1
|
Padmanaban V, Contreras CM. Role of Surgery for Metastatic Melanoma in the Era of Checkpoint Blockade. Surg Clin North Am 2025; 105:663-679. [PMID: 40412893 DOI: 10.1016/j.suc.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
Treatment paradigms have shifted with the introduction of checkpoint inhibitors, facilitating less extensive surgical procedures in some scenarios. Resection and adjuvant therapy are key components in patients with locally advanced or limited metastatic disease. Alternately, these patient populations may benefit from peri-operative systemic therapy based on recent clinical trial data. Resection is also integral to administering tumor infiltrating lymphocyte therapy in patients with treatment-refractory, unresectable melanoma. The role of surgery continues to evolve, and ranges the spectrum from resection with curative intent, to palliative interventions intended to effectively manage symptoms or disease-related complications.
Collapse
Affiliation(s)
- Vennila Padmanaban
- Division of Surgical Oncology, Department of Surgery, James Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Carlo M Contreras
- Division of Surgical Oncology, Department of Surgery, James Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Wilczak M, Surman M, Jankowska U, Skupien-Rabian B, Przybyło M. MGAT3 and MGAT5 overexpression alters the protein cargo of extracellular vesicles released by metastatic melanoma cells. Biochem Biophys Res Commun 2025; 762:151749. [PMID: 40199132 DOI: 10.1016/j.bbrc.2025.151749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
Extracellular vesicles (EVs) are potential non-invasive diagnostic, prognostic and therapeutic tools. Additionally, they are important contributors to tumorigenesis. Glycosylation has been found to modulate the composition of the EV proteome. Increased amounts of β1,6-branched N-glycans, synthesized by N-acetylglucosaminyltransferase V (GnT-V), are most commonly observed in melanoma and are associated with decreased cell adhesion and increased metastasis. The opposite effect is caused by the addition of bisecting GlcNAc by N-acetylglucosaminyltransferase III (GnT-III). To date, the impact of these enzymes on EV cargo in melanoma remains unexplored. Flow cytometry was used to study the surface glycosylation of genetic variants of WM266-4 melanoma cells with induced overexpression of GnT-III or GnT-V encoding genes (MGAT3 or MGAT5) and EVs released by these cells. LC-MS/MS proteomics was applied to analyze the effect of altered glycosylation on the proteome of released EVs, followed by detailed bioinformatic analysis. Flow cytometry analysis revealed dynamic changes in the surface glycosylation of EVs derived from melanoma cells overexpressing MGAT3 or MGAT5. Induced overexpression of MGAT3 or MGAT5 also caused significant changes in the proteome of EVs. The proteomic analysis identified a total of 1770 microvesicular and 704 exosomal proteins that play different roles in melanoma progression, including those with established diagnostic/prognostic potential and those closely associated with melanoma onset. Proteomic profiling of EVs derived from cells overexpressing MGAT3 and MGAT5 revealed functional changes in EV protein content driven by glycosylation modifications. The study presented a potential multifaced application of melanoma-derived EVs for diagnostic and prognostic purposes.
Collapse
Affiliation(s)
- Magdalena Wilczak
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348, Krakow, Poland.
| | - Magdalena Surman
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387, Krakow, Poland.
| | - Urszula Jankowska
- Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Krakow, Poland.
| | - Bozena Skupien-Rabian
- Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Krakow, Poland.
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387, Krakow, Poland.
| |
Collapse
|
3
|
Baptista da Mata D, Coelho S, Vilas Boas MI, Silva MJ, Marques D, Ferreira P. Inequalities in Drug Access for Advanced Melanoma: The Prognostic Impact Resulting From the Approval Delay of the Combined Ipilimumab/Nivolumab Treatment in Portugal. Cureus 2025; 17:e78185. [PMID: 40027067 PMCID: PMC11870778 DOI: 10.7759/cureus.78185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction A combination of ipilimumab/nivolumab has demonstrated a median overall survival (mOS) of 71.9 months in advanced melanoma, establishing it as the standard first-line (1L) therapy. However, the approval of this combination by the Portuguese Regulatory Authority occurred 76 months after its approval by the European Authority, leaving tyrosine kinase inhibitors as the only 1L option available for the BRAF-mutated melanoma population. Our study aims to evaluate real-world data from patients with advanced melanoma and assess the potential prognostic impact of the delayed availability of ipilimumab/nivolumab combination therapy on this population. Methods This was an observational, retrospective cohort study conducted at a Portuguese Comprehensive Cancer Center. The study included adult patients with melanoma who received innovative therapies in the 1L between May 2016 and December 2021 and who would meet the criteria for treatment with ipilimumab/nivolumab. The primary outcome measure was mOS; secondary outcome measures included median progression-free survival (mPFS), objective response rate (ORR), and safety data. Results Our study included 172 patients, of which 50% were male, and 32.6% (n = 56) had BRAF-mutated melanoma. In 1L setting, 70.9% received anti-programmed cell death protein 1 (anti-PD-1) monotherapy, while the rest were treated with targeted therapies. The median follow-up time was 57 months. Patients treated with anti-PD-1 had ORR of 36.0%, mPFS of seven months (95% CI 2.9-11.1), and mOS of 19 months (95% CI 7.5-30.4). Among patients treated with targeted therapies, the ORR was 56.0%, mPFS seven months (95% CI 5.1-8.9), and mOS 14 months (95% CI 5.9-22.1). In our population, 10% presented grade 3 or higher adverse events, with no drug-related deaths reported. Conclusion These findings underscore significant disparities in access to innovative therapies in Portugal, which may have adversely impacted patients' outcomes. The delay raises ethical concerns regarding equity in healthcare access and highlights the need for policy measures to expedite the approval and availability of life-extending treatments.
Collapse
Affiliation(s)
| | - Sara Coelho
- Medical Oncology, Instituto Português de Oncologia do Porto, Porto, PRT
| | | | - Maria João Silva
- Medical Oncology, Instituto Português de Oncologia do Porto, Porto, PRT
| | - Dânia Marques
- Medical Oncology, Instituto Português de Oncologia do Porto, Porto, PRT
| | - Paula Ferreira
- Medical Oncology, Instituto Português de Oncologia do Porto, Porto, PRT
| |
Collapse
|
4
|
Dupas A, Goetz JG, Osmani N. Extravasation of immune and tumor cells from an endothelial perspective. J Cell Sci 2024; 137:jcs262066. [PMID: 39530179 DOI: 10.1242/jcs.262066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Crossing the vascular endothelium is a necessary stage for circulating cells aiming to reach distant organs. Leukocyte passage through the endothelium, known as transmigration, is a multistep process during which immune cells adhere to the vascular wall, migrate and crawl along the endothelium until they reach their exit site. Similarly, circulating tumor cells (CTCs), which originate from the primary tumor or reseed from early metastatic sites, disseminate using the blood circulation and also must cross the endothelial barrier to set new colonies in distant organs. CTCs are thought to mimic arrest and extravasation utilized by leukocytes; however, their extravasation also requires processes that, from an endothelial perspective, are specific to cancer cells. Although leukocyte extravasation relies on maintaining endothelial impermeability, it appears that cancer cells can indoctrinate endothelial cells into promoting their extravasation independently of their normal functions. In this Review, we summarize the common and divergent mechanisms of endothelial responses during extravasation of leukocytes (in inflammation) and CTCs (in metastasis), and highlight how these might be leveraged in the development of anti-metastatic treatments.
Collapse
Affiliation(s)
- Amandine Dupas
- Tumor Biomechanics lab, INSERM UMR_S 1109, CRBS, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France
- Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, F-67000, France
- Equipe Labellisée Ligue Contre le Cancer, France
| | - Jacky G Goetz
- Tumor Biomechanics lab, INSERM UMR_S 1109, CRBS, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France
- Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, F-67000, France
- Equipe Labellisée Ligue Contre le Cancer, France
| | - Naël Osmani
- Tumor Biomechanics lab, INSERM UMR_S 1109, CRBS, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France
- Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, F-67000, France
- Equipe Labellisée Ligue Contre le Cancer, France
| |
Collapse
|
5
|
Slusher N, Jones N, Nonaka T. Liquid biopsy for diagnostic and prognostic evaluation of melanoma. Front Cell Dev Biol 2024; 12:1420360. [PMID: 39156972 PMCID: PMC11327088 DOI: 10.3389/fcell.2024.1420360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/03/2024] [Indexed: 08/20/2024] Open
Abstract
Melanoma is the most aggressive form of skin cancer, and the majority of cases are associated with chronic or intermittent sun exposure. The incidence of melanoma has grown exponentially over the last 50 years, especially in populations of fairer skin, at lower altitudes and in geriatric populations. The gold standard for diagnosis of melanoma is performing an excisional biopsy with full resection or an incisional tissue biopsy. However, due to their invasiveness, conventional biopsy techniques are not suitable for continuous disease monitoring. Utilization of liquid biopsy techniques represent substantial promise in early detection of melanoma. Through this procedure, tumor-specific components shed into circulation can be analyzed for not only diagnosis but also treatment selection and risk assessment. Additionally, liquid biopsy is significantly less invasive than tissue biopsy and offers a novel way to monitor the treatment response and disease relapse, predicting metastasis.
Collapse
Affiliation(s)
- Nicholas Slusher
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Nicholas Jones
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Taichiro Nonaka
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States
- Feist-Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, LA, United States
| |
Collapse
|
6
|
Shalata W, Attal ZG, Solomon A, Shalata S, Abu Saleh O, Tourkey L, Abu Salamah F, Alatawneh I, Yakobson A. Melanoma Management: Exploring Staging, Prognosis, and Treatment Innovations. Int J Mol Sci 2024; 25:5794. [PMID: 38891988 PMCID: PMC11171767 DOI: 10.3390/ijms25115794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Melanoma, a malignant neoplasm originating from melanocytes, stands as one of the most prevalent cancers globally, ranking fifth in terms of estimated new cases in recent years. Its aggressive nature and propensity for metastasis pose significant challenges in oncology. Recent advancements have led to a notable shift towards targeted therapies, driven by a deeper understanding of cutaneous tumor pathogenesis. Immunotherapy and tyrosine kinase inhibitors have emerged as promising strategies, demonstrating the potential to improve clinical outcomes across all disease stages, including neoadjuvant, adjuvant, and metastatic settings. Notably, there has been a groundbreaking development in the treatment of brain metastasis, historically associated with poor prognosis in oncology but showcasing impressive results in melanoma patients. This review article provides a comprehensive synthesis of the most recent knowledge on staging and prognostic factors while highlighting emerging therapeutic modalities, with a particular focus on neoadjuvant and adjuvant strategies, notably immunotherapy and targeted therapies, including the ongoing trials.
Collapse
Affiliation(s)
- Walid Shalata
- The Legacy Heritage Cancer Center and Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Zoe Gabrielle Attal
- Medical School for International Health, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Adam Solomon
- Medical School for International Health, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Sondos Shalata
- Nutrition Unit, Galilee Medical Center, Nahariya 22000, Israel
| | - Omar Abu Saleh
- Department of Dermatology and Venereology, The Emek Medical Centre, Afula 18341, Israel
| | - Lena Tourkey
- The Legacy Heritage Cancer Center and Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Fahed Abu Salamah
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- Department of Dermatology, Soroka Medical Center, Beer Sheva 84105, Israel
| | - Ibrahim Alatawneh
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- Department of Dermatology, Soroka Medical Center, Beer Sheva 84105, Israel
| | - Alexander Yakobson
- The Legacy Heritage Cancer Center and Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
7
|
Chatzilakou E, Hu Y, Jiang N, Yetisen AK. Biosensors for melanoma skin cancer diagnostics. Biosens Bioelectron 2024; 250:116045. [PMID: 38301546 DOI: 10.1016/j.bios.2024.116045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024]
Abstract
Skin cancer is a critical global public health concern, with melanoma being the deadliest variant, correlated to 80% of skin cancer-related deaths and a remarkable propensity to metastasize. Despite notable progress in skin cancer prevention and diagnosis, the limitations of existing methods accentuate the demand for precise diagnostic tools. Biosensors have emerged as valuable clinical tools, enabling rapid and reliable point-of-care (POC) testing of skin cancer. This review offers insights into skin cancer development, highlights essential cutaneous melanoma biomarkers, and assesses the current landscape of biosensing technologies for diagnosis. The comprehensive analysis in this review underscores the transformative potential of biosensors in revolutionizing melanoma skin cancer diagnosis, emphasizing their critical role in advancing patient outcomes and healthcare efficiency. The increasing availability of these approaches supports direct diagnosis and aims to reduce the reliance on biopsies, enhancing POC diagnosis. Recent advancements in biosensors for skin cancer diagnosis hold great promise, with their integration into healthcare expected to enhance early detection accuracy and reliability, thereby mitigating socioeconomic disparities.
Collapse
Affiliation(s)
- Eleni Chatzilakou
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK
| | - Yubing Hu
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China; JinFeng Laboratory, Chongqing, 401329, China.
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| |
Collapse
|
8
|
Sáinz-Jaspeado M, Ring S, Proulx ST, Richards M, Martinsson P, Li X, Claesson-Welsh L, Ulvmar MH, Jin Y. VE-cadherin junction dynamics in initial lymphatic vessels promotes lymph node metastasis. Life Sci Alliance 2024; 7:e202302168. [PMID: 38148112 PMCID: PMC10751244 DOI: 10.26508/lsa.202302168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023] Open
Abstract
The endothelial junction component vascular endothelial (VE)-cadherin governs junctional dynamics in the blood and lymphatic vasculature. Here, we explored how lymphatic junction stability is modulated by elevated VEGFA signaling to facilitate metastasis to sentinel lymph nodes. Zippering of VE-cadherin junctions was established in dermal initial lymphatic vessels after VEGFA injection and in tumor-proximal lymphatics in mice. Shape analysis of pan-cellular VE-cadherin fragments revealed that junctional zippering was accompanied by accumulation of small round-shaped VE-cadherin fragments in the lymphatic endothelium. In mice expressing a mutant VEGFR2 lacking the Y949 phosphosite (Vegfr2 Y949F/Y949F ) required for activation of Src family kinases, zippering of lymphatic junctions persisted, whereas accumulation of small VE-cadherin fragments was suppressed. Moreover, tumor cell entry into initial lymphatic vessels and subsequent metastatic spread to lymph nodes was reduced in mutant mice compared with WT, after challenge with B16F10 melanoma or EO771 breast cancer. We conclude that VEGFA mediates zippering of VE-cadherin junctions in initial lymphatics. Zippering is accompanied by increased VE-cadherin fragmentation through VEGFA-induced Src kinase activation, correlating with tumor dissemination to sentinel lymph nodes.
Collapse
Affiliation(s)
- Miguel Sáinz-Jaspeado
- Beijer and Science for Life Laboratories, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Sarah Ring
- Beijer and Science for Life Laboratories, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Steven T Proulx
- ETH Zürich, Institute of Pharmaceutical Sciences, Zürich, Switzerland
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Mark Richards
- Beijer and Science for Life Laboratories, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Pernilla Martinsson
- Beijer and Science for Life Laboratories, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Xiujuan Li
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Lena Claesson-Welsh
- Beijer and Science for Life Laboratories, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria H Ulvmar
- Beijer and Science for Life Laboratories, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Yi Jin
- Beijer and Science for Life Laboratories, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Alhaskawi A, Ezzi SHA, Dong Y, Zhou H, Wang Z, Lai J, Yao C, Kota VG, Abdulla MHAH, Lu H. Recent advancements in the diagnosis and treatment of acral melanoma. J Zhejiang Univ Sci B 2024; 25:106-122. [PMID: 38303495 PMCID: PMC10835211 DOI: 10.1631/jzus.b2300221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/21/2023] [Indexed: 02/03/2024]
Abstract
Acral melanoma (AM) is the most common histologic subtype of melanoma in dark-skinned patients and is associated with a worse prognosis and a high mortality rate, largely due to the inconspicuous nature of early-stage lesions, which can lead to late diagnosis. Because of the overlapping clinical and histopathological features of AM with other forms of cutaneous melanomas, early detection of AM requires a multidisciplinary approach that integrates various diagnostic modalities, including clinical examination, dermoscopy, histopathology, molecular testing, radiological imaging, and blood tests. While surgery is the preferred method of treatment for AM, other therapeutic options may be employed based on the stage and underlying etiology of the disease. Immune checkpoint inhibitors, molecular targeted therapy, radiotherapy, chemotherapy, and oncolytic virotherapy represent promising advanced treatment options for AM. In this review, we provide an overview of the latest advancements in diagnostic and therapeutic methods for AM, highlighting the importance of early detection and the prompt, individualized management of this challenging disease.
Collapse
Affiliation(s)
- Ahmad Alhaskawi
- Department of Orthopedics, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | | | - Yanzhao Dong
- Department of Orthopedics, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Haiying Zhou
- Department of Orthopedics, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Zewei Wang
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jingtian Lai
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chengjun Yao
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | | | | | - Hui Lu
- Department of Orthopedics, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Hipólito A, Xavier R, Brito C, Tomás A, Lemos I, Cabaço LC, Silva F, Oliva A, Barral DC, Vicente JB, Gonçalves LG, Pojo M, Serpa J. BRD9 status is a major contributor for cysteine metabolic remodeling through MST and EAAT3 modulation in malignant melanoma. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166983. [PMID: 38070581 DOI: 10.1016/j.bbadis.2023.166983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/31/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Cutaneous melanoma (CM) is the most aggressive skin cancer, showing globally increasing incidence. Hereditary CM accounts for a significant percentage (5-15 %) of all CM cases. However, most familial cases remain without a known genetic cause. Even though, BRD9 has been associated to CM as a susceptibility gene. The molecular events following BRD9 mutagenesis are still not completely understood. In this study, we disclosed BRD9 as a key regulator in cysteine metabolism and associated altered BRD9 to increased cell proliferation, migration and invasiveness, as well as to altered melanin levels, inducing higher susceptibility to melanomagenesis. It is evident that BRD9 WT and mutated BRD9 (c.183G>C) have a different impact on cysteine metabolism, respectively by inhibiting and activating MPST expression in the metastatic A375 cell line. The effect of the mutated BRD9 variant was more evident in A375 cells than in the less invasive WM115 line. Our data point out novel molecular and metabolic mechanisms dependent on BRD9 status that potentially account for the increased risk of developing CM and enhancing CM aggressiveness. Moreover, our findings emphasize the role of cysteine metabolism remodeling in melanoma progression and open new queues to follow to explore the role of BRD9 as a melanoma susceptibility or cancer-related gene.
Collapse
Affiliation(s)
- Ana Hipólito
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Renato Xavier
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Cheila Brito
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Ana Tomás
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Isabel Lemos
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal; Instituto de Tecnologia Química e Tecnológica (ITQB) António Xavier da Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Luís C Cabaço
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Fernanda Silva
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Abel Oliva
- Instituto de Tecnologia Química e Tecnológica (ITQB) António Xavier da Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Duarte C Barral
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - João B Vicente
- Instituto de Tecnologia Química e Tecnológica (ITQB) António Xavier da Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Luís G Gonçalves
- Instituto de Tecnologia Química e Tecnológica (ITQB) António Xavier da Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Marta Pojo
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Jacinta Serpa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal.
| |
Collapse
|
11
|
Liang X, Zhou S, Xiao Z. Prognostic value of lactate dehydrogenase in patients with uveal melanoma treated with immune checkpoint inhibition. Aging (Albany NY) 2023; 15:8770-8781. [PMID: 37671944 PMCID: PMC10522394 DOI: 10.18632/aging.204996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/19/2023] [Indexed: 09/07/2023]
Abstract
OBJECTIVE We performed the meta-analysis to explore the predictive value of lactate dehydrogenase (LDH) levels in uveal melanoma (UM) patients receiving immune checkpoint inhibitors (ICIs). METHODS Eligible articles were obtained through EMBASE, PubMed, Google Scholar, and the Cochrane Library, until March 23, 2023. The clinical outcomes evaluated in this study encompassed overall survival (OS) and progression-free survival (PFS). RESULTS This meta-analysis comprised eight studies with a combined total of 383 patients. The results showed that patients with high LDH levels had noticeably worse OS (HR: 3.445, 95% CI: 2.504-4.740, p < 0.001) and PFS (HR: 1.720, 95% CI: 1.429-2.070, p < 0.001). Subgroup analysis confirmed that the upper limit of normal was the ideal cut-off value for LDH. In multivariate analysis, we also found that high LDH levels significantly predicted shorter OS (HR: 3.405, 95% CI: 1.827-6.348, p < 0.001) and PFS (HR: 2.519, 95% CI: 1.557-4.076, p < 0.001) in UM patients. The sensitivity analysis and publication bias test supported the reliability of our results. CONCLUSIONS In UM patients treated with ICIs, the LDH levels were reliable indicators of prognosis.
Collapse
Affiliation(s)
- Xiaocui Liang
- Department of Ophthalmology, Wuhan No. 1 Hospital, Wuhan 430023, Hubei Province, China
- Department of Ophthalmology, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan 430023, Hubei Province, China
| | - Shan Zhou
- Department of Ophthalmology, Wuhan No. 1 Hospital, Wuhan 430023, Hubei Province, China
- Department of Ophthalmology, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan 430023, Hubei Province, China
| | - Zefeng Xiao
- Department of Ophthalmology, Wuhan No. 1 Hospital, Wuhan 430023, Hubei Province, China
- Department of Ophthalmology, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan 430023, Hubei Province, China
| |
Collapse
|
12
|
Kotaru SL, Po JR, Tatineni V, Tokala H, Kalavakunta JK. Melanoma With Cardiac Metastasis. Cureus 2023; 15:e46230. [PMID: 37790012 PMCID: PMC10544706 DOI: 10.7759/cureus.46230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 10/05/2023] Open
Abstract
Melanoma is considered a masquerader of many diseases owing to its potential to metastasize to many organs. Several malignancies can metastasize to the heart including malignant melanoma. Historically, antemortem diagnosis of cardiac involvement of melanoma is not common, but with significant improvement in imaging modalities, the diagnosis can now be made early and accurately, aiding in treatment and improved survival. We present a case of a 36-year-old man with brief neurological symptoms and subsequent diagnosis of cerebrovascular accident (CVA). Cardiac imaging revealed incidental findings of right and left ventricular masses and lymph node biopsy, confirming metastatic melanoma. Cardioembolic etiology was suspected for his CVA. Prompt immunotherapy was initiated with improvement in his clinical condition.
Collapse
Affiliation(s)
| | | | | | - Hemasri Tokala
- Hematology/Oncology, Ascension Borgess Hospital, Kalamazoo, USA
| | | |
Collapse
|
13
|
Castellani G, Buccarelli M, Arasi MB, Rossi S, Pisanu ME, Bellenghi M, Lintas C, Tabolacci C. BRAF Mutations in Melanoma: Biological Aspects, Therapeutic Implications, and Circulating Biomarkers. Cancers (Basel) 2023; 15:4026. [PMID: 37627054 PMCID: PMC10452867 DOI: 10.3390/cancers15164026] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Melanoma is an aggressive form of skin cancer resulting from the malignant transformation of melanocytes. Recent therapeutic approaches, including targeted therapy and immunotherapy, have improved the prognosis and outcome of melanoma patients. BRAF is one of the most frequently mutated oncogenes recognised in melanoma. The most frequent oncogenic BRAF mutations consist of a single point mutation at codon 600 (mostly V600E) that leads to constitutive activation of the BRAF/MEK/ERK (MAPK) signalling pathway. Therefore, mutated BRAF has become a useful target for molecular therapy and the use of BRAF kinase inhibitors has shown promising results. However, several resistance mechanisms invariably develop leading to therapeutic failure. The aim of this manuscript is to review the role of BRAF mutational status in the pathogenesis of melanoma and its impact on differentiation and inflammation. Moreover, this review focuses on the mechanisms responsible for resistance to targeted therapies in BRAF-mutated melanoma and provides an overview of circulating biomarkers including circulating tumour cells, circulating tumour DNA, and non-coding RNAs.
Collapse
Affiliation(s)
- Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Maria Beatrice Arasi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Stefania Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Maria Elena Pisanu
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Maria Bellenghi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| |
Collapse
|
14
|
Prognostic Hematologic Biomarkers Following Immune Checkpoint Inhibition in Metastatic Uveal Melanoma. Cancers (Basel) 2022; 14:cancers14235789. [PMID: 36497270 PMCID: PMC9738244 DOI: 10.3390/cancers14235789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Background: There is no standardized treatment for metastatic uveal melanoma (MUM) but immune checkpoint inhibitors (ICI) are increasingly used. While ICI has transformed the survival of metastatic cutaneous melanoma, MUM patients do not equally benefit. Factors known to affect ICI response include the hematologic markers, lactate dehydrogenase (LDH) and neutrophil:lymphocyte ratio (NLR). We evaluated the prognostic value of LDH and NLR at the start of ICI and on treatment in MUM. Methods: MUM patients were treated between August 2006 and May 2022 with combination ipilimumab/nivolumab or ipilimumab/nivolumab/pembrolizumab single-agent therapy. Univariable (UVA) and multivariable (MVA) analyses were used to assess the prognostic value of predefined baseline factors on progression-free (PFS) and overall survival (OS). Results: In forty-six patients with MUM treated with ICI, elevated baseline and on-treatment LDH was prognostic for OS (start of ICI, HR (95% CI): 3.6 (1.9−7.0), p < 0.01; on-treatment, HR (95% CI): 3.7 (1.6−8.8), p < 0.01) and PFS (start of ICI, (HR (95% CI): 2.8 (1.5−5.4), p < 0.0001); on-treatment LDH (HR (95% CI): 2.2 (1.1−4.3), p < 0.01). On-treatment NLR was prognostic for PFS (HR (95% CI): 1.9 (1.0−3.9), p < 0.01). On-treatment LDH remained an important contributor to survival on MVA (OS: HR (95% CI): 1.001 (1.00−1.002), p < 0.05); PFS: HR (95% CI): 1.001 (1.00−1.002), p < 0.01). Conclusions: This study demonstrates that LDH and NLR could be useful in the prognostication of MUM patients treated with ICI. Additional studies are needed to confirm the importance of these and other prognostic biomarkers.
Collapse
|
15
|
Rashid S, Shaughnessy M, Tsao H. Melanoma classification and management in the era of molecular medicine. Dermatol Clin 2022; 41:49-63. [DOI: 10.1016/j.det.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Ding L, Gosh A, Lee DJ, Emri G, Huss WJ, Bogner PN, Paragh G. Prognostic biomarkers of cutaneous melanoma. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2022; 38:418-434. [PMID: 34981569 DOI: 10.1111/phpp.12770] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/02/2021] [Accepted: 12/30/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND/PURPOSE Melanomas account for only approximately 4% of diagnosed skin cancers in the United States but are responsible for the majority of deaths caused by skin cancer. Both genetic factors and ultraviolet (UV) radiation exposure play a role in the development of melanoma. Although melanomas have a strong propensity to metastasize when diagnosed late, melanomas that are diagnosed and treated early pose a low mortality risk. In particular, the identification of patients with increased metastatic risk, who may benefit from early adjuvant therapies, is crucial, especially given the advent of new melanoma treatments. However, the accuracy of classic clinical and histological variables, including the Breslow thickness, presence of ulceration, and lymph node status, might not be sufficient to identify such individuals. Thus, there is a need for the development of additional prognostic melanoma biomarkers that can improve early attempts to stratify melanoma patients and reliably identify high-risk subgroups with the aim of providing effective personalized therapies. METHODS In our current work, we discuss and assess emerging primary melanoma tumor biomarkers and prognostic circulating biomarkers. RESULTS Several promising biomarkers show prognostic value (eg, exosomal MIA (ie, melanoma inhibitory activity), serum S100B, AMLo signatures, and mRNA signatures); however, the scarcity of reliable data precludes the use of these biomarkers in current clinical applications. CONCLUSION Further research is needed on several promising biomarkers for melanoma. Large-scale studies are warranted to facilitate the clinical translation of prognostic biomarker applications for melanoma in personalized medicine.
Collapse
Affiliation(s)
- Liang Ding
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pathology, Buffalo General Medical Center, State University of New York, Buffalo, New York, USA
| | - Alexandra Gosh
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Delphine J Lee
- Division of Dermatology, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
- Division of Dermatology, Department of Medicine, The Lundquist Institute, Torrance, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Wendy J Huss
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Paul N Bogner
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Gyorgy Paragh
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
17
|
Bassi A, Krance SH, Pucchio A, Pur DR, Miranda RN, Felfeli T. The Application of Artificial Intelligence in the Analysis of Biomarkers for Diagnosis and Management of Uveitis and Uveal Melanoma: A Systematic Review. Clin Ophthalmol 2022; 16:2895-2908. [PMID: 36065357 PMCID: PMC9440710 DOI: 10.2147/opth.s377358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose This study aims to identify the available literature describing the utilization of artificial intelligence (AI) as a clinical tool in uveal diseases. Methods A comprehensive literature search was conducted in 5 electronic databases, finding studies relating to AI and uveal diseases. Results After screening 10,258 studies,18 studies met the inclusion criteria. Uveal melanoma (44%) and uveitis (56%) were the two uveal diseases examined. Ten studies (56%) used complex AI, while 13 studies (72%) used regression methods. Lactate dehydrogenase (LDH), found in 50% of studies concerning uveal melanoma, was the only biomarker that overlapped in multiple studies. However, 94% of studies highlighted that the biomarkers of interest were significant. Conclusion This study highlights the value of using complex and simple AI tools as a clinical tool in uveal diseases. Particularly, complex AI methods can be used to weigh the merit of significant biomarkers, such as LDH, in order to create staging tools and predict treatment outcomes.
Collapse
Affiliation(s)
- Arshpreet Bassi
- Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Saffire H Krance
- Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Aidan Pucchio
- School of Medicine, Queen’s University, Kingston, Ontario, Canada
| | - Daiana R Pur
- Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Rafael N Miranda
- Toronto Health Economics and Technology Assessment Collaborative, Toronto, Ontario, Canada
- The Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Tina Felfeli
- Toronto Health Economics and Technology Assessment Collaborative, Toronto, Ontario, Canada
- The Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology and Visual Sciences, University of Toronto, Toronto, Ontario, Canada
- Correspondence: Tina Felfeli, Department of Ophthalmology and Visual Sciences, University of Toronto, 340 College Street, Suite 400, Toronto, ON M5T 3A9, Canada, Fax +416-978-4590, Email
| |
Collapse
|
18
|
Soni V, Adhikari M, Lin L, Sherman JH, Keidar M. Theranostic Potential of Adaptive Cold Atmospheric Plasma with Temozolomide to Checkmate Glioblastoma: An In Vitro Study. Cancers (Basel) 2022; 14:cancers14133116. [PMID: 35804888 PMCID: PMC9264842 DOI: 10.3390/cancers14133116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Glioblastoma (GBM) is an aggressive form of brain cancer. Here, we present a combination therapy of cold atmospheric plasma (CAP) and temozolomide (TMZ) to treat GBM in vitro. We analyze the effects of the co-treatment in two GBM (TMZ-resistant and -sensitive) cell lines. The aim of this study is mainly to sensitize these cells using CAP so that they respond well to TMZ. We further found that the removal of cell culture media after CAP treatment does not affect the sensitivity of CAP to cancer cells but enhances the effects of TMZ. However, it was observed in our study that keeping the CAP-treated media for a shorter time did not significantly inhibit T98G cells. Interestingly, keeping the same plasma-treated media for a longer duration resulted in a decrease in cell viability. On the contrary, TMZ-sensitive cell A172 responded well to the co-treatment. This could be a potential reason for the sensitization of the combination therapy. Abstract Cold atmospheric plasma (CAP) has been used for the treatment of various cancers. The anti-cancer properties of CAP are mainly due to the reactive species generated from it. Here, we analyze the efficacy of CAP in combination with temozolomide (TMZ) in two different human glioblastoma cell lines, T98G and A172, in vitro using various conditions. We also establish an optimized dose of the co-treatment to study potential sensitization in TMZ-resistant cells. The removal of cell culture media after CAP treatment did not affect the sensitivity of CAP to cancer cells. However, keeping the CAP-treated media for a shorter time helped in the slight proliferation of T98G cells, while keeping the same media for longer durations resulted in a decrease in its survivability. This could be a potential reason for the sensitization of the cells in combination treatment. Co-treatment effectively increased the lactate dehydrogenase (LDH) activity, indicating cytotoxicity. Furthermore, apoptosis and caspase-3 activity also significantly increased in both cell lines, implying the anticancer nature of the combination. The microscopic analysis of the cells post-treatment indicated nuclear fragmentation, and caspase activity demonstrated apoptosis. Therefore, a combination treatment of CAP and TMZ may be a potent therapeutic modality to treat glioblastoma. This could also indicate that a pre-treatment with CAP causes the cells to be more sensitive to chemotherapy treatment.
Collapse
Affiliation(s)
- Vikas Soni
- Micro-Propulsion and Nanotechnology Laboratory, Department of Mechanical and Aerospace Engineering, The George Washington University, Science and Engineering Hall, 800 22nd Street, NW, Washington, DC 20052, USA; (M.A.); (L.L.)
- Correspondence: (V.S.); (M.K.); Tel.: +1-202-994-6929 (M.K.)
| | - Manish Adhikari
- Micro-Propulsion and Nanotechnology Laboratory, Department of Mechanical and Aerospace Engineering, The George Washington University, Science and Engineering Hall, 800 22nd Street, NW, Washington, DC 20052, USA; (M.A.); (L.L.)
| | - Li Lin
- Micro-Propulsion and Nanotechnology Laboratory, Department of Mechanical and Aerospace Engineering, The George Washington University, Science and Engineering Hall, 800 22nd Street, NW, Washington, DC 20052, USA; (M.A.); (L.L.)
| | - Jonathan H. Sherman
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University, 880 N Tennessee Avenue, Suite 104, Martinsburg, WV 25401, USA;
| | - Michael Keidar
- Micro-Propulsion and Nanotechnology Laboratory, Department of Mechanical and Aerospace Engineering, The George Washington University, Science and Engineering Hall, 800 22nd Street, NW, Washington, DC 20052, USA; (M.A.); (L.L.)
- Correspondence: (V.S.); (M.K.); Tel.: +1-202-994-6929 (M.K.)
| |
Collapse
|
19
|
Salgado MTSF, Fernandes E Silva E, Matsumoto AM, Mattozo FH, Amarante MCAD, Kalil SJ, Votto APDS. C-phycocyanin decreases proliferation and migration of melanoma cells: In silico and in vitro evidences. Bioorg Chem 2022; 122:105757. [PMID: 35339928 DOI: 10.1016/j.bioorg.2022.105757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 10/25/2021] [Accepted: 03/20/2022] [Indexed: 12/24/2022]
Abstract
The incidence and number of deaths caused by melanoma have been increasing in recent years, and the pigment C-phycocyanin (C-PC) appears as a possible alternative to treat this disease. So, the objective of this study was to combine in silico and in vitro analysis to understand the main anti-melanoma pathways exerted by C-PC. We evaluated the ability of C-PC to bind to the main cellular targets related in the progression of melanoma through molecular docking, and the reflection of this bind in the biological effects in the B16F10 cell line through in vitro analysis. Our results showed that C-PC was able to bind BRAF and MEK, which are related to the signal transduction pathway for proliferation and survival. There was also an interaction between C-PC and cyclin-dependent kinase 4 and 6. In vitro analysis demonstrated that C-PC decreased B16F10 cell proliferation, as observed by cell viability and mitotic index assays. C-PC also interacted with matrix metalloproteinase 2 and 9 and N-cadherin, which may have caused the decrease in cell migration observed in vitro. Besides that, C-PC interacts with VEGF, a factor responsible for regulating the proliferation and cellular invasion pathways. Finally, C-PC did not alter the cell viability of the non-tumoral melanocytes. Therefore, C-PC is a strong anti-tumor candidate for the treatment of melanoma, since it acts in different cellular pathways of melanoma, without causing damage to non-tumoral cells.
Collapse
Affiliation(s)
| | | | - Andressa Mai Matsumoto
- Laboratório de Cultura Celular, ICB, FURG, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas, ICB, FURG, RS, Brazil
| | - Francielly Hafele Mattozo
- Laboratório de Cultura Celular, ICB, FURG, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas, ICB, FURG, RS, Brazil
| | | | | | - Ana Paula de Souza Votto
- Laboratório de Cultura Celular, ICB, FURG, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas, ICB, FURG, RS, Brazil.
| |
Collapse
|
20
|
Amalinei C, Grigoraș A, Lozneanu L, Căruntu ID, Giușcă SE, Balan RA. The Interplay between Tumour Microenvironment Components in Malignant Melanoma. Medicina (B Aires) 2022; 58:medicina58030365. [PMID: 35334544 PMCID: PMC8953474 DOI: 10.3390/medicina58030365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/12/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Malignant melanoma has shown an increasing incidence during the last two decades, exhibiting a large spectrum of locations and clinicopathological characteristics. Although current histopathological, biochemical, immunohistochemical, and molecular methods provide a deep insight into its biological behaviour and outcome, melanoma is still an unpredictable disease, with poor outcome. This review of the literature is aimed at updating the knowledge regarding melanoma’s clinicopathological and molecular hallmarks, including its heterogeneity and plasticity, involving cancer stem cells population. A special focus is given on the interplay between different cellular components and their secretion products in melanoma, considering its contribution to tumour progression, invasion, metastasis, recurrences, and resistance to classical therapy. Furthermore, the influences of the specific tumour microenvironment or “inflammasome”, its association with adipose tissue products, including the release of “extracellular vesicles”, and distinct microbiota are currently studied, considering their influences on diagnosis and prognosis. An insight into melanoma’s particular features may reveal new molecular pathways which may be exploited in order to develop innovative therapeutic approaches or tailored therapy.
Collapse
|
21
|
Bashmakova EE, Panamarev NS, Kudryavtsev AN, Frank LA. N-extended photoprotein obelin to competitively detect small protein tumor markers. Biochem Biophys Res Commun 2022; 598:69-73. [PMID: 35151206 DOI: 10.1016/j.bbrc.2022.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/04/2022] [Indexed: 11/26/2022]
Abstract
Two variants of Ca2+-regulated photoprotein obelin, extended from the N-terminus with small tumor markers - melanoma inhibitory activity protein (MIA) and survivin, one of the protein inhibitors of apoptosis, were designed, obtained and studied. Both domains in the obtained hybrid proteins exhibit the properties of the initial molecules: the main features of Ca2+-triggered bioluminescence are close to those of obelin, and the tumor markers' domains are recognized and bound by the corresponding antibodies. The obtained hybrids compete with the corresponding tumor markers for binding with antibodies, immobilized on the surface and their use has been shown to be promising as bioluminescent labels in a one-stage solid-phase competitive immunoassay.
Collapse
Affiliation(s)
- Eugenia E Bashmakova
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, 660036, Russia
| | - Nikita S Panamarev
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, 660036, Russia; Siberian Federal University, Krasnoyarsk, 660041, Russia
| | - Alexander N Kudryavtsev
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, 660036, Russia
| | - Ludmila A Frank
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, 660036, Russia; Siberian Federal University, Krasnoyarsk, 660041, Russia.
| |
Collapse
|
22
|
Sensitivity of treatment-free survival to subgroup analyses in patients with advanced melanoma treated with immune checkpoint inhibitors. Melanoma Res 2022; 32:35-44. [PMID: 34855329 PMCID: PMC8691370 DOI: 10.1097/cmr.0000000000000793] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Patients with advanced melanoma treated with immune checkpoint inhibitors can experience ongoing disease control after treatment discontinuation without subsequent systemic anticancer therapy. We previously defined a novel outcome, treatment-free survival (TFS), as the time between protocol therapy cessation and subsequent therapy initiation/death. We assessed the effect of established prognostic variables [lactate dehydrogenase (LDH), programmed death ligand 1 status, BRAF mutation status, performance status, and sex] on TFS in different treatment scenarios: treatment until toxicity/progression with frequent early cessation (nivolumab plus ipilimumab), treatment until toxicity/progression with a well-tolerated regimen (nivolumab), and treatment for a short fixed duration (ipilimumab). Data were pooled from 1077 patients with advanced melanoma treated in the CheckMate 069 and 067 trials. TFS was defined as the area between the Kaplan-Meier curves for time to therapy cessation and time to subsequent therapy initiation/death. TFS was estimated by restricted mean (r-mean) survival time at 36 months since randomization. Clinically meaningful TFS (r-mean TFS 3.7-12.7 months) was observed across all patient subgroups. TFS was longest in patients treated with nivolumab plus ipilimumab. The largest differences in r-mean TFS were observed with LDH in the nivolumab plus ipilimumab and ipilimumab treatment groups (TFS difference 4.7 and 4.9 months, respectively). In the nivolumab group, there was little difference in TFS across subgroups (r-mean TFS 3.7-5.5 months). TFS was sensitive to prognostic subgroup differences; however, duration of treatment affected the sensitivity of TFS. These results provide further support for TFS as a clinical outcome measure.
Collapse
|
23
|
Plasma Thymidine Kinase Activity as a Novel Biomarker in Metastatic Melanoma Patients Treated with Immune Checkpoint Inhibitors. Cancers (Basel) 2022; 14:cancers14030702. [PMID: 35158970 PMCID: PMC8833501 DOI: 10.3390/cancers14030702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/16/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Immune checkpoint inhibitors (ICI) are effective in fractions of patients with disseminated melanoma. Significant toxicity can also occur from the treatments, that, in addition, are expensive. It is therefore important to increase the knowledge of predictive factors and their efficacy in different patient groups. This study is the first to analyze the plasma activity of thymidine kinase (TK), an enzyme involved in DNA synthesis and repair, as a biomarker in melanoma patients. In this study, high TK activity (TKa) levels in melanoma patients were associated with poor baseline factors, such as poor performance status, high plasma lactate dehydrogenase levels, and advanced tumor stage. High TKa levels were also associated with a poor efficacy of immune checkpoint inhibitors. TKa is hence a novel and interesting plasma biomarker in melanoma and should be further studied to define its role as a prognostic and predictive marker in this disease. Abstract Background. Immune checkpoint inhibitors (ICI) are effective in fractions of patients with disseminated melanoma. This study is the first to analyze the plasma activity of thymidine kinase (TK), an enzyme involved in DNA synthesis and repair, as a biomarker in melanoma patients. Methods. Plasma samples were collected prior to treatment start in patients with unresectable metastatic cutaneous melanoma, treated with ICI (anti-CTLA-4 and/or anti-PD-1). Plasma TK activity (TKa) levels were determined using the DiviTum TKa ELISA assay. TKa levels were correlated with patients’ baseline characteristics, response rate (RR), progression-free survival (PFS), and overall survival (OS). Results. In the 90 study patients, the median TKa level was 42 Du/L (range <20–1787 Du/L). A significantly higher plasma TKa was found in patients with ECOG performance status ≥1 (p = 0.003), M1c-d disease (p = 0.015), and elevated lactate dehydrogenase levels (p < 0.001). The RR was 63.2% and 30.3% in those with low or high TKa, respectively (p = 0.022). The median PFS was 19.9 and 12.6 months in patients with low or high TKa, respectively (hazard ratio (HR) 1.83 (95% CI, 1.08–3.08), p = 0.024). The median OS was >60 months and 18.5 months in patients with low or high TKa, respectively (HR: 2.25 (95% CI, 1.25–4.05), p = 0.011. Conclusions. High pretreatment plasma TKa levels were significantly associated with worse baseline characteristics and poor response and survival in ICI-treated melanoma patients. TKa is hence a novel and interesting plasma biomarker in melanoma and should be further studied to define its role as a prognostic and predictive marker in this disease.
Collapse
|
24
|
Role of Biomarkers in the Integrated Management of Melanoma. DISEASE MARKERS 2022; 2021:6238317. [PMID: 35003391 PMCID: PMC8739586 DOI: 10.1155/2021/6238317] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/13/2021] [Indexed: 12/21/2022]
Abstract
Melanoma, which is an aggressive skin cancer, is currently the fifth and seventh most common cancer in men and women, respectively. The American Cancer Society reported that approximately 106,110 new cases of melanoma were diagnosed in the United States in 2021, with 7,180 people dying from the disease. This information could facilitate the early detection of possible metastatic lesions and the development of novel therapeutic techniques for melanoma. Additionally, early detection of malignant melanoma remains an objective of melanoma research. Recently, melanoma treatment has substantially improved, given the availability of targeted treatments and immunotherapy. These developments have highlighted the significance of identifying biomarkers for prognosis and predicting therapy response. Biomarkers included tissue protein expression, circulating DNA detection, and genetic alterations in cancer cells. Improved diagnostic and prognostic biomarkers are becoming increasingly relevant in melanoma treatment, with the development of newer and more targeted treatments. Here, the author discusses the aspects of biomarkers in the real-time management of patients with melanoma.
Collapse
|
25
|
Xu Z, Xie Y, Mao Y, Huang J, Mei X, Song J, Sun Y, Yao Z, Shi W. Ferroptosis-Related Gene Signature Predicts the Prognosis of Skin Cutaneous Melanoma and Response to Immunotherapy. Front Genet 2021; 12:758981. [PMID: 34804126 PMCID: PMC8595480 DOI: 10.3389/fgene.2021.758981] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/14/2021] [Indexed: 12/21/2022] Open
Abstract
Ferroptosis is a non-apoptotic regulated cell death process, and much research has indicated that ferroptosis can induce the non-apoptotic death of tumor cells. Ferroptosis-related genes are expected to become a biological target for cancer treatment. However, the regulation of ferroptosis-related genes in skin cutaneous melanoma (SKCM) has not been well studied. In the present study, we conducted a systematic analysis of SKCM based on RNA sequencing data and clinical data obtained from The Cancer Genome Atlas (TCGA) database and the FerrD database. SKCM patients from the GSE78220 and MSKCC cohorts were used for external validation. Applying consensus clustering on RNA sequencing data from TCGA the generated ferroptosis subclasses of SKCM, which were analyzed based on the set of differentially expressed ferroptosis-related genes. Then, a least absolute shrinkage and selection operator (LASSO)-Cox regression was used to construct an eight gene survival-related linear signature. The median cut-off risk score was used to divide patients into high- and low-risk groups. The time-dependent receiver operating characteristic curve was used to examine the predictive power of the model. The areas under the curve of the signature at 1, 3, and 5 years were 0.673, 0.716, and 0.746, respectively. Kaplan-Meier survival analysis showed that the prognosis of high-risk patients was worse than that of low-risk patients. Univariate and multivariate Cox regression analyses showed that the risk signature was a robust independent prognostic indicator. By incorporating risk scores with tumor staging, a nomogram was constructed to predict prognostic outcomes for SKCM patients. In addition, the immunological analysis showed different immune cell infiltration patterns. Programmed-death-1 (PD-1) immunotherapy showed more significant benefits in the low-risk group than in the high-risk group. In summary, a model based on ferroptosis-related genes can predict the prognosis of SKCM and could have a potential role in guiding targeted therapy of SKCM.
Collapse
Affiliation(s)
- Ziqian Xu
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihui Xie
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaqi Mao
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juntao Huang
- Department of Otolaryngology Head and Neck Surgery, Ningbo Medical Center (Ningbo Lihuili Hospital), The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Xingyu Mei
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Song
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Sun
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixian Yao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weimin Shi
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Pinto-Paz ME, Cotrina-Concha JM, Benites-Zapata VA. Mortality in cutaneous malignant melanoma and its association with Neutrophil-to-Lymphocyte ratio. Cancer Treat Res Commun 2021; 29:100464. [PMID: 34598061 DOI: 10.1016/j.ctarc.2021.100464] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Cutaneous malignant melanoma (CMM) incidence has risen rapidly in the last 50 years. Poor progression and high mortality characterize CMM, making a thorough understanding of progression and associated factors essential for optimizing care. AIMS We assessed the association between the Neutrophil-to-Lymphocyte Ratio (NLR) and mortality in adults with CMM from an entirely mixed-race Hispanic population during 12 consecutive years of extensive follow-up. MATERIAL & METHODS We performed a retrospective cohort study in a tertiary hospital in Peru. NLR was categorized with a cutoff value higher or equal than 3. We collected demographic variables, laboratory results and treatments at baseline of follow-up. Cox regression analysis was performed, and we calculated crude and adjusted hazard ratios (HR) and their 95% confidence interval (95%CI). RESULTS The analysis was from 615 CMM cases, and there were 378 deaths. Most melanomas (63.6%) were acral lentiginous. The crude analysis showed that high NLR is a risk factor for mortality, HR = 2.52; 95%CI (2.03-3.14). High NRL ratio remains statistically significant after adjusting for confounding variables, aHR = 1.61; 95%CI (1.16-2.24). Other risk factors for mortality were clinical stages III and IV, older than 60 years, females and greater Breslow thickness. CONCLUSIONS We concluded that high NRL ratio is a risk factor for mortality and should be monitored in every patient who is diagnosed with malignant melanoma during their first blood count. It should then be carried out in follow-up controls for patients of clinical stage III and IV only, or in patients who present a relapse.
Collapse
|
27
|
Vakharia KT. Clinical Diagnosis and Classification: Including Biopsy Techniques and Noninvasive Imaging. Clin Plast Surg 2021; 48:577-585. [PMID: 34503718 DOI: 10.1016/j.cps.2021.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Early detection of melanoma is important in improving patient survival. The treatment of melanoma is multidisciplinary and begins by obtaining an accurate diagnosis. The mainstays of melanoma diagnosis include examination of the lesion and surrounding areas and an excisional biopsy so that a pathologic diagnosis can be obtained. The pathology results will help guide treatment recommendations, and some information can be used for prognosis. Further workup of the patient may include laboratory studies and imaging for staging and surveillance.
Collapse
Affiliation(s)
- Kavita T Vakharia
- Department of Plastic Surgery, Cleveland Clinic, 9500 Euclid Avenue, A51, Cleveland, OH 44195, USA.
| |
Collapse
|
28
|
The Fatty Acid and Protein Profiles of Circulating CD81-Positive Small Extracellular Vesicles Are Associated with Disease Stage in Melanoma Patients. Cancers (Basel) 2021; 13:cancers13164157. [PMID: 34439311 PMCID: PMC8392159 DOI: 10.3390/cancers13164157] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/02/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Early detection of cutaneous melanoma is the key to increasing survival and proper therapeutic adjustment, especially in stages II–IV. We investigated whether the fatty acid (FA) and protein compositions of small extracellular vesicles (sEV) expressing CD81, derived from the plasma of stage 0–I, II and III–IV melanoma patients, could reflect disease stage. Results showed a higher content of FA and differences in C18:0/C18:1 ratio, a marker of cell membrane fluidity, that distinguished patients’ CD81sEV from those of healthy donors (HD). By proteomic analysis (identifier PXD024434) we identified significant increases in CD14, PON1, PON3 and APOA5 in stage II CD81sEV compared to HD. In stage III–IV, CD81sEV’ RAP1B expression was decreased. These stage-related signatures may support the potential of sEV to provide information for early diagnosis, prediction of metastatic behavior, treatment and follow-up of melanoma patients. Abstract The early detection of cutaneous melanoma, a potentially lethal cancer with rising incidence, is fundamental to increasing survival and therapeutic adjustment. In stages II–IV especially, additional indications for adjuvant therapy purposes after resection and for treatment of metastatic patients are urgently needed. We investigated whether the fatty acid (FA) and protein compositions of small extracellular vesicles (sEV) derived from the plasma of stage 0–I, II and III–IV melanoma patients (n = 38) could reflect disease stage. The subpopulation of sEV expressing CD81 EV marker (CD81sEV) was captured by an ad hoc immune affinity technique from plasma depleted of large EV. Biological macromolecules were investigated by gas chromatography and mass spectrometry in CD81sEV. A higher content of FA was detectable in patients with respect to healthy donors (HD). Moreover, a higher C18:0/C18:1 ratio, as a marker of cell membrane fluidity, distinguished early (stage 0–I) from late (III–IV) stages’ CD81sEV. Proteomics detected increases in CD14, PON1, PON3 and APOA5 exclusively in stage II CD81sEV, and RAP1B was decreased in stage III–IV CD81sEV, in comparison to HD. Our results suggest that stage dependent alterations in CD81sEV’ FA and protein composition may occur early after disease onset, strengthening the potential of circulating sEV as a source of discriminatory information for early diagnosis, prediction of metastatic behavior and following up of melanoma patients.
Collapse
|
29
|
Hypoxia and Extracellular Acidification as Drivers of Melanoma Progression and Drug Resistance. Cells 2021; 10:cells10040862. [PMID: 33918883 PMCID: PMC8070386 DOI: 10.3390/cells10040862] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Hypoxia and elevated extracellular acidification are prevalent features of solid tumors and they are often shown to facilitate cancer progression and drug resistance. In this review, we have compiled recent and most relevant research pertaining to the role of hypoxia and acidification in melanoma growth, invasiveness, and response to therapy. Melanoma represents a highly aggressive and heterogeneous type of skin cancer. Currently employed treatments, including BRAF V600E inhibitors and immune therapy, often are not effective due to a rapidly developing drug resistance. A variety of intracellular mechanisms impeding the treatment were discovered. However, the tumor microenvironment encompassing stromal and immune cells, extracellular matrix, and physicochemical conditions such as oxygen level or acidity, may also influence the therapy effectiveness. Hypoxia and acidification are able to reprogram the metabolism of melanoma cells, enhance their survival and invasiveness, as well as promote the immunosuppressive environment. For this reason, these physicochemical features of the melanoma niche and signaling pathways related to them emerge as potential therapeutic targets.
Collapse
|
30
|
Waninger JJ, Ma VT, Journey S, Skvarce J, Chopra Z, Tezel A, Bryant AK, Mayo C, Sun Y, Sankar K, Ramnath N, Lao C, Sussman JB, Fecher L, Alva A, Green MD. Validation of the American Joint Committee on Cancer Eighth Edition Staging of Patients With Metastatic Cutaneous Melanoma Treated With Immune Checkpoint Inhibitors. JAMA Netw Open 2021; 4:e210980. [PMID: 33687443 PMCID: PMC7944385 DOI: 10.1001/jamanetworkopen.2021.0980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPORTANCE Immune checkpoint inhibitors (ICIs) have transformed the survival of patients with metastatic melanoma. Patient prognosis is reflected by the American Joint Committee on Cancer (AJCC) staging system; however, it is unknown whether the metastatic (M) stage categories for cutaneous melanoma remain informative of prognosis in patients who have received ICIs. OBJECTIVES To evaluate the outcomes of patients with metastatic cutaneous melanoma based on the M stage category from the AJCC eighth edition and to determine whether these designations continue to inform the prognosis of patients who have received ICIs. DESIGN, SETTING, AND PARTICIPANTS This cohort study included patients with metastatic cutaneous melanoma who were treated between August 2006 and August 2019 at the University of Michigan. The estimated median follow-up time was 35.5 months. Patient data were collected via the electronic medical record system. Critical findings were externally validated in a multicenter nationwide cohort of patients treated within the Veterans Affairs health care system. Data analysis was conducted from February 2020 to January 2021. EXPOSURES All patients were treated with dual-agent concurrent ipilimumab and nivolumab followed by maintenance nivolumab or single-agent ipilimumab, nivolumab, or pembrolizumab therapy. Patients were staged using the AJCC eighth edition. MAIN OUTCOMES AND MEASURES Univariable and multivariable analyses were used to assess the prognostic value of predefined clinicopathologic baseline factors on survival. RESULTS In a discovery cohort of 357 patients (mean [SD] age, 62.6 [14.2] years; 254 [71.1%] men) with metastatic cutaneous melanoma treated with ICIs, the M category in the AJCC eighth edition showed limited prognostic stratification by both univariable and multivariable analyses. The presence of liver metastases and elevated levels of serum lactate dehydrogenase (LDH) offered superior prognostic separation compared with the M category (liver metastases: hazard ratio, 2.22; 95% CI, 1.48-3.33; P < .001; elevated serum LDH: hazard ratio, 1.73; 95% CI, 1.16-2.58; P = .007). An updated staging system based on these factors was externally validated in a cohort of 652 patients (mean [SD] age, 67.9 [11.6] years; 630 [96.6%] men), with patients without liver metastases or elevated LDH levels having the longest survival (median overall survival, 30.7 months). CONCLUSIONS AND RELEVANCE This study found that the AJCC eighth edition M category was poorly reflective of prognosis in patients receiving ICIs. Future staging systems could consider emphasizing the presence of liver metastases and elevated LDH levels. Additional studies are needed to confirm the importance of these and other prognostic biomarkers.
Collapse
Affiliation(s)
- Jessica J. Waninger
- University of Michigan Medical School, University of Michigan, Ann Arbor
- Department of Cellular and Molecular Biology, University of Michigan, Ann Arbor
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor
| | - Vincent T. Ma
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Sara Journey
- University of Michigan Medical School, University of Michigan, Ann Arbor
| | - Jeremy Skvarce
- University of Michigan Medical School, University of Michigan, Ann Arbor
| | - Zoey Chopra
- University of Michigan Medical School, University of Michigan, Ann Arbor
| | - Alangoya Tezel
- University of Michigan Medical School, University of Michigan, Ann Arbor
| | - Alex K. Bryant
- Department of Radiation Oncology, University of Michigan, Ann Arbor
| | - Charles Mayo
- Department of Radiation Oncology, University of Michigan, Ann Arbor
| | - Yilun Sun
- Department of Radiation Oncology, University of Michigan, Ann Arbor
- Department of Biostatistics, University of Michigan, Ann Arbor
| | - Kamya Sankar
- Rogel Cancer Center, University of Michigan, Ann Arbor
| | - Nithya Ramnath
- Rogel Cancer Center, University of Michigan, Ann Arbor
- Department of Hematology Oncology, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Christopher Lao
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor
- Rogel Cancer Center, University of Michigan, Ann Arbor
| | - Jeremy B. Sussman
- Department of Medicine, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
- Center for Clinical Management Research, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
- Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor
| | - Leslie Fecher
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor
- Rogel Cancer Center, University of Michigan, Ann Arbor
| | - Ajjai Alva
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor
- Department of Hematology Oncology, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Michael D. Green
- Department of Radiation Oncology, University of Michigan, Ann Arbor
- Rogel Cancer Center, University of Michigan, Ann Arbor
- Department of Radiation Oncology, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
| |
Collapse
|
31
|
Kim E, Brown JS, Eroglu Z, Anderson AR. Adaptive Therapy for Metastatic Melanoma: Predictions from Patient Calibrated Mathematical Models. Cancers (Basel) 2021; 13:823. [PMID: 33669315 PMCID: PMC7920057 DOI: 10.3390/cancers13040823] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Adaptive therapy is an evolution-based treatment approach that aims to maintain tumor volume by employing minimum effective drug doses or timed drug holidays. For successful adaptive therapy outcomes, it is critical to find the optimal timing of treatment switch points in a patient-specific manner. Here we develop a combination of mathematical models that examine interactions between drug-sensitive and resistant cells to facilitate melanoma adaptive therapy dosing and switch time points. The first model assumes genetically fixed drug-sensitive and -resistant popul tions that compete for limited resources. The second model considers phenotypic switching between drug-sensitive and -resistant cells. We calibrated each model to fit melanoma patient biomarker changes over time and predicted patient-specific adaptive therapy schedules. Overall, the models predict that adaptive therapy would have delayed time to progression by 6-25 months compared to continuous therapy with dose rates of 6-74% relative to continuous therapy. We identified predictive factors driving the clinical time gained by adaptive therapy, such as the number of initial sensitive cells, competitive effect, switching rate from resistant to sensitive cells, and sensitive cell growth rate. This study highlights that there is a range of potential patient-specific benefits of adaptive therapy and identifies parameters that modulate this benefit.
Collapse
Affiliation(s)
- Eunjung Kim
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Korea
| | - Joel S. Brown
- Integrated Mathematical Oncology, H. Lee Moffitt Cancer and Research Institute, Tampa, FL 33612, USA;
| | - Zeynep Eroglu
- Cutaneous Oncology, H. Lee Moffitt Cancer and Research Institute, Tampa, FL 33612, USA;
| | - Alexander R.A. Anderson
- Integrated Mathematical Oncology, H. Lee Moffitt Cancer and Research Institute, Tampa, FL 33612, USA;
| |
Collapse
|
32
|
RAGE Signaling in Melanoma Tumors. Int J Mol Sci 2020; 21:ijms21238989. [PMID: 33256110 PMCID: PMC7730603 DOI: 10.3390/ijms21238989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Despite recent progresses in its treatment, malignant cutaneous melanoma remains a cancer with very poor prognosis. Emerging evidences suggest that the receptor for advance glycation end products (RAGE) plays a key role in melanoma progression through its activation in both cancer and stromal cells. In tumors, RAGE activation is fueled by numerous ligands, S100B and HMGB1 being the most notable, but the role of many other ligands is not well understood and should not be underappreciated. Here, we provide a review of the current role of RAGE in melanoma and conclude that targeting RAGE in melanoma could be an approach to improve the outcomes of melanoma patients.
Collapse
|
33
|
Fischer GM, Carapeto FCL, Joon AY, Haydu LE, Chen H, Wang F, Van Arnam JS, McQuade JL, Wani K, Kirkwood JM, Thompson JF, Tetzlaff MT, Lazar AJ, Tawbi HA, Gershenwald JE, Scolyer RA, Long GV, Davies MA. Molecular and immunological associations of elevated serum lactate dehydrogenase in metastatic melanoma patients: A fresh look at an old biomarker. Cancer Med 2020; 9:8650-8661. [PMID: 33016647 PMCID: PMC7666738 DOI: 10.1002/cam4.3474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/26/2022] Open
Abstract
Elevated serum lactate dehydrogenase (sLDH) is associated with poor clinical outcomes in patients with stage IV metastatic melanoma (MM). It is currently unknown if sLDH elevation correlates with distinct molecular, metabolic, or immune features of melanoma metastases. The identification of such features may identify rational therapeutic strategies for patients with elevated sLDH. Thus, we obtained sLDH levels for melanoma patients with metastases who had undergone molecular and/or immune profiling. Our analysis of multi‐omics data from independent cohorts of melanoma metastases showed that elevated sLDH was not significantly associated with differences in immune cell infiltrate, point mutations, DNA copy number variations, promoter methylation, RNA expression, or protein expression in melanoma metastases. The only significant association observed for elevated sLDH was with the number of metastatic sites of disease. Our data support that sLDH correlates with disease burden, but not specific molecular or immunological phenotypes, in metastatic melanoma.
Collapse
Affiliation(s)
- Grant M Fischer
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fernando C L Carapeto
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aron Y Joon
- Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren E Haydu
- Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huiqin Chen
- Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fuchenchu Wang
- Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John S Van Arnam
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer L McQuade
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Khalida Wani
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John M Kirkwood
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John F Thompson
- Melanoma Institute of Australia, The University of Sydney, North Sydney, NSW, Australia.,The University of Sydney, Sydney, NSW, Australia.,Royal Prince Alfred Hospital, NSW Health Pathology, Sydney, NSW, Australia
| | - Michael T Tetzlaff
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Pathology/Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander J Lazar
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Pathology/Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hussein A Tawbi
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey E Gershenwald
- Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard A Scolyer
- Melanoma Institute of Australia, The University of Sydney, North Sydney, NSW, Australia.,The University of Sydney, Sydney, NSW, Australia.,Royal Prince Alfred Hospital, NSW Health Pathology, Sydney, NSW, Australia
| | - Georgina V Long
- Melanoma Institute of Australia, The University of Sydney, North Sydney, NSW, Australia.,The University of Sydney, Sydney, NSW, Australia.,Royal North Shore Hospital, Sydney, NSW, Australia
| | - Michael A Davies
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
34
|
Mancuso F, Lage S, Rasero J, Díaz-Ramón JL, Apraiz A, Pérez-Yarza G, Ezkurra PA, Penas C, Sánchez-Diez A, García-Vazquez MD, Gardeazabal J, Izu R, Mujika K, Cortés J, Asumendi A, Boyano MD. Serum markers improve current prediction of metastasis development in early-stage melanoma patients: a machine learning-based study. Mol Oncol 2020; 14:1705-1718. [PMID: 32485045 PMCID: PMC7400797 DOI: 10.1002/1878-0261.12732] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 04/10/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
Metastasis development represents an important threat for melanoma patients, even when diagnosed at early stages and upon removal of the primary tumor. In this scenario, determination of prognostic biomarkers would be of great interest. Serum contains information about the general status of the organism and therefore represents a valuable source for biomarkers. Thus, we aimed to define serological biomarkers that could be used along with clinical and histopathological features of the disease to predict metastatic events on the early‐stage population of patients. We previously demonstrated that in stage II melanoma patients, serum levels of dermcidin (DCD) were associated with metastatic progression. Based on the relevance of the immune response on the cancer progression and the recent association of DCD with local and systemic immune response against cancer cells, serum DCD was analyzed in a new cohort of patients along with interleukin 4 (IL‐4), IL‐6, IL‐10, IL‐17A, interferon γ (IFN‐γ), transforming growth factor‐β (TGF‐ β), and granulocyte–macrophage colony‐stimulating factor (GM‐CSF). We initially recruited 448 melanoma patients, 323 of whom were diagnosed as stages I‐II according to AJCC. Levels of selected cytokines were determined by ELISA and Luminex, and obtained data were analyzed employing machine learning and Kaplan–Meier techniques to define an algorithm capable of accurately classifying early‐stage melanoma patients with a high and low risk of developing metastasis. The results show that in early‐stage melanoma patients, serum levels of the cytokines IL‐4, GM‐CSF, and DCD together with the Breslow thickness are those that best predict melanoma metastasis. Moreover, resulting algorithm represents a new tool to discriminate subjects with good prognosis from those with high risk for a future metastasis.
Collapse
Affiliation(s)
- Filippo Mancuso
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, Leioa, Spain
| | - Sergio Lage
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, Leioa, Spain
| | - Javier Rasero
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - José Luis Díaz-Ramón
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Department of Dermatology, Cruces University Hospital, Barakaldo, Spain
| | - Aintzane Apraiz
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, Leioa, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Gorka Pérez-Yarza
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, Leioa, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Pilar Ariadna Ezkurra
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, Leioa, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Cristina Penas
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, Leioa, Spain
| | - Ana Sánchez-Diez
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Department of Dermatology, Basurto University Hospital, Bilbao, Spain
| | | | - Jesús Gardeazabal
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Department of Dermatology, Cruces University Hospital, Barakaldo, Spain
| | - Rosa Izu
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Department of Dermatology, Basurto University Hospital, Bilbao, Spain
| | - Karmele Mujika
- Department of Medical Oncology, Onkologikoa Hospital, Donostia, Spain.,Biodonostia Institute, Donostia, Spain
| | - Jesús Cortés
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Aintzane Asumendi
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, Leioa, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - María Dolores Boyano
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, Leioa, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
35
|
Giunta EF, De Falco V, Napolitano S, Argenziano G, Brancaccio G, Moscarella E, Ciardiello D, Ciardiello F, Troiani T. Optimal treatment strategy for metastatic melanoma patients harboring BRAF-V600 mutations. Ther Adv Med Oncol 2020; 12:1758835920925219. [PMID: 32612709 PMCID: PMC7307282 DOI: 10.1177/1758835920925219] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/13/2020] [Indexed: 12/15/2022] Open
Abstract
BRAF-V600 mutations occur in approximately 50% of patients with
metastatic melanoma. Immune-checkpoint inhibitors and targeted therapies are
both active as first-line treatments in these patients regardless of their
mechanisms of action and toxicities. However, an upfront therapeutic strategy is
still controversial. In fact, waiting for results of ongoing clinical trials and
for new biomarkers, clinicians should base their decision on the clinical
characteristics of the patient and on the biological aspects of the tumor. This
review provides an overview on BRAF-V600 mutations in melanoma
and will discuss their prognostic and clinical significance. Moreover, it will
suggest a therapeutic algorithm that can drive therapeutic choice in a
first-line setting for BRAF-V600 mutant melanoma patients.
Collapse
Affiliation(s)
- Emilio Francesco Giunta
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Vincenzo De Falco
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Stefania Napolitano
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Argenziano
- Dermatology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Gabriella Brancaccio
- Dermatology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Elvira Moscarella
- Dermatology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Davide Ciardiello
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Fortunato Ciardiello
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Teresa Troiani
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Via S Pansini 5, Naples 80131, Italy
| |
Collapse
|
36
|
Predicting circulating biomarker response and its impact on the survival of advanced melanoma patients treated with adjuvant therapy. Sci Rep 2020; 10:7478. [PMID: 32366871 PMCID: PMC7198615 DOI: 10.1038/s41598-020-63441-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/30/2020] [Indexed: 11/21/2022] Open
Abstract
Advanced melanoma remains a disease with poor prognosis. Several serologic markers have been investigated to help monitoring and prognostication, but to date only lactate dehydrogenase (LDH) has been validated as a standard prognostic factor biomarker for this disease by the American Joint Committee on Cancer. In this work, we built a semi-mechanistic model to explore the relationship between the time course of several circulating biomarkers and overall or progression free survival in advanced melanoma patients treated with adjuvant high-dose interferon-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\boldsymbol{\alpha }}{\bf{2}}{\bf{b}}$$\end{document}α2b. Additionally, due to the adverse interferon tolerability, a semi-mechanistic model describing the side effects of the treatment in the absolute neutrophil counts is proposed in order to simultaneously analyze the benefits and toxic effects of this treatment. The results of our analysis suggest that the relative change from baseline of LDH was the most significant predictor of the overall survival of the patients. Unfortunately, there was no significant difference in the proportion of patients with elevated serum biomarkers between the patients who recurred and those who remained free of disease. Still, we believe that the modelling framework presented in this work of circulating biomarkers and adverse effects could constitute an additional strategy for disease monitoring in advance melanoma patients.
Collapse
|
37
|
Boyer M, Cayrefourcq L, Dereure O, Meunier L, Becquart O, Alix-Panabières C. Clinical Relevance of Liquid Biopsy in Melanoma and Merkel Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12040960. [PMID: 32295074 PMCID: PMC7226137 DOI: 10.3390/cancers12040960] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/14/2022] Open
Abstract
Melanoma and Merkel cell carcinoma are two aggressive skin malignancies with high disease-related mortality and increasing incidence rates. Currently, invasive tumor tissue biopsy is the gold standard for their diagnosis, and no reliable easily accessible biomarker is available to monitor patients with melanoma or Merkel cell carcinoma during the disease course. In these last years, liquid biopsy has emerged as a candidate approach to overcome this limit and to identify biomarkers for early cancer diagnosis, prognosis, therapeutic response prediction, and patient follow-up. Liquid biopsy is a blood-based non-invasive procedure that allows the sequential analysis of circulating tumor cells, circulating cell-free and tumor DNA, and extracellular vesicles. These innovative biosources show similar features as the primary tumor from where they originated and represent an alternative to invasive solid tumor biopsy. In this review, the biology and technical challenges linked to the detection and analysis of the different circulating candidate biomarkers for melanoma and Merkel cell carcinoma are discussed as well as their clinical relevance.
Collapse
Affiliation(s)
- Magali Boyer
- Laboratory of Rare Human Circulating Cells, University Medical Centre of Montpellier, 34093 Montpellier, France; (M.B.); (L.C.)
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells, University Medical Centre of Montpellier, 34093 Montpellier, France; (M.B.); (L.C.)
| | - Olivier Dereure
- Department of Dermatology and INSERM 1058 Pathogenesis and Control of Chronic Infections, University of Montpellier, 34090 Montpellier, France;
| | - Laurent Meunier
- Department of Dermatology, University of Montpellier, 34090 Montpellier, France; (L.M.); (O.B.)
| | - Ondine Becquart
- Department of Dermatology, University of Montpellier, 34090 Montpellier, France; (L.M.); (O.B.)
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells, University Medical Centre of Montpellier, 34093 Montpellier, France; (M.B.); (L.C.)
- Correspondence: ; Tel.: +33-4-1175-99-31; Fax: +33-4-1175-99-33
| |
Collapse
|
38
|
Luís R, Brito C, Pojo M. Melanoma Metabolism: Cell Survival and Resistance to Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:203-223. [PMID: 32130701 DOI: 10.1007/978-3-030-34025-4_11] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cutaneous melanoma is one of the most aggressive types of cancer, presenting the highest potential to form metastases, both locally and distally, which are associated with high death rates of melanoma patients. A high somatic mutation burden is characteristic of these tumours, with most common oncogenic mutations occurring in the BRAF, NRAS and NF1 genes. These intrinsic oncogenic pathways contribute to the metabolic switch between glycolysis and oxidative phosphorylation metabolisms of melanoma, facilitating tumour progression and resulting in a high plasticity and adaptability to unfavourable conditions. Moreover, melanoma microenvironment can influence its own metabolism and reprogram several immune cell subset functions, enabling melanoma to evade the immune system. The knowledge of the biology, molecular alterations and microenvironment of melanoma has led to the development of new targeted therapies and the improvement of patient care. In this work, we reviewed the impact of melanoma metabolism in the resistance to BRAF and MEK inhibitors and immunotherapies, emphasizing the requirement to evaluate metabolic alterations upon development of novel therapeutic approaches. Here we summarized the current understanding of the impact of metabolic processes in melanomagenesis, metastasis and microenvironment, as well as the involvement of metabolic pathways in the immune modulation and resistance to targeted and immunocheckpoint therapies.
Collapse
Affiliation(s)
- Rafael Luís
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E, Lisbon, Portugal
| | - Cheila Brito
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E, Lisbon, Portugal
| | - Marta Pojo
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E, Lisbon, Portugal
| |
Collapse
|
39
|
Abstract
Abstract
Precision oncology aims to tailor clinical decisions specifically to patients with the objective of improving treatment outcomes. This can be achieved by leveraging omics information for accurate molecular characterization of tumors. Tumor tissue biopsies are currently the main source of information for molecular profiling. However, biopsies are invasive and limited in resolving spatiotemporal heterogeneity in tumor tissues. Alternative non-invasive liquid biopsies can exploit patient’s body fluids to access multiple layers of tumor-specific biological information (genomes, epigenomes, transcriptomes, proteomes, metabolomes, circulating tumor cells, and exosomes). Analysis and integration of these large and diverse datasets using statistical and machine learning approaches can yield important insights into tumor biology and lead to discovery of new diagnostic, predictive, and prognostic biomarkers. Translation of these new diagnostic tools into standard clinical practice could transform oncology, as demonstrated by a number of liquid biopsy assays already entering clinical use. In this review, we highlight successes and challenges facing the rapidly evolving field of cancer biomarker research.
Lay Summary
Precision oncology aims to tailor clinical decisions specifically to patients with the objective of improving treatment outcomes. The discovery of biomarkers for precision oncology has been accelerated by high-throughput experimental and computational methods, which can inform fine-grained characterization of tumors for clinical decision-making. Moreover, advances in the liquid biopsy field allow non-invasive sampling of patient’s body fluids with the aim of analyzing circulating biomarkers, obviating the need for invasive tumor tissue biopsies. In this review, we highlight successes and challenges facing the rapidly evolving field of liquid biopsy cancer biomarker research.
Collapse
|
40
|
Melanoma Growth Analysis in Blood Serum and Tissue Using Xenograft Model with Response to Cold Atmospheric Plasma Activated Medium. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9204227] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background: Cold atmospheric plasma (CAP) proposed as a novel therapeutic tool for the various kinds of cancer treatment. Cold atmospheric Plasma-Activated Media (PAM) has exhibited its promising application in plasma medicine for the treatment of cancer. Methods: We investigated the role of PAM on the human melanoma cancer G-361 cells xenograft in vivo by estimating the biochemical and gene expression of apoptotic genes. Results: Reactive oxygen and nitrogen species (RONS) generated by PAM could significantly decrease the tumor volume (40%) and tumor weight (26%) when administered intradermally (i.d.) into the melanoma region continuously for three days. Biochemical studies in blood serum along with excised melanoma samples revealed an increase in protein carbonylation and MDA content as compared to the control, while LDH and L-DOPA in serum and melanoma tissues were decreased significantly in PAM treated group. PAM generated RONS increased apoptotic genes like Bcl-2, Bax, Parp, Casp8, and P53 in melanoma tissue. Immunohistochemistry data confirms that PAM treatment increased apoptosis at the tissue level. Conclusions: These results suggested that RONS present in PAM inhibit the induction of xenograft melanoma cancer cells through the induction of apoptosis and upregulating of various biochemical parameters within blood serum and melanoma.
Collapse
|
41
|
Naidoo C, Kruger CA, Abrahamse H. Simultaneous Photodiagnosis and Photodynamic Treatment of Metastatic Melanoma. Molecules 2019; 24:molecules24173153. [PMID: 31470637 PMCID: PMC6749501 DOI: 10.3390/molecules24173153] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 12/18/2022] Open
Abstract
Metastatic melanoma (MM) has a poor prognosis and is attributed to late diagnoses only when metastases has already occurred. Thus, early diagnosis is crucial to improve its overall treatment efficacy. The standard diagnostic tools for MM are incisional biopsies and/or fine needle aspiration biopsies, while standard treatments involve surgery, chemotherapy, or irradiation therapy. The combination of photodynamic diagnosis (PDD) and therapy (PDT) utilizes a photosensitizer (PS) that, when excited by light of a low wavelength, can be used for fluorescent non-destructive diagnosis. However, when the same PS is activated at a higher wavelength of light, it can be cytotoxic and induce tumor destruction. This paper focuses on PS drugs that have been used for PDD as well as PDT treatment of MM. Furthermore, it emphasizes the need for continued investigation into enhanced PS delivery via active biomarkers and passive nanoparticle systems. This should improve PS drug absorption in MM cells and increase effectiveness of combinative photodynamic methods for the enhanced diagnosis and treatment of MM can become a reality.
Collapse
Affiliation(s)
- Channay Naidoo
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2028, South Africa
| | - Cherie Ann Kruger
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2028, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2028, South Africa
| |
Collapse
|
42
|
Davis LE, Shalin SC, Tackett AJ. Current state of melanoma diagnosis and treatment. Cancer Biol Ther 2019; 20:1366-1379. [PMID: 31366280 PMCID: PMC6804807 DOI: 10.1080/15384047.2019.1640032] [Citation(s) in RCA: 555] [Impact Index Per Article: 92.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/23/2019] [Accepted: 06/23/2019] [Indexed: 12/13/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer. In the early stages, melanoma can be treated successfully with surgery alone and survival rates are high, but after metastasis survival rates drop significantly. Therefore, early and correct diagnosis is key for ensuring patients have the best possible prognosis. Melanoma misdiagnosis accounts for more pathology and dermatology malpractice claims than any cancer other than breast cancer, as an early misdiagnosis can significantly reduce a patient's chances of survival. As far as treatment for metastatic melanoma goes, there have been several new drugs developed over the last 10 years that have greatly improved the prognosis of patients with metastatic melanoma, however, a majority of patients do not show a lasting response to these treatments. Thus, new biomarkers and drug targets are needed to improve the accuracy of melanoma diagnosis and treatment. This article will discuss the major advancements of melanoma diagnosis and treatment from antiquity to the present day.
Collapse
Affiliation(s)
- Lauren E. Davis
- University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR, USA
| | - Sara C. Shalin
- University of Arkansas for Medical Sciences, Department of Pathology, Little Rock, AR, USA
| | - Alan J. Tackett
- University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR, USA
| |
Collapse
|
43
|
Cayrefourcq L, De Roeck A, Garcia C, Stoebner PE, Fichel F, Garima F, Perriard F, Daures JP, Meunier L, Alix-Panabières C. S100-EPISPOT: A New Tool to Detect Viable Circulating Melanoma Cells. Cells 2019; 8:cells8070755. [PMID: 31330795 PMCID: PMC6678250 DOI: 10.3390/cells8070755] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/09/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022] Open
Abstract
Metastatic melanoma is one of the most aggressive and drug-resistant cancers with very poor overall survival. Circulating melanoma cells (CMCs) were first described in 1991. However, there is no general consensus on the clinical utility of CMC detection, largely due to conflicting results linked to the use of heterogeneous patient populations and different detection methods. Here, we developed a new EPithelial ImmunoSPOT (EPISPOT) assay to detect viable CMCs based on their secretion of the S100 protein (S100-EPISPOT). Then, we compared the results obtained with the S100-EPISPOT assay and the CellSearch® CMC kit using blood samples from a homogeneous population of patients with metastatic melanoma. We found that S100-EPISPOT sensitivity was significantly higher than that of CellSearch®. Specifically, the percentage of patients with ≥2 CMCs was significantly higher using S100-EPISPOT than CellSearch® (48% and 21%, respectively; p = 0.0114). Concerning CMC prognostic value, only the CellSearch® results showed a significant association with overall survival (p = 0.006). However, due to the higher sensitivity of the new S100-EPISPOT assay, it would be interesting to determine whether this functional test could be used in patients with non-metastatic melanoma for the early detection of tumor relapse and for monitoring the treatment response.
Collapse
Affiliation(s)
- Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, UPRES EA2415, 34093 Montpellier, France
| | - Aurélie De Roeck
- Department of Dermatology, Nîmes University Hospital, University of Montpellier, 30029 Nîmes, France
| | - Caroline Garcia
- Department of Dermatology, Nîmes University Hospital, University of Montpellier, 30029 Nîmes, France
| | - Pierre-Emmanuel Stoebner
- Department of Dermatology, Nîmes University Hospital, University of Montpellier, 30029 Nîmes, France
| | - Fanny Fichel
- Department of Dermatology, Nîmes University Hospital, University of Montpellier, 30029 Nîmes, France
| | - Françoise Garima
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, UPRES EA2415, 34093 Montpellier, France
| | - Françoise Perriard
- UPRES EA2415, University Institute of Clinical Research (IURC), Montpellier University, 34093 Montpellier, France
| | - Jean-Pierre Daures
- UPRES EA2415, University Institute of Clinical Research (IURC), Montpellier University, 34093 Montpellier, France
| | - Laurent Meunier
- Department of Dermatology, Nîmes University Hospital, University of Montpellier, 30029 Nîmes, France
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, UPRES EA2415, 34093 Montpellier, France.
| |
Collapse
|
44
|
Kim JE, Chung BY, Sim CY, Park AY, Lee JS, Whang KU, Park YL, Kim HO, Park CW, Lee SY. Clinicopathologic Features and Prognostic Factors of Primary Cutaneous Melanoma: a Multicenter Study in Korea. J Korean Med Sci 2019; 34:e126. [PMID: 31020815 PMCID: PMC6484177 DOI: 10.3346/jkms.2019.34.e126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Malignant melanoma is a cutaneous malignancy with a high mortality rate and high potential for metastases. Detailed information on the clinicopathologic characteristics and prognostic factors of cutaneous melanoma is currently limited in Korea. This study aimed to identify the epidemiological and clinicopathologic characteristics of primary cutaneous melanoma in Korean patients, and to assess which prognostic variables could influence both the development of metastases in primary cutaneous melanoma and overall survival (OS). METHODS A total of 261 patients diagnosed with primary cutaneous melanoma in seven medical centers between 1997 and 2017 were retrospectively investigated with regard to clinical presentation, localization of the tumor, histopathologic subtype, and survival time. RESULTS The nodular histologic subtype, ulceration, and Breslow thickness were significantly associated with the development of metastasis; and overweight and obesity (body mass index > 23) were significantly associated with increased Breslow thickness. The location of the metastases appeared to influence OS: brain metastases were associated with the highest risk of death, followed by gastrointestinal, lung, and extra-regional lymph node metastases. CONCLUSION In this study, tumor thickness, nodular histologic subtype, and ulceration predicted metastatic spread of primary cutaneous melanoma. In addition, OS was associated with the location of metastases. Obesity was related to the prognosis of primary cutaneous melanoma. Clinicians should bear these findings in mind when forming a diagnosis because of the risk of a poor prognosis.
Collapse
Affiliation(s)
- Jung Eun Kim
- Department of Dermatology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Bo Young Chung
- Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Chang Yoon Sim
- Department of Dermatology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - A Young Park
- Department of Dermatology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Jong Suk Lee
- Department of Dermatology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Kyu Uang Whang
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Young Lip Park
- Department of Dermatology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Hye One Kim
- Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Chun Wook Park
- Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea.
| | - Sung Yul Lee
- Department of Dermatology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea.
| |
Collapse
|
45
|
Cherobin ACFP, Wainstein AJA, Colosimo EA, Goulart EMA, Bittencourt FV. Prognostic factors for metastasis in cutaneous melanoma. An Bras Dermatol 2018; 93:19-26. [PMID: 29641692 PMCID: PMC5871357 DOI: 10.1590/abd1806-4841.20184779] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/04/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Melanoma is a malignant neoplasia that shows high mortality when diagnosed in advanced stages. Early identification of high-risk patients for the development of melanoma metastases is the main strategy to reduce mortality. OBJECTIVE To assess the influence of eight epidemiological and histopathologic features on the development of metastases in patients diagnosed with primary cutaneous melanoma. METHODS Our historical cohort comprised patients with invasive primary cutaneous melanoma seen between 1995 and 2012 at a public university hospital and a private oncologic surgery institution in Southeastern Brazil. The following variables were analyzed: gender, age, family history of melanoma, site of the primary tumor, clinical and histologic subtype, Breslow thickness, histologic ulceration and the mitotic index. Kaplan-Meier univariate test and multivariate Cox proportional hazard analysis were used to assess factors associated with disease-free survival. RESULTS Five hundred and fourteen patients were enrolled. The univariate analysis identified the following significant risk factors: gender, age, site of the tumor, clinical and histologic subtype, Breslow thickness, histologic ulceration and mitotic index. Multivariate analysis included 244 patients and detected four significant prognostic factors: male gender, nodular clinical and histologic subtype, Breslow thickness > 4mm, and histologic ulceration. The mitotic index was not included in this analysis. STUDY LIMITATIONS Small number of patients in multivariate analysis. CONCLUSIONS The following prognostic factors to the development of melanoma metastasis were identified in the study: male gender, nodular histologic subtype, Breslow thickness > 4mm and ulceration.
Collapse
Affiliation(s)
| | | | - Enrico Antônio Colosimo
- Department of Statistics, Institute of Exact Sciences, Universidade
Federal de Minas Gerais (ICEx-UFMG) - Belo Horizonte (MG), Brazil
| | - Eugênio Marcos Andrade Goulart
- Department of Pediatrics, Faculdade de Medicina da Universidade
Federal de Minas Gerais (UFMG) - Belo Horizonte (MG), Brazil
| | - Flávia Vasques Bittencourt
- Department of Dermatology, Hospital das Clínicas,
Universidade Federal de Minas Gerais (HC-UFMG) - Belo Horizonte (MG), Brazil
| |
Collapse
|
46
|
Sykes EK, McDonald CE, Ghazanfar S, Mactier S, Thompson JF, Scolyer RA, Yang JY, Mann GJ, Christopherson RI. A 14-Protein Signature for Rapid Identification of Poor Prognosis Stage III Metastatic Melanoma. Proteomics Clin Appl 2017; 12:e1700094. [PMID: 29227041 DOI: 10.1002/prca.201700094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/08/2017] [Indexed: 11/10/2022]
Abstract
PURPOSE To validate differences in protein levels between good and poor prognosis American Joint Committee on Cancer (AJCC) stage III melanoma patients and compile a protein panel to stratify patient risk. EXPERIMENTAL DESIGN Protein extracts from melanoma metastases within lymph nodes in patients with stage III disease with good (n = 16, >4 years survival) and poor survival (n = 14, <2 years survival) were analyzed by selected reaction monitoring (SRM). Diagonal Linear Discriminant Analysis (DLDA) was performed to generate a protein biomarker panel. RESULTS SRM analysis identified ten proteins that were differentially abundant between good and poor prognosis stage III melanoma patients. The ten differential proteins were combined with 22 proteins identified in our previous work. A panel of 14 proteins was selected by DLDA that was able to accurately classify patients into prognostic groups based on levels of these proteins. CONCLUSIONS AND CLINICAL RELEVANCE The ten differential proteins identified by SRM have biological significance in cancer progression. The final signature of 14 proteins identified by SRM could be used to identify AJCC stage III melanoma patients likely to have poor outcomes who may benefit from adjuvant systemic therapy.
Collapse
Affiliation(s)
- Erin K Sykes
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | | | - Shila Ghazanfar
- School of Mathematics and Statistics, University of Sydney, NSW, Australia
| | - Swetlana Mactier
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - John F Thompson
- Melanoma Institute Australia, University of Sydney, North Sydney, NSW, Australia.,Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,University of Sydney at Westmead Millennium Institute, Westmead, NSW, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, University of Sydney, North Sydney, NSW, Australia.,Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Jean Y Yang
- School of Mathematics and Statistics, University of Sydney, NSW, Australia
| | - Graham J Mann
- Melanoma Institute Australia, University of Sydney, North Sydney, NSW, Australia.,University of Sydney at Westmead Millennium Institute, Westmead, NSW, Australia
| | | |
Collapse
|
47
|
Metri R, Mohan A, Nsengimana J, Pozniak J, Molina-Paris C, Newton-Bishop J, Bishop D, Chandra N. Identification of a gene signature for discriminating metastatic from primary melanoma using a molecular interaction network approach. Sci Rep 2017; 7:17314. [PMID: 29229936 PMCID: PMC5725601 DOI: 10.1038/s41598-017-17330-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/10/2017] [Indexed: 01/15/2023] Open
Abstract
Understanding the biological factors that are characteristic of metastasis in melanoma remains a key approach to improving treatment. In this study, we seek to identify a gene signature of metastatic melanoma. We configured a new network-based computational pipeline, combined with a machine learning method, to mine publicly available transcriptomic data from melanoma patient samples. Our method is unbiased and scans a genome-wide protein-protein interaction network using a novel formulation for network scoring. Using this, we identify the most influential, differentially expressed nodes in metastatic as compared to primary melanoma. We evaluated the shortlisted genes by a machine learning method to rank them by their discriminatory capacities. From this, we identified a panel of 6 genes, ALDH1A1, HSP90AB1, KIT, KRT16, SPRR3 and TMEM45B whose expression values discriminated metastatic from primary melanoma (87% classification accuracy). In an independent transcriptomic data set derived from 703 primary melanomas, we showed that all six genes were significant in predicting melanoma specific survival (MSS) in a univariate analysis, which was also consistent with AJCC staging. Further, 3 of these genes, HSP90AB1, SPRR3 and KRT16 remained significant predictors of MSS in a joint analysis (HR = 2.3, P = 0.03) although, HSP90AB1 (HR = 1.9, P = 2 × 10-4) alone remained predictive after adjusting for clinical predictors.
Collapse
Affiliation(s)
- Rahul Metri
- IISc Mathematics Initiative (IMI), Indian Institute of Science, Bangalore, Karnataka, India
| | - Abhilash Mohan
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Jérémie Nsengimana
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Joanna Pozniak
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Carmen Molina-Paris
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, UK
| | - Julia Newton-Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - David Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Nagasuma Chandra
- IISc Mathematics Initiative (IMI), Indian Institute of Science, Bangalore, Karnataka, India.
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
48
|
O’reilly A, Larkin J. Checkpoint inhibitors in advanced melanoma: effect on the field of immunotherapy. Expert Rev Anticancer Ther 2017; 17:647-655. [DOI: 10.1080/14737140.2017.1341315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Aine O’reilly
- Department of Renal & Melanoma, Royal Marsden Hospital, London, UK
| | - James Larkin
- Department of Renal & Melanoma, Royal Marsden Hospital, London, UK
| |
Collapse
|
49
|
Ene Nicolae CD, Nicolae I. Interleukin 8 serum concentration, but not lactate dehydrogenase activity, positively correlates to CD34 antigen in melanoma tumors. J Immunoassay Immunochem 2017; 37:463-71. [PMID: 27175552 DOI: 10.1080/15321819.2016.1155996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
CD34 promotes melanoma cell motility, negative regulation of cellular response to hypoxia and positive regulation of vasculogenesis. Interleukin 8 (IL-8) is responsible for angiogenic response in endothelial cells, increases proliferation, metastasis, and survival of melanoma cells. The aim of our study was evaluation of relationship between CD34 immunoexpression and IL-8 serum concentrations in melanoma patients. The study was conducted on patients with melanoma that were divided in: Clark II (17 patients - 19.3%), Clark III (33 patients - 37.5%), Clark IV (22 patients - 25%), and Clark V (16 patients - 18.2%) levels. CD34 expression was absent for Clark II melanomas, and positive for Clark III (6.1%), Clark IV (40.9%), and Clark V (56.2%). The CD34 immune-mark was highly positive only for Clark IV and V levels. Interleukin 8 (IL-8) had high values (above 15 pg/mL) for all patients with melanoma (58.9% - Clark II; 87.8% - Clark III; 90.9% - Clark IV and 93.7% - Clark V). We have found a strong and statistically significant correlation between CD34 and IL-8 for Clark IV (r = 0.54, P < 0.05) and Clark V (r = 0.72, P < 0.05) melanomas. CD34 and IL-8 are associated with poor prognosis of melanoma, metastasis, and neoangiogenesis.
Collapse
Affiliation(s)
- Corina Daniela Ene Nicolae
- a Carol Davila Clinical Hospital of Nephrology , Bucharest , Romania.,b Carol Davila University of Medicine and Pharmacy , Bucharest , Romania
| | - Ilinca Nicolae
- c Victor Babes Hospital of Tropical and Infectious Diseases , Research in Dermatology , Bucharest , Romania
| |
Collapse
|
50
|
Fogli S, Polini B, Carpi S, Pardini B, Naccarati A, Dubbini N, Lanza M, Breschi MC, Romanini A, Nieri P. Identification of plasma microRNAs as new potential biomarkers with high diagnostic power in human cutaneous melanoma. Tumour Biol 2017; 39:1010428317701646. [PMID: 28466785 DOI: 10.1177/1010428317701646] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Melanoma is a devastating disease with few therapeutic options in the advanced stage and with the urgent need of reliable biomarkers for early detection. In this context, circulating microRNAs are raising great interest as diagnostic biomarkers. We analyzed the expression profiles of 21 selected microRNAs in plasma samples from melanoma patients and healthy donors to identify potential diagnostic biomarkers. Data analysis was performed using global mean normalization and NormFinder algorithm. Linear regression followed by receiver operating characteristic analyses was carried out to evaluate whether selected plasma miRNAs were able to discriminate between cases and controls. We found five microRNAs that were differently expressed among cases and controls after Bonferroni correction for multiple testing. Specifically, miR-15b-5p, miR-149-3p, and miR-150-5p were up-regulated in plasma of melanoma patients compared with healthy controls, while miR-193a-3p and miR-524-5p were down-regulated. Receiver operating characteristic analyses of these selected microRNAs provided area under the receiver operating characteristic curve values ranging from 0.80 to 0.95. Diagnostic value of microRNAs is improved when considering the combination of miR-149-3p, miR-150-5p, and miR-193a-3p. The triple classifier had a high capacity to discriminate between melanoma patients and healthy controls, making it suitable to be used in early melanoma diagnosis.
Collapse
Affiliation(s)
- Stefano Fogli
- 1 Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Sara Carpi
- 1 Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | - Nevio Dubbini
- 3 Medical Oncology Unit, University Hospital of Pisa, Pisa, Italy
| | - Maria Lanza
- 3 Medical Oncology Unit, University Hospital of Pisa, Pisa, Italy
| | | | | | - Paola Nieri
- 1 Department of Pharmacy, University of Pisa, Pisa, Italy
| |
Collapse
|