1
|
Inguscio CR, Carton F, Cisterna B, Rizzi M, Boccafoschi F, Tabaracci G, Malatesta M. Low ozone concentrations do not exert cytoprotective effects on tamoxifen-treated breast cancer cells in vitro. Eur J Histochem 2024; 68. [PMID: 39252536 PMCID: PMC11445695 DOI: 10.4081/ejh.2024.4106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Medical treatment with low ozone concentrations proved to exert therapeutic effects in various diseases by inducing a cytoprotective antioxidant response through the nuclear factor erythroid derived-like 2 (Nrf2) transcription factor pathway. Low ozone doses are increasingly administered to oncological patients as a complementary treatment to mitigate some adverse side-effects of antitumor treatments. However, a widespread concern exists about the possibility that the cytoprotective effect of Nrf2 activation may confer drug resistance to cancer cells or at least reduce the efficacy of antitumor agents. In this study, the effect of low ozone concentrations on tamoxifen-treated MCF7 human breast cancer cells has been investigated in vitro by histochemical and molecular techniques. Results demonstrated that cell viability, proliferation and migration were generally similar in tamoxifen-treated cells as in cells concomitantly treated with tamoxifen and ozone. Notably, low ozone concentrations were unable to overstimulate the antioxidant response through the Nfr2 pathway, thus excluding a possible ozone-driven cytoprotective effect that would lead to increased tumor cell survival during the antineoplastic treatment. These findings, though obtained in an in vitro model, support the hypothesis that low ozone concentrations do not interfere with the tamoxifen-induced effects on breast cancer cells.
Collapse
Affiliation(s)
- Chiara Rita Inguscio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona.
| | - Flavia Carton
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona.
| | - Barbara Cisterna
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona.
| | - Manuela Rizzi
- Department of Health Sciences, University of Piemonte Orientale "A. Avogadro", Novara.
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale "A. Avogadro", Novara.
| | | | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona.
| |
Collapse
|
2
|
Pelinsari SM, Sarandy MM, Vilela EF, Novaes RD, Schlamb J, Gonçalves RV. Ozone Exposure Controls Oxidative Stress and the Inflammatory Process of Hepatocytes in Murine Models. Antioxidants (Basel) 2024; 13:212. [PMID: 38397810 PMCID: PMC10886373 DOI: 10.3390/antiox13020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/25/2024] Open
Abstract
(1) Background: Ozone exposure is a promising tool for treating liver damage since it is known to control the release of free radicals and increase the expression of antioxidant enzymes. The objective is to investigate the main intracellular pathways activated after exposure to ozone, considering the dosage of antioxidant enzymes and markers of oxidative stress. (2) Methods: This systematic review was performed based on the PRISMA guidelines and using a structured search in MEDLINE (PubMed), Scopus, and Web of Science. Bias analysis and methodological quality assessments were examined using the SYRCLE Risk of Bias tool. (3) Results: Nineteen studies were selected. The results showed that the exposure to ozone has a protective effect on liver tissue, promoting a decrease in inflammatory markers and a reduction in oxidative stress in liver tissue. In addition, ozone exposure also promoted an increase in antioxidant enzymes. The morphological consequences of controlling these intracellular pathways were reducing the tissue inflammatory process and reducing areas of degeneration and necrosis. (4) Conclusions: Ozone exposure has a beneficial effect on models of liver injury through the decrease in oxidative stress in tissue and inflammatory markers. In addition, it regulates the Nrf2/ARE antioxidant pathway and blocks the NF-κB inflammatory pathway.
Collapse
Affiliation(s)
- Silvania Mol Pelinsari
- Departament of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (S.M.P.)
| | - Mariáurea Matias Sarandy
- Departament of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (S.M.P.)
- Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC 28081, USA
| | - Emerson Ferreira Vilela
- Agriculture and Livestock Research Enterprise of Minas Gerais (EPAMIG-Sudeste), Viçosa 36570-000, MG, Brazil
| | - Rômulo Dias Novaes
- Departament of Structural Biology, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil;
- Departament of Animal Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | - Jade Schlamb
- Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC 28081, USA
| | - Reggiani Vilela Gonçalves
- Departament of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (S.M.P.)
- Departament of Animal Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| |
Collapse
|
3
|
Inguscio CR, Cisterna B, Lacavalla MA, Donati F, Angelini O, Tabaracci G, Malatesta M. Ozone and procaine increase secretion of platelet-derived factors in platelet-rich plasma. Eur J Histochem 2023; 67:3879. [PMID: 37817677 PMCID: PMC10644046 DOI: 10.4081/ejh.2023.3879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 01/14/2024] Open
Abstract
Platelet-rich plasma (PRP) is gaining more and more attention in regenerative medicine as an innovative and efficient therapeutic approach. The regenerative properties of PRP rely on the numerous bioactive molecules released by the platelets: growth factors are involved in proliferation and differentiation of endothelial cells and fibroblasts, angiogenesis and extracellular matrix formation, while cytokines are mainly involved in immune cell recruitment and inflammation modulation. Attempts are ongoing to improve the therapeutic potential of PRP by combining it with agents able to promote regenerative processes. Two interesting candidates are ozone, administered at low doses as gaseous oxygen-ozone mixtures, and procaine. In the present study, we investigated the effects induced on platelets by the in vitro treatment of PRP with ozone or procaine, or both. We combined transmission electron microscopy to obtain information on platelet modifications and bioanalytical assays to quantify the secreted factors. The results demonstrate that, although platelets were already activated by the procedure to prepare PRP, both ozone and procaine induced differential morpho-functional modifications in platelets resulting in an increased release of factors. In detail, ozone induced an increase in surface protrusions and open canalicular system dilation suggestive of a marked α-granule release, while procaine caused a decrease in surface protrusions and open canalicular system dilation but a remarkable increase in microvesicle release suggestive of high secretory activity. Consistently, nine of the thirteen platelet-derived factors analysed in the PRP serum significantly increased after treatment with ozone and/or procaine. Therefore, ozone and procaine proved to have a remarkable stimulating potential without causing any damage to platelets, probably because they act through physiological, although different, secretory pathways.
Collapse
Affiliation(s)
- Chiara Rita Inguscio
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona.
| | - Barbara Cisterna
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona.
| | - Maria Assunta Lacavalla
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona.
| | | | | | | | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona.
| |
Collapse
|
4
|
Lillo E, Pellegrini F, Rizzo A, Lanave G, Zizzadoro C, Cicirelli V, Catella C, Losurdo M, Martella V, Tempesta M, Camero M. In Vitro Activity of Ozone/Oxygen Gaseous Mixture against a Caprine Herpesvirus Type 1 Strain Isolated from a Goat with Vaginitis. Animals (Basel) 2023; 13:1920. [PMID: 37370430 DOI: 10.3390/ani13121920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Alphaherpesviruses cause genital lesions and reproductive failure in both humans and animals. Their control is mainly based on prevention using hygienic prophylactic measures due to the absence of vaccines and limitations of antiviral drug therapy. Ozone is an oxidating gas showing a strong microbicidal activity on bacteria, fungi, viruses, and protozoa. The present study assessed the in vitro virucidal and antiviral activity of ozone against caprine herpesvirus type 1 (CpHV-1). The virucidal activity of a gaseous mixture containing O3 at 20 and 50 μg/mL was assessed against the virus at different contact times (30 s, 60 s, 90 s, 120 s, 180 s, and 300 s). Antiviral activity of a gaseous mixture containing O3 at 20 and 50 μg/mL was evaluated against the virus after 30 s and 60 s. Ozone displayed significant virucidal activity when used at all the tested concentrations whilst significant antiviral activity was observed using ozone at 50 μg/mL. The gaseous mixture, tested in the present study, showed virucidal and antiviral activity against CpHV-1 in a dose- and time contact-dependent fashion. Ozone therapy could be evaluated in vivo for the treatment of CpHV-1-induced genital lesions in goats using topical applications.
Collapse
Affiliation(s)
- Edoardo Lillo
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km. 3, 70010 Valenzano, BA, Italy
| | - Francesco Pellegrini
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km. 3, 70010 Valenzano, BA, Italy
| | - Annalisa Rizzo
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km. 3, 70010 Valenzano, BA, Italy
| | - Gianvito Lanave
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km. 3, 70010 Valenzano, BA, Italy
| | - Claudia Zizzadoro
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km. 3, 70010 Valenzano, BA, Italy
| | - Vincenzo Cicirelli
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km. 3, 70010 Valenzano, BA, Italy
| | - Cristiana Catella
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km. 3, 70010 Valenzano, BA, Italy
| | - Michele Losurdo
- Department of Prevention of Animal Health and Welfare, Local Health Authority of Matera, Via Montescaglioso, 75100 Matera, BA, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km. 3, 70010 Valenzano, BA, Italy
| | - Maria Tempesta
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km. 3, 70010 Valenzano, BA, Italy
| | - Michele Camero
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km. 3, 70010 Valenzano, BA, Italy
| |
Collapse
|
5
|
Inguscio CR, Dalla Pozza E, Dando I, Boschi F, Tabaracci G, Angelini O, Picotti PM, Malatesta M, Cisterna B. Mitochondrial Features of Mouse Myoblasts Are Finely Tuned by Low Doses of Ozone: The Evidence In Vitro. Int J Mol Sci 2023; 24:ijms24108900. [PMID: 37240245 DOI: 10.3390/ijms24108900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The mild oxidative stress induced by low doses of gaseous ozone (O3) activates the antioxidant cell response through the nuclear factor erythroid 2-related factor 2 (Nrf2), thus inducing beneficial effects without cell damage. Mitochondria are sensitive to mild oxidative stress and represent a susceptible O3 target. In this in vitro study, we investigated the mitochondrial response to low O3 doses in the immortalized, non-tumoral muscle C2C12 cells; a multimodal approach including fluorescence microscopy, transmission electron microscopy and biochemistry was used. Results demonstrated that mitochondrial features are finely tuned by low O3 doses. The O3 concentration of 10 μg maintained normal levels of mitochondria-associated Nrf2, promoted the mitochondrial increase of size and cristae extension, reduced cellular reactive oxygen species (ROS) and prevented cell death. Conversely, in 20 μg O3-treated cells, where the association of Nrf2 with the mitochondria drastically dropped, mitochondria underwent more significant swelling, and ROS and cell death increased. This study, therefore, adds original evidence for the involvement of Nrf2 in the dose-dependent response to low O3 concentrations not only as an Antioxidant Response Elements (ARE) gene activator but also as a regulatory/protective factor of mitochondrial function.
Collapse
Affiliation(s)
- Chiara Rita Inguscio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, I-37134 Verona, Italy
| | - Elisa Dalla Pozza
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, I-37134 Verona, Italy
| | - Ilaria Dando
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, I-37134 Verona, Italy
| | - Federico Boschi
- Department of Engineering for Innovation Medicine, University of Verona, I-37134 Verona, Italy
| | | | | | | | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, I-37134 Verona, Italy
| | - Barbara Cisterna
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, I-37134 Verona, Italy
| |
Collapse
|
6
|
Grangeat AM, Erario MDLA. The Use of Medical Ozone in Chronic Intervertebral Disc Degeneration Can Be an Etiological and Conservative Treatment. Int J Mol Sci 2023; 24:ijms24076538. [PMID: 37047511 PMCID: PMC10095297 DOI: 10.3390/ijms24076538] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Degeneration of the intervertebral disc is one of the most frequent causes of lumbar pain, and it puts an extreme strain on worldwide healthcare systems. Finding a solution for this disease is an important challenge as current surgical and conservative treatments fail to bring a short-term or long-term solution to the problem. Medical ozone has yielded excellent results in intervertebral disc pathology. When it comes to extruded disc herniation, ozone is the only etiological treatment because it stimulates the immune system to absorb the herniated portion of the nucleus pulposus, thus resolving discal extrusion. This work aims to examine the biomolecular mechanisms that lead to intervertebral disc degeneration while highlighting the significance of oxidative stress and chronic inflammation. Considering that ozone is a regulator of oxidative stress and, therefore, of inflammation, we assert that medical ozone could modulate this process and obtain inflammatory stage macrophages (M1) to switch to the repair phase (M2). Consequently, the ozone would be a therapeutic resource that would work on the etiology of the disease as an epigenetic regulator that would help repair the intervertebral space.
Collapse
|
7
|
Wu T, Li Z, Wei Y. Advances in understanding mechanisms underlying mitochondrial structure and function damage by ozone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160589. [PMID: 36462650 DOI: 10.1016/j.scitotenv.2022.160589] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Mitochondria are double-membraned organelles found in eukaryotic cells. The integrity of mitochondrial structure and function determines cell destiny. Mitochondria are also the "energy factories of cells." The production of energy is accompanied by reactive oxygen species (ROS) generation. Generally, the production and consumption of ROS maintains a balance in cells. Ozone is a highly oxidizing, harmful substance in ground-level atmosphere. Ozone inhalation causes oxidative injury owing to the generation of ROS, resulting in mitochondrial oxidative stress overload. Oxidative damage to the mitochondria induces a vicious cycle of ROS production which might destroy mitochondrial DNA and mitochondrial structure and function in cells. ROS can alter the phosphorylation of various signaling molecules, triggering a series of downstream signaling pathway reactions. These include inflammatory responses, pyroptosis, autophagy, and apoptosis. Changes involving these molecular mechanisms may be related to the occurrence of disease. According to numerous epidemiological investigations, ozone exposure induces respiratory, cardiovascular, and nervous system diseases in humans. In addition, these systems require large quantities of energy. Hence, the mitochondrial damage caused by ozone may act as a bridge between human diseases. However, the specific molecular mechanisms involved require further investigation. This review discusses our understanding of the structure and function of mitochondria the mechanisms underlying ozone-induced mitochondrial damage.
Collapse
Affiliation(s)
- Tingting Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, China.
| |
Collapse
|
8
|
Franzini M, Valdenassi L, Pandolfi S, Ricevuti G, Tirelli U, Vaiano F, Chirumbolo S. Comments on the optimal use of medical ozone in clinics versus the Ozone High Dose Therapy (OHT) approach. TRANSLATIONAL MEDICINE COMMUNICATIONS 2022; 7:26. [PMID: 36533116 PMCID: PMC9734312 DOI: 10.1186/s41231-022-00132-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/29/2022] [Indexed: 06/01/2023]
Affiliation(s)
- Marianno Franzini
- International Scientific Society of Oxygen Ozone Therapy (SIOOT), Gorle, BG Italy
| | - Luigi Valdenassi
- International Scientific Society of Oxygen Ozone Therapy (SIOOT), Gorle, BG Italy
| | - Sergio Pandolfi
- International Scientific Society of Oxygen Ozone Therapy (SIOOT), Gorle, BG Italy
| | | | - Umberto Tirelli
- Department of Drug Science, University of Pavia, Pavia, Italy
- Tirelli Clinical Group, Pordenone, Italy
| | - Francesco Vaiano
- International Scientific Society of Oxygen Ozone Therapy (SIOOT), Gorle, BG Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, Unit of Human Anatomy, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| |
Collapse
|
9
|
Lacavalla MA, Inguscio CR, Cisterna B, Bernardi P, Costanzo M, Galiè M, Scambi I, Angelini O, Tabaracci G, Malatesta M. Ozone at low concentration modulates microglial activity in vitro: A multimodal microscopy and biomolecular study. Microsc Res Tech 2022; 85:3777-3792. [PMID: 36131631 PMCID: PMC9826497 DOI: 10.1002/jemt.24233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 01/11/2023]
Abstract
Oxygen-ozone (O2 -O3 ) therapy is an adjuvant/complementary treatment based on the activation of antioxidant and cytoprotective pathways driven by the nuclear factor erythroid 2-related factor 2 (Nrf2). Many drugs, including dimethyl fumarate (DMF), that are used to reduce inflammation in oxidative-stress-related neurodegenerative diseases, act through the Nrf2-pathway. The scope of the present investigation was to get a deeper insight into the mechanisms responsible for the beneficial result of O2 -O3 treatment in some neurodegenerative diseases. To do this, we used an integrated approach of multimodal microscopy (bright-field and fluorescence microscopy, transmission and scanning electron microscopy) and biomolecular techniques to investigate the effects of the low O3 concentrations currently used in clinical practice in lipopolysaccharide (LPS)-activated microglial cells human microglial clone 3 (HMC3) and in DMF-treated LPS-activated (LPS + DMF) HMC3 cells. The results at light and electron microscopy showed that LPS-activation induced morphological modifications of HMC3 cells from elongated/branched to larger roundish shape, cytoplasmic accumulation of lipid droplets, decreased electron density of the cytoplasm and mitochondria, decreased amount of Nrf2 and increased migration rate, while biomolecular data demonstrated that Heme oxygenase 1 gene expression and the secretion of the pro-inflammatory cytokines, Interleukin-6, and tumor necrosis factor-α augmented. O3 treatment did not affect cell viability, proliferation, and morphological features of both LPS-activated and LPS + DMF cells, whereas the cell motility and the secretion of pro-inflammatory cytokines were significantly decreased. This evidence suggests that modulation of microglia activity may contribute to the beneficial effects of the O2 -O3 therapy in patients with neurodegenerative disorders characterized by chronic inflammation. HIGHLIGHTS: Low-dose ozone (O3 ) does not damage activated microglial cells in vitro Low-dose O3 decreases cell motility and pro-inflammatory cytokine secretion in activated microglial cells in vitro Low-dose O3 potentiates the effect of an anti-inflammatory drug on activated microglial cells.
Collapse
Affiliation(s)
- Maria Assunta Lacavalla
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology SectionUniversity of VeronaVeronaItaly
| | - Chiara Rita Inguscio
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology SectionUniversity of VeronaVeronaItaly
| | - Barbara Cisterna
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology SectionUniversity of VeronaVeronaItaly
| | - Paolo Bernardi
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology SectionUniversity of VeronaVeronaItaly
| | - Manuela Costanzo
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology SectionUniversity of VeronaVeronaItaly
| | - Mirco Galiè
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology SectionUniversity of VeronaVeronaItaly
| | - Ilaria Scambi
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology SectionUniversity of VeronaVeronaItaly
| | | | | | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology SectionUniversity of VeronaVeronaItaly
| |
Collapse
|
10
|
Evaluation of the Effects of Topical Application of Chlorhexidine, Ozone, and Metronidazole on Palatal Wound Healing: A Histopathological Study. J Craniofac Surg 2021; 33:1929-1933. [PMID: 34855636 DOI: 10.1097/scs.0000000000008390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/05/2021] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT This study aimed to evaluate the effects of chlorhexidine, metronidazole, and ozone application on the healing of palatal wounds in diabetic rats. A defect in the form of a 4 mm-diameter wound was created on the palatal mucosa of 84 adult female Wistar albino rats, which were randomly divided into 4 groups: control, chlorhexidine, metronidazole, and ozone groups. The animals were euthanized after 3, 6, and 10 days, and wound closure was histologically assessed. On day 3, polymorphonuclear leukocytes were significantly higher in the control group than in the chlorhexidine and ozone groups (P < 0.05). Fibrosis was higher in the ozone group than in the control and chlorhexidine groups (P < 0.05). Vascular endothelial growth factor was higher in the metronidazole and ozone groups than in the control group (P < 0.05). On day 6, the quantity of polymorphonuclear leukocytes was higher in the control, metronidazole, and chlorhexidine groups than in the ozone group (P < 0.05). Vascular endothelial growth factor was higher in the ozone group than in the control, chlorhexidine, and metronidazole groups (P < 0.05). On day 10, Vascular endothelial growth factor was higher in the control, chlorhexidine, and metronidazole groups than in the ozone group (P < 0.05). The authors concluded that the use of chlorhexidine, ozone, and metronidazole pastes resulted in enhanced wound healing, as determined histologically. The authors suggest that ozone supplementation can be an alternative therapy to chlorhexidine in impaired wound healing in diabetes mellitus.
Collapse
|
11
|
Cisterna B, Costanzo M, Lacavalla MA, Galiè M, Angelini O, Tabaracci G, Malatesta M. Low Ozone Concentrations Differentially Affect the Structural and Functional Features of Non-Activated and Activated Fibroblasts In Vitro. Int J Mol Sci 2021; 22:10133. [PMID: 34576295 PMCID: PMC8466365 DOI: 10.3390/ijms221810133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022] Open
Abstract
Oxygen-ozone (O2-O3) therapy is increasingly applied as a complementary/adjuvant treatment for several diseases; however, the biological mechanisms accounting for the efficacy of low O3 concentrations need further investigations to understand the possibly multiple effects on the different cell types. In this work, we focused our attention on fibroblasts as ubiquitous connective cells playing roles in the body architecture, in the homeostasis of tissue-resident cells, and in many physiological and pathological processes. Using an established human fibroblast cell line as an in vitro model, we adopted a multimodal approach to explore a panel of cell structural and functional features, combining light and electron microscopy, Western blot analysis, real-time quantitative polymerase chain reaction, and multiplex assays for cytokines. The administration of O2-O3 gas mixtures induced multiple effects on fibroblasts, depending on their activation state: in non-activated fibroblasts, O3 stimulated proliferation, formation of cell surface protrusions, antioxidant response, and IL-6 and TGF-β1 secretion, while in LPS-activated fibroblasts, O3 stimulated only antioxidant response and cytokines secretion. Therefore, the low O3 concentrations used in this study induced activation-like responses in non-activated fibroblasts, whereas in already activated fibroblasts, the cell protective capability was potentiated.
Collapse
Affiliation(s)
- Barbara Cisterna
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (B.C.); (M.C.); (M.A.L.); (M.G.)
| | - Manuela Costanzo
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (B.C.); (M.C.); (M.A.L.); (M.G.)
| | - Maria Assunta Lacavalla
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (B.C.); (M.C.); (M.A.L.); (M.G.)
| | - Mirco Galiè
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (B.C.); (M.C.); (M.A.L.); (M.G.)
| | - Osvaldo Angelini
- San Rocco Clinic, Via Monsignor G.V. Moreni 95, I-25018 Montichari, Italy; (O.A.); (G.T.)
| | - Gabriele Tabaracci
- San Rocco Clinic, Via Monsignor G.V. Moreni 95, I-25018 Montichari, Italy; (O.A.); (G.T.)
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (B.C.); (M.C.); (M.A.L.); (M.G.)
| |
Collapse
|
12
|
Erario MDLÁ, Croce E, Moviglia Brandolino MT, Moviglia G, Grangeat AM. Ozone as Modulator of Resorption and Inflammatory Response in Extruded Nucleus Pulposus Herniation. Revising Concepts. Int J Mol Sci 2021; 22:ijms22189946. [PMID: 34576108 PMCID: PMC8469341 DOI: 10.3390/ijms22189946] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 12/21/2022] Open
Abstract
Ozone therapy has been used to treat disc herniation for more than four decades. There are several papers describing results and mechanism of action. However, it is very important to define the characteristics of extruded disc herniation. Although ozone therapy showed excellent results in the majority of spinal diseases, it is not yet fully accepted within the medical community. Perhaps it is partly due to the fact that, sometimes, indications are not appropriately made. The objective of our work is to explain the mechanisms of action of ozone therapy on the extruded disc herniation. Indeed, these mechanisms are quite different from those exerted by ozone on the protruded disc herniation and on the degenerative disc disease because the inflammatory response is very different between the various cases. Extruded disc herniation occurs when the nucleus squeezes through a weakness or tear in the annulus. Host immune system considers the nucleus material to be a foreign invader, which triggers an immune response and inflammation. We think ozone therapy modulates this immune response, activating macrophages, which produce phagocytosis of extruded nucleus pulposus. Ozone would also facilitate the passage from the M1 to M2 phase of macrophages, going from an inflammatory phase to a reparative phase. Further studies are needed to verify the switch of macrophages.
Collapse
Affiliation(s)
| | - Eduardo Croce
- Instituto Argentino de Ozonoterapia (IAOT), Buenos Aires C1425ASG, Argentina; (M.d.l.Á.E.); (E.C.)
| | - Maria Teresita Moviglia Brandolino
- Research Center for Tissue Engineering and Cell Therapy (CIITT), Civil Association for Research and Development of Advanced Therapies (ACIDTA), Buenos Aires C1425DKA, Argentina; (M.T.M.B.); (G.M.)
| | - Gustavo Moviglia
- Research Center for Tissue Engineering and Cell Therapy (CIITT), Civil Association for Research and Development of Advanced Therapies (ACIDTA), Buenos Aires C1425DKA, Argentina; (M.T.M.B.); (G.M.)
| | - Aníbal M. Grangeat
- Instituto Argentino de Ozonoterapia (IAOT), Buenos Aires C1425ASG, Argentina; (M.d.l.Á.E.); (E.C.)
- Correspondence: ; Tel.: +54-11-4809-3110
| |
Collapse
|
13
|
Low Ozone Concentrations Affect the Structural and Functional Features of Jurkat T Cells. Processes (Basel) 2021. [DOI: 10.3390/pr9061030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Autohemotherapy is the most used method to administer O2-O3 systemically. It consists in exposing a limited amount of blood to a gaseous O2-O3 and reinfusing it, thus activating a cascade of biochemical pathways involving plasma and blood cells that gives rise to antioxidant and anti-inflammatory responses. The therapeutic effects strictly depend on the O3 dose; it is therefore necessary to understand the relationship between the O3 concentration and the effects on blood cells involved in antioxidant and immune response. Here we performed a basic study on the effects of the low O3 concentrations used for autohemotherapy on the structural and functional features of the human T-lymphocyte-derived Jurkat cells. Ultrastructural, biomolecular, and bioanalytic techniques were used. Our findings showed that 10, 20, and 30 µg O3 concentrations were able to trigger Nrf2-induced antioxidant response and increase IL-2 secretion. However, viability and proliferation tests as well as ultrastructural observations revealed stress signs after treatment with 20 and 30 µg O3, thus designating 10 µg O3 as the optimal concentration in combining cell safety and efficient antioxidant and immune response in our in vitro system. These data offer novel evidence of the fine regulatory role played by the oxidative stress level in the hormetic response of T lymphocytes to O2-O3 administration.
Collapse
|
14
|
Ozone Activates the Nrf2 Pathway and Improves Preservation of Explanted Adipose Tissue In Vitro. Antioxidants (Basel) 2020; 9:antiox9100989. [PMID: 33066365 PMCID: PMC7602229 DOI: 10.3390/antiox9100989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
In clinical practice, administration of low ozone (O3) dosages is a complementary therapy for many diseases, due to the capability of O3 to elicit an antioxidant response through the Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2)-dependent pathway. Nrf2 is also involved in the adipogenic differentiation of mesenchymal stem cells, and low O3 concentrations have been shown to stimulate lipid accumulation in human adipose-derived adult stem cells in vitro. Thus, O3 treatment is a promising procedure to improve the survival of explanted adipose tissue, whose reabsorption after fat grafting is a major problem in regenerative medicine. In this context, we carried out a pilot study to explore the potential of mild O3 treatment in preserving explanted murine adipose tissue in vitro. Scanning and transmission electron microscopy, Western blot, real-time polymerase chain reaction and nuclear magnetic resonance spectroscopy were used. Exposure to low O3 concentrations down in the degradation of the explanted adipose tissue and induced a concomitant increase in the protein abundance of Nrf2 and in the expression of its target gene Hmox1. These findings provide a promising background for further studies aimed at the clinical application of O3 as an adjuvant treatment to improve fat engraftment.
Collapse
|
15
|
Veneri F, Bardellini E, Amadori F, Conti G, Majorana A. Efficacy of ozonized water for the treatment of erosive oral lichen planus: a randomized controlled study. Med Oral Patol Oral Cir Bucal 2020; 25:e675-e682. [PMID: 32683383 PMCID: PMC7473429 DOI: 10.4317/medoral.23693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 06/14/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Management of erosive Oral Lichen Planus (eOLP) is challenging. Currently, topical corticosteroids are widely used as first-line therapy, but they might be associated with side-effects and incomplete clinical response. Among non-pharmacological strategies, ozone at low medical concentration has proven to induce a mild activation of protective anti-oxidant pathways, thus exerting therapeutic effects in many inflammatory diseases. The aim of this randomized controlled study was to investigate the effectiveness of ozonized water in association with conventional topical corticosteroids for the treatment of eOLP. MATERIAL AND METHODS Fifty-one patients were included in the study and randomized into 2 groups: study group (n=26) included patients receiving ozonized water treatment; control group (n=25) included patients receiving placebo treatment (i.e. double-distilled water). Treatment protocol consisted of 1-minute oral rinses, repeated for 4 times, twice a week for 4 weeks. All patients received conventional corticosteroid topical therapy (betamethasone soluble tablets, 2 rinses/day for 4 weeks). Assessment of size of lesions, sign and pain scores was performed before treatment, after 2 weeks of treatment (T1) and at the end of 4-week treatment (T2). Efficacy Index (EI) of treatment, candidiasis and relapse rates were also recorded. RESULTS All patients experienced significant improvement of sign and pain scores with a higher rate of improvement in ozone-treated group (T1 improvement rates: Thongprasom 92.2% vs 28%; VAS pain 76.9% vs 32%; p<0.05). Pain and size reduction were significantly higher in ozone-treated group both at T1 and T2 (p<0.05). Ozone-treated group showed a higher EI at every time point (T0-T2: 72.77% vs 37.66%, p<0.01). Candidiasis (32% vs 11.5%) and relapse (40% vs 34.6%) rates were higher in control group, however the differences were not statistically significant. CONCLUSIONS Within the limitations of this study, ozonized water seems to be effective as an adjunct therapy, in combination with topical corticosteroids, for the treatment of eOLP.
Collapse
Affiliation(s)
| | - E Bardellini
- Dental Clinic, p.le Spedali Civili n.1 25133 Brescia
| | | | | | | |
Collapse
|
16
|
Juchniewicz H, Lubkowska A. Oxygen-Ozone (O 2-O 3) Therapy in Peripheral Arterial Disease (PAD): A Review Study. Ther Clin Risk Manag 2020; 16:579-594. [PMID: 32636631 PMCID: PMC7334138 DOI: 10.2147/tcrm.s255247] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/12/2020] [Indexed: 12/22/2022] Open
Abstract
The purpose of this study is to review the current knowledge of oxygen-ozone (O2-O3) therapy and its effects on peripheral artery disease (PAD) risk factors, symptoms, as well as on PAD patients’ quality of life. From the in vitro studies, it has been concluded that the oxygen-ozone therapy exerts a positive effect on the platelet aggregation, cell remodeling, cytoskeletal elements organization and mitochondria structure. In animal studies, it has been shown that the O2-O3 therapy is an effective method in hypertension, and it diminishes the hypoxia state of various tissues. Clinical studies have provided evidence on the oxygen-ozone therapy effectiveness in low perfusion syndromes and hyperglycemia, as well as conditions with oxidative stress and inflammation. The oxygen-ozone therapy promotes faster recovery and enhances healing processes. It appears to be an effective adjunctive therapy in preventing peripheral artery disease complications such as occurrence of cardiovascular event, amputation or other extreme surgical solutions. It has been concluded that the O2-O3 therapy improves the quality of life of PAD patients. The oxygen-ozone therapy appears to have no adverse events or side effects. Moreover, it is very cost-effective, as standard treatment costs can be reduced by 25%. Easy clinical protocols allow the implementation of oxygen-ozone therapy into the usual care of PAD patients. Finally, the O2-O3 therapy may be meaningful especially for older patients and patients who are not eligible for standard revascularization.
Collapse
Affiliation(s)
- Hanna Juchniewicz
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
17
|
Costanzo M, Romeo A, Cisterna B, Calderan L, Bernardi P, Covi V, Tabaracci G, Malatesta M. Ozone at low concentrations does not affect motility and proliferation of cancer cells in vitro. Eur J Histochem 2020; 64. [PMID: 32241095 PMCID: PMC7137928 DOI: 10.4081/ejh.2020.3119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 03/19/2020] [Indexed: 02/08/2023] Open
Abstract
Exposure to low ozone concentrations is used in medicine as an adjuvant/complementary treatment for a variety of diseases. The therapeutic potential of low ozone concentrations relies on their capability to increase the nuclear translocation of the Nuclear factor erythroid 2-related factor 2 (Nrf2), thus inducing the transcription of Antioxidant Response Elements (ARE)-driven genes and, through a cascade of events, a general cytoprotective response. However, based on the controversial role of Nrf2 in cancer initiation, progression and resistance to therapies, possible negative effects of ozone therapy may be hypothesised in oncological patients. With the aim to elucidate the possible changes in morphology, migration capability and proliferation of cancer cells following mild ozone exposure, we performed wound healing experiments in vitro on HeLa cells treated with low ozone concentrations currently used in the clinical practice. By combining a multimodal microscopy approach (light and fluorescence microscopy, scanning electron microscopy, atomic force microscopy) with morphometric analyses, we demonstrated that, under our experimental conditions, exposure to low ozone concentrations does not alter cytomorphology, motility and proliferation features, thus supporting the notion that ozone therapy should not positively affect tumour cell growth and metastasis.
Collapse
Affiliation(s)
- Manuela Costanzo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Galiè M, Covi V, Tabaracci G, Malatesta M. The Role of Nrf2 in the Antioxidant Cellular Response to Medical Ozone Exposure. Int J Mol Sci 2019; 20:E4009. [PMID: 31426459 PMCID: PMC6720777 DOI: 10.3390/ijms20164009] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023] Open
Abstract
Ozone (O3) is a natural, highly unstable atmospheric gas that rapidly decomposes to oxygen. Although not being a radical molecule, O3 is a very strong oxidant and therefore it is potentially toxic for living organisms. However, scientific evidence proved that the effects of O3 exposure are dose-dependent: high dosages stimulate severe oxidative stress resulting in inflammatory response and tissue injury, whereas low O3 concentrations induce a moderate oxidative eustress activating antioxidant pathways. These properties make O3 a powerful medical tool, which can be used as either a disinfectant or an adjuvant agent in the therapy of numerous diseases. In this paper, the cellular mechanisms involved in the antioxidant response to O3 exposure will be reviewed with special reference to the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and its role in the efficacy of ozone therapy.
Collapse
Affiliation(s)
- Mirco Galiè
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Viviana Covi
- San Rocco Clinic, Via Monsignor G. V. Moreni 95, I-25018 Montichiari (BS), Italy
| | - Gabriele Tabaracci
- San Rocco Clinic, Via Monsignor G. V. Moreni 95, I-25018 Montichiari (BS), Italy
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy.
| |
Collapse
|
19
|
Malatesta M. Ultrastructural histochemistry in biomedical research: Alive and kicking. Eur J Histochem 2018; 62. [PMID: 30418011 PMCID: PMC6250102 DOI: 10.4081/ejh.2018.2990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 10/31/2018] [Indexed: 02/06/2023] Open
Abstract
The high-resolution images provided by the electron microscopy has constituted a limitless source of information in any research field of life and materials science since the early Thirties of the last century. Browsing the scientific literature, electron microscopy was especially popular from the 1970’s to 80’s, whereas during the 90’s, with the advent of innovative molecular techniques, electron microscopy seemed to be downgraded to a subordinate role, as a merely descriptive technique. Ultra -structural histochemistry was crucial to promote the Renaissance of electron microscopy, when it became evident that a precise localization of molecules in the biological environment was necessary to fully understand their functional role. Nowadays, electron microscopy is still irreplaceable for ultrastructural morphology in basic and applied biomedical research, while the application of correlative light and electron microscopy and of refined ultrastructural histochemical techniques gives electron microscopy a central role in functional cell and tissue biology, as a really unique tool for high-resolution molecular biology in situ.
Collapse
Affiliation(s)
- Manuela Malatesta
- University of Verona, Department of Neurosciences, Biomedicine and Movement Sciences.
| |
Collapse
|
20
|
Cisterna B, Boschi F, Croce AC, Podda R, Zanzoni S, Degl'Innocenti D, Bernardi P, Costanzo M, Marzola P, Covi V, Tabaracci G, Malatesta M. Ozone Treatment of Grapes During Withering for Amarone Wine: A Multimodal Imaging and Spectroscopic Analysis. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2018; 24:564-573. [PMID: 30334518 DOI: 10.1017/s1431927618015209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The production of Amarone wine is governed by a disciplinary guideline to preserve its typical features; however, postharvest infections by the fungus Botrytis cinerea (B. cinerea) not only represent a phytosanitary problem but also cause a significant loss of product. In this study, we tested a treatment with mild ozoniztion on grapes for Amarone wine production during withering in the fruttaio (the environment imposed by the disciplinary guideline) and evaluated the impact on berry features by a multimodal imaging approach. The results indicate that short and repeated treatments with low O3 concentrations speed up the naturally occurring berry withering, probably inducing a reorganization of the epicuticular wax layer, and inhibit the development of B. cinerea, blocking the fungus in an intermediate vegetative stage. This pilot study will pave the way to long-term research on Amarone wine obtained from O3-treated grapes.
Collapse
Affiliation(s)
- Barbara Cisterna
- 1Department of Neurosciences,Biomedicine and Movement Sciences,University of Verona,Strada Le Grazie 8,Verona 37134,Italy
| | - Federico Boschi
- 2Department of Computer Science,University of Verona,Strada Le Grazie 15,Verona 37134,Italy
| | - Anna C Croce
- 3Institute of Molecular Genetics(CNR),Via Abbiategrasso 207,Pavia 27100,Italy
| | - Rachele Podda
- 1Department of Neurosciences,Biomedicine and Movement Sciences,University of Verona,Strada Le Grazie 8,Verona 37134,Italy
| | - Serena Zanzoni
- 4Centro Piattaforme Tecnologiche,University of Verona,Strada Le Grazie 15,Verona 37134,Italy
| | - Daniele Degl'Innocenti
- 1Department of Neurosciences,Biomedicine and Movement Sciences,University of Verona,Strada Le Grazie 8,Verona 37134,Italy
| | - Paolo Bernardi
- 1Department of Neurosciences,Biomedicine and Movement Sciences,University of Verona,Strada Le Grazie 8,Verona 37134,Italy
| | - Manuela Costanzo
- 1Department of Neurosciences,Biomedicine and Movement Sciences,University of Verona,Strada Le Grazie 8,Verona 37134,Italy
| | - Pasquina Marzola
- 2Department of Computer Science,University of Verona,Strada Le Grazie 15,Verona 37134,Italy
| | - Viviana Covi
- 5San Rocco Clinic,Via Monsignor G. V. Moreni 95,Montichari 25018,Italy
| | | | - Manuela Malatesta
- 1Department of Neurosciences,Biomedicine and Movement Sciences,University of Verona,Strada Le Grazie 8,Verona 37134,Italy
| |
Collapse
|
21
|
Costanzo M, Boschi F, Carton F, Conti G, Covi V, Tabaracci G, Sbarbati A, Malatesta M. Low ozone concentrations promote adipogenesis in human adipose-derived adult stem cells. Eur J Histochem 2018; 62. [PMID: 30176704 PMCID: PMC6151336 DOI: 10.4081/ejh.2018.2969] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022] Open
Abstract
Ozone is a strong oxidant, highly unstable atmospheric gas. Its medical use at low concentrations has been progressively increasing as an alternative/adjuvant treatment for several diseases. In this study, we investigated the effects of mild ozonisation on human adipose-derived adult stem (hADAS) cells i.e., mesenchymal stem cells occurring in the stromal-vascular fraction of the fat tissue and involved in the tissue regeneration processes. hADAS cells were induced to differentiate into the adipoblastic lineage, and the effect of low ozone concentrations on the adipogenic process was studied by combining histochemical, morphometric and ultrastructural analyses. Our results demonstrate that ozone treatment promotes lipid accumulation in hADAS without inducing deleterious effects, thus paving the way to future studies aimed at elucidating the effect of mild ozonisation on adipose tissue for tissue regeneration and engineering.
Collapse
Affiliation(s)
- Manuela Costanzo
- University of Verona, Department of Neurosciences, Biomedicine and Movement Sciences.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Galiè M, Costanzo M, Nodari A, Boschi F, Calderan L, Mannucci S, Covi V, Tabaracci G, Malatesta M. Mild ozonisation activates antioxidant cell response by the Keap1/Nrf2 dependent pathway. Free Radic Biol Med 2018; 124:114-121. [PMID: 29864481 DOI: 10.1016/j.freeradbiomed.2018.05.093] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/13/2022]
Abstract
Treatment with low-dose ozone is successfully exploited as an adjuvant therapy in the treatment of several disorders. Although the list of medical applications of ozone therapy is increasing, molecular mechanisms underlying its beneficial effects are still partially known. Clinical and experimental evidence suggests that the therapeutic effects of ozone treatment may rely on its capability to mount a beneficial antioxidant response through activation of the nuclear factor erythroid-derived-like 2 (Nrf2) pathway. However, a conclusive mechanistic demonstration is still lacking. Here, we bridge this gap of knowledge by providing evidence that treatment with a low concentration of ozone in cultured cells promotes nuclear translocation of Nrf2 at the chromatin sites of active transcription and increases the expression of antioxidant response element (ARE)-driven genes. Importantly, we show that ozone-induced ARE activation can be reverted by the ectopic expression of the Nrf2 specific inhibitor Kelch-like ECH associated protein (Keap1), thus proving the role of the Nrf2 pathway in the antioxidant response induced by mild ozonisation.
Collapse
Affiliation(s)
- Mirco Galiè
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Manuela Costanzo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Alice Nodari
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Federico Boschi
- Department of Computer Science, University of Verona, Strada Le Grazie 15, I-37134 Verona, Italy
| | - Laura Calderan
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Silvia Mannucci
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Viviana Covi
- San Rocco Clinic, Via Monsignor G. V. Moreni 95, 25018 Montichiari, BS, Italy
| | - Gabriele Tabaracci
- San Rocco Clinic, Via Monsignor G. V. Moreni 95, 25018 Montichiari, BS, Italy
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy.
| |
Collapse
|
23
|
Tezcan AH, Ozturk O, Ustebay S, Adali Y, Yagmurdur H. The beneficial effects of ozone therapy in acetaminophen-induced hepatotoxicity in mice. Pharmacol Rep 2017; 70:340-345. [PMID: 29477043 DOI: 10.1016/j.pharep.2017.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 10/16/2017] [Accepted: 11/10/2017] [Indexed: 11/24/2022]
Abstract
BACKGROUND The aim of the present study was to determine the therapeutic effects of medical ozone therapy on acute acetaminophen (APAP)-induced hepatotoxicity which were not clearly demonstrated in prior studies. METHOD Twenty-four mice were randomly assigned into three equal groups: Group 1 (control), Group 2 (APAP) and Group 3 (APAP +ozone). Hepatotoxicity was induced by APAP given as a single dose of 300mg/kg intraperitoneally in Groups 2 and 3. Additionally, Group 3 received 20mcg/0.5mL ozone intraperitoneal twice a day for the remaining of the study. Other groups received saline injections. On the fourth day of the study, biochemical variables (AST, ALT, ALP) and liver histopathology was assessed. RESULTS Intraperitoneal administration of a single dose of APAP induced hepatocellular damage that was shown by both liver enzymes and histopathological changes (p<0.001). AST, ALT, ALP levels were elevated in both groups 2 and 3 and the difference from group 1 was statistically significant (p<0.01).Mean ALT and AST levels of group 2 were statistically significantly higher versus group 3 (p<0.01). In histopathological examinations; necrosis and inflammation were more prominent in Group 2 compared to Group 3 (p<0.01). CONCLUSION Ozone showed beneficial effects on APAP hepatotoxicity at a statistically significant level. It is known that ozone has therapeutic effects in various diseases owing to its antioxidant effects. The present study suggests that ozone may be utilized as a routine supplementary therapy in acute APAP hepatotoxicity.
Collapse
Affiliation(s)
- Aysu Hayriye Tezcan
- Kafkas University, School of Medicine, Department of Anesthesiology and Reanimation, Kars, Turkey.
| | - Omur Ozturk
- Kafkas University, School of Medicine, Department of Anesthesiology and Reanimation, Kars, Turkey
| | - Sefer Ustebay
- Kafkas University, School of Medicine, Department of Pediatrics, Kars, Turkey
| | - Yasemen Adali
- Kafkas University, School of Medicine, Department of Pathology, Kars, Turkey
| | - Hatice Yagmurdur
- Kafkas University, School of Medicine, Department of Anesthesiology and Reanimation, Kars, Turkey
| |
Collapse
|
24
|
Meyer JN, Leuthner TC, Luz AL. Mitochondrial fusion, fission, and mitochondrial toxicity. Toxicology 2017; 391:42-53. [PMID: 28789970 PMCID: PMC5681418 DOI: 10.1016/j.tox.2017.07.019] [Citation(s) in RCA: 371] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/10/2017] [Accepted: 07/31/2017] [Indexed: 12/17/2022]
Abstract
Mitochondrial dynamics are regulated by two sets of opposed processes: mitochondrial fusion and fission, and mitochondrial biogenesis and degradation (including mitophagy), as well as processes such as intracellular transport. These processes maintain mitochondrial homeostasis, regulate mitochondrial form, volume and function, and are increasingly understood to be critical components of the cellular stress response. Mitochondrial dynamics vary based on developmental stage and age, cell type, environmental factors, and genetic background. Indeed, many mitochondrial homeostasis genes are human disease genes. Emerging evidence indicates that deficiencies in these genes often sensitize to environmental exposures, yet can also be protective under certain circumstances. Inhibition of mitochondrial dynamics also affects elimination of irreparable mitochondrial DNA (mtDNA) damage and transmission of mtDNA mutations. We briefly review the basic biology of mitodynamic processes with a focus on mitochondrial fusion and fission, discuss what is known and unknown regarding how these processes respond to chemical and other stressors, and review the literature on interactions between mitochondrial toxicity and genetic variation in mitochondrial fusion and fission genes. Finally, we suggest areas for future research, including elucidating the full range of mitodynamic responses from low to high-level exposures, and from acute to chronic exposures; detailed examination of the physiological consequences of mitodynamic alterations in different cell types; mechanism-based testing of mitotoxicant interactions with interindividual variability in mitodynamics processes; and incorporating other environmental variables that affect mitochondria, such as diet and exercise.
Collapse
Affiliation(s)
- Joel N Meyer
- Nicholas School of the Environment and Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC 27708-0328, United States.
| | - Tess C Leuthner
- Nicholas School of the Environment and Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC 27708-0328, United States.
| | - Anthony L Luz
- Nicholas School of the Environment and Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC 27708-0328, United States.
| |
Collapse
|
25
|
Braidy N, Izadi M, Sureda A, Jonaidi-Jafari N, Banki A, Nabavi SF, Nabavi SM. Therapeutic relevance of ozone therapy in degenerative diseases: Focus on diabetes and spinal pain. J Cell Physiol 2017; 233:2705-2714. [PMID: 28594115 DOI: 10.1002/jcp.26044] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 12/18/2022]
Abstract
Ozone, one of the most important air pollutants, is a triatomic molecule containing three atoms of oxygen that results in an unstable form due to its mesomeric structure. It has been well-known that ozone has potent ability to oxidize organic compounds and can induce respiratory irritation. Although ozone has deleterious effects, many therapeutic effects have also been suggested. Since last few decades, the therapeutic potential of ozone has gained much attention through its strong capacity to induce controlled and moderated oxidative stress when administered in precise therapeutic doses. A plethora of scientific evidence showed that the activation of hypoxia inducible factor-1α (HIF-1a), nuclear factor of activated T-cells (NFAT), nuclear factor-erythroid 2-related factor 2-antioxidant response element (Nrf2-ARE), and activated protein-1 (AP-1) pathways are the main molecular mechanisms underlying the therapeutic effects of ozone therapy. Activation of these molecular pathways leads to up-regulation of endogenous antioxidant systems, activation of immune functions as well as suppression of inflammatory processes, which is important for correcting oxidative stress in diabetes and spinal pain. The present study intended to review critically the available scientific evidence concerning the beneficial properties of ozone therapy for treatment of diabetic complications and spinal pain. It finds benefit for integrating the therapy with ozone into pharmacological procedures, instead of a substitutive or additional option to therapy.
Collapse
Affiliation(s)
- Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Morteza Izadi
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Grup de Nutrició Comunitària i Estrès Oxidatiu (IUNICS) and CIBEROBN (Physiopathology of Obesity and Nutrition), Universitat de les Illes Balears, Palma de Mallorca, Spain
| | | | - Abdolali Banki
- Department of Neurology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed F Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed M Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Effects of mild ozonisation on gene expression and nuclear domains organization in vitro. Toxicol In Vitro 2017; 44:100-110. [PMID: 28652203 DOI: 10.1016/j.tiv.2017.06.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 06/15/2017] [Accepted: 06/22/2017] [Indexed: 12/14/2022]
Abstract
In the last two decades, the use of ozone (O3) as a complementary medical approach has progressively been increasing; however, its application is still limited due to the numerous doubts about its possible toxicity, despite the low concentrations used in therapy. For an appropriate and safe clinical application of a potentially toxic agent such as O3, it is crucial to elucidate the cellular response to its administration. Molecular analyses and transmission electron microscopy were here combined to investigate in vitro the effects of O3 administration on transcriptional activity and nuclear domains organization of cultured SH-SY5Y neuronal cells; low O3 concentrations were used as those currently administered in clinical practice. Mild ozonisation did not affect cell proliferation or death, while molecular analyses showed an O3-induced modulation of some genes involved in the cell response to stress (HMOX1, ERCC4, CDKN1A) and in the transcription machinery (CTDSP1). Ultrastructural cytochemistry after experiments of bromouridine incorporation consistently demonstrated an increased transcriptional rate at both the nucleoplasmic (mRNA) and the nucleolar (rRNA) level. No ultrastructural alteration of nuclear domains was observed. Our molecular, ultrastructural and cytochemical data demonstrate that a mild toxic stimulus such as mild ozonisation stimulate cell protective pathways and nuclear transcription, without altering cell viability. This could possibly account for the positive effects observed in ozone-treated patients.
Collapse
|
27
|
Borges GÁ, Elias ST, da Silva SMM, Magalhães PO, Macedo SB, Ribeiro APD, Guerra ENS. In vitro evaluation of wound healing and antimicrobial potential of ozone therapy. J Craniomaxillofac Surg 2017; 45:364-370. [PMID: 28169044 DOI: 10.1016/j.jcms.2017.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 12/03/2016] [Accepted: 01/03/2017] [Indexed: 12/12/2022] Open
Abstract
Although ozone therapy is extensively applied when wound repair and antimicrobial effect are necessary, little is known about cellular mechanisms regarding this process. Thus, this study aimed to evaluate ozone cytotoxicity in fibroblasts (L929) and keratinocytes (HaCaT) cell lines, its effects on cell migration and its antimicrobial activity. Cells were treated with ozonated phosphate-buffered saline (8, 4, 2, 1, 0.5 and 0.25 μg/mL ozone), chlorhexidine 0.2% or buffered-solution, and cell viability was determined through MTT assay. The effect of ozone on cell migration was evaluated through scratch wound healing and transwell migration assays. The minimum inhibitory concentrations for Candida albicans and Staphylococcus aureus were determined. Ozone showed no cytotoxicity for the cell lines, while chlorhexidine markedly reduced cell viability. Although no significant difference between control and ozone-treated cells was observed in the scratch assay, a considerable increase in fibroblasts migration was noticed on cells treated with 8 μg/mL ozonated solution. Ozone alone did not inhibit growth of microorganisms; however, its association with chlorhexidine resulted in antimicrobial activity. This study confirms the wound healing and antimicrobial potential of ozone therapy and presents the need for studies to elucidate the molecular mechanisms through which it exerts such biological effects.
Collapse
|
28
|
Pellicciari C. Is there still room for novelty, in histochemical papers? Eur J Histochem 2016; 60:2758. [PMID: 28076939 PMCID: PMC5381530 DOI: 10.4081/ejh.2016.2758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 12/15/2016] [Indexed: 12/11/2022] Open
Abstract
Histochemistry continues to be widely applied in biomedical research, being nowadays mostly addressed to detect and locate single molecules or molecular complexes inside cells and tissues, and to relate structural organization and function at the high resolution of the more advanced microscopical techniques. In the attempt to see whether histochemical novelties may be found in the recent literature, the articles published in the European Journal of Histochemistry in the period 2014-2016 have been reviewed. In the majority of the published papers, standardized methods have been preferred by scientists to make their results reliably comparable with the data in the literature, but several papers (approximately one fourth of the published articles) described novel histochemical methods and procedures. It is worth noting that there is a growing interest for minimally-invasive in vivo techniques (magnetic resonance imaging, autofluorescence spectroscopy), which may parallel conventional histochemical analyses to acquire evidence not only on the morphological features of living organs and tissues, but also on their functional, biophysical and molecular characteristics. Thanks to this unceasing methodological refinement, histochemistry will continue to provide innovative applications in the biomedical field.
Collapse
|
29
|
Pellicciari C. Histochemistry in biology and medicine: a message from the citing journals. Eur J Histochem 2015; 59:2610. [PMID: 26708189 PMCID: PMC4698620 DOI: 10.4081/ejh.2015.2610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 02/08/2023] Open
Abstract
Especially in recent years, biomedical research has taken advantage of the progress in several disciplines, among which microscopy and histochemistry. To assess the influence of histochemistry in the biomedical field, the articles published during the period 2011-2015 have been selected from different databases and grouped by subject categories: as expected, biological and biomedical studies where histochemistry has been used as a major experimental approach include a wide of basic and applied researches on both humans and other animal or plant organisms. To better understand the impact of histochemical publications onto the different biological and medical disciplines, it was useful to look at the journals where the articles published in a multidisciplinary journal of histochemistry have been cited: it was observed that, in the five-years period considered, 20% only of the citations were in histochemical periodicals, the remaining ones being in journals of Cell & Tissue biology, general and experimental Medicine, Oncology, Biochemistry & Molecular biology, Neurobiology, Anatomy & Morphology, Pharmacology & Toxicology, Reproductive biology, Veterinary sciences, Physiology, Endocrinology, Tissue engineering & Biomaterials, as well as in multidisciplinary journals.It is easy to foresee that also in the future the histochemical journals will be an attended forum for basic and applied scientists in the biomedical field. It will be crucial that these journals be open to an audience as varied as possible, publishing articles on the application of refined techniques to very different experimental models: this will stimulate non-histochemist scientists to approach histochemistry whose application horizon could expand to novel and possibly exclusive subjects.
Collapse
|
30
|
Aredia F, Malatesta M, Veneroni P, Bottone MG. Analysis of ERK3 intracellular localization: dynamic distribution during mitosis and apoptosis. Eur J Histochem 2015; 59:2571. [PMID: 26708186 PMCID: PMC4698618 DOI: 10.4081/ejh.2015.2571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/10/2015] [Accepted: 11/12/2015] [Indexed: 12/30/2022] Open
Abstract
Extracellular signal-regulated kinases (ERK) 1, 2 and 3 are involved in cell proliferation and differentiation, and apoptosis; although ERK1/2 have been widely studied, limited knowledge on ERK3 is available. The present work aimed at investigating ERK3 distribution during cell cycle and apoptosis in human tumor HeLa cells. The analysis performed by double immunofluorescence and immunoelectron microscopy revealed that during interphase ERK3 is mainly resident in the nucleoplasm in association with ribonuclear proteins involved in early pre-mRNA splicing, it undergoes cell cycle-dependent redistribution and, during apoptosis, it remains in the nucleus in the form of massive nuclear aggregates, then moves to the cytoplasm and is finally extruded.
Collapse
Affiliation(s)
- F Aredia
- Istituto di Genetica Molecolare CNR; Università di Pavia.
| | | | | | | |
Collapse
|