1
|
Broer T, Tsintolas N, Hammond S, Helfer A, Lee J, Purkey K, DeLuca S, Khodabukus A, Bursac N. Human Myobundle Platform for Studying the Role of Notch Signaling in Satellite Cell Phenotype and Function. Adv Healthc Mater 2025; 14:e2404695. [PMID: 40123310 DOI: 10.1002/adhm.202404695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/27/2025] [Indexed: 03/25/2025]
Abstract
Notch signaling plays a pivotal role in regulating satellite cell (SC) behavior during skeletal muscle development, homeostasis, and repair. While well-characterized in mouse models, the impact of Notch signaling in human muscle tissues remains largely underexplored. Here, a 3D tissue-engineered model of human skeletal muscle ("myobundles") is utilized as an in vitro platform for temporal control and studies of Notch singaling. Myofiber-specific overexpression of the Notch ligand, DLL1, early in myobundle differentiation increases the abundance of 3D SCs and shifts their phenotype to a more quiescent-like state, along with decreasing muscle mass and function. In contrast, myofiber-specific DLL1 overexpression after one week of myobundle differentiation does not affect 3D SC abundance or muscle function, but increases transcriptomic markers of SC quiescence, confirming the temporal dependence of SC activation and self-renewal on Notch signaling activity. Finally, for the first time these studies show that even after a transient, myofiber-specific upregulation of Notch signaling in myobundles, 3D SCs expanded from these tissues can re-form functional "secondary" myobundles containing an amplified SC pool. Future studies in the described human myobundle platform are expected to aid the development of novel Notch-targeted therapies for muscular dystrophies and aging.
Collapse
Affiliation(s)
- Torie Broer
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Nick Tsintolas
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Stewart Hammond
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Abbigail Helfer
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Joonbum Lee
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Karly Purkey
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Sophia DeLuca
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| | - Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
2
|
Cozzi A, Santambrogio P, Moro AS, Pelagatti A, Rubio A, Balestrucci C, Di Meo I, Tiranti V, Levi S. Fibroblasts and hiPS-Derived Astrocytes From CoPAN Patients Showed Different Levels of Iron Overload Correlated With Senescent Phenotype. Glia 2025. [PMID: 40105046 DOI: 10.1002/glia.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/20/2025]
Abstract
COASY protein-associated neurodegeneration (CoPAN) is a rare autosomal recessive disorder within the Neurodegeneration with Brain Iron Accumulation spectrum, resulting from mutations in COASY. This gene encodes the bifunctional enzyme essential for the final steps of coenzyme A biosynthesis. To elucidate the pathophysiology and iron dyshomeostasis underlying CoPAN, we analyzed fibroblasts and human induced pluripotent stem (hiPS)-derived astrocytes from two patients carrying distinct COASY mutations. Our findings reveal that CoPAN fibroblasts display altered iron homeostasis, characterized by iron aggregates, elevated cytosolic labile iron pool, and impaired tubulin acetylation. Patients hiPS-derived astrocytes showed mitochondrial morphological abnormalities and compromised vesicular trafficking. Notably, both cell types demonstrated evidence of ferroptosis, but the astrocytes exhibited more pronounced iron accumulation and lipid peroxidation. These results demonstrate that astrocytes may more accurately recapitulate the pathological phenotype of CoPAN compared to fibroblasts. Interestingly, astrocytes exhibited different levels of iron accumulation concomitant with cellular senescence, indicating a possible role of iron-induced cellular senescence. This finding suggests that the accumulation of cytosolic iron, possibly caused by mitochondrial dysfunction, actively promotes senescence. Our data emphasize the potential therapeutic efficacy of drugs that enhance mitochondrial functionality to attenuate the effects of CoPAN.
Collapse
Affiliation(s)
- Anna Cozzi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Santambrogio
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Alessio Pelagatti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alicia Rubio
- Institute of Neuroscience, National Research Council, Milan, Italy
- IFOM, Milan, Italy
| | | | - Ivano Di Meo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sonia Levi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
3
|
Légaré C, Berglund JA, Duchesne E, Dumont NA. New Horizons in Myotonic Dystrophy Type 1: Cellular Senescence as a Therapeutic Target. Bioessays 2025; 47:e202400216. [PMID: 39723693 PMCID: PMC11848125 DOI: 10.1002/bies.202400216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
Myotonic dystrophy type 1 (DM1) is considered a progeroid disease (i.e., causing premature aging). This hypervariable disease affects multiple systems, such as the musculoskeletal, central nervous, gastrointestinal, and others. Despite advances in understanding the underlying pathogenic mechanism of DM1, numerous gaps persist in our understanding, hindering elucidation of the heterogeneity and severity of its symptoms. Accumulating evidence indicates that the toxic intracellular RNA accumulation associated with DM1 triggers cellular senescence. These cells are in a state of irreversible cell cycle arrest and secrete a cocktail of cytokines, referred to as a senescence-associated secretory phenotype (SASP), that can have harmful effects on neighboring cells and more broadly. We hypothesize that cellular senescence contributes to the pathophysiology of DM1, and clearance of senescent cells is a promising therapeutic approach for DM1. We will discuss the therapeutic potential of different senotherapeutic drugs, especially senolytics that eliminate senescent cells, and senomorphics that reduce SASP expression.
Collapse
Affiliation(s)
- Cécilia Légaré
- RNA InstituteCollege of Arts and SciencesUniversity at Albany‐SUNYAlbanyNew YorkUSA
- School of Rehabilitation SciencesFaculty of MedicineUniversité LavalQuebecQuebecCanada
- CHU de Québec – Université Laval Research CenterQuébecQuébecCanada
- Groupe de Recherche Interdisciplinaire sur les Maladies Neuromusculaires (GRIMN)Centre intégré universitaire de santé et de services sociaux du Saguenay‐Lac‐Saint‐JeanSaguenayQuebecCanada
| | - J. Andrew Berglund
- RNA InstituteCollege of Arts and SciencesUniversity at Albany‐SUNYAlbanyNew YorkUSA
- Department of Biological Sciences, College of Arts and SciencesUniversity at Albany‐SUNYAlbanyNew YorkUSA
| | - Elise Duchesne
- School of Rehabilitation SciencesFaculty of MedicineUniversité LavalQuebecQuebecCanada
- CHU de Québec – Université Laval Research CenterQuébecQuébecCanada
- Groupe de Recherche Interdisciplinaire sur les Maladies Neuromusculaires (GRIMN)Centre intégré universitaire de santé et de services sociaux du Saguenay‐Lac‐Saint‐JeanSaguenayQuebecCanada
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (Cirris)Centre Intégré Universitaire de Santé et de Services Sociaux Capitale‐NationaleQuébecQuebecCanada
| | - Nicolas A. Dumont
- CHU Sainte‐Justine Research CenterMontrealQuebecCanada
- School of rehabilitationFaculty of MedicineUniversité de MontréalMontrealQuebecCanada
| |
Collapse
|
4
|
Gaiaschi L, De Luca F, Roda E, Ferrari B, Casali C, Inguscio CR, Gola F, Pelloni E, Savino E, Ravera M, Rossi P, Bottone MG. A Phyto-mycotherapeutic Supplement, Namely Ganostile, as Effective Adjuvant in Brain Cancer Management: An In Vitro Study Using U251 Human Glioblastoma Cell Line. Int J Mol Sci 2024; 25:6204. [PMID: 38892392 PMCID: PMC11172483 DOI: 10.3390/ijms25116204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The current standard oncotherapy for glioblastoma is limited by several adverse side effects, leading to a short-term patient survival rate paralleled by a worsening quality of life (QoL). Recently, Complementary and Integrative Medicine's (CIM) innovative approaches have shown positive impacts in terms of better response to treatment, side effect reduction, and QoL improvement. In particular, promising potential in cancer therapy has been found in compounds coming from phyto- and mycotherapy. The objective of this study was to demonstrate the beneficial effects of a new phyto-mycotherapy supplement, named Ganostile, in the human glioblastoma cell line U251, in combination with chemotherapeutic agents, i.e., Cisplatin and a new platinum-based prodrug. Choosing a supplement dosage that mimicked oral supplementation in humans (about 1 g/day), through in vitro assays, microscopy, and cytometric analysis, it has emerged that the cells, after 48hr continuous exposure to Ganostile in combination with the chemical compounds, showed a higher mortality and a lower proliferation rate than the samples subjected to the different treatments administered individually. In conclusion, our data support the use of Ganostile in integrative oncology protocols as a promising adjuvant able to amplify conventional and new drug effects and also reducing resistance mechanisms often observed in brain tumors.
Collapse
Affiliation(s)
- Ludovica Gaiaschi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Fabrizio De Luca
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Beatrice Ferrari
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Claudio Casali
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Chiara Rita Inguscio
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Federica Gola
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Enrico Pelloni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Elena Savino
- Department of Earth and Environmental Sciences (DSTA), University of Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Mauro Ravera
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Paola Rossi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Maria Grazia Bottone
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
5
|
Casali C, Siciliani S, Zannino L, Biggiogera M. Histochemistry for nucleic acid research: 60 years in the European Journal of Histochemistry. Eur J Histochem 2022; 66:3409. [PMID: 35441834 PMCID: PMC9044459 DOI: 10.4081/ejh.2022.3409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Since the discovery of DNA structure in 1953, the deoxyribonucleic acid has always been playing a central role in biological research. As physical and ordered nucleotides sequence, it stands at the base of genes existence. Furthermore, beside this 2-dimensional sequence, DNA is characterized by a 3D structural and functional organization, which is of interest for the scientific community due to multiple levels of expression regulation, of interaction with other biomolecules, and much more. Analogously, the nucleic acid counterpart of DNA, RNA, represents a central issue in research, because of its fundamental role in gene expression and regulation, and for the DNA-RNA interplay. Because of their importance, DNA and RNA have always been mentioned and studied in several publications, and the European Journal of Histochemistry is no exception. Here, we review and discuss the papers published in the last 60 years of this Journal, focusing on its contribution in deepening the knowledge about this topic and analysing papers that reflect the interest this Journal always granted to the world of DNA and RNA.
Collapse
Affiliation(s)
- Claudio Casali
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology, University of Pavia.
| | - Stella Siciliani
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology, University of Pavia.
| | - Lorena Zannino
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology, University of Pavia.
| | - Marco Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology, University of Pavia.
| |
Collapse
|
6
|
Cellular Senescence and Aging in Myotonic Dystrophy. Int J Mol Sci 2022; 23:ijms23042339. [PMID: 35216455 PMCID: PMC8877951 DOI: 10.3390/ijms23042339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/06/2022] [Accepted: 02/12/2022] [Indexed: 01/10/2023] Open
Abstract
Myotonic dystrophy (DM) is a dominantly inherited multisystemic disorder affecting various organs, such as skeletal muscle, heart, the nervous system, and the eye. Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are caused by expanded CTG and CCTG repeats, respectively. In both forms, the mutant transcripts containing expanded repeats aggregate as nuclear foci and sequester several RNA-binding proteins, resulting in alternative splicing dysregulation. Although certain alternative splicing events are linked to the clinical DM phenotypes, the molecular mechanisms underlying multiple DM symptoms remain unclear. Interestingly, multi-systemic DM manifestations, including muscle weakness, cognitive impairment, cataract, and frontal baldness, resemble premature aging. Furthermore, cellular senescence, a critical contributor to aging, is suggested to play a key role in DM cellular pathophysiology. In particular, several senescence inducers including telomere shortening, mitochondrial dysfunction, and oxidative stress and senescence biomarkers such as cell cycle inhibitors, senescence-associated secretory phenotype, chromatin reorganization, and microRNA have been implicated in DM pathogenesis. In this review, we focus on the clinical similarities between DM and aging, and summarize the involvement of cellular senescence in DM and the potential application of anti-aging DM therapies.
Collapse
|
7
|
Cozzi A, Santambrogio P, Ripamonti M, Rovida E, Levi S. Pathogenic mechanism and modeling of neuroferritinopathy. Cell Mol Life Sci 2021; 78:3355-3367. [PMID: 33439270 PMCID: PMC11072144 DOI: 10.1007/s00018-020-03747-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/26/2022]
Abstract
Neuroferritinopathy is a rare autosomal dominant inherited movement disorder caused by alteration of the L-ferritin gene that results in the production of a ferritin molecule that is unable to properly manage iron, leading to the presence of free redox-active iron in the cytosol. This form of iron has detrimental effects on cells, particularly severe for neuronal cells, which are highly sensitive to oxidative stress. Although very rare, the disorder is notable for two reasons. First, neuroferritinopathy displays features also found in a larger group of disorders named Neurodegeneration with Brain Iron Accumulation (NBIA), such as iron deposition in the basal ganglia and extrapyramidal symptoms; thus, the elucidation of its pathogenic mechanism may contribute to clarifying the incompletely understood aspects of NBIA. Second, neuroferritinopathy shows the characteristic signs of an accelerated process of aging; thus, it can be considered an interesting model to study the progress of aging. Here, we will review the clinical and neurological features of neuroferritinopathy and summarize biochemical studies and data from cellular and animal models to propose a pathogenic mechanism of the disorder.
Collapse
Affiliation(s)
- Anna Cozzi
- Proteomic of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Paolo Santambrogio
- Proteomic of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Maddalena Ripamonti
- Proteomic of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Ermanna Rovida
- Institute for Genetic and Biomedical Research, National Research Council, 20138, Milan, Italy
| | - Sonia Levi
- Proteomic of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy.
- Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy.
| |
Collapse
|
8
|
Cozzi A, Orellana DI, Santambrogio P, Rubio A, Cancellieri C, Giannelli S, Ripamonti M, Taverna S, Di Lullo G, Rovida E, Ferrari M, Forni GL, Fiorillo C, Broccoli V, Levi S. Stem Cell Modeling of Neuroferritinopathy Reveals Iron as a Determinant of Senescence and Ferroptosis during Neuronal Aging. Stem Cell Reports 2019; 13:832-846. [PMID: 31587993 PMCID: PMC6893074 DOI: 10.1016/j.stemcr.2019.09.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 01/02/2023] Open
Abstract
Neuroferritinopathy (NF) is a movement disorder caused by alterations in the L-ferritin gene that generate cytosolic free iron. NF is a unique pathophysiological model for determining the direct consequences of cell iron dysregulation. We established lines of induced pluripotent stem cells from fibroblasts from two NF patients and one isogenic control obtained by CRISPR/Cas9 technology. NF fibroblasts, neural progenitors, and neurons exhibited the presence of increased cytosolic iron, which was also detectable as: ferritin aggregates, alterations in the iron parameters, oxidative damage, and the onset of a senescence phenotype, particularly severe in the neurons. In this spontaneous senescence model, NF cells had impaired survival and died by ferroptosis. Thus, non-ferritin-bound iron is sufficient per se to cause both cell senescence and ferroptotic cell death in human fibroblasts and neurons. These results provide strong evidence supporting the primary role of iron in neuronal aging and degeneration.
Collapse
Affiliation(s)
- Anna Cozzi
- Proteomic of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Daniel I Orellana
- Proteomic of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Paolo Santambrogio
- Proteomic of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alicia Rubio
- Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; Institute of Neuroscience, National Research Council, 20129 Milan, Italy
| | - Cinzia Cancellieri
- Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Serena Giannelli
- Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maddalena Ripamonti
- Neuroimmunology Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Stefano Taverna
- Neuroimmunology Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giulia Di Lullo
- Tumour Immunology, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ermanna Rovida
- Institute for Genetic and Biomedical Research, National Research Council, 20138 Milan, Italy
| | - Maurizio Ferrari
- Genomic Unit for the Diagnosis of Human Pathologies, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Gian Luca Forni
- Centre for Congenital Anaemias, Iron Dysmetabolism Galliera Hospital Genoa, Genoa, Italy
| | - Chiara Fiorillo
- Unit of Paediatric Neurology, Gaslini Institute, DINOGMI, University of Genoa, Genoa, Italy
| | - Vania Broccoli
- Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; Institute of Neuroscience, National Research Council, 20129 Milan, Italy
| | - Sonia Levi
- Proteomic of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy.
| |
Collapse
|
9
|
Malatesta M. Ultrastructural histochemistry in biomedical research: Alive and kicking. Eur J Histochem 2018; 62. [PMID: 30418011 PMCID: PMC6250102 DOI: 10.4081/ejh.2018.2990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 10/31/2018] [Indexed: 02/06/2023] Open
Abstract
The high-resolution images provided by the electron microscopy has constituted a limitless source of information in any research field of life and materials science since the early Thirties of the last century. Browsing the scientific literature, electron microscopy was especially popular from the 1970’s to 80’s, whereas during the 90’s, with the advent of innovative molecular techniques, electron microscopy seemed to be downgraded to a subordinate role, as a merely descriptive technique. Ultra -structural histochemistry was crucial to promote the Renaissance of electron microscopy, when it became evident that a precise localization of molecules in the biological environment was necessary to fully understand their functional role. Nowadays, electron microscopy is still irreplaceable for ultrastructural morphology in basic and applied biomedical research, while the application of correlative light and electron microscopy and of refined ultrastructural histochemical techniques gives electron microscopy a central role in functional cell and tissue biology, as a really unique tool for high-resolution molecular biology in situ.
Collapse
Affiliation(s)
- Manuela Malatesta
- University of Verona, Department of Neurosciences, Biomedicine and Movement Sciences.
| |
Collapse
|
10
|
Meinke P, Hintze S, Limmer S, Schoser B. Myotonic Dystrophy-A Progeroid Disease? Front Neurol 2018; 9:601. [PMID: 30140252 PMCID: PMC6095001 DOI: 10.3389/fneur.2018.00601] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/06/2018] [Indexed: 12/27/2022] Open
Abstract
Myotonic dystrophies (DM) are slowly progressing multisystemic disorders caused by repeat expansions in the DMPK or CNBP genes. The multisystemic involvement in DM patients often reflects the appearance of accelerated aging. This is partly due to visible features such as cataracts, muscle weakness, and frontal baldness, but there are also less obvious features like cardiac arrhythmia, diabetes or hypogammaglobulinemia. These aging features suggest the hypothesis that DM could be a segmental progeroid disease. To identify the molecular cause of this characteristic appearance of accelerated aging we compare clinical features of DM to “typical” segmental progeroid disorders caused by mutations in DNA repair or nuclear envelope proteins. Furthermore, we characterize if this premature aging effect is also reflected on the cellular level in DM and investigate overlaps with “classical” progeroid disorders. To investigate the molecular similarities at the cellular level we use primary DM and control cell lines. This analysis reveals many similarities to progeroid syndromes linked to the nuclear envelope. Our comparison on both clinical and molecular levels argues for qualification of DM as a segmental progeroid disorder.
Collapse
Affiliation(s)
- Peter Meinke
- Friedrich-Baur-Institute at the Department of Neurology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Stefan Hintze
- Friedrich-Baur-Institute at the Department of Neurology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sarah Limmer
- Friedrich-Baur-Institute at the Department of Neurology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institute at the Department of Neurology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
11
|
Ding K, Liu WY, Zeng Q, Hou F, Xu JZ, Yang Z. Msx1-modulated muscle satellite cells retain a primitive state and exhibit an enhanced capacity for osteogenic differentiation. Exp Cell Res 2017; 352:84-94. [DOI: 10.1016/j.yexcr.2017.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/03/2017] [Accepted: 01/29/2017] [Indexed: 12/14/2022]
|
12
|
Meola G, Cardani R. Myotonic dystrophy type 2 and modifier genes: an update on clinical and pathomolecular aspects. Neurol Sci 2017; 38:535-546. [PMID: 28078562 DOI: 10.1007/s10072-016-2805-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 12/22/2016] [Indexed: 12/20/2022]
Abstract
Myotonic dystrophy (DM) is the most common adult muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia, and multiorgan involvement. To date, two distinct forms caused by similar mutations in two different genes have been identified: myotonic dystrophy type 1 (DM1) and myotonic dystrophy type 2 (DM2). Aberrant transcription and mRNA processing of multiple genes due to RNA-mediated toxic gain-of function has been suggested to cause the complex phenotype in DM1 and DM2. However, despite clinical and genetic similarities, DM1 and DM2 may be considered as distinct disorders. This review is an update on the latest findings specific to DM2, including explanations for the differences in clinical manifestations and pathophysiology between the two forms of myotonic dystrophies.
Collapse
Affiliation(s)
- Giovanni Meola
- Department of Biomedical Sciences for Health, University of Milan, IRCCS Policlinico San Donato, Piazza E. Malan, 1, San Donato Mil., 20097, Milan, Italy. .,Department of Neurology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy.
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
13
|
Khor SC, Razak AM, Wan Ngah WZ, Mohd Yusof YA, Abdul Karim N, Makpol S. The Tocotrienol-Rich Fraction Is Superior to Tocopherol in Promoting Myogenic Differentiation in the Prevention of Replicative Senescence of Myoblasts. PLoS One 2016; 11:e0149265. [PMID: 26885980 PMCID: PMC4757569 DOI: 10.1371/journal.pone.0149265] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/30/2016] [Indexed: 01/18/2023] Open
Abstract
Aging results in a loss of muscle mass and strength. Myoblasts play an important role in maintaining muscle mass through regenerative processes, which are impaired during aging. Vitamin E potentially ameliorates age-related phenotypes. Hence, this study aimed to determine the effects of the tocotrienol-rich fraction (TRF) and α-tocopherol (ATF) in protecting myoblasts from replicative senescence and promoting myogenic differentiation. Primary human myoblasts were cultured into young and senescent stages and were then treated with TRF or ATF for 24 h, followed by an analysis of cell proliferation, senescence biomarkers, cellular morphology and differentiation. Our data showed that replicative senescence impaired the normal regenerative processes of myoblasts, resulting in changes in cellular morphology, cell proliferation, senescence-associated β-galactosidase (SA-β-gal) expression, myogenic differentiation and myogenic regulatory factors (MRFs) expression. Treatment with both TRF and ATF was beneficial to senescent myoblasts in reclaiming the morphology of young cells, improved cell viability and decreased SA-β-gal expression. However, only TRF treatment increased BrdU incorporation in senescent myoblasts, as well as promoted myogenic differentiation through the modulation of MRFs at the mRNA and protein levels. MYOD1 and MYOG gene expression and myogenin protein expression were modulated in the early phases of myogenic differentiation. In conclusion, the tocotrienol-rich fraction is superior to α-tocopherol in ameliorating replicative senescence-related aberration and promoting differentiation via modulation of MRFs expression, indicating vitamin E potential in modulating replicative senescence of myoblasts.
Collapse
Affiliation(s)
- Shy Cian Khor
- Department of Biochemistry, Faculty of Medicine, Level 17, Preclinical Building, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Azraul Mumtazah Razak
- Department of Biochemistry, Faculty of Medicine, Level 17, Preclinical Building, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Wan Zurinah Wan Ngah
- Department of Biochemistry, Faculty of Medicine, Level 17, Preclinical Building, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Yasmin Anum Mohd Yusof
- Department of Biochemistry, Faculty of Medicine, Level 17, Preclinical Building, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Norwahidah Abdul Karim
- Department of Biochemistry, Faculty of Medicine, Level 17, Preclinical Building, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Level 17, Preclinical Building, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
14
|
Randolph ME, Pavlath GK. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups. Front Aging Neurosci 2015; 7:190. [PMID: 26500547 PMCID: PMC4595652 DOI: 10.3389/fnagi.2015.00190] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/21/2015] [Indexed: 12/22/2022] Open
Abstract
The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease.
Collapse
|
15
|
Meola G, Cardani R. Myotonic Dystrophy Type 2: An Update on Clinical Aspects, Genetic and Pathomolecular Mechanism. J Neuromuscul Dis 2015; 2:S59-S71. [PMID: 27858759 PMCID: PMC5240594 DOI: 10.3233/jnd-150088] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Myotonic dystrophy (DM) is the most common adult muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia and multiorgan involvement. To date two distinct forms caused by similar mutations have been identified. Myotonic dystrophy type 1 (DM1, Steinert's disease) is caused by a (CTG)n expansion in DMPK, while myotonic dystrophy type 2 (DM2) is caused by a (CCTG)n expansion in CNBP. Despite clinical and genetic similarities, DM1 and DM2 are distinct disorders. The pathogenesis of DM is explained by a common RNA gain-of-function mechanism in which the CUG and CCUG repeats alter cellular function, including alternative splicing of various genes. However additional pathogenic mechanism like changes in gene expression, modifier genes, protein translation and micro-RNA metabolism may also contribute to disease pathology and to clarify the phenotypic differences between these two types of myotonic dystrophies.This review is an update on the latest findings specific to DM2, including explanations for the differences in clinical manifestations and pathophysiology between the two forms of myotonic dystrophies.
Collapse
Affiliation(s)
- Giovanni Meola
- Department of Biomedical Sciences for Health, IRCCS Policlinico San Donato, University of Milan, San Donato Milanese, Milan, Italy
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
16
|
Mateos-Aierdi AJ, Goicoechea M, Aiastui A, Fernández-Torrón R, Garcia-Puga M, Matheu A, López de Munain A. Muscle wasting in myotonic dystrophies: a model of premature aging. Front Aging Neurosci 2015. [PMID: 26217220 PMCID: PMC4496580 DOI: 10.3389/fnagi.2015.00125] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1 or Steinert’s disease) and type 2 (DM2) are multisystem disorders of genetic origin. Progressive muscular weakness, atrophy and myotonia are the most prominent neuromuscular features of these diseases, while other clinical manifestations such as cardiomyopathy, insulin resistance and cataracts are also common. From a clinical perspective, most DM symptoms are interpreted as a result of an accelerated aging (cataracts, muscular weakness and atrophy, cognitive decline, metabolic dysfunction, etc.), including an increased risk of developing tumors. From this point of view, DM1 could be described as a progeroid syndrome since a notable age-dependent dysfunction of all systems occurs. The underlying molecular disorder in DM1 consists of the existence of a pathological (CTG) triplet expansion in the 3′ untranslated region (UTR) of the Dystrophia Myotonica Protein Kinase (DMPK) gene, whereas (CCTG)n repeats in the first intron of the Cellular Nucleic acid Binding Protein/Zinc Finger Protein 9(CNBP/ZNF9) gene cause DM2. The expansions are transcribed into (CUG)n and (CCUG)n-containing RNA, respectively, which form secondary structures and sequester RNA-binding proteins, such as the splicing factor muscleblind-like protein (MBNL), forming nuclear aggregates known as foci. Other splicing factors, such as CUGBP, are also disrupted, leading to a spliceopathy of a large number of downstream genes linked to the clinical features of these diseases. Skeletal muscle regeneration relies on muscle progenitor cells, known as satellite cells, which are activated after muscle damage, and which proliferate and differentiate to muscle cells, thus regenerating the damaged tissue. Satellite cell dysfunction seems to be a common feature of both age-dependent muscle degeneration (sarcopenia) and muscle wasting in DM and other muscle degenerative diseases. This review aims to describe the cellular, molecular and macrostructural processes involved in the muscular degeneration seen in DM patients, highlighting the similarities found with muscle aging.
Collapse
Affiliation(s)
- Alba Judith Mateos-Aierdi
- Neuroscience Area, Biodonostia Health Research Institute San Sebastián, Spain ; CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain
| | - Maria Goicoechea
- Neuroscience Area, Biodonostia Health Research Institute San Sebastián, Spain ; CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain
| | - Ana Aiastui
- CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain ; Cell Culture Platform, Biodonostia Health Research Institute, San Sebastián Spain
| | - Roberto Fernández-Torrón
- Neuroscience Area, Biodonostia Health Research Institute San Sebastián, Spain ; CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain ; Department of Neurology, Hospital Universitario Donostia, San Sebastián Spain
| | - Mikel Garcia-Puga
- Oncology Area, Biodonostia Health Research Institute San Sebastián, Spain
| | - Ander Matheu
- Oncology Area, Biodonostia Health Research Institute San Sebastián, Spain
| | - Adolfo López de Munain
- Neuroscience Area, Biodonostia Health Research Institute San Sebastián, Spain ; CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain ; Department of Neurology, Hospital Universitario Donostia, San Sebastián Spain ; Department of Neuroscience, Universidad del País Vasco UPV-EHU San Sebastián, Spain
| |
Collapse
|
17
|
Renna LV, Cardani R, Botta A, Rossi G, Fossati B, Costa E, Meola G. Premature senescence in primary muscle cultures of myotonic dystrophy type 2 is not associated with p16 induction. Eur J Histochem 2014; 58:2444. [PMID: 25578974 PMCID: PMC4289846 DOI: 10.4081/ejh.2014.2444] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/04/2014] [Accepted: 10/09/2014] [Indexed: 12/25/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are multisystemic disorders linked to two different genetic loci and characterized by several features including myotonia, muscle weakness and atrophy, cardiac dysfunctions, cataracts and insulin-resistance. In both forms, expanded nucleotide sequences cause the accumulation of mutant transcripts in the nucleus deregulating the activity of some RNA-binding proteins and providing an explanation for the multisystemic phenotype of DM patients. However this pathogenetic mechanism does not explain some histopathological features of DM skeletal muscle like muscle atrophy. It has been observed that DM muscle shares similarities with the ageing muscle, where the progressive muscle weakness and atrophy is accompanied by a lower regenerative capacity possibly due to the failure in satellite cells activation. The aim of our study is to investigate if DM2 satellite cell derived myoblasts exhibit a premature senescence as reported for DM1 and if alterations in their proliferation potential and differentiation capabilities might contribute to some of the histopathological features observed in DM2 muscles. Our results indicate that DM myoblasts have lower proliferative capability than control myoblasts and reach in vitro senescence earlier than controls. Differentely from DM1, the p16 pathway is not responsible for the premature growth arrest observed in DM2 myoblasts which stop dividing with telomeres shorter than controls. During in vitro senescence, a progressive decrease in fusion index is observable in both DM and control myotubes with no significant differences between groups. Moreover, myotubes obtained from senescent myoblasts appear to be smaller than those from young myoblasts. Taken together, our data indicate a possible role of DM2 premature myoblast senescence in skeletal muscle histopathological alterations i.e., dystrophic changes and type 2 fibre atrophy.
Collapse
|
18
|
Malatesta M, Cardani R, Pellicciari C, Meola G. RNA Transcription and Maturation in Skeletal Muscle Cells are Similarly Impaired in Myotonic Dystrophy and Sarcopenia: The Ultrastructural Evidence. Front Aging Neurosci 2014; 6:196. [PMID: 25126079 PMCID: PMC4115624 DOI: 10.3389/fnagi.2014.00196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/15/2014] [Indexed: 01/23/2023] Open
Affiliation(s)
- Manuela Malatesta
- Anatomy and Histology Section, Department of Neurological and Movement Sciences, University of Verona , Verona , Italy
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato , Milan , Italy
| | - Carlo Pellicciari
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology, University of Pavia , Pavia , Italy
| | - Giovanni Meola
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato , Milan , Italy ; Department of Neurology, University of Milan , Milan , Italy
| |
Collapse
|
19
|
Pellicciari C. Histochemistry as an irreplaceable approach for investigating functional cytology and histology. Eur J Histochem 2013; 57:e41. [PMID: 24441194 PMCID: PMC3896043 DOI: 10.4081/ejh.2013.e41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 12/17/2013] [Indexed: 12/19/2022] Open
Abstract
In agreement with the evolution of histochemistry over the last fifty years and thanks to the impressive advancements in microscopy sciences, the application of cytochemical techniques to light and electron microscopy is more and more addressed to elucidate the functional characteristics of cells and tissue under different physiological, pathological or experimental conditions. Simultaneously, the mere description of composition and morphological features has become increasingly sporadic in the histochemical literature. Since basic research on cell functional organization is essential for understanding the mechanisms responsible for major biological processes such as differentiation or growth control in normal and tumor tissues, histochemical Journals will continue to play a pivotal role in the field of cell and tissue biology in all its structural and functional aspects.
Collapse
|
20
|
Malatesta M, Giagnacovo M, Costanzo M, Cisterna B, Cardani R, Meola G. Muscleblind-like1 undergoes ectopic relocation in the nuclei of skeletal muscles in myotonic dystrophy and sarcopenia. Eur J Histochem 2013; 57:e15. [PMID: 23807294 PMCID: PMC3794341 DOI: 10.4081/ejh.2013.e15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 02/13/2013] [Accepted: 02/14/2013] [Indexed: 01/24/2023] Open
Abstract
Muscleblind-like 1 (MBNL1) is an alternative splicing factor involved in postnatal development of skeletal muscles and heart in humans and mice, and its deregulation is known to be pivotal in the onset and development of myotonic dystrophy (DM). In fact, in DM patients this protein is ectopically sequestered into intranuclear foci, thus compromising the regulation of the alternative splicing of several genes. However, despite the numerous biochemical and molecular studies, scarce attention has been paid to the intranuclear location of MBNL1 outside the foci, although previous data demonstrated that in DM patients various splicing and cleavage factors undergo an abnormal intranuclear distribution suggestive of impaired RNA processing. Interestingly, these nuclear alterations strongly remind those observed in sarcopenia i.e., the loss of muscle mass and function which physiologically occurs during ageing. On this basis, in the present investigation the ultrastructural localization of MBNL1 was analyzed in the myonuclei of skeletal muscles from healthy and DM patients as well as from adult and old (sarcopenic) mice, in the attempt to elucidate possible changes in its distribution and amount. Our data demonstrate that in both dystrophic and sarcopenic muscles MBNL1 undergoes intranuclear relocation, accumulating in its usual functional sites but also ectopically moving to domains which are usually devoid of this protein in healthy adults. This accumulation/delocalization could contribute to hamper the functionality of the whole splicing machinery, leading to a lower nuclear metabolic activity and, consequently, to a less efficient protein synthesis. Moreover, the similar nuclear alterations found in DM and sarcopenia may account for the similar muscle tissue features (myofibre atrophy, fibre size variability and centrally located nuclei), and, in general, for the aging-reminiscent phenotype observed in DM patients.
Collapse
Affiliation(s)
- M Malatesta
- Dipartimento di Scienze Neurologiche, Neuropsicologiche, Morfologiche e Motorie, Sezione di Anatomia e Istologia, Università di Verona, 37134 Verona, Italy.
| | | | | | | | | | | |
Collapse
|
21
|
Malatesta M, Giagnacovo M, Cardani R, Meola G, Pellicciari C. Human myoblasts from skeletal muscle biopsies: in vitro culture preparations for morphological and cytochemical analyses at light and electron microscopy. Methods Mol Biol 2013; 976:67-79. [PMID: 23400435 DOI: 10.1007/978-1-62703-317-6_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We describe protocols for the isolation of satellite cells from human muscle biopsies, for the in vitro culture of proliferating and differentiating myoblasts, and for the preparation of cell samples suitable for morphological and cytochemical analyses at light and electron microscopy. The procedures described are especially appropriate for processing small muscle biopsies, and allow obtaining myoblast/myotube monolayers on glass coverslips, thus preserving good cell morphology and immunoreactivity for protein markers of myoblast proliferation, differentiation, and senescence.These cell preparations are suitable for cytochemical, immunocytochemical, and FISH procedures at light microscopy, and can be observed not only in bright field, phase contrast, and differential interference contrast but also in fluorescence (which can hardly be used for cells grown on conventional plastic surfaces, which generally exhibit intense autofluorescence). In their ultrastructural cytochemical application, the protocols are intended for post-embedding techniques, by which ultrathin sections from a single sample may be used for detecting a wide variety of molecular markers.
Collapse
Affiliation(s)
- Manuela Malatesta
- Sezione di Anatomia e Istologia, Dipartimento di Scienze Neurologiche, Neuropsicologiche, Morfologiche e Motorie, University of Verona, Verona, Italy.
| | | | | | | | | |
Collapse
|
22
|
Pellicciari C. On the future contents of a small journal of histochemistry. Eur J Histochem 2012; 56:e51. [PMID: 23361247 PMCID: PMC3567770 DOI: 10.4081/ejh.2012.e51] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/04/2012] [Indexed: 02/07/2023] Open
Abstract
In the last three years, more than 70,000 scientific articles have been published in peer reviewed journals on the application of histochemistry in the biomedical field: most of them did not appear in strictly histochemical journals, but in others dealing with cell and molecular biology, medicine or biotechnology. This proves that histochemistry is still an active and innovative discipline with relevance in basic and applied biological research, but also demonstrates that especially the small histochemical journals should likely reconsider their scopes and strategies to preserve their authorship. A review of the last three years volumes of the European Journal of Histochemistry, taken as an example of a long-time established small journal, confirmed that the published articles were widely heterogeneous in their topics and experimental models, as in this journal's tradition. This strongly suggests that a journal of histochemistry should keep its role as a forum open to an audience as broad as possible, publishing papers on cell and tissue biology in a wide variety of models. This will improve knowledge of the basic mechanisms of development and differentiation, while helping to increase the number of potential authors since scientists who generally do not use histochemistry in their research will find hints for the applications of histochemical techniques to novel still unexplored subjects.
Collapse
Affiliation(s)
- C Pellicciari
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”,University of Pavia, Italy.
| |
Collapse
|
23
|
Lattanzi G, Marmiroli S, Facchini A, Maraldi NM. Nuclear damages and oxidative stress: new perspectives for laminopathies. Eur J Histochem 2012; 56:e45. [PMID: 23361241 PMCID: PMC3567764 DOI: 10.4081/ejh.2012.e45] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 10/11/2012] [Accepted: 10/09/2012] [Indexed: 01/27/2023] Open
Abstract
Mutations in genes encoding nuclear envelope proteins, particularly LMNA encoding the A-type lamins, cause a broad range of diverse diseases, referred to as laminopathies. The astonishing variety of diseased phenotypes suggests that different mechanisms could be involved in the pathogenesis of laminopathies. In this review we will focus mainly on two of these pathogenic mechanisms: the nuclear damages affecting the chromatin organization, and the oxidative stress causing un-repairable DNA damages. Alteration in the nuclear profile and in chromatin organization, which are particularly impressive in systemic laminopathies whose cells undergo premature senescence, are mainly due to accumulation of unprocessed prelamin A. The toxic effect of these molecular species, which interfere with chromatin-associated proteins, transcription factors, and signaling pathways, could be reduced by drugs which reduce their farnesylation and/or stability. In particular, inhibitors of farnesyl transferase (FTIs), have been proved to be active in rescuing the altered cellular phenotype, and statins, also in association with other drugs, have been included into pilot clinical trials. The identification of a mechanism that accounts for accumulation of un-repairable DNA damage due to reactive oxygen species (ROS) generation in laminopathic cells, similar to that found in other muscular dystrophies (MDs) caused by altered expression of extracellular matrix (ECM) components, suggests that anti-oxidant therapeutic strategies might prove beneficial to laminopathic patients.
Collapse
Affiliation(s)
- G Lattanzi
- Laboratory of Musculoskeletal Cell Biology, IOR, Bologna, Italy
| | | | | | | |
Collapse
|
24
|
Malatesta M. Skeletal muscle features in myotonic dystrophy and sarcopenia: do similar nuclear mechanisms lead to skeletal muscle wasting? Eur J Histochem 2012; 56:e36. [PMID: 23027352 PMCID: PMC3493982 DOI: 10.4081/ejh.2012.e36] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 08/03/2012] [Indexed: 02/06/2023] Open
Abstract
In the cell nucleus, the gene primary transcripts undergo molecular processing to generate mature RNAs, which are finally exported to the cytoplasm. These mRNA maturation events are chronologically and spatially ordered, and mostly occur on distinct ribonucleoprotein (RNP)-containing structures. Defects in the mRNA maturation pathways have been demonstrated in myotonic dystrophy type 1 (DM1) and type 2 (DM2) whose characteristic multisystemic features are caused by the expansion of two distinct nucleotide sequences: (CTG)n in the DMPK gene on chromosome 19q13 in DM1, and (CCTG)n in the ZNF9 gene on chromosome 3q21 in DM2. By combining biomolecular and cytochemical techniques, it has been shown that the basic mechanisms of DMs reside in the accumulation of CUG- or CCUG-containing transcripts in intranuclear foci where several RNA-binding proteins necessary for the physiological processing of pre-mRNA are sequestered. Moreover, a nucleoplasmic accumulation of splicing and cleavage factors has been found in DMs. This suggests that the dystrophic phenotype could depend on a general alteration of the pre-mRNA post-transcriptional pathway. Interestingly, the accumulation of pre-mRNA processing factors in the myonuclei of DM1 and DM2 patients is reminiscent of the nuclear alterations typical of sarcopenia, i.e., the loss of muscle mass and function which physiologically occurs during ageing. Consistently, in an in vitro study, we observed that satellite-cell-derived DM2 myoblasts show cell senescence alterations and impairment of the pre-mRNA maturation pathways earlier than the myoblasts from healthy patient. These results suggest possible common cellular mechanisms responsible for skeletal muscle wasting in sarcopenia and in myotonic dystrophy.
Collapse
Affiliation(s)
- M Malatesta
- Dipartimento di Scienze Neurologiche, Neuropsicologiche, Morfologiche e Motorie, Sezione di Anatomia e Istologia, Università degli Studi di Verona, Strada Le Grazie 8, Verona, Italy.
| |
Collapse
|
25
|
Pellicciari C, Malatesta M. Identifying pathological biomarkers: histochemistry still ranks high in the omics era. Eur J Histochem 2011; 55:e42. [PMID: 22297448 PMCID: PMC3284244 DOI: 10.4081/ejh.2011.e42] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 12/06/2011] [Indexed: 12/28/2022] Open
Abstract
In recent years, omic analyses have been proposed as possible approaches to diagnosis, in particular for tumours, as they should be able to provide quantitative tools to detect and measure abnormalities in gene and protein expression, through the evaluation of transcription and translation products in the abnormal vs normal tissues. Unfortunately, this approach proved to be much less powerful than expected, due to both intrinsic technical limits and the nature itself of the pathological tissues to be investigated, the heterogeneity deriving from polyclonality and tissue phenotype variability between patients being a major limiting factor in the search for unique omic biomarkers. Especially in the last few years, the application of refined techniques for investigating gene expression in situ has greatly increased the diagnostic/prognostic potential of histochemistry, while the progress in light microscopy technology and in the methods for imaging molecules in vivo have provided valuable tools for elucidating the molecular events and the basic mechanisms leading to a pathological condition. Histochemical techniques thus remain irreplaceable in pathologist's armamentarium, and it may be expected that even in the future histochemistry will keep a leading position among the methodological approaches for clinical pathology.
Collapse
Affiliation(s)
- C Pellicciari
- Department of Biology and Biotechnology, University of Pavia, Italy.
| | | |
Collapse
|