑834, Republic of Korea
| | - Jae-Cheon Shin
- Pohang Center for Evaluation of Biomaterials, Pohang, Gyeongbuk 790‑834, Republic of Korea
| | - Nag-Jin Choi
- Department of Animal Science, College of Agricultural and Life Science, Chonbuk National University, Jeonju 561‑756, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Oriental Medicine, Busan 614-052, Republic of Korea
| | - Jung-Jae Cho
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Jae-Min Seo
- Department of Prosthodontics, School of Dentistry and Institute of Oral Bio-Science and Research Institute of Clinical Medicine, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Seung-Yeop Lee
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju 561-756, Republic of Korea
| |
Collapse
|
28
|
Zhang Y, Yang Y, Xie Z, Zuo W, Jiang H, Zhao X, Sun Y, Kong W. Decreased Poly(ADP-Ribose) Polymerase 1 Expression Attenuates Glucose Oxidase-Induced Damage in Rat Cochlear Marginal Strial Cells. Mol Neurobiol 2015; 53:5971-5984. [PMID: 26526840 PMCID: PMC5085996 DOI: 10.1007/s12035-015-9469-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 09/30/2015] [Indexed: 12/20/2022]
Abstract
Oxidative damage to the inner ear is responsible for several types of sensorineural deafness. Cochlear stria marginal cells (MCs) are thought to be vulnerable to such oxidative stress. Activated poly(ADP-ribose) polymerase 1 (PARP1) has been implicated in several diseases, but the effect of PARP1 on MCs subjected to oxidative stress remains elusive. In this study, we established an in vitro cellular oxidative stress model using glucose oxidase (GO) and attempted to explore the role that PARP1 plays in the oxidative damage of MCs. In this study, PARP1 and poly-ADP-ribose (PAR) were highly expressed in GO-treated MCs, and this was accompanied by loss of MC viability, excessive generation of reactive oxygen species (ROS), collapse of mitochondria membrane potential (ΔΨm), and redistribution of the mitochondrial downstream pathway-related molecules Bax and cytochrome c, eventually causing MC death. These effects were almost completely counteracted by suppressing PARP1 expression with small interfering RNA (siRNA). We also found that caspase-3 activation was a downstream event of PARP activation and that apoptosis of MCs was suppressed, although not completely, by pretreatment with the pan-caspase inhibitor z-VAD-fmk. The suppression was less than that when PARP1 expression was inhibited. We conclude that GO treatment induces activation of PARP1, which causes MC damage via mitochondrial mediation. PARP1 plays a pivotal role in GO-induced MC death, at least in part, via the caspase-3 cascade. Our study might provide a new cellular and molecular approach for the treatment of oxidative stress-related sensorineural deafness.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.,Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital, Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Yang Yang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zhen Xie
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Wenqi Zuo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Hongyan Jiang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Xueyan Zhao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
29
|
Miyata S, Fukuda Y, Tojima H, Matsuzaki K, Kitanaka S, Sawada H. Mechanism of the inhibition of leukemia cell growth and induction of apoptosis through the activation of ATR and PTEN by the topoisomerase inhibitor 3EZ, 20Ac-ingenol. Leuk Res 2015. [DOI: 10.1016/j.leukres.2015.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
30
|
Lee EJ, Ko HM, Jeong YH, Park EM, Kim HS. β-Lapachone suppresses neuroinflammation by modulating the expression of cytokines and matrix metalloproteinases in activated microglia. J Neuroinflammation 2015; 12:133. [PMID: 26173397 PMCID: PMC4502557 DOI: 10.1186/s12974-015-0355-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/29/2015] [Indexed: 12/22/2022] Open
Abstract
Background β-Lapachone (β-LAP) is a natural naphthoquinone compound isolated from the lapacho tree (Tabebuia sp.), and it has been used for treatment of rheumatoid arthritis, infection, and cancer. In the present study, we investigated whether β-LAP has anti-inflammatory effects under in vitro and in vivo neuroinflammatory conditions. Methods The effects of β-LAP on the expression of inducible nitric oxide synthase (iNOS), cytokines, and matrix metalloproteinases (MMPs) were examined in lipopolysaccharide (LPS)-stimulated BV2 microglial cells and rat primary microglia by ELISA, reverse transcription polymerase chain reaction (RT-PCR), and Western blot analysis. Microglial activation and the expression levels of proinflammatory molecules were measured in the LPS-injected mouse brain by immunohistochemistry and RT-PCR analysis. The detailed molecular mechanism underlying the anti-inflammatory effects of β-LAP was analyzed by electrophoretic mobility shift assay, reporter gene assay, Western blot, and RT-PCR analysis. Results β-LAP inhibited the expression of iNOS, proinflammatory cytokines, and MMPs (MMP-3, MMP-8, MMP-9) at mRNA and protein levels in LPS-stimulated microglia. On the other hand, β-LAP upregulated the expressions of anti-inflammatory molecules such as IL-10, heme oxygenase-1 (HO-1), and the tissue inhibitor of metalloproteinase-2 (TIMP-2). The anti-inflammatory effect of β-LAP was confirmed in an LPS-induced systemic inflammation mouse model. Thus, β-LAP inhibited microglial activation and the expressions of iNOS, proinflammatory cytokines, and MMPs in the LPS-injected mouse brain. Further mechanistic studies revealed that β-LAP exerts anti-inflammatory effects by inhibiting MAPKs, PI3K/AKT, and NF-κB/AP-1 signaling pathways in LPS-stimulated microglia. β-LAP also inhibited reactive oxygen species (ROS) production by suppressing the expression and/or phosphorylation of NADPH oxidase subunit proteins, such as p47phox and gp91phox. The anti-oxidant effects of β-LAP appeared to be related with the increase of HO-1 and NQO1 via the Nrf2/anti-oxidant response element (ARE) pathway and/or the PKA pathway. Conclusions The strong anti-inflammatory/anti-oxidant effects of β-LAP may provide preventive therapeutic potential for various neuroinflammatory disorders. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0355-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eun-Jung Lee
- Department of Molecular Medicine, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Mok-6-dong 911-1, Yangchun-Ku, Seoul, 158-710, South Korea.
| | - Hyun-Myung Ko
- Department of Molecular Medicine, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Mok-6-dong 911-1, Yangchun-Ku, Seoul, 158-710, South Korea.
| | - Yeon-Hui Jeong
- Department of Molecular Medicine, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Mok-6-dong 911-1, Yangchun-Ku, Seoul, 158-710, South Korea.
| | - Eun-Mi Park
- Department of Pharmacology, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, 158-710, South Korea.
| | - Hee-Sun Kim
- Department of Molecular Medicine, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Mok-6-dong 911-1, Yangchun-Ku, Seoul, 158-710, South Korea.
| |
Collapse
|
31
|
Combinative effects of β-Lapachone and APO866 on pancreatic cancer cell death through reactive oxygen species production and PARP-1 activation. Biochimie 2015; 116:141-53. [PMID: 26188110 DOI: 10.1016/j.biochi.2015.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 07/13/2015] [Indexed: 11/23/2022]
Abstract
UNLABELLED Pancreatic cancer (PC) is one of the most lethal human malignancies and a major health problem. Patients diagnosed with PC and treated with conventional approaches have an overall 5-year survival rate of less than 5%. Novel strategies are needed to treat this disease. Herein, we propose a combinatorial strategy that targets two unrelated metabolic enzymes overexpressed in PC cells: NAD(P)H quinone oxidoreductase-1 (NQO1) and nicotinamide phosphoribosyl transferase (NAMPT) using β-lapachone (BL) and APO866, respectively. We show that BL tremendously enhances the antitumor activity of APO866 on various PC cell lines without affecting normal cells, in a PARP-1 dependent manner. The chemopotentiation of APO866 with BL was characterized by the following: (i) nicotinamide adenine dinucleotide (NAD) depletion; (ii) catalase (CAT) degradation; (iii) excessive H2O2 production; (iv) dramatic drop of mitochondrial membrane potential (MMP); and finally (v) autophagic-associated cell death. H2O2 production, loss of MMP and cell death (but not NAD depletion) were abrogated by exogenous supplementation with CAT or pharmacological or genetic inhibition of PARP-1. Our data demonstrates that the combination of a non-lethal dose of BL and low dose of APO866 optimizes significantly cell death on various PC lines over both compounds given separately and open new and promising combination in PC therapy.
Collapse
|
32
|
Zheng YB, Xiao GC, Tong SL, Ding Y, Wang QS, Li SB, Hao ZN. Paeoniflorin inhibits human gastric carcinoma cell proliferation through up-regulation of microRNA-124 and suppression of PI3K/Akt and STAT3 signaling. World J Gastroenterol 2015; 21:7197-7207. [PMID: 26109806 PMCID: PMC4476881 DOI: 10.3748/wjg.v21.i23.7197] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/26/2014] [Accepted: 02/12/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the potential anti-tumor activity of paeoniflorin in the human gastric carcinoma cell line MGC-803.
METHODS: Cell viability and cytotoxic effects in MGC-803 cells were analyzed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay, respectively. Cell apoptosis of MGC-803 cells was measured using flow cytometry, DAPI staining assay and caspase-3 activity assay. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) was used to measure the expression of microRNA-124 (miR-124) in response to paeoniflorin. The expression of phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), phospho-Akt (p-Akt) and phospho-signal transducer and activator of transcription 3 (p-STAT3) were also measured by quantitative RT-PCR and Western blot analysis in normal, miR-124 and anti-miR-124 over-expressing MGC-803 cells, treated with paeoniflorin.
RESULTS: Paeoniflorin was found to inhibit MGC-803 cell viability in a dose-dependent manner. Paeoniflorin treatment was associated with the induction of apoptosis and caspase-3 activity in MGC-803 cells. Paeoniflorin treatment significantly increased miR-124 levels and inhibited the expression of PI3K, Akt, p-Akt and p-STAT3 in MGC-803 cells. Interestingly, the over-expression of miR-124 inhibits PI3K/Akt and phospho-STAT3 expressions in MGC-803 cells. PI3K agonist (IGF-1, 1 μg/10 μL) or over-expression of STAT3 reversed the effect of paeoniflorin on the proliferation of MGC-803 cells. Over-expression of anti-miR-124 in MGC-803 cells reversed paeoniflorin-induced up-regulation.
CONCLUSION: In summary, the in vitro data suggest that paeoniflorin is a potential novel therapeutic agent against gastric carcinoma, which inhibits cell viability and induces apoptosis through the up-regulation of miR-124 and suppression of PI3K/Akt and STAT3 signaling.
Collapse
|
33
|
Wang X, Song H, Yu Q, Liu Q, Wang L, Liu Z, Yu Z. Ad-p53 enhances the sensitivity of triple-negative breast cancer MDA-MB-468 cells to the EGFR inhibitor gefitinib. Oncol Rep 2014; 33:526-32. [PMID: 25501339 PMCID: PMC4306269 DOI: 10.3892/or.2014.3665] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/24/2014] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) accounts for 20% of all molecular subtypes of breast cancer. Neither endocrine nor anti-HER2 molecular targeting treatment yield promising results. At present, epidermal growth factor receptor (EGFR) inhibitor, as a single agent, is unable to obtain encouraging results in the treatment of TNBC, even though most of these tumors overexpress EGFR. In the present study, we used recombinant human p53 adenovirus (Ad-p53) and EGFR inhibitor gefitinib to treat the TNBC cell line MDA-MB-468. The combined treatment of gefitinib and Ad-p53 synergistically inhibited the proliferation of MDA-MB-468 cells; it restrained colony formation, enhanced cellular apoptosis and arrested the cell cycle in vitro, and decreased tumor burden of xenografts in nude mice. Western blot analysis revealed that Ad-p53 and gefitinib in combination significantly downregulated the phosphorylation of protein kinase B (p-Akt) and upregulated caspase-9 and cleaved caspase-3, while there were minimal effects on the expression of extracellular signal-regulated kinase (ERK) and phosphorylation of ERK (p-ERK). These results suggest that Ad-p53 may block the PI3K/Akt pathway rather than the Raf/MEK/ERK pathway. Importantly, wild-type p53 was able to reverse the drug resistance of MDA-MB-468 cells to gefitinib through inactivation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. The apoptotic activity induced by this combined treatment may be regulated by caspase cascade-dependent activation.
Collapse
Affiliation(s)
- Xinzhao Wang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Shandong Cancer Hospital, Jinan, Shandong 250117, P.R. China
| | - Hongkuan Song
- Juxian Hospital of Traditional Chinese Medicine, Rizhao, Shandong 276500, P.R. China
| | - Qian Yu
- Department of Biology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Qi Liu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Shandong Cancer Hospital, Jinan, Shandong 250117, P.R. China
| | - Leilei Wang
- Shandong Cancer Hospital, Jinan, Shandong 250117, P.R. China
| | - Zhaoyun Liu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Shandong Cancer Hospital, Jinan, Shandong 250117, P.R. China
| | - Zhiyong Yu
- Shandong Cancer Hospital, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
34
|
Ramalingam M, Kim SJ. Insulin involved Akt/ERK and Bcl-2/Bax pathways against oxidative damages in C6 glial cells. J Recept Signal Transduct Res 2014; 36:14-20. [DOI: 10.3109/10799893.2014.970276] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|