1
|
Kandeel M. An overview of the recent progress in Middle East Respiratory Syndrome Coronavirus (MERS-CoV) drug discovery. Expert Opin Drug Discov 2023; 18:385-400. [PMID: 36971501 DOI: 10.1080/17460441.2023.2192921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
INTRODUCTION The Middle East respiratory syndrome coronavirus (MERS-CoV) has remained a public health concern since it first emerged in 2012. Although many potential treatments for MERS-CoV have been developed and tested, none have had complete success in stopping the spread of this deadly disease. MERS-CoV replication comprises attachment, entry, fusion and replication steps. Targeting these events may lead to the creation of medications that effectively treat MERS-CoV infection. AREAS COVERED This review updates the research on the development of inhibitors of MERS-CoV. The main topics are MERS-CoV‒related proteins and host cell proteins that are involved in viral protein activation and infection. EXPERT OPINION Research on discovering drugs that can inhibit MERS-CoV started at a slow pace, and although efforts have steadily increased, clinical trials for new drugs specifically targeting MERS-CoV have not been extensive enough. The explosion in efforts to find new medications for the SARS-CoV-2 virus indirectly enhanced the volume of data on MERS-CoV inhibition by including MERS-CoV in drug assays. The appearance of COVID-19 completely transformed the data available on MERS-CoV inhibition. Despite the fact that new infected cases are constantly being diagnosed, there are currently no approved vaccines for or inhibitors of MERS-CoV.
Collapse
|
2
|
Shahab M, Danial M, Khan T, Liang C, Duan X, Wang D, Gao H, Zheng G. In Silico Identification of Lead Compounds for Pseudomonas Aeruginosa PqsA Enzyme: Computational Study to Block Biofilm Formation. Biomedicines 2023; 11:961. [PMID: 36979940 PMCID: PMC10046026 DOI: 10.3390/biomedicines11030961] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium implicated in acute and chronic nosocomial infections and a leading cause of patient mortality. Pseudomonas aeruginosa infections are frequently associated with the development of biofilms, which give the bacteria additional drug resistance and increase their virulence. The goal of this study was to find strong compounds that block the Anthranilate-CoA ligase enzyme made by the pqsA gene. This would stop the P. aeruginosa quorum signaling system. This enzyme plays a crucial role in the pathogenicity of P. aeruginosa by producing autoinducers for cell-to-cell communication that lead to the production of biofilms. Pharmacophore-based virtual screening was carried out utilizing a library of commercially accessible enzyme inhibitors. The most promising hits obtained during virtual screening were put through molecular docking with the help of MOE. The virtual screening yielded 7/160 and 10/249 hits (ZINC and Chembridge). Finally, 2/7 ZINC hits and 2/10 ChemBridge hits were selected as potent lead compounds employing diverse scaffolds due to their high pqsA enzyme binding affinity. The results of the pharmacophore-based virtual screening were subsequently verified using a molecular dynamic simulation-based study (MDS). Using MDS and post-MDS, the stability of the complexes was evaluated. The most promising lead compounds exhibited a high binding affinity towards protein-binding pocket and interacted with the catalytic dyad. At least one of the scaffolds selected will possibly prove useful for future research. However, further scientific confirmation in the form of preclinical and clinical research is required before implementation.
Collapse
Affiliation(s)
- Muhammad Shahab
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Muhammad Danial
- Shenzhen Institute of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Taimur Khan
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chaoqun Liang
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiuyuan Duan
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Daixi Wang
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hanzi Gao
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guojun Zheng
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Zinzula L, Mereu AM, Orsini M, Seeleitner C, Bracher A, Nagy I, Baumeister W. Ebola and Marburg virus VP35 coiled-coil validated as antiviral target by tripartite split-GFP complementation. iScience 2022; 25:105354. [PMID: 36325051 PMCID: PMC9619376 DOI: 10.1016/j.isci.2022.105354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022] Open
Abstract
Ebola virus (EBOV) and Marburg virus (MARV) are highly pathogenic viruses in humans, against which approved antivirals are lacking. During EBOV and MARV infection, coiled-coil mediated oligomerization is essential for the virion protein 35 (VP35) polymerase co-factor function and type I interferon antagonism, making VP35 coiled-coil an elective drug target. We established a tripartite split-green fluorescent protein (GFP) fluorescence complementation (FC) system based on recombinant GFP-tagged EBOV and MARV VP35, which probes VP35 coiled-coil assembly by monitoring fluorescence on E. coli colonies, or in vitro in 96/384-multiwell. Oligomerization-defective VP35 mutants showed that correct coiled-coil knobs-into-holes pairing within VP35 oligomer is pre-requisite for GFP tags and GFP detector to reconstitute fluorescing full-length GFP. The method was validated by screening a small compound library, which identified Myricetin and 4,5,6,7-Tetrabromobenzotriazole as inhibitors of EBOV and MARV VP35 oligomerization-dependent FC with low-micromolar IC50 values. These findings substantiate the VP35 coiled-coil value as antiviral target. Ebola and Marburg virus VP35 oligomerize via trimeric and tetrameric coiled-coil VP35 coiled-coil assembly triggers fluorescence of a tripartite split-GFP system Mutations perturbing VP35 coiled-coil hamper split-GFP complementation Myricetin and TBBT inhibit split-GFP complementation mediated by VP35 coiled-coil
Collapse
Affiliation(s)
- Luca Zinzula
- The Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
- Corresponding author
| | - Angela Maria Mereu
- The Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Massimiliano Orsini
- Istituto Zooprofilattico Sperimentale delle Venezie, Department of Risk Analysis and Public Health Surveillance, Viale dell’Università 10, 35020 Legnaro, Italy
| | - Christine Seeleitner
- The Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Andreas Bracher
- The Max-Planck Institute of Biochemistry, Department of Cellular Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - István Nagy
- The Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Wolfgang Baumeister
- The Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
- Corresponding author
| |
Collapse
|
4
|
Kim J, Hwang SY, Kim D, Kim M, Baek K, Kang M, An S, Gong J, Park S, Kandeel M, Lee Y, Noh M, Kwon HJ. Abiraterone Acetate Attenuates SARS-CoV-2 Replication by Interfering with the Structural Nucleocapsid Protein. Biomol Ther (Seoul) 2022; 30:427-434. [PMID: 35548881 PMCID: PMC9424333 DOI: 10.4062/biomolther.2022.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 12/02/2022] Open
Abstract
The drug repurposing strategy has been applied to the development of emergency COVID-19 therapeutic medicines. Current drug repurposing approaches have been directed against RNA polymerases and viral proteases. Recently, we found that the inhibition of the interaction between the SARS-CoV-2 structural nucleocapsid (N) and spike (S) proteins decreased viral replication. In this study, drug repurposing candidates were screened by in silico molecular docking simulation with the SARS-CoV-2 structural N protein. In the ChEMBL database, 1994 FDA-approved drugs were selected for the in silico virtual screening against the N terminal domain (NTD) of the SARS-CoV-2 N protein. The tyrosine 109 residue in the NTD of the N protein was used as the center of the ligand binding grid for the docking simulation. In plaque forming assays performed with SARS-CoV-2 infected Vero E6 cells, atovaquone, abiraterone acetate, and digoxin exhibited a tendency to reduce the size of the viral plagues without affecting the plaque numbers. Abiraterone acetate significantly decreased the accumulation of viral particles in the cell culture supernatants in a concentration-dependent manner. In addition, abiraterone acetate significantly decreased the production of N protein and S protein in the SARS-CoV-2-infected Vero E6 cells. In conclusion, abiraterone acetate has therapeutic potential to inhibit the viral replication of SARS-CoV-2.
Collapse
Affiliation(s)
- Jinsoo Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Seok Young Hwang
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongbum Kim
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Minyoung Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kyeongbin Baek
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Mijeong Kang
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Seungchan An
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Junpyo Gong
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangkyu Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-hofuf 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh 33516, Egypt
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Minsoo Noh
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyung-Joo Kwon
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
5
|
Kandeel M, Al-Mubarak AIA. Camel viral diseases: Current diagnostic, therapeutic, and preventive strategies. Front Vet Sci 2022; 9:915475. [PMID: 36032287 PMCID: PMC9403476 DOI: 10.3389/fvets.2022.915475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
Many pathogenic viruses infect camels, generally regarded as especially hardy livestock because of their ability to thrive in harsh and arid conditions. Transmission of these viruses has been facilitated by the commercialization of camel milk and meat and their byproducts, and vaccines are needed to prevent viruses from spreading. There is a paucity of information on the effectiveness of viral immunizations in camels, even though numerous studies have looked into the topic. More research is needed to create effective vaccines and treatments for camels. Because Camels are carriers of coronavirus, capable of producing a powerful immune response to recurrent coronavirus infections. As a result, camels may be a suitable model for viral vaccine trials since vaccines are simple to create and can prevent viral infection transfer from animals to humans. In this review, we present available data on the diagnostic, therapeutic, and preventative strategies for the following viral diseases in camels, most of which result in significant economic loss: camelpox, Rift Valley fever, peste des petits ruminants, bovine viral diarrhea, bluetongue, rotavirus, Middle East respiratory syndrome, and COVID-19. Although suitable vaccines have been developed for controlling viral infections and perhaps interrupting the transmission of the virus from the affected animals to blood-feeding vectors, there is a paucity of information on the effectiveness of viral immunizations in camels and more research is needed. Recent therapeutic trials that include specific antivirals or supportive care have helped manage viral infections.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
- *Correspondence: Mahmoud Kandeel
| | - Abdullah I. A. Al-Mubarak
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
| |
Collapse
|
6
|
Liu XH, Cheng T, Liu BY, Chi J, Shu T, Wang T. Structures of the SARS-CoV-2 spike glycoprotein and applications for novel drug development. Front Pharmacol 2022; 13:955648. [PMID: 36016554 PMCID: PMC9395726 DOI: 10.3389/fphar.2022.955648] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
COVID-19 caused by SARS-CoV-2 has raised a health crisis worldwide. The high morbidity and mortality associated with COVID-19 and the lack of effective drugs or vaccines for SARS-CoV-2 emphasize the urgent need for standard treatment and prophylaxis of COVID-19. The receptor-binding domain (RBD) of the glycosylated spike protein (S protein) is capable of binding to human angiotensin-converting enzyme 2 (hACE2) and initiating membrane fusion and virus entry. Hence, it is rational to inhibit the RBD activity of the S protein by blocking the RBD interaction with hACE2, which makes the glycosylated S protein a potential target for designing and developing antiviral agents. In this study, the molecular features of the S protein of SARS-CoV-2 are highlighted, such as the structures, functions, and interactions of the S protein and ACE2. Additionally, computational tools developed for the treatment of COVID-19 are provided, for example, algorithms, databases, and relevant programs. Finally, recent advances in the novel development of antivirals against the S protein are summarized, including screening of natural products, drug repurposing and rational design. This study is expected to provide novel insights for the efficient discovery of promising drug candidates against the S protein and contribute to the development of broad-spectrum anti-coronavirus drugs to fight against SARS-CoV-2.
Collapse
|
7
|
Adibzadeh S, Amiri S, Nia GE, Taleghani MR, Bijarpas ZK, Maserat N, Maali A, Azad M, Behzad-Behbahani A. Therapeutic approaches and vaccination in fighting COVID-19 infections: A review. GENE REPORTS 2022; 27:101619. [PMID: 35530725 PMCID: PMC9066810 DOI: 10.1016/j.genrep.2022.101619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/03/2022] [Accepted: 04/30/2022] [Indexed: 12/27/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a remarkably contagious and pathogenic viral infection arising from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which first appeared in Wuhan, China. For the time being, COVID-19 is not treated with a specific therapy. The Food and Drug Administration (FDA) has approved Remdesivir as the first drug to treat COVID-19. However, many other therapeutic approaches are being investigated as possible treatments for COVID-19. As part of this review, we discussed the development of various drugs, their mechanism of action, and how they might be applied to different cases of COVID-19 patients. Furthermore, this review highlights an update in the emergence of new prophylactic or therapeutic vaccines against COVID-19. In addition to FDA or The World Health Organization (WHO) approved vaccines, we intended to incorporate the latest published data from phase III trials about different COVID-19 vaccines and provide clinical data released on the networks or peer-review journals.
Collapse
Key Words
- ACE2, Angiotensin-converting enzyme 2
- ARDS, Acute respiratory distress syndrome
- Antiviral agents
- Arb, Arbidol
- COVID-19
- COVID-19, Coronavirus disease 2019
- ER, Endoplasmic reticulum
- ERGIC, Endoplasmic reticulum Golgi intermediate compartment
- FDA, Food and Drug Administration
- HIV, Human immunodeficiency virus
- MERS-CoV, The Middle East respiratory syndrome 20 coronavirus
- ORFs, Open reading frames
- Pandemics
- Pneumonia
- RBD, Receptor binding domain
- RTC, Replicase transcriptase complex
- RdRp, RNA-dependent RNA polymerase
- SARS-CoV-2
- SARS-CoV-2, Severe acute respiratory syndrome of coronavirus 2
- VLPs, Virus-like particles
- Vaccines
- WHO, World Health Organization
- WMT, Washed microbiota transplantation
- gRNA, Genomic RNA
- mAbs, Monoclonal antibodies
- sgRNA, Subgenomic RNA
Collapse
Affiliation(s)
- Setare Adibzadeh
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Shahin Amiri
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Giti Esmail Nia
- Faculty of Allied Medicine, Cellular and Molecular Research Centre, Iran University of Medical Science, Tehran, Iran
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
| | - Maryam Rezakhani Taleghani
- Biotechnology Research Institute of Industry and Environment, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | | | - Neda Maserat
- Department of Biology, Sistan and Balouchestan University, Zahedan, Iran
| | - Amirhosein Maali
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Biotechnology, School of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehdi Azad
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Abbas Behzad-Behbahani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Kim D, Kim J, Park S, Kim M, Baek K, Kang M, Choi JK, Maharjan S, Akauliya M, Lee Y, Kwon HJ. Production of SARS-CoV-2 N Protein-Specific Monoclonal Antibody and Its Application in an ELISA-Based Detection System and Targeting the Interaction Between the Spike C-Terminal Domain and N Protein. Front Microbiol 2021; 12:726231. [PMID: 34950112 PMCID: PMC8688357 DOI: 10.3389/fmicb.2021.726231] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/09/2021] [Indexed: 01/04/2023] Open
Abstract
SARS-CoV-2 infections continue to spread quickly by human-to-human transmission around the world. Therefore, developing methods to rapidly detect SARS-CoV-2 with high sensitivity are still urgently needed. We produced a monoclonal antibody that specifically detects the N protein of SARS-CoV-2 and recognizes N protein in cell lysates of SARS-CoV-2-infected Vero cells but not in cell lysates of MERS-CoV- or HCoV-OC43-infected Vero cells. This antibody recognized N protein in SARS-CoV-2 clades S, GR, and GH and recognized N protein in all the SARS-CoV-2 clades to ∼300 pfu. Previously, we reported that the coronavirus N protein interacts with the C-terminal domain of the spike protein (Spike CD). In this study, we developed an ELISA-based "bait and prey" system to confirm the interaction between SARS-CoV-2 Spike CD and N protein using recombinant fusion proteins. Furthermore, this system can be modified to quantitatively detect SARS-CoV-2 in culture media of infected cells by monitoring the interaction between the recombinant Spike CD fusion protein and the viral N protein, which is captured by the N protein-specific antibody. Therefore, we conclude that our N protein-specific monoclonal antibody and our ELISA-based bait and prey system could be used to diagnose SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Dongbum Kim
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Jinsoo Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Sangkyu Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, South Korea
| | - Minyoung Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Kyeongbin Baek
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Mijeong Kang
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Jun-Kyu Choi
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, South Korea
| | - Sony Maharjan
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Madhav Akauliya
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, South Korea
| | - Hyung-Joo Kwon
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, South Korea.,Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea
| |
Collapse
|
9
|
Kim D, Maharjan S, Kim J, Park S, Park JA, Park BK, Lee Y, Kwon HJ. MUC1-C influences cell survival in lung adenocarcinoma Calu-3 cells after SARS-CoV-2 infection. BMB Rep 2021. [PMID: 33832550 PMCID: PMC8411043 DOI: 10.5483/bmbrep.2021.54.8.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces coronavirus disease 2019 (COVID-19) and may increase the risk of adverse outcomes in lung cancer patients. In this study, we investigated the expression and function of mucin 1 (MUC1) after SARS-CoV-2 infection in the lung epithelial cancer cell line Calu-3. MUC1 is a major constituent of the mucus layer in the respiratory tract and contributes to pathogen defense. SARS-CoV-2 infection induced MUC1 C-terminal subunit (MUC1-C) expression in a STAT3 activation-dependent manner. Inhibition of MUC1-C signaling increased apoptosis-related protein levels and reduced proliferation-related protein levels; however, SARS-CoV-2 replication was not affected. Together, these results suggest that increased MUC1-C expression in response to SARS-CoV-2 infection may trigger the growth of lung cancer cells, and COVID-19 may be a risk factor for lung cancer patients.
Collapse
Affiliation(s)
- Dongbum Kim
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Sony Maharjan
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Jinsoo Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Sangkyu Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea
| | - Jeong-A Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea
| | - Byoung Kwon Park
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea
| | - Hyung-Joo Kwon
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
10
|
Kandeel M, Yamamoto M, Park BK, Al-Taher A, Watanabe A, Gohda J, Kawaguchi Y, Oh-Hashi K, Kwon HJ, Inoue JI. Discovery of New Potent anti-MERS CoV Fusion Inhibitors. Front Pharmacol 2021; 12:685161. [PMID: 34149429 PMCID: PMC8206564 DOI: 10.3389/fphar.2021.685161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV), capable of zoonotic transmission, has been associated with emerging viral pneumonia in humans. In this study, a set of highly potent peptides were designed to prevent MERS-CoV fusion through competition with heptad repeat domain 2 (HR2) at its HR1 binding site. We designed eleven peptides with stronger estimated HR1 binding affinities than the wild-type peptide to prevent viral fusion with the cell membrane. Eight peptides showed strong inhibition of spike-mediated MERS-CoV cell-cell fusion with IC50 values in the nanomolar range (0.25–2.3 µM). Peptides #4–6 inhibited 95–98.3% of MERS-CoV plaque formation. Notably, peptide four showed strong inhibition of MERS-CoV plaques formation with EC50 = 0.302 µM. All peptides demonstrated safe profiles without cytotoxicity up to a concentration of 10 μM, and this cellular safety, combined with their anti-MERS-CoV antiviral activity, indicate all peptides can be regarded as potential promising antiviral agents.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mizuki Yamamoto
- Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Division of Cellular and Molecular Biology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Byoung Kwon Park
- Department of Microbiology, Hallym University College of Medicine, Chuncheon, South Korea
| | - Abdulla Al-Taher
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Aya Watanabe
- Division of Cellular and Molecular Biology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Jin Gohda
- Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasushi Kawaguchi
- Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kentaro Oh-Hashi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Hyung-Joo Kwon
- Department of Microbiology, Hallym University College of Medicine, Chuncheon, South Korea
| | - Jun-Ichiro Inoue
- Division of Cellular and Molecular Biology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Senior Professor Office, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Pu J, Zhou JT, Liu P, Yu F, He X, Lu L, Jiang S. Viral Entry Inhibitors Targeting Six-Helical Bundle Core Against Highly Pathogenic Enveloped Viruses with Class I Fusion Proteins. Curr Med Chem 2021; 29:700-718. [PMID: 33992055 DOI: 10.2174/0929867328666210511015808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 11/22/2022]
Abstract
TypeⅠ enveloped viruses bind to cell receptors through surface glycoproteins to initiate infection or undergo receptor-mediated endocytosis. They also initiate membrane fusion in the acidic environment of endocytic compartments, releasing genetic material into the cell. In the process of membrane fusion, envelope protein exposes fusion peptide, followed by insertion into the cell membrane or endosomal membrane. Further conformational changes ensue in which the type 1 envelope protein forms a typical six-helix bundle structure, shortening the distance between viral and cell membranes so that fusion can occur. Entry inhibitors targeting viral envelope proteins, or host factors, are effective antiviral agents and have been widely studied. Some have been used clinically, such as T20 and Maraviroc for human immunodeficiency virus 1 (HIV-1) or Myrcludex B for hepatitis D virus (HDV). This review focuses on entry inhibitors that target the six-helical bundle core against highly pathogenic enveloped viruses with class I fusion proteins, including retroviruses, coronaviruses, influenza A viruses, paramyxoviruses, and filoviruses.
Collapse
Affiliation(s)
- Jing Pu
- Key Laboratory of Medical Molecular Virology of MOE/MOH/CAMS, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Joey Tianyi Zhou
- Institute of High Performance Computing, The Agency for Science, Technology and Research, Singapore
| | - Ping Liu
- Institute of High Performance Computing, The Agency for Science, Technology and Research, Singapore
| | - Fei Yu
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Xiaoyang He
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of MOE/MOH/CAMS, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH/CAMS, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Park BK, Kim D, Park S, Maharjan S, Kim J, Choi JK, Akauliya M, Lee Y, Kwon HJ. Differential Signaling and Virus Production in Calu-3 Cells and Vero Cells upon SARS-CoV-2 Infection. Biomol Ther (Seoul) 2021; 29:273-281. [PMID: 33504682 PMCID: PMC8094074 DOI: 10.4062/biomolther.2020.226] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome CoV-2 (SARS-CoV-2) is responsible for the current coronavirus disease 2019 (COVID-19) pandemic. Signaling pathways that are essential for virus production have potential as therapeutic targets against COVID-19. In this study, we investigated cellular responses in two cell lines, Vero and Calu-3, upon SARS-CoV-2 infection and evaluated the effects of pathway-specific inhibitors on virus production. SARS-CoV-2 infection induced dephosphorylation of STAT1 and STAT3, high virus production, and apoptosis in Vero cells. However, in Calu-3 cells, SARS-CoV-2 infection induced long-lasting phosphorylation of STAT1 and STAT3, low virus production, and no prominent apoptosis. Inhibitors that target STAT3 phosphorylation and dimerization reduced SARS-CoV-2 production in Calu-3 cells, but not in Vero cells. These results suggest a necessity to evaluate cellular consequences upon SARS-CoV-2 infection using various model cell lines to find out more appropriate cells recapitulating relevant responses to SARS-CoV-2 infection in vitro.
Collapse
Affiliation(s)
- Byoung Kwon Park
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Dongbum Kim
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sangkyu Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Sony Maharjan
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jinsoo Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jun-Kyu Choi
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Madhav Akauliya
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyung-Joo Kwon
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea.,Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
13
|
Kandeel M, Yamamoto M, Tani H, Kobayashi A, Gohda J, Kawaguchi Y, Park BK, Kwon HJ, Inoue JI, Alkattan A. Discovery of New Fusion Inhibitor Peptides against SARS-CoV-2 by Targeting the Spike S2 Subunit. Biomol Ther (Seoul) 2021; 29:282-289. [PMID: 33424013 PMCID: PMC8094075 DOI: 10.4062/biomolther.2020.201] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/31/2022] Open
Abstract
A novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), caused a worldwide pandemic. Our aim in this study is to produce new fusion inhibitors against SARS-CoV-2, which can be the basis for developing new antiviral drugs. The fusion core comprising the heptad repeat domains (HR1 and HR2) of SARS-CoV-2 spike (S) were used to design the peptides. A total of twelve peptides were generated, comprising a short or truncated 24-mer (peptide #1), a long 36-mer peptide (peptide #2), and ten peptide #2 analogs. In contrast to SARS-CoV, SARS-CoV-2 S-mediated cell-cell fusion cannot be inhibited with a minimal length, 24-mer peptide. Peptide #2 demonstrated potent inhibition of SARS-CoV-2 S-mediated cell-cell fusion at 1 µM concentration. Three peptide #2 analogs showed IC50 values in the low micromolar range (4.7-9.8 µM). Peptide #2 inhibited the SARS-CoV-2 pseudovirus assay at IC50=1.49 µM. Given their potent inhibition of viral activity and safety and lack of cytotoxicity, these peptides provide an attractive avenue for the development of new prophylactic and therapeutic agents against SARS-CoV-2.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia.,Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mizuki Yamamoto
- Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Hideki Tani
- Department of Virology, Toyama Institute of Health, Toyama 939-0363, Japan
| | - Ayako Kobayashi
- Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Jin Gohda
- Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yasushi Kawaguchi
- Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Byoung Kwon Park
- Department of Microbiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Hyung-Joo Kwon
- Department of Microbiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Jun-Ichiro Inoue
- Senior Professor Office, The University of Tokyo, Tokyo 108-8639, Japan
| | - Abdallah Alkattan
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
14
|
Park BK, Kim J, Park S, Kim D, Kim M, Baek K, Bae JY, Park MS, Kim WK, Lee Y, Kwon HJ. MERS-CoV and SARS-CoV-2 replication can be inhibited by targeting the interaction between the viral spike protein and the nucleocapsid protein. Theranostics 2021; 11:3853-3867. [PMID: 33664866 PMCID: PMC7914343 DOI: 10.7150/thno.55647] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The molecular interactions between viral proteins form the basis of virus production and can be used to develop strategies against virus infection. The interactions of the envelope proteins and the viral RNA-binding nucleocapsid (N) protein are essential for the assembly of coronaviruses including the Middle East respiratory syndrome coronavirus (MERS-CoV). Methods: Using co-immunoprecipitation, immunostaining, and proteomics analysis, we identified a protein interacting with the spike (S) protein in the cells infected with MERS-CoV or SARS-CoV-2. To confirm the interaction, synthetic peptides corresponding to the C-terminal domain of the S protein (Spike CD) were produced and their effect on the interaction was investigated in vitro. In vivo effect of the Spike CD peptides after cell penetration was further investigated using viral plaque formation assay. Phylogeographic analyses were conducted to deduce homology of Spike CDs and N proteins. Results: We identified a direct interaction between the S protein and the N protein of MERS-CoV that takes place during virus assembly in infected cells. Spike CD peptides of MERS-CoV inhibited the interaction between the S and N proteins in vitro. Furthermore, cell penetration by the synthetic Spike CD peptides inhibited viral plaque formation in MERS-CoV-infected cells. Phylogeographic analyses of Spike CDs and N proteins showed high homology among betacoronavirus lineage C strains. To determine if Spike CD peptides can inhibit the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we used the same strategy and found that the SARS-CoV-2 Spike CD peptide inhibited virus replication in SARS-CoV-2-infected cells. Conclusions: We suggest that the interaction between the S protein and the N protein can be targeted to design new therapeutics against emerging coronaviruses, including SARS-CoV-2.
Collapse
Affiliation(s)
- Byoung Kwon Park
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jinsoo Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sangkyu Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Dongbum Kim
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Minyoung Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kyeongbin Baek
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Joon-Yong Bae
- Department of Microbiology, College of Medicine, and the Institute for Viral Diseases, Korea University, Seoul 02841, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, College of Medicine, and the Institute for Viral Diseases, Korea University, Seoul 02841, Republic of Korea
| | - Won-Keun Kim
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyung-Joo Kwon
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
15
|
Kandeel M, Al‐Taher A, Park BK, Kwon H, Al‐Nazawi M. A pilot study of the antiviral activity of anionic and cationic polyamidoamine dendrimers against the Middle East respiratory syndrome coronavirus. J Med Virol 2020; 92:1665-1670. [PMID: 32330296 PMCID: PMC7264540 DOI: 10.1002/jmv.25928] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging virus that causes infection with a potentially fatal outcome. Dendrimers are highly branched molecules that can be added to antiviral preparations to improve their delivery, as well as their intrinsic antiviral activity. Studies on identifying anti-MERS-CoV agents are few. Three types of polyanionic dendrimers comprising the terminal groups sodium carboxylate (generations 1.5, 2.5, 3.5, and 4.5), hydroxyl (generations 2, 3, 4, and 5), and succinamic acid (generations 2, 3, 4, and 5) and polycationic dendrimers containing primary amine (generations 2, 3, 4, and 5) were used to assess their antiviral activity with the MERS-CoV plaque inhibition assay. The hydroxyl polyanionic set showed a 17.36% to 29.75% decrease in MERS-CoV plaque formation. The most potent inhibition of MERS-CoV plaque formation was seen by G(1.5)-16COONa (40.5% inhibition), followed by G(5)-128SA (39.77% inhibition). In contrast, the cationic dendrimers were cytotoxic to Vero cells. Polyanionic dendrimers can be added to antiviral preparations to improve the delivery of antivirals, as well as the intrinsic antiviral activity.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary MedicineKing Faisal UniversityAl‐AhsaSaudi Arabia
- Department of Pharmacology, Faculty of Veterinary MedicineKafrelsheikh UniversityKafrelsheikhEgypt
| | - Abdulla Al‐Taher
- Department of Biomedical Sciences, College of Veterinary MedicineKing Faisal UniversityAl‐AhsaSaudi Arabia
| | - Byoung Kwon Park
- Department of MicrobiologyHallym University College of MedicineChuncheonSouth Korea
| | - Hyung‐Joo Kwon
- Department of MicrobiologyHallym University College of MedicineChuncheonSouth Korea
| | - Mohammed Al‐Nazawi
- Department of Biomedical Sciences, College of Veterinary MedicineKing Faisal UniversityAl‐AhsaSaudi Arabia
| |
Collapse
|
16
|
Kandeel M, Abdelrahman AHM, Oh-Hashi K, Ibrahim A, Venugopala KN, Morsy MA, Ibrahim MAA. Repurposing of FDA-approved antivirals, antibiotics, anthelmintics, antioxidants, and cell protectives against SARS-CoV-2 papain-like protease. J Biomol Struct Dyn 2020; 39:5129-5136. [PMID: 32597315 PMCID: PMC7332862 DOI: 10.1080/07391102.2020.1784291] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2 or Coronavirus disease 19 (COVID-19) is a rapidly spreading, highly contagious, and sometimes fatal disease for which drug discovery and vaccine development are critical. SARS-CoV-2 papain-like protease (PLpro) was used to virtually screen 1697 clinical FDA-approved drugs. Among the top results expected to bind with SARS-CoV-2 PLpro strongly were three cell protectives and antioxidants (NAD+, quercitrin, and oxiglutatione), three antivirals (ritonavir, moroxydine, and zanamivir), two antimicrobials (doripenem and sulfaguanidine), two anticancer drugs, three benzimidazole anthelmintics, one antacid (famotidine), three anti-hypertensive ACE receptor blockers (candesartan, losartan, and valsartan) and other miscellaneous systemically or topically acting drugs. The binding patterns of these drugs were superior to the previously identified SARS CoV PLpro inhibitor, 6-mercaptopurine (6-MP), suggesting a potential for repurposing these drugs to treat COVID-19. The objective of drug repurposing is the rapid relocation of safe and approved drugs by bypassing the lengthy pharmacokinetic, toxicity, and preclinical phases. The ten drugs with the highest estimated docking scores with favorable pharmacokinetics were subjected to molecular dynamics (MD) simulations followed by molecular mechanics/generalized Born surface area (MM/GBSA) binding energy calculations. Phenformin, quercetin, and ritonavir all demonstrated prospective binding affinities for COVID-19 PLpro over 50 ns MD simulations, with binding energy values of −56.6, −40.9, and −37.6 kcal/mol, respectively. Energetic and structural analyses showed phenformin was more stable than quercetin and ritonavir. The list of the drugs provided herein constitutes a primer for clinical application in COVID-19 patients and guidance for further antiviral studies. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-ahsa, Saudi Arabia.,Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh, Egypt
| | - Alaa H M Abdelrahman
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Kentaro Oh-Hashi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Abdelazim Ibrahim
- Department of Pathology, College of Veterinary Medicine, King Faisal University, Al-ahsa, Saudi Arabia
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| |
Collapse
|
17
|
Ghosh AK, Brindisi M, Shahabi D, Chapman ME, Mesecar AD. Drug Development and Medicinal Chemistry Efforts toward SARS-Coronavirus and Covid-19 Therapeutics. ChemMedChem 2020; 15:907-932. [PMID: 32324951 PMCID: PMC7264561 DOI: 10.1002/cmdc.202000223] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 infection is spreading at an alarming rate and has created an unprecedented health emergency around the globe. There is no effective vaccine or approved drug treatment against COVID-19 and other pathogenic coronaviruses. The development of antiviral agents is an urgent priority. Biochemical events critical to the coronavirus replication cycle provided a number of attractive targets for drug development. These include, spike protein for binding to host cell-surface receptors, proteolytic enzymes that are essential for processing polyproteins into mature viruses, and RNA-dependent RNA polymerase for RNA replication. There has been a lot of ground work for drug discovery and development against these targets. Also, high-throughput screening efforts have led to the identification of diverse lead structures, including natural product-derived molecules. This review highlights past and present drug discovery and medicinal-chemistry approaches against SARS-CoV, MERS-CoV and COVID-19 targets. The review hopes to stimulate further research and will be a useful guide to the development of effective therapies against COVID-19 and other pathogenic coronaviruses.
Collapse
Affiliation(s)
- Arun K. Ghosh
- Department of ChemistryPurdue UniversityWest LafayetteIN 47907USA
- Department of Medicinal Chemistry and Molecular PharmacolgyPurdue UniversityWest LafayetteIN 47907USA
| | - Margherita Brindisi
- Department of ChemistryPurdue UniversityWest LafayetteIN 47907USA
- Department of Excellence of PharmacyUniversity of Naples Federico II80131NaplesItaly
| | - Dana Shahabi
- Department of ChemistryPurdue UniversityWest LafayetteIN 47907USA
| | | | - Andrew D. Mesecar
- Department of ChemistryPurdue UniversityWest LafayetteIN 47907USA
- Department of BiochemistryPurdue UniversityWest LafayetteIN 47907USA
- Department of Biological SciencesPurdue UniversityWest LafayetteIN 47907USA
| |
Collapse
|