1
|
Johnson CE, Naik HB. Microbiome Perturbations in Hidradenitis Suppurativa. Dermatol Clin 2025; 43:193-202. [PMID: 40023621 DOI: 10.1016/j.det.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Skin and gut microbiome perturbations may play a role in hidradenitis suppurativa (HS) pathogenesis. Emerging microbiome research has established the complex roles of the skin and gut microbiomes in health maintenance and disease. Perturbations in the HS skin microbiome have been shown to correlate with HS disease severity. HS gut microbiome characterization studies point to a trend in decreased microbial diversity associated with HS. Future research efforts examining microbiome perturbations and their functional implications longitudinally and in the setting of interventions are needed to build on this foundational knowledge.
Collapse
Affiliation(s)
- Chandler E Johnson
- Department of Dermatology, University of California at San Francisco, 2340 Sutter Street, Suite N414, San Francisco, CA 94115
| | - Haley B Naik
- Department of Dermatology, University of California at San Francisco, 2340 Sutter Street, Suite N414, San Francisco, CA 94115.
| |
Collapse
|
2
|
Jans M, Vereecke L. A guide to germ-free and gnotobiotic mouse technology to study health and disease. FEBS J 2025; 292:1228-1251. [PMID: 38523409 DOI: 10.1111/febs.17124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/17/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
The intestinal microbiota has major influence on human physiology and modulates health and disease. Complex host-microbe interactions regulate various homeostatic processes, including metabolism and immune function, while disturbances in microbiota composition (dysbiosis) are associated with a plethora of human diseases and are believed to modulate disease initiation, progression and therapy response. The vast complexity of the human microbiota and its metabolic output represents a great challenge in unraveling the molecular basis of host-microbe interactions in specific physiological contexts. To increase our understanding of these interactions, functional microbiota research using animal models in a reductionistic setting are essential. In the dynamic landscape of gut microbiota research, the use of germ-free and gnotobiotic mouse technology, in which causal disease-driving mechanisms can be dissected, represents a pivotal investigative tool for functional microbiota research in health and disease, in which causal disease-driving mechanisms can be dissected. A better understanding of the health-modulating functions of the microbiota opens perspectives for improved therapies in many diseases. In this review, we discuss practical considerations for the design and execution of germ-free and gnotobiotic experiments, including considerations around germ-free rederivation and housing conditions, route and timing of microbial administration, and dosing protocols. This comprehensive overview aims to provide researchers with valuable insights for improved experimental design in the field of functional microbiota research.
Collapse
Affiliation(s)
- Maude Jans
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Lars Vereecke
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Belgium
| |
Collapse
|
3
|
Patel SK, Gooya M, Guo Q, Noel S, Rabb H. The microbiome and acute organ injury: focus on kidneys. Nephrol Dial Transplant 2025; 40:423-434. [PMID: 39251400 PMCID: PMC11879008 DOI: 10.1093/ndt/gfae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Indexed: 09/11/2024] Open
Abstract
The microbiome of critically ill patients is significantly altered by both effects of the illnesses and clinical interventions provided during intensive care. Studies have shown that manipulating the microbiome can prevent or modulate complications of critical illness in experimental models and preliminary clinical trials. This review aims to discuss general concepts about the microbiome, including mechanisms of modifying acute organ dysfunction. The focus will be on the effects of microbiome modulation during experimental acute kidney injury (excluding septic acute kidney injury) and comparison with other experimental acute organ injuries commonly seen in critically ill patients.
Collapse
Affiliation(s)
| | - Mahta Gooya
- Division of Nephrology, Johns Hopkins University, Baltimore, MD, USA
| | - Qisen Guo
- Division of Nephrology, Johns Hopkins University, Baltimore, MD, USA
| | - Sanjeev Noel
- Division of Nephrology, Johns Hopkins University, Baltimore, MD, USA
| | - Hamid Rabb
- Division of Nephrology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
4
|
Oyono MG, Kenmoe S, Ebogo Belobo JT, Mbah Ntepe LJ, Kameni M, Kamguia LM, Mpotje T, Nono JK. Diagnostic, prognostic, and therapeutic potentials of gut microbiome profiling in human schistosomiasis: A comprehensive systematic review. PLoS Negl Trop Dis 2025; 19:e0012844. [PMID: 39899616 PMCID: PMC11844881 DOI: 10.1371/journal.pntd.0012844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 02/21/2025] [Accepted: 01/16/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Several studies have highlighted alteration in the gut microbiome associated with the onset and progression of diseases. Recognizing the potential of gut microbiota as biomarkers, this systematic review seeks to synthesize current data on the intricate relationship between the host gut microbiome profiles and their usefulness for the development of diagnostic, prognostic and therapeutic approaches to control human schistosomiasis. METHODS A systematic literature review was carried out by searching for relevant studies published until date, that is May 2024, using Medline, Embase, Global Health, Web of Science, and Global Index Medicus databases. The keywords used to select articles were "Gut microbiome", "Gut Microbiota", "Schistosomiasis", "Bilharziasis ", and "Human". Extracted data were analysed qualitatively from the selected articles. RESULTS Of the 885 articles retrieved and screened, only 13 (1.47%) met the inclusion criteria and were included in this review. Of the included studies, 6 (46.2%) explored alterations of gut microbiome in schistosome-infected patients, 4 (30.7%) in patients with liver pathologies, and 3 (23.1%) in patients treated with praziquantel. Bacteria from the genera Bacteroides, Faecalibacterium, Blautia and Megasphaera were associated with S. japonicum and S. haematobium infection in school-aged children, whereas infection with S. mansoni rather associated with Klebsiella and Enterobacter. The gut microbiota signature in patient with schistosomiasis-induced liver pathology was reported only for S. japonicum, and the genus Prevotella appeared as a non-invasive biomarker of S. japonicum-associated liver fibrosis. For S. mansoni-infected school-aged children, it further appeared that the treatment outcome following praziquantel administration associated with the abundance in the gut microbiome of bacteria from the classes Fusobacteriales, Rickettsiales and Neisseriales. CONCLUSION The host gut microbiome appears to be a valuable, non-invasive, but still poorly utilized, source of host biomarkers potentially informative for better diagnosing, prognosing and treating schistosomiasis. Further studies are therefore needed to comprehensively define such gut microbial biomarkers of human schistosomiasis and catalyse the informed development of gut microbiome-based tools of schistosomiasis control.
Collapse
Affiliation(s)
- Martin Gael Oyono
- Laboratory of Microbiology, Infectious Diseases and Immunology, Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
- Unit of Immunobiology and helminth infections, Laboratory of Molecular Biology and Biotechnology, Institute of Medical Research and Medicinal plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
- Laboratory of Parasitology and Ecology, Department of Animal Biology and Physiology, University of Yaoundé 1, Yaoundé, Cameroon
| | - Sebastien Kenmoe
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Jean Thierry Ebogo Belobo
- Laboratory of Microbiology, Infectious Diseases and Immunology, Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Leonel Javeres Mbah Ntepe
- Unit of Immunobiology and helminth infections, Laboratory of Molecular Biology and Biotechnology, Institute of Medical Research and Medicinal plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Mireille Kameni
- Unit of Immunobiology and helminth infections, Laboratory of Molecular Biology and Biotechnology, Institute of Medical Research and Medicinal plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
- Department of Microbiology and Parasitology, University of Bamenda, Bamenda, Cameroon
| | - Leonel Meyo Kamguia
- Unit of Immunobiology and helminth infections, Laboratory of Molecular Biology and Biotechnology, Institute of Medical Research and Medicinal plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Thabo Mpotje
- Africa Health Research Institute, Durban, Kwazulu-Natal, South Africa
| | - Justin Komguep Nono
- Unit of Immunobiology and helminth infections, Laboratory of Molecular Biology and Biotechnology, Institute of Medical Research and Medicinal plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
- Division of Immunology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
5
|
Shahid A, Chambers S, Scott-Thomas A, Bhatia M. Gut Microbiota and Liver Dysfunction in Sepsis: The Role of Inflammatory Mediators and Therapeutic Approaches. Int J Mol Sci 2024; 25:13415. [PMID: 39769181 PMCID: PMC11678143 DOI: 10.3390/ijms252413415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Sepsis is a life-threatening complication caused by an uncontrolled immune response to infection that can lead to multi-organ dysfunction, including liver injury. Recent research has shown the critical role of gut microbiota in sepsis pathogenesis, with the gut-liver axis playing a crucial role in disease progression. Mechanisms such as the disruption of the gut barrier and liver injury pathways mediated by cytokines, chemokines, adhesion molecules, hydrogen sulfide (H2S). and substance P (SP) have been the focus of recent studies. Some potential biomarkers and gut microbiota-targeted therapies have shown promise as emerging tools for predicting and managing sepsis. This review describes the role of the gut-liver axis in sepsis and the potential of microbiota-targeted therapies and biomarker-driven interventions to improve sepsis outcomes.
Collapse
Affiliation(s)
| | | | | | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (A.S.); (S.C.); (A.S.-T.)
| |
Collapse
|
6
|
Millman JF, Kondrashina A, Walsh C, Busca K, Karawugodage A, Park J, Sirisena S, Martin FP, Felice VD, Lane JA. Biotics as novel therapeutics in targeting signs of skin ageing via the gut-skin axis. Ageing Res Rev 2024; 102:102518. [PMID: 39389239 DOI: 10.1016/j.arr.2024.102518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/02/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024]
Abstract
Skin ageing is a phenomenon resulting from the aggregative changes to skin structure and function and is clinically manifested by physical features such as wrinkles, hyperpigmentation, elastosis, telangiectasia, and deterioration of skin barrier integrity. One of the main drivers of skin ageing, UV radiation, negatively influences the homeostasis of cells and tissues comprising the skin by triggering production of immune-mediated reactive oxygen species (ROS) and pro-inflammatory cytokines, as well as a various hormones and neuropeptides. Interestingly, an established link between the gut and the skin coined the 'gut-skin axis' has been demonstrated, with dysbiosis and gut barrier dysfunction frequently observed in certain inflammatory skin conditions and more recently, implicated in skin ageing. Therapeutic use of 'biotics' including prebiotics, probiotics, postbiotics, and synbiotics, which modulate the gut microbiota and production of microbially associated metabolites, influence the activity of the gut mucosal and immune systems and are showing promise as key candidates in addressing signs of skin ageing. In this review we aim to focus on the structure and function of the gut-skin axis and showcase the recent in-vitro and clinical evidence demonstrating the beneficial effects of select biotics in targeting signs of skin ageing and discuss the proposed mechanisms mediated via the gut-skin axis underpinning these effects.
Collapse
Affiliation(s)
- Jasmine F Millman
- Health and Happiness (H&H) Group, H&H Research, Level 6 & 7, 88 Langridge St, Collingwood, VIC 3066, Australia.
| | - Alina Kondrashina
- Health and Happiness (H&H) Group, H&H Research, National Food Innovation Hub, Teagasc Moorepark, Fermoy, Co., Cork P61K202, Ireland
| | - Clodagh Walsh
- Health and Happiness (H&H) Group, H&H Research, National Food Innovation Hub, Teagasc Moorepark, Fermoy, Co., Cork P61K202, Ireland
| | - Kizkitza Busca
- Health and Happiness (H&H) Group, H&H Research, National Food Innovation Hub, Teagasc Moorepark, Fermoy, Co., Cork P61K202, Ireland
| | - Aneesha Karawugodage
- Health and Happiness (H&H) Group, H&H Research, Level 6 & 7, 88 Langridge St, Collingwood, VIC 3066, Australia
| | - Julia Park
- Health and Happiness (H&H) Group, H&H Research, Level 6 & 7, 88 Langridge St, Collingwood, VIC 3066, Australia
| | - Sameera Sirisena
- Health and Happiness (H&H) Group, H&H Research, Level 6 & 7, 88 Langridge St, Collingwood, VIC 3066, Australia
| | - Francois-Pierre Martin
- Health and Happiness (H&H) Group, H&H Research, Avenue Sécheron 15 Bat F2/F3, Geneva 1202, Switzerland
| | - Valeria D Felice
- Health and Happiness (H&H) Group, H&H Research, National Food Innovation Hub, Teagasc Moorepark, Fermoy, Co., Cork P61K202, Ireland
| | - Jonathan A Lane
- Health and Happiness (H&H) Group, H&H Research, National Food Innovation Hub, Teagasc Moorepark, Fermoy, Co., Cork P61K202, Ireland.
| |
Collapse
|
7
|
Khan IM, Nassar N, Chang H, Khan S, Cheng M, Wang Z, Xiang X. The microbiota: a key regulator of health, productivity, and reproductive success in mammals. Front Microbiol 2024; 15:1480811. [PMID: 39633815 PMCID: PMC11616035 DOI: 10.3389/fmicb.2024.1480811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/15/2024] [Indexed: 12/07/2024] Open
Abstract
The microbiota, intensely intertwined with mammalian physiology, significantly impacts health, productivity, and reproductive functions. The normal microbiota interacts with the host through the following key mechanisms: acting as a protective barrier against pathogens, maintain mucosal barrier integrity, assisting in nutrient metabolism, and modulating of the immune response. Therefore, supporting growth and development of host, and providing protection against pathogens and toxic substances. The microbiota significantly influences brain development and behavior, as demonstrated by comprehensive findings from controlled laboratory experiments and human clinical studies. The prospects suggested that gut microbiome influence neurodevelopmental processes, modulate stress responses, and affect cognitive function through the gut-brain axis. Microbiota in the gastrointestinal tract of farm animals break down and ferment the ingested feed into nutrients, utilize to produce meat and milk. Among the beneficial by-products of gut microbiota, short-chain fatty acids (SCFAs) are particularly noteworthy for their substantial role in disease prevention and the promotion of various productive aspects in mammals. The microbiota plays a pivotal role in the reproductive hormonal systems of mammals, boosting reproductive performance in both sexes and fostering the maternal-infant connection, thereby becoming a crucial factor in sustaining mammalian existence. The microbiota is a critical factor influencing reproductive success and production traits in mammals. A well-balanced microbiome improves nutrient absorption and metabolic efficiency, leading to better growth rates, increased milk production, and enhanced overall health. Additionally, it regulates key reproductive hormones like estrogen and progesterone, which are essential for successful conception and pregnancy. Understanding the role of gut microbiota offers valuable insights for optimizing breeding and improving production outcomes, contributing to advancements in agriculture and veterinary medicine. This study emphasizes the critical ecological roles of mammalian microbiota, highlighting their essential contributions to health, productivity, and reproductive success. By integrating human and veterinary perspectives, it demonstrates how microbial communities enhance immune function, metabolic processes, and hormonal regulation across species, offering insights that benefit both clinical and agricultural advancements.
Collapse
Affiliation(s)
| | - Nourhan Nassar
- College of Life Science, Anhui Agricultural University, Hefei, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Egypt
| | - Hua Chang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Samiullah Khan
- The Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Institute of Entomology, Guizhou University, Guiyang, China
| | - Maoji Cheng
- Fisugarpeptide Biology Engineering Co. Ltd., Lu’an, China
| | - Zaigui Wang
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Xun Xiang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
8
|
Zhao Z, Chen R, Ng K. Effects of Differently Processed Tea on the Gut Microbiota. Molecules 2024; 29:4020. [PMID: 39274868 PMCID: PMC11397556 DOI: 10.3390/molecules29174020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Tea is a highly popular beverage, primarily due to its unique flavor and aroma as well as its perceived health benefits. The impact of tea on the gut microbiome could be an important means by which tea exerts its health benefits since the link between the gut microbiome and health is strong. This review provided a discussion of the bioactive compounds in tea and the human gut microbiome and how the gut microbiome interacts with tea polyphenols. Importantly, studies were compiled on the impact of differently processed tea, which contains different polyphenol profiles, on the gut microbiota from in vivo animal feeding trials, in vitro human fecal fermentation experiments, and in vivo human feeding trials from 2004-2024. The results were discussed in terms of different tea types and how their impacts are related to or different from each other in these three study groups.
Collapse
Affiliation(s)
- Zimo Zhao
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ruofan Chen
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ken Ng
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
9
|
Momen YS, Mishra J, Kumar N. Brain-Gut and Microbiota-Gut-Brain Communication in Type-2 Diabetes Linked Alzheimer's Disease. Nutrients 2024; 16:2558. [PMID: 39125436 PMCID: PMC11313915 DOI: 10.3390/nu16152558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 08/12/2024] Open
Abstract
The gastrointestinal (GI) tract, home to the largest microbial population in the human body, plays a crucial role in overall health through various mechanisms. Recent advancements in research have revealed the potential implications of gut-brain and vice-versa communication mediated by gut-microbiota and their microbial products in various diseases including type-2 diabetes and Alzheimer's disease (AD). AD is the most common type of dementia where most of cases are sporadic with no clearly identified cause. However, multiple factors are implicated in the progression of sporadic AD which can be classified as non-modifiable (e.g., genetic) and modifiable (e.g. Type-2 diabetes, diet etc.). Present review focusses on key players particularly the modifiable factors such as Type-2 diabetes (T2D) and diet and their implications in microbiota-gut-brain (MGB) and brain-gut (BG) communication and cognitive functions of healthy brain and their dysfunction in Alzheimer's Disease. Special emphasis has been given on elucidation of the mechanistic aspects of the impact of diet on gut-microbiota and the implications of some of the gut-microbial products in T2D and AD pathology. For example, mechanistically, HFD induces gut dysbiosis with driven metabolites that in turn cause loss of integrity of intestinal barrier with concomitant colonic and systemic chronic low-grade inflammation, associated with obesity and T2D. HFD-induced obesity and T2D parallel neuroinflammation, deposition of Amyloid β (Aβ), and ultimately cognitive impairment. The review also provides a new perspective of the impact of diet on brain-gut and microbiota-gut-brain communication in terms of transcription factors as a commonly spoken language that may facilitates the interaction between gut and brain of obese diabetic patients who are at a higher risk of developing cognitive impairment and AD. Other commonality such as tyrosine kinase expression and functions maintaining intestinal integrity on one hand and the phagocytic clarence by migratory microglial functions in brain are also discussed. Lastly, the characterization of the key players future research that might shed lights on novel potential pharmacological target to impede AD progression are also discussed.
Collapse
Affiliation(s)
| | | | - Narendra Kumar
- Department of Pharmaceutical Sciences, ILR College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX 78363, USA
| |
Collapse
|
10
|
Xie Y, Zhu H, Yuan Y, Guan X, Xie Q, Dong Z. Baseline gut microbiota profiles affect treatment response in patients with depression. Front Microbiol 2024; 15:1429116. [PMID: 39021622 PMCID: PMC11251908 DOI: 10.3389/fmicb.2024.1429116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
The role of the gut microbiota in the pathophysiology of depression has been explored in numerous studies, which have confirmed that the baseline gut microbial profiles of patients with depression differ from those of healthy individuals. The gut microbiome affects metabolic activity in the immune and central nervous systems and regulates intestinal ecology through the neuroendocrine system. Additionally, baseline changes in the gut microbiota differed among patients with depression who demonstrated varying treatment response. Currently, probiotics are an emerging treatment for depression; however, the efficacy of modulating the gut microbiota in the treatment of depression remains uncertain. Additionally, the mechanisms by which changes in the gut microbiota affect treatment response in patients with depression remain unclear. In this review, we aimed to summarize the differences in the baseline gut microbiota between the remission and non-remission groups after antidepressant therapy. Additionally, we summarized the possible mechanisms that may contribute to antidepressant resistance through the effects of the gut microbiome on the immune and nervous systems, various enzymes, bioaccumulation, and blood-brain barrier, and provide a basis for treating depression by targeting the gut microbiota.
Collapse
Affiliation(s)
- Yingjing Xie
- West China Hospital, Sichuan University, Chengdu, China
| | - Hanwen Zhu
- West China Hospital, Sichuan University, Chengdu, China
| | - Yanling Yuan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xuan Guan
- Chengdu Medical College, Chengdu, China
| | - Qinglian Xie
- Department of Outpatient, West China Hospital, Sichuan University, Chengdu, China
| | - Zaiquan Dong
- Department of Psychiatry and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Wang Q, Guo F, Zhang Q, Hu T, Jin Y, Yang Y, Ma Y. Organoids in gastrointestinal diseases: from bench to clinic. MedComm (Beijing) 2024; 5:e574. [PMID: 38948115 PMCID: PMC11214594 DOI: 10.1002/mco2.574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 07/02/2024] Open
Abstract
The etiology of gastrointestinal (GI) diseases is intricate and multifactorial, encompassing complex interactions between genetic predisposition and gut microbiota. The cell fate change, immune function regulation, and microenvironment composition in diseased tissues are governed by microorganisms and mutated genes either independently or through synergistic interactions. A comprehensive understanding of GI disease etiology is imperative for developing precise prevention and treatment strategies. However, the existing models used for studying the microenvironment in GI diseases-whether cancer cell lines or mouse models-exhibit significant limitations, which leads to the prosperity of organoids models. This review first describes the development history of organoids models, followed by a detailed demonstration of organoids application from bench to clinic. As for bench utilization, we present a layer-by-layer elucidation of organoid simulation on host-microbial interactions, as well as the application in molecular mechanism analysis. As for clinical adhibition, we provide a generalized interpretation of organoid application in GI disease simulation from inflammatory disorders to malignancy diseases, as well as in GI disease treatment including drug screening, immunotherapy, and microbial-targeting and screening treatment. This review draws a comprehensive and systematical depiction of organoids models, providing a novel insight into the utilization of organoids models from bench to clinic.
Collapse
Affiliation(s)
- Qinying Wang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Fanying Guo
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Qinyuan Zhang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - TingTing Hu
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - YuTao Jin
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yongzhi Yang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yanlei Ma
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
12
|
Sivaprasadan S, Anila KN, Nair K, Mallick S, Biswas L, Valsan A, Praseedom RK, Nair BKG, Sudhindran S. Microbiota and Gut-Liver Axis: An Unbreakable Bond? Curr Microbiol 2024; 81:193. [PMID: 38805045 DOI: 10.1007/s00284-024-03694-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/08/2024] [Indexed: 05/29/2024]
Abstract
The gut microbiota, amounting to approximately 100 trillion (1014) microbes represents a genetic repertoire that is bigger than the human genome itself. Evidence on bidirectional interplay between human and microbial genes is mounting. Microbiota probably play vital roles in diverse aspects of normal human metabolism, such as digestion, immune modulation, and gut endocrine function, as well as in the genesis and progression of many human diseases. Indeed, the gut microbiota has been most closely linked to various chronic ailments affecting the liver, although concrete scientific data are sparse. In this narrative review, we initially discuss the basic epidemiology of gut microbiota and the factors influencing their initial formation in the gut. Subsequently, we delve into the gut-liver axis and the evidence regarding the link between gut microbiota and the genesis or progression of various liver diseases. Finally, we summarise the recent research on plausible ways to modulate the gut microbiota to alter the natural history of liver disease.
Collapse
Affiliation(s)
- Saraswathy Sivaprasadan
- Department of Gastrointestinal Surgery and Solid Organ Transplantation, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - K N Anila
- Department of Gastrointestinal Surgery and Solid Organ Transplantation, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Krishnanunni Nair
- Department of Gastrointestinal Surgery and Solid Organ Transplantation, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Shweta Mallick
- Department of Gastrointestinal Surgery and Solid Organ Transplantation, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Lalitha Biswas
- Amrita School of Nanosciences and Molecular Medicine, Kochi, India
| | - Arun Valsan
- Department of Hepatology & Gastroenterology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | | | | | - Surendran Sudhindran
- Department of Gastrointestinal Surgery and Solid Organ Transplantation, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India.
| |
Collapse
|
13
|
Duysburgh C, Govaert M, Guillemet D, Marzorati M. Co-Supplementation of Baobab Fiber and Arabic Gum Synergistically Modulates the In Vitro Human Gut Microbiome Revealing Complementary and Promising Prebiotic Properties. Nutrients 2024; 16:1570. [PMID: 38892504 PMCID: PMC11173755 DOI: 10.3390/nu16111570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Arabic gum, a high molecular weight heteropolysaccharide, is a promising prebiotic candidate as its fermentation occurs more distally in the colon, which is the region where most chronic colonic diseases originate. Baobab fiber could be complementary due to its relatively simple structure, facilitating breakdown in the proximal colon. Therefore, the current study aimed to gain insight into how the human gut microbiota was affected in response to long-term baobab fiber and Arabic gum supplementation when tested individually or as a combination of both, allowing the identification of potential complementary and/or synergetic effects. The validated Simulator of the Human Intestinal Microbial Ecosystem (SHIME®), an in vitro gut model simulating the entire human gastrointestinal tract, was used. The microbial metabolic activity was examined, and quantitative 16S-targeted Illumina sequencing was used to monitor the gut microbial composition. Moreover, the effect on the gut microbial metabolome was quantitatively analyzed. Repeated administration of baobab fiber, Arabic gum, and their combination had a significant effect on the metabolic activity, diversity index, and community composition of the microbiome present in the simulated proximal and distal colon with specific impacts on Bifidobacteriaceae and Faecalibacterium prausnitzii. Despite the lower dosage strategy (2.5 g/day), co-supplementation of both compounds resulted in some specific synergistic prebiotic effects, including a biological activity throughout the entire colon, SCFA synthesis including a synergy on propionate, specifically increasing abundance of Akkermansiaceae and Christensenellaceae in the distal colon region, and enhancing levels of spermidine and other metabolites of interest (such as serotonin and ProBetaine).
Collapse
Affiliation(s)
- Cindy Duysburgh
- ProDigest Bv, Technologiepark 82, 9052 Ghent, Belgium; (C.D.); (M.G.)
| | - Marlies Govaert
- ProDigest Bv, Technologiepark 82, 9052 Ghent, Belgium; (C.D.); (M.G.)
| | | | - Massimo Marzorati
- ProDigest Bv, Technologiepark 82, 9052 Ghent, Belgium; (C.D.); (M.G.)
- Center of Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
14
|
Boeder AM, Spiller F, Carlstrom M, Izídio GS. Enterococcus faecalis: implications for host health. World J Microbiol Biotechnol 2024; 40:190. [PMID: 38702495 DOI: 10.1007/s11274-024-04007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
The microbiota represents a crucial area of research in maintaining human health due to its potential for uncovering novel biomarkers, therapies, and molecular mechanisms relevant to population identification and experimental model characterization. Among these microorganisms, Enterococcus faecalis, a Gram-positive bacterium found in the gastrointestinal tract of humans and animals, holds particular significance. Strains of this bacterial species have sparked considerable debate in the literature due to their dual nature; they can either be utilized as probiotics in the food industry or demonstrate resistance to antibiotics, potentially leading to severe illness, disability, and death. Given the diverse characteristics of Enterococcus faecalis strains, this review aims to provide a comprehensive understanding of their impact on various systems within the host, including the immunological, cardiovascular, metabolic, and nervous systems. Furthermore, we summarize the bacterium-host interaction characteristics and molecular effects to highlight their targets, features, and overall impact on microbial communities and host health.
Collapse
Affiliation(s)
- Ariela Maína Boeder
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Fernando Spiller
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Mattias Carlstrom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Geison Souza Izídio
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil.
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil.
- Department of Psychiatry and Legal Medicine, Autonomous University of Barcelona, Barcelona, Spain.
- Laboratório de Genética do Comportamento, Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Departamento de Biologia Celular, Embriologia e Genética, Florianopolis, SC, Brazil.
| |
Collapse
|
15
|
Tzeng HT, Lee WC. Impact of Transgenerational Nutrition on Nonalcoholic Fatty Liver Disease Development: Interplay between Gut Microbiota, Epigenetics and Immunity. Nutrients 2024; 16:1388. [PMID: 38732634 PMCID: PMC11085251 DOI: 10.3390/nu16091388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the most prevalent pediatric liver disorder, primarily attributed to dietary shifts in recent years. NAFLD is characterized by the accumulation of lipid species in hepatocytes, leading to liver inflammation that can progress to steatohepatitis, fibrosis, and cirrhosis. Risk factors contributing to NAFLD encompass genetic variations and metabolic disorders such as obesity, diabetes, and insulin resistance. Moreover, transgenerational influences, resulting in an imbalance of gut microbial composition, epigenetic modifications, and dysregulated hepatic immune responses in offspring, play a pivotal role in pediatric NAFLD development. Maternal nutrition shapes the profile of microbiota-derived metabolites in offspring, exerting significant influence on immune system regulation and the development of metabolic syndrome in offspring. In this review, we summarize recent evidence elucidating the intricate interplay between gut microbiota, epigenetics, and immunity in fetuses exposed to maternal nutrition, and its impact on the onset of NAFLD in offspring. Furthermore, potential therapeutic strategies targeting this network are also discussed.
Collapse
Affiliation(s)
- Hong-Tai Tzeng
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Wei-Chia Lee
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33332, Taiwan
| |
Collapse
|
16
|
Yoo S, Jung SC, Kwak K, Kim JS. The Role of Prebiotics in Modulating Gut Microbiota: Implications for Human Health. Int J Mol Sci 2024; 25:4834. [PMID: 38732060 PMCID: PMC11084426 DOI: 10.3390/ijms25094834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
The human gut microbiota, an intricate ecosystem within the gastrointestinal tract, plays a pivotal role in health and disease. Prebiotics, non-digestible food ingredients that beneficially affect the host by selectively stimulating the growth and/or activity of beneficial microorganisms, have emerged as a key modulator of this complex microbial community. This review article explores the evolution of the prebiotic concept, delineates various types of prebiotics, including fructans, galactooligosaccharides, xylooligosaccharides, chitooligosaccharides, lactulose, resistant starch, and polyphenols, and elucidates their impact on the gut microbiota composition. We delve into the mechanisms through which prebiotics exert their effects, particularly focusing on producing short-chain fatty acids and modulating the gut microbiota towards a health-promoting composition. The implications of prebiotics on human health are extensively reviewed, focusing on conditions such as obesity, inflammatory bowel disease, immune function, and mental health. The review further discusses the emerging concept of synbiotics-combinations of prebiotics and probiotics that synergistically enhance gut health-and highlights the market potential of prebiotics in response to a growing demand for functional foods. By consolidating current knowledge and identifying areas for future research, this review aims to enhance understanding of prebiotics' role in health and disease, underscoring their importance in maintaining a healthy gut microbiome and overall well-being.
Collapse
Affiliation(s)
- Suyeon Yoo
- Department of Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Suk-Chae Jung
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Kihyuck Kwak
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jun-Seob Kim
- Department of Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
17
|
Yang H, Jo H, Kim SH, Yun CS, Park SH, Park DS. Veillonella faecalis sp. nov., a propionic acid-producing bacterium isolated from the faeces of an infant. Antonie Van Leeuwenhoek 2024; 117:50. [PMID: 38472420 DOI: 10.1007/s10482-024-01951-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
A strictly anaerobic, Gram-stain-negative, catalase-negative, cocci-shaped, and propionate-producing bacterial strain, named Ds1651T was isolated from the fecal sample collected from a South Korean infant. Through a comparison of 16S rRNA gene sequences, it was revealed that Ds1651T had the highest phylogenetic affinity with Veillonella nakazawae KCTC 25297 T (99.86%), followed by Veillonella infantium KCTC 25370 T (99.80%), and Veillonella dispar KCTC 25309 T (99.73%) in the family Veillonellaceae. Average nucleotide identity values between Ds1651T and three reference species were 95.48% for Veillonella nakazawae KCTC 25297 T, 94.46% for Veillonella infantium KCTC 25370 T, and 92.81% for Veillonella dispar KCTC 25309 T. The G + C content of Ds1651T was 38.58 mol%. Major fermentation end-products were acetic and propionic acids in Trypticase peptone glucose yeast extract broth with 1% (v/v) sodium lactate. The predominant cellular fatty acids that account for more than 10% were summed in Feature 8 (C17:1 ω8c and/or C17:2) and C13:0. Based on the findings from phylogenetic, genomic, phenotypic, and chemotaxonomic studies, we propose that the type strain Ds1651T (= KCTC 25477 T = GDMCC 1.3707 T) represents a novel bacterial species within the genus Veillonella, with the proposed name Veillonella faecalis sp. nov.
Collapse
Affiliation(s)
- Haneol Yang
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-Gil, Jeongeup-Si, Jeollabuk-Do, 56212, Republic of Korea
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hana Jo
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-Gil, Jeongeup-Si, Jeollabuk-Do, 56212, Republic of Korea
| | - Seung Hyun Kim
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-Gil, Jeongeup-Si, Jeollabuk-Do, 56212, Republic of Korea
| | - Chan-Seok Yun
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-Gil, Jeongeup-Si, Jeollabuk-Do, 56212, Republic of Korea
| | - Seung-Hwan Park
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-Gil, Jeongeup-Si, Jeollabuk-Do, 56212, Republic of Korea.
| | - Doo-Sang Park
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-Gil, Jeongeup-Si, Jeollabuk-Do, 56212, Republic of Korea.
| |
Collapse
|
18
|
Trubitsina NP, Matiiv AB, Rogoza TM, Zudilova AA, Bezgina MD, Zhouravleva GA, Bondarev SA. Role of the Gut Microbiome and Bacterial Amyloids in the Development of Synucleinopathies. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:523-542. [PMID: 38648770 DOI: 10.1134/s0006297924030118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 04/25/2024]
Abstract
Less than ten years ago, evidence began to accumulate about association between the changes in the composition of gut microbiota and development of human synucleinopathies, in particular sporadic form of Parkinson's disease. We collected data from more than one hundred and thirty experimental studies that reported similar results and summarized the frequencies of detection of different groups of bacteria in these studies. It is important to note that it is extremely rare that a unidirectional change in the population of one or another group of microorganisms (only an elevation or only a reduction) was detected in the patients with Parkinson's disease. However, we were able to identify several groups of bacteria that were overrepresented in the patients with Parkinson's disease in the analyzed studies. There are various hypotheses about the molecular mechanisms that explain such relationships. Usually, α-synuclein aggregation is associated with the development of inflammatory processes that occur in response to the changes in the microbiome. However, experimental evidence is accumulating on the influence of bacterial proteins, including amyloids (curli), as well as various metabolites, on the α-synuclein aggregation. In the review, we provided up-to-date information about such examples.
Collapse
Affiliation(s)
- Nina P Trubitsina
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Anton B Matiiv
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Tatyana M Rogoza
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
- St. Petersburg Branch of the Vavilov Institute of General Genetics, Saint Petersburg, 198504, Russia
| | - Anna A Zudilova
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Mariya D Bezgina
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Galina A Zhouravleva
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Laboratory of Amyloid Biology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Stanislav A Bondarev
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia.
- Laboratory of Amyloid Biology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| |
Collapse
|
19
|
Rashid S, Sado AI, Afzal MS, Ahmed A, Almaalouli B, Waheed T, Abid R, Majumder K, Kumar V, Tejwaney U, Kumar S. Role of gut microbiota in cardiovascular diseases - a comprehensive review. Ann Med Surg (Lond) 2024; 86:1483-1489. [PMID: 38463085 PMCID: PMC10923299 DOI: 10.1097/ms9.0000000000001419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/30/2023] [Indexed: 03/12/2024] Open
Abstract
The connection between cardiovascular illnesses and the gut microbiota has drawn more and more attention in recent years. According to research, there are intricate relationships between dietary elements, gut bacteria, and their metabolites that affect cardiovascular health. In this study, the role of gut microbiota in cardiovascular disorders is examined, with an emphasis on the cardiac consequences brought on by changes in gut microbiota. This essay discusses the gut-heart axis in depth and in detail. It talks about clinical research looking at how soy consumption, probiotic supplements, and dietary changes affected gut microbiota and cardiovascular risk variables. Our goal is to clarify the possible pathways that connect gut microbiota to cardiovascular health and the implications for upcoming treatment approaches. The authors examine the composition, roles, and effects of the gut microbiota on cardiovascular health, including their contributions to hypertension, atherosclerosis, lipid metabolism, and heart failure. Endotoxemia, inflammation, immunological dysfunction, and host lipid metabolism are some of the potential processes investigated for how the gut microbiota affects cardiac outcomes. The research emphasizes the need for larger interventional studies and personalized medicine strategies to completely understand the complexity of the gut-heart axis and its implications for the management of cardiovascular disease. The development of novel treatment strategies and cutting-edge diagnostic technologies in cardiovascular medicine may be facilitated by a better understanding of this axis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rabia Abid
- Liaquat college of medicine and dentistry, Karachi, Pakistan
| | | | | | | | - Sarwan Kumar
- Wayne State University
- Department of Medicine, Chittagong Medical College, Chittagong, Bangladesh
| |
Collapse
|
20
|
Salvesi C, Coman MM, Tomás-Barberán FA, Fiorini D, Silvi S. In vitro study of potential prebiotic properties of monovarietal extra virgin olive oils. Int J Food Sci Nutr 2024; 75:45-57. [PMID: 37845639 DOI: 10.1080/09637486.2023.2270639] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
Olive oil, essential ingredient of the Mediterranean diet, is attracting a growing interest due to increasing evidence on its beneficial effects on human health. This study investigated whether extra virgin olive oil (EVOO) possess prebiotic properties. Twenty different monovarietal EVOO samples from 5 Marche region cultivars (Italy) were studied. The prebiotic activity of EVOOs was assessed monitoring the selective stimulation of gut bacterial species and the short chain fatty acids (SCFAs) production, using an in vitro fermentation system. All EVOOs selectively stimulated Lactobacillus spp., with a stronger activity than that observed in the inulin fermentation (positive control). Also, the bifidobacteria population increased; this bifidogenic stimulation was of EVOOs from Raggia cultivar. SCFAs appeared significantly higher after 24 h in all EVOO fermentations than in the control. Acetic and propionic acids production was particularly stimulated. Overall, most of the investigated EVOOs had a potential prebiotic activity, similar or stronger than inulin.
Collapse
Affiliation(s)
- Chiara Salvesi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, Italy
| | | | | | - Dennis Fiorini
- School of Science and Technology, Chemistry Division, ChIP - Chemistry Interdisciplinary Project, University of Camerino, Camerino, Italy
| | - Stefania Silvi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, Italy
| |
Collapse
|
21
|
Hussein N, Rajasuriar R, Khan AM, Lim YAL, Gan GG. The Role of the Gut Microbiome in Hematological Cancers. Mol Cancer Res 2024; 22:7-20. [PMID: 37906201 DOI: 10.1158/1541-7786.mcr-23-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/23/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
Humans are in a complex symbiotic relationship with a wide range of microbial organisms, including bacteria, viruses, and fungi. The evolution and composition of the human microbiome can be an indicator of how it may affect human health and susceptibility to diseases. Microbiome alteration, termed as dysbiosis, has been linked to the pathogenesis and progression of hematological cancers. A variety of mechanisms, including epithelial barrier disruption, local chronic inflammation response trigger, antigen dis-sequestration, and molecular mimicry, have been proposed to be associated with gut microbiota. Dysbiosis may be induced or worsened by cancer therapies (such as chemotherapy and/or hematopoietic stem cell transplantation) or infection. The use of antibiotics during treatment may also promote dysbiosis, with possible long-term consequences. The aim of this review is to provide a succinct summary of the current knowledge describing the role of the microbiome in hematological cancers, as well as its influence on their therapies. Modulation of the gut microbiome, involving modifying the composition of the beneficial microorganisms in the management and treatment of hematological cancers is also discussed. Additionally discussed are the latest developments in modeling approaches and tools used for computational analyses, interpretation and better understanding of the gut microbiome data.
Collapse
Affiliation(s)
- Najihah Hussein
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Reena Rajasuriar
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Asif M Khan
- School of Data Sciences, Perdana University, Kuala Lumpur, Malaysia
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkiye
- College of Computing and Information Technology, University of Doha for Science and Technology, Doha, Qatar
| | - Yvonne Ai-Lian Lim
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Gin Gin Gan
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Angelova IY, Kovtun AS, Averina OV, Koshenko TA, Danilenko VN. Unveiling the Connection between Microbiota and Depressive Disorder through Machine Learning. Int J Mol Sci 2023; 24:16459. [PMID: 38003647 PMCID: PMC10671666 DOI: 10.3390/ijms242216459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
In the last few years, investigation of the gut-brain axis and the connection between the gut microbiota and the human nervous system and mental health has become one of the most popular topics. Correlations between the taxonomic and functional changes in gut microbiota and major depressive disorder have been shown in several studies. Machine learning provides a promising approach to analyze large-scale metagenomic data and identify biomarkers associated with depression. In this work, machine learning algorithms, such as random forest, elastic net, and You Only Look Once (YOLO), were utilized to detect significant features in microbiome samples and classify individuals based on their disorder status. The analysis was conducted on metagenomic data obtained during the study of gut microbiota of healthy people and patients with major depressive disorder. The YOLO method showed the greatest effectiveness in the analysis of the metagenomic samples and confirmed the experimental results on the critical importance of a reduction in the amount of Faecalibacterium prausnitzii for the manifestation of depression. These findings could contribute to a better understanding of the role of the gut microbiota in major depressive disorder and potentially lead the way for novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Irina Y. Angelova
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (A.S.K.); (O.V.A.); (V.N.D.)
| | | | | | | | | |
Collapse
|
23
|
Dewi DAR, Perdiyana A, Wiliantari NM, Nadhira F, Arkania N, Salsabila CA, Allun CV, Allatib A, Dewantara K. Managing the Skin Microbiome as a New Bacteriotherapy for Inflammatory Atopic Dermatitis. Cureus 2023; 15:e48803. [PMID: 38024036 PMCID: PMC10645580 DOI: 10.7759/cureus.48803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
The microbiome, comprising various bacteria, assumes a significant role in the immune system's maturation and maintaining bodily homeostasis. Alterations in the microbial composition can contribute to the initiation and progression of inflammation. Recent studies reveal that changes in microbial composition and function, known as dysbiosis in the skin and gut, have been associated with altered immunological responses and skin barrier disruption. These changes are implicated in the development of several skin diseases, such as atopic dermatitis (AD). This review examines research demonstrating the potential of microbiome repair as a therapeutic approach to reduce the effect of inflammatory processes in the skin during atopic dermatitis. This way, corticosteroids in atopic dermatitis therapy can be reduced or even replaced with treatments focusing on controlling the skin microbiome. This study used scientific literature from recognized platforms, including PubMed, Scopus, Google Scholar, and ScienceDirect, covering publications from 2013 to 2023. The primary aim of this study was to assess the efficacy of skin microbiome management in treating atopic dermatitis. This study concludes that physicians must comprehensively understand the microbiome's involvement in atopic dermatitis, including its pathophysiological implications and its relevance to therapeutic interventions.
Collapse
Affiliation(s)
- Dian Andriani Ratna Dewi
- Department of Dermatovenereology, Faculty of Military Medicine, The Republic of Indonesia Defense University, Bogor, IDN
- Department of Dermatovenereology, Gatot Soebroto Central Army Hospital, Central Jakarta, IDN
| | - Angki Perdiyana
- Department of Dermatovenereology, Faculty of Military Medicine, The Republic of Indonesia Defense University, Bogor, IDN
| | - Ni M Wiliantari
- Department of Dermatovenereology, Ratna Dewi Principal Clinic, Bekasi, IDN
| | - Farrasila Nadhira
- Department of Dermatovenereology, Ratna Dewi Principal Clinic, Bekasi, IDN
| | - Nabila Arkania
- Department of Dermatovenereology, Faculty of Medicine, Public Health, and Nursing, Gadjah Mada University, Special Region of Yogyakarta, IDN
| | - Cut A Salsabila
- Department of Dermatovenereology, Faculty of Military Medicine, The Republic of Indonesia Defense University, Bogor, IDN
| | - Clara V Allun
- Department of Dermatovenereology, Faculty of Military Medicine, The Republic of Indonesia Defense University, Bogor, IDN
| | - Arohid Allatib
- Department of Dermatovenereology, Faculty of Military Medicine, The Republic of Indonesia Defense University, Bogor, IDN
| | - Kelvin Dewantara
- Department of Dermatovenereology, Faculty of Military Medicine, The Republic of Indonesia Defense University, Bogor, IDN
| |
Collapse
|
24
|
Li R, Roy R. Gut Microbiota and Its Role in Anti-aging Phenomenon: Evidence-Based Review. Appl Biochem Biotechnol 2023; 195:6809-6823. [PMID: 36930406 DOI: 10.1007/s12010-023-04423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
The gut microbiota widely varies from individual to individual, but the variation shows stability over a period of time. The presence of abundant bacterial taxa is a common structure that determines the microbiota of human being. The presence of this microbiota greatly varies from geographic location, sex, food habits and age. Microbiota existing within the gut plays a significant role in nutrient absorption, development of immunity, curing of diseases and various developmental phases. With change in age, chronology diversification and variation of gut microbiota are observed within human being. But it has been observed that with the enhancement of age the richness of the microbial diversity has shown a sharp decline. The enhancement of age also results in the drift of the characteristic of the microbes associated with the microbiota from commensals to pathogenic. Various studies have shown that age associated gut-dysbiosis may result in decrease in tlongevity along with unhealthy aging. The host signalling pathways regulate the presence of the gut microbiota and their longevity. The presence of various nutrients regulates the presence of various microbial species. Innate immunity can be triggered due to the mechanism of gut dysbiosis resulting in the development of various age-related pathological syndromes and early aging. The gut microbiota possesses the ability to communicate with the host system with the help of various types of biomolecules, epigenetic mechanisms and various types of signalling-independent pathways. Drift in this mechanism of communication may affect the life span along with the health of the host. Thus, this review would focus on the use of gut-microbiota in anti-aging and healthy conditions of the host system.
Collapse
Affiliation(s)
- Ruishan Li
- Guiyang Healthcare Vocational University, Guiyang, China.
| | - Rupak Roy
- SHRM Biotechnologies Pvt. Ltd, Kolkata, India
| |
Collapse
|
25
|
Almeida C, Gonçalves-Nobre JG, Alpuim Costa D, Barata P. The potential links between human gut microbiota and cardiovascular health and disease - is there a gut-cardiovascular axis? FRONTIERS IN GASTROENTEROLOGY 2023; 2. [DOI: 10.3389/fgstr.2023.1235126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The gut-heart axis is an emerging concept highlighting the crucial link between gut microbiota and cardiovascular diseases (CVDs). Recent studies have demonstrated that gut microbiota is pivotal in regulating host metabolism, inflammation, and immune function, critical drivers of CVD pathophysiology. Despite a strong link between gut microbiota and CVDs, this ecosystem’s complexity still needs to be fully understood. The short-chain fatty acids, trimethylamine N-oxide, bile acids, and polyamines are directly or indirectly involved in the development and prognosis of CVDs. This review explores the relationship between gut microbiota metabolites and CVDs, focusing on atherosclerosis and hypertension, and analyzes personalized microbiota-based modulation interventions, such as physical activity, diet, probiotics, prebiotics, and fecal microbiota transplantation, as a promising strategy for CVD prevention and treatment.
Collapse
|
26
|
Ma L, Jiang X, Huang Q, Chen W, Zhang H, Pei H, Cao Y, Wang H, Li H. Traditional Chinese medicine for the treatment of Alzheimer's disease: A focus on the microbiota-gut-brain axis. Biomed Pharmacother 2023; 165:115244. [PMID: 37516021 DOI: 10.1016/j.biopha.2023.115244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023] Open
Abstract
Alzheimer's disease (AD), the most frequent cause of dementia, is a neurodegenerative disorder characterised by a progressive decline in cognitive function that is associated with the formation of amyloid beta plaques and neurofibrillary tangles. Gut microbiota comprises of a complex community of microorganisms residing in the gastrointestinal ecosystem. These microorganisms can participate in gut-brain axis activities, thereby affecting cognitive function and associated behaviours. Increasing evidence has indicated that gut dysbiosis can jeopardise host immune responses and promote inflammation, which may be an initiating factor for the onset and evolution of AD. Traditional Chinese medicine (TCM) is a promising resource which encompasses immense chemical diversity and multiple-target characteristics for the treatment of AD. Many TCMs regulate the gut microbiota during treatment of diseases, indicating that gut microbiota may be an important target for TCM efficacy. In this review, we summarised the role of the microbiota-gut-brain axis in the development of AD and the effects of TCM in treating AD by regulating the gut microbiota. We anticipate that this review will provide novel perspectives and strategies for future AD research and treatments.
Collapse
Affiliation(s)
- Lina Ma
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Xuefan Jiang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Qiaoyi Huang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Wenxuan Chen
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Huiqin Zhang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Hui Pei
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Yu Cao
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Huichan Wang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Hao Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, PR China.
| |
Collapse
|
27
|
Lucia CMD, Oliveira LA, Dias KA, Pereira SMS, da Conceição AR, Babu PVA. Scientific Evidence for the Beneficial Effects of Dietary Blueberries on Gut Health: A Systematic Review. Mol Nutr Food Res 2023; 67:e2300096. [PMID: 37428472 PMCID: PMC10538750 DOI: 10.1002/mnfr.202300096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/10/2023] [Indexed: 07/11/2023]
Abstract
Emerging evidence indicates the association between an unhealthy gut and chronic diseases. A healthy gut comprises an intact gut epithelium and balanced gut microbes. Diet is one of the critical factors that modulate gut health by positively or negatively affecting the intestinal barrier and gut microbes. Blueberries are an excellent source of health-promoting bioactive components, and this systematic review is conducted to evaluate the effect of dietary blueberries on gut health. A literature search is conducted on PubMed/MEDLINE, Scopus, Web of Science, and Embase databases to review relevant studies published between 2011 and 2022 according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The Systematic Review Center for Laboratory Animal Experimentation Risk of Bias (SYRCLE-RoB) tool is used for methodological quality assessments. Sixteen studies included from four countries are reviewed and the results are synthesized narratively. This data analysis indicates that blueberry supplementation improves gut health by improving intestinal morphology, reducing gut permeability, suppressing oxidative stress, ameliorating gut inflammation, and modulating the composition and function of gut microbes. However, there are significant knowledge gaps in this field. These findings indicate that further studies are needed to establish the beneficial effects of blueberries on gut health.
Collapse
Affiliation(s)
- Ceres Mattos Della Lucia
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Livya Alves Oliveira
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Kelly Aparecida Dias
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | - Pon Velayutham Anandh Babu
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
28
|
Belli M, Barone L, Longo S, Prandi FR, Lecis D, Mollace R, Margonato D, Muscoli S, Sergi D, Federici M, Barillà F. Gut Microbiota Composition and Cardiovascular Disease: A Potential New Therapeutic Target? Int J Mol Sci 2023; 24:11971. [PMID: 37569352 PMCID: PMC10418329 DOI: 10.3390/ijms241511971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
A great deal of evidence has revealed an important link between gut microbiota and the heart. In particular, the gut microbiota plays a key role in the onset of cardiovascular (CV) disease, including heart failure (HF). In HF, splanchnic hypoperfusion causes intestinal ischemia resulting in the translocation of bacteria and their metabolites into the blood circulation. Among these metabolites, the most important is Trimethylamine N-Oxide (TMAO), which is responsible, through various mechanisms, for pathological processes in different organs and tissues. In this review, we summarise the complex interaction between gut microbiota and CV disease, particularly with respect to HF, and the possible strategies for influencing its composition and function. Finally, we highlight the potential role of TMAO as a novel prognostic marker and a new therapeutic target for HF.
Collapse
Affiliation(s)
- Martina Belli
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (M.B.)
- Cardiovascular Imaging Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Lucy Barone
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (M.B.)
| | - Susanna Longo
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy (R.M.)
| | - Francesca Romana Prandi
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (M.B.)
- Division of Cardiology, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Dalgisio Lecis
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (M.B.)
| | - Rocco Mollace
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy (R.M.)
- Cardiovascular Department, Humanitas Gavazzeni, 24125 Bergamo, Italy
| | - Davide Margonato
- Cardiovascular Imaging Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Saverio Muscoli
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (M.B.)
| | - Domenico Sergi
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (M.B.)
| | - Massimo Federici
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy (R.M.)
| | - Francesco Barillà
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (M.B.)
| |
Collapse
|
29
|
Liu Y, Zhong W, Li X, Shen F, Ma X, Yang Q, Hong S, Sun Y. Diets, Gut Microbiota and Metabolites. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:268-284. [PMID: 37325710 PMCID: PMC10260722 DOI: 10.1007/s43657-023-00095-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The gut microbiota refers to the gross collection of microorganisms, estimated trillions of them, which reside within the gut and play crucial roles in the absorption and digestion of dietary nutrients. In the past decades, the new generation 'omics' (metagenomics, transcriptomics, proteomics, and metabolomics) technologies made it possible to precisely identify microbiota and metabolites and describe their variability between individuals, populations and even different time points within the same subjects. With massive efforts made, it is now generally accepted that the gut microbiota is a dynamically changing population, whose composition is influenced by the hosts' health conditions and lifestyles. Diet is one of the major contributors to shaping the gut microbiota. The components in the diets vary in different countries, religions, and populations. Some special diets have been adopted by people for hundreds of years aiming for better health, while the underlying mechanisms remain largely unknown. Recent studies based on volunteers or diet-treated animals demonstrated that diets can greatly and rapidly change the gut microbiota. The unique pattern of the nutrients from the diets and their metabolites produced by the gut microbiota has been linked with the occurrence of diseases, including obesity, diabetes, nonalcoholic fatty liver disease, cardiovascular disease, neural diseases, and more. This review will summarize the recent progress and current understanding of the effects of different dietary patterns on the composition of gut microbiota, bacterial metabolites, and their effects on the host's metabolism.
Collapse
Affiliation(s)
- Yilian Liu
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Human Phenome Institute, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200433 China
| | - Wanglei Zhong
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Human Phenome Institute, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200433 China
| | - Xiao Li
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Human Phenome Institute, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200433 China
| | - Feng Shen
- Department of Hepatobiliary Surgery, Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442001 Hubei China
| | - Xiaonan Ma
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Human Phenome Institute, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200433 China
| | - Qi Yang
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Human Phenome Institute, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200433 China
| | - Shangyu Hong
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Human Phenome Institute, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200433 China
| | - Yan Sun
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501 USA
| |
Collapse
|
30
|
Dazıroğlu MEÇ, Yıldıran H. Intestinal dysbiosis and probiotic use: its place in hepatic encephalopathy in cirrhosis. Ann Gastroenterol 2023; 36:141-148. [PMID: 36864944 PMCID: PMC9932865 DOI: 10.20524/aog.2023.0776] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/02/2023] [Indexed: 02/05/2023] Open
Abstract
The gut microbiota, which plays an important role in health and disease processes, is affected by many disease processes, such as cirrhosis, and dysbiosis can lead to the development of numerous liver diseases, including complications of cirrhosis. In this disease group, the intestinal microbiota shifts towards dysbiosis for reasons such as endotoxemia, increased intestinal permeability, and decreased bile acid production. Although weak absorbable antibiotics and lactulose are among the treatment strategies in cirrhosis and its most common complication, hepatic encephalopathy (HE), this may not be the most appropriate treatment option for all patients, in view of its side-effects and high costs. Accordingly, it seems possible that probiotics could be used as an alternative treatment. The use of probiotics in these patient groups has a direct effect on the gut microbiota. Probiotics can also provide treatment with multiple effects through various mechanisms, such as lowering serum ammonia levels, reducing oxidative stress and reducing the intake of other toxins. This review was written to explain the intestinal dysbiosis associated with HE in cirrhotic patients, and the role of probiotics in treatment.
Collapse
Affiliation(s)
- Merve Esra Çıtar Dazıroğlu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara, Turkey
| | - Hilal Yıldıran
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara, Turkey
| |
Collapse
|
31
|
Xavier J, Anu M, Fathima AS, Ravichandiran V, Kumar N. Intriguing Role of Gut-Brain Axis on Cognition with an Emphasis on Interaction with Papez Circuit. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:1146-1163. [PMID: 35702801 DOI: 10.2174/1871527321666220614124145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The gut microbiome is a complicated ecosystem of around a hundred billion symbiotic bacteria cells. Bidirectional communication between the gut and the brain is facilitated by the immune system, the enteric nervous system, the vagus nerve, and microbial compounds such as tryptophan metabolites and short-chain fatty acids (SCFAs). The current study emphasises the relationship of the gut-brain axis with cognitive performance and elucidates the underlying biological components, with a focus on neurotransmitters such as serotonin, indole derivatives, and catecholamine. These biological components play important roles in both the digestive and brain systems. Recent research has linked the gut microbiome to a variety of cognitive disorders, including Alzheimer's (AD). The review describes the intriguing role of the gut-brain axis in recognition memory depending on local network connections within the hippocampal as well as other additional hippocampal portions of the Papez circuit. The available data from various research papers show how the gut microbiota might alter brain function and hence psychotic and cognitive illnesses. The role of supplementary probiotics is emphasized for the reduction of brain-related dysfunction as a viable strategy in handling cognitive disorders. Further, the study elucidates the mode of action of probiotics with reported adverse effects.
Collapse
Affiliation(s)
- Joyal Xavier
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - M Anu
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - A S Fathima
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - V Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| |
Collapse
|
32
|
Giuffrè M, Gazzin S, Zoratti C, Llido JP, Lanza G, Tiribelli C, Moretti R. Celiac Disease and Neurological Manifestations: From Gluten to Neuroinflammation. Int J Mol Sci 2022; 23:15564. [PMID: 36555205 PMCID: PMC9779232 DOI: 10.3390/ijms232415564] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Celiac disease (CD) is a complex multi-organ disease with a high prevalence of extra-intestinal involvement, including neurological and psychiatric manifestations, such as cerebellar ataxia, peripheral neuropathy, epilepsy, headache, cognitive impairment, and depression. However, the mechanisms behind the neurological involvement in CD remain controversial. Recent evidence shows these can be related to gluten-mediated pathogenesis, including antibody cross-reaction, deposition of immune-complex, direct neurotoxicity, and in severe cases, vitamins or nutrients deficiency. Here, we have summarized new evidence related to gut microbiota and the so-called "gut-liver-brain axis" involved in CD-related neurological manifestations. Additionally, there has yet to be an agreement on whether serological or neurophysiological findings can effectively early diagnose and properly monitor CD-associated neurological involvement; notably, most of them can revert to normal with a rigorous gluten-free diet. Moving from a molecular level to a symptom-based approach, clinical, serological, and neurophysiology data might help to disentangle the many-faceted interactions between the gut and brain in CD. Eventually, the identification of multimodal biomarkers might help diagnose, monitor, and improve the quality of life of patients with "neuroCD".
Collapse
Affiliation(s)
- Mauro Giuffrè
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Silvia Gazzin
- The Liver-Brain Unit “Rita Moretti”, Italian Liver Foundation, 34149 Trieste, Italy
| | - Caterina Zoratti
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - John Paul Llido
- The Liver-Brain Unit “Rita Moretti”, Italian Liver Foundation, 34149 Trieste, Italy
- Department of Life Sciences, University of Trieste, 34128 Trieste, Italy
- Philippine Council for Healthcare Research and Development, Department of Science and Technology, Bicutan Taguig City 1631, Philippines
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Claudio Tiribelli
- The Liver-Brain Unit “Rita Moretti”, Italian Liver Foundation, 34149 Trieste, Italy
| | - Rita Moretti
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| |
Collapse
|
33
|
Multifaceted role of synbiotics as nutraceuticals, therapeutics and carrier for drug delivery. Chem Biol Interact 2022; 368:110223. [DOI: 10.1016/j.cbi.2022.110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022]
|
34
|
Wagh SK, Lammers KM, Padul MV, Rodriguez-Herrera A, Dodero VI. Celiac Disease and Possible Dietary Interventions: From Enzymes and Probiotics to Postbiotics and Viruses. Int J Mol Sci 2022; 23:ijms231911748. [PMID: 36233048 PMCID: PMC9569549 DOI: 10.3390/ijms231911748] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022] Open
Abstract
Celiac Disease (CeD) is a chronic small intestinal immune-mediated enteropathy caused by the ingestion of dietary gluten proteins in genetically susceptible individuals. CeD is one of the most common autoimmune diseases, affecting around 1.4% of the population globally. To date, the only acceptable treatment for CeD is strict, lifelong adherence to a gluten-free diet (GFD). However, in some cases, GFD does not alter gluten-induced symptoms. In addition, strict adherence to a GFD reduces patients’ quality of life and is often a socio-economic burden. This narrative review offers an interdisciplinary overview of CeD pathomechanism and the limitations of GFD, focusing on current research on possible dietary interventions. It concentrates on the recent research on the degradation of gluten through enzymes, the modulation of the microbiome, and the different types of “biotics” strategies, from probiotics to the less explored “viromebiotics” as possible beneficial complementary interventions for CeD management. The final aim is to set the context for future research that may consider the role of gluten proteins and the microbiome in nutritional and non-pharmacological interventions for CeD beyond the sole use of the GFD.
Collapse
Affiliation(s)
- Sandip K. Wagh
- Department of Organic and Bioorganic Chemistry, Bielefeld University, 33615 Bielefeld, Germany
- Department of Biochemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India
| | | | - Manohar V. Padul
- Department of Biochemistry, The Institute of Science, Dr. Homi Bhabha State University, Mumbai 400032, India
| | | | - Veronica I. Dodero
- Department of Organic and Bioorganic Chemistry, Bielefeld University, 33615 Bielefeld, Germany
- Correspondence:
| |
Collapse
|
35
|
Wagh SK, Lammers KM, Padul MV, Rodriguez-Herrera A, Dodero VI. Celiac Disease and Possible Dietary Interventions: From Enzymes and Probiotics to Postbiotics and Viruses. Int J Mol Sci 2022. [PMID: 36233048 DOI: 10.3390/ijms231911748.pmid:36233048;pmcid:pmc9569549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Celiac Disease (CeD) is a chronic small intestinal immune-mediated enteropathy caused by the ingestion of dietary gluten proteins in genetically susceptible individuals. CeD is one of the most common autoimmune diseases, affecting around 1.4% of the population globally. To date, the only acceptable treatment for CeD is strict, lifelong adherence to a gluten-free diet (GFD). However, in some cases, GFD does not alter gluten-induced symptoms. In addition, strict adherence to a GFD reduces patients' quality of life and is often a socio-economic burden. This narrative review offers an interdisciplinary overview of CeD pathomechanism and the limitations of GFD, focusing on current research on possible dietary interventions. It concentrates on the recent research on the degradation of gluten through enzymes, the modulation of the microbiome, and the different types of "biotics" strategies, from probiotics to the less explored "viromebiotics" as possible beneficial complementary interventions for CeD management. The final aim is to set the context for future research that may consider the role of gluten proteins and the microbiome in nutritional and non-pharmacological interventions for CeD beyond the sole use of the GFD.
Collapse
Affiliation(s)
- Sandip K Wagh
- Department of Organic and Bioorganic Chemistry, Bielefeld University, 33615 Bielefeld, Germany
- Department of Biochemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India
| | | | - Manohar V Padul
- Department of Biochemistry, The Institute of Science, Dr. Homi Bhabha State University, Mumbai 400032, India
| | | | - Veronica I Dodero
- Department of Organic and Bioorganic Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
36
|
Defeudis G, Rossini M, Khazrai YM, Pipicelli AMV, Brucoli G, Veneziano M, Strollo F, Bellia A, Bitterman O, Lauro D, Mora D, Santarelli E. The gut microbiome as possible mediator of the beneficial effects of very low calorie ketogenic diet on type 2 diabetes and obesity: a narrative review. Eat Weight Disord 2022; 27:2339-2346. [PMID: 35773554 DOI: 10.1007/s40519-022-01434-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/11/2022] [Indexed: 10/17/2022] Open
Abstract
Several studies have shown a strong correlation between the different types of diets and gut microbiota composition on glycemia and weight loss. In this direction, low-carbohydrate and ketogenic diets have gained popularity, despite studies published so far leading to controversial results on subjects with diabetes. In this narrative review, firstly, we aimed to analyze the role of very-low-calorie ketogenic diets (VLCKDs) in type 2 diabetes (T2DM) and obesity management. Secondly, in this context, we focused attention on gut microbiota as a function of VLCKD, particularly in T2DM and obesity treatment. Finally, we reported all this evidence to underline the importance of gut microbiota to exalt new nutritional strategies for "tailor-made" management, treatment, and rehabilitation in subjects with T2DM and obesity, even with diabetic complications. In conclusion, this narrative review outlined the beneficial impact of VLCKD on gut microbiota even in subjects with T2DM and obesity, and, despite inner VLCKD short-duration feature allowing no sound-enough provisions for long-term outcomes, witnessed in favor of the short-term safety of VLCKD in those patients.Level of evidence Level V: Opinions of authorities, based on descriptive studies, narrative reviews, clinical experience, or reports of expert committees.
Collapse
Affiliation(s)
- G Defeudis
- Unit of Endocrinology and Diabetes, Department of Medicine, University Campus Bio-Medico di Roma, Rome, Italy.
| | - M Rossini
- Diet and Diabetes Unit, ASL RM1, Rome, Italy
| | - Y M Khazrai
- Unit of Food Science and Nutrition, Department of Science and Technology for Humans and the Environment, University Campus Bio-Medico di Roma, Rome, Italy
| | - A M V Pipicelli
- UOC di Nefrologia, Dialisi e Trapianto, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - G Brucoli
- Diet and Diabetes Unit, ASL RM1, Rome, Italy
| | - M Veneziano
- Diet and Diabetes Unit, ASL RM1, Rome, Italy
| | - F Strollo
- Endocrinology and Diabetes Unit, IRCCS San Raffaele Pisana, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
37
|
Hazime R, Eddehbi FE, El Mojadili S, Lakhouaja N, Souli I, Salami A, M’Raouni B, Brahim I, Oujidi M, Guennouni M, Bousfiha AA, Admou B. Inborn errors of immunity and related microbiome. Front Immunol 2022; 13:982772. [PMID: 36177048 PMCID: PMC9513548 DOI: 10.3389/fimmu.2022.982772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022] Open
Abstract
Inborn errors of immunity (IEI) are characterized by diverse clinical manifestations that are dominated by atypical, recurrent, chronic, or severe infectious or non-infectious features, including autoimmunity, lymphoproliferative disease, granulomas, and/or malignancy, which contribute substantially to morbidity and mortality. Some data suggest a correlation between clinical manifestations of IEI and altered gut microbiota. Many IEI display microbial dysbiosis resulting from the proliferation of pro-inflammatory bacteria or a decrease in anti-inflammatory bacteria with variations in the composition and function of numerous microbiota. Dysbiosis is considered more established, mainly within common variable immunodeficiency, selective immunoglobulin A deficiency, severe combined immunodeficiency diseases, Wiskott–Aldrich syndrome, Hyper-IgE syndrome, autoimmune polyendocrinopathy–candidiasis–ectodermal-dystrophy (APECED), immune dysregulation, polyendocrinopathy, enteropathy X-linked (IPEX) syndrome, IL-10 receptor deficiency, chronic granulomatous disease, and Kostmann disease. For certain IEIs, the specific predominance of gastrointestinal, respiratory, and cutaneous involvement, which is frequently associated with dysbiosis, justifies the interest for microbiome identification. With the better understanding of the relationship between gut microbiota, host immunity, and infectious diseases, the integration of microbiota modulation as a therapeutic approach or a preventive measure of infection becomes increasingly relevant. Thus, a promising strategy is to develop optimized prebiotics, probiotics, postbiotics, and fecal microbial transplantation to rebalance the intestinal microbiota and thereby attenuate the disease activity of many IEIs.
Collapse
Affiliation(s)
- Raja Hazime
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
- Biosciences Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Fatima-Ezzohra Eddehbi
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Saad El Mojadili
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Nadia Lakhouaja
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Ikram Souli
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Abdelmouïne Salami
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Bouchra M’Raouni
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Imane Brahim
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Mohamed Oujidi
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Morad Guennouni
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Ahmed Aziz Bousfiha
- Pediatric infectious and Immunology Department, Ibn Rochd University Hospital, Casablanca, Morocco
- Laboratory of Clinical Immunology inflammation and Allergy, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Brahim Admou
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
- Biosciences Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
- *Correspondence: Brahim Admou,
| |
Collapse
|
38
|
Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C, Zhu D, Koya JB, Wei L, Li J, Chen ZS. Microbiota in health and diseases. Signal Transduct Target Ther 2022; 7:135. [PMID: 35461318 PMCID: PMC9034083 DOI: 10.1038/s41392-022-00974-4] [Citation(s) in RCA: 1135] [Impact Index Per Article: 378.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
The role of microbiota in health and diseases is being highlighted by numerous studies since its discovery. Depending on the localized regions, microbiota can be classified into gut, oral, respiratory, and skin microbiota. The microbial communities are in symbiosis with the host, contributing to homeostasis and regulating immune function. However, microbiota dysbiosis can lead to dysregulation of bodily functions and diseases including cardiovascular diseases (CVDs), cancers, respiratory diseases, etc. In this review, we discuss the current knowledge of how microbiota links to host health or pathogenesis. We first summarize the research of microbiota in healthy conditions, including the gut-brain axis, colonization resistance and immune modulation. Then, we highlight the pathogenesis of microbiota dysbiosis in disease development and progression, primarily associated with dysregulation of community composition, modulation of host immune response, and induction of chronic inflammation. Finally, we introduce the clinical approaches that utilize microbiota for disease treatment, such as microbiota modulation and fecal microbial transplantation.
Collapse
Affiliation(s)
- Kaijian Hou
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Xuan-Yu Chen
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Dongya Zhang
- Microbiome Research Center, Moon (Guangzhou) Biotech Ltd, Guangzhou, 510535, China
| | - Chuanxing Xiao
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Dan Zhu
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Jagadish B Koya
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Liuya Wei
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Jilin Li
- Department of Cardiovascular, The Second Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| |
Collapse
|
39
|
Ouyang X, Duan H, Jin Q, Luo X, Han L, Zhao B, Li J, Chen Y, Lin Y, Liu Y, Huang Y, Shuang S, Huang C, He R, Yao Q, Xue Y, Guo S, Zhao J. Moxibustion may delay the aging process of Wistar rats by regulating intestinal microbiota. Biomed Pharmacother 2022; 146:112147. [PMID: 34810050 DOI: 10.1016/j.biopha.2021.112147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 11/29/2022] Open
Abstract
As one of the important treatments of health care and anti-aging in traditional Chinese medicine (TCM), moxibustion has been proved to have the effects of scavenging free radicals, anti-oxidation, reducing inflammatory reaction, regulating immunity and so on. Recent studies have shown that intestinal microbiota affect the process of aging. The relationship between aging, moxibustion and intestinal microbiota is still unclear. In this study, we explored the effects of moxibustion at Guanyuan (RN4) acupoint on intestinal microbiota, short-chain fatty acids and immunological characteristics of young and elder female Wistar rats to explore the relationship between aging, moxibustion and intestinal microbiota. Six 12-week-old female Wistar rats were young group (Y), and twelve 36-week-old female Wistar rats were randomly divided into elder group (C) and moxibustion group (M). The rats in M group were received mild moxibustion at Guanyuan (RN4) acupoint, 20 min/d for 40 days. The rats in Y group and C group were not given any therapeutic intervention. The results showed that moxibustion increased the abundance of intestinal probiotics (mainly Lactobacillus) and the level of short chain fatty acids, the microcirculation blood flow around Guanyuan (RN4) acupoint was also significantly improved in elder rats. In addition, the expression of MyD88, MAPK, TRAF6, NF-κB in intestinal tissue was down-regulated, and the levels of inflammatory cytokines in intestinal were decreased.
Collapse
Affiliation(s)
- Xiali Ouyang
- Beijing University of Chinese Medicine, Beijing, China
| | - Haoru Duan
- Beijing University of Chinese Medicine, Beijing, China
| | - Qi Jin
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue Luo
- Beijing University of Chinese Medicine, Beijing, China
| | - Li Han
- Beijing University of Chinese Medicine, Beijing, China.
| | - Baixiao Zhao
- Beijing University of Chinese Medicine, Beijing, China.
| | - Jiangtao Li
- Technical Institute of Physics and Chemistry, Beijing, China
| | - Yixiang Chen
- Technical Institute of Physics and Chemistry, Beijing, China
| | - Yao Lin
- Beijing University of Chinese Medicine, Beijing, China
| | - Yajie Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Yueping Huang
- Beijing University of Chinese Medicine, Beijing, China
| | - Shuang Shuang
- Technical Institute of Physics and Chemistry, Beijing, China
| | - Chang Huang
- Beijing University of Chinese Medicine, Beijing, China
| | - Rui He
- Beijing University of Chinese Medicine, Beijing, China
| | - Qin Yao
- Beijing University of Chinese Medicine, Beijing, China
| | - Ying Xue
- Beijing University of Chinese Medicine, Beijing, China
| | - Shiqi Guo
- Beijing University of Chinese Medicine, Beijing, China
| | - Jing Zhao
- Inshine Health Care Services Management Co., Ltd, Beijing, China
| |
Collapse
|
40
|
Stuivenberg GA, Burton JP, Bron PA, Reid G. Why Are Bifidobacteria Important for Infants? Microorganisms 2022; 10:278. [PMID: 35208736 PMCID: PMC8880231 DOI: 10.3390/microorganisms10020278] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
The presence of Bifidobacterium species in the maternal vaginal and fecal microbiota is arguably an evolutionary trait that allows these organisms to be primary colonizers of the newborn intestinal tract. Their ability to utilize human milk oligosaccharides fosters their establishment as core health-promoting organisms throughout life. A reduction in their abundance in infants has been shown to increase the prevalence of obesity, diabetes, metabolic disorder, and all-cause mortality later in life. Probiotic strains have been developed as supplements for premature babies and to counter some of these ailments as well as to confer a range of health benefits. The ability to modulate the immune response and produce short-chain fatty acids, particularly acetate and butyrate, that strengthen the gut barrier and regulate the gut microbiome, makes Bifidobacterium a core component of a healthy infant through adulthood.
Collapse
Affiliation(s)
- Gerrit A. Stuivenberg
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON N6A4V2, Canada; (G.A.S.); (J.P.B.)
- Departments of Microbiology and Immunology and Surgery, Western University, London, ON N6A 3K7, Canada
| | - Jeremy P. Burton
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON N6A4V2, Canada; (G.A.S.); (J.P.B.)
- Departments of Microbiology and Immunology and Surgery, Western University, London, ON N6A 3K7, Canada
| | | | - Gregor Reid
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON N6A4V2, Canada; (G.A.S.); (J.P.B.)
- Departments of Microbiology and Immunology and Surgery, Western University, London, ON N6A 3K7, Canada
- Seed Health Inc., Venice, CA 90291, USA;
| |
Collapse
|
41
|
AboNahas HH, Darwish AMG, Abd EL-kareem HF, AboNahas YH, Mansour SA, Korra YH, Sayyed RZ, Abdel-Azeem AM, Saied EM. Trust Your Gut: The Human Gut Microbiome in Health and Disease. MICROBIOME-GUT-BRAIN AXIS 2022:53-96. [DOI: 10.1007/978-981-16-1626-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
42
|
Rinninella E, Cintoni M, Raoul P, Ianiro G, Laterza L, Ponziani FR, Pulcini G, Gasbarrini A, Mele MC. Diet-Induced Alterations in Gut Microbiota Composition and Function. COMPREHENSIVE GUT MICROBIOTA 2022:354-373. [DOI: 10.1016/b978-0-12-819265-8.00035-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
43
|
Gut microbiota in gastrointestinal diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 191:141-151. [DOI: 10.1016/bs.pmbts.2022.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Faruqui NA, Prium DH, Mowna SA, Ullah MA, Araf Y, Sarkar B, Zohora US, Rahman MS. Gut microorganisms and neurological disease perspectives. FUTURE NEUROLOGY 2021. [DOI: 10.2217/fnl-2020-0026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gastrointestinal tract of every healthy human consists of a unique set of gut microbiota that collectively harbors a diverse and complex community of over 100 trillion microorganisms, including bacteria, viruses, archaea, protozoa and fungi. Gut microbes have a symbiotic relationship with our body. The composition of the microbiota is shaped early in life by gut maturation, which is influenced by several factors. Intestinal bacteria are crucial in maintaining immune and metabolic homeostasis and protecting against pathogens. Dysbiosis of gut microbiota is associated not only with intestinal disorders but also with extraintestinal diseases such as metabolic and neurological disorders. In this review, the authors examine different studies that have revealed the possible hypotheses and links in the development of neurological disorders associated with the gut microbiome.
Collapse
Affiliation(s)
- Nairita Ahsan Faruqui
- Department of Mathematics and Natural Sciences, Biotechnology Program, School of Data & Sciences, BRAC University, Dhaka, Bangladesh
| | - Durdana Hossain Prium
- Department of Mathematics and Natural Sciences, Biotechnology Program, School of Data & Sciences, BRAC University, Dhaka, Bangladesh
| | - Sadrina Afrin Mowna
- Department of Mathematics and Natural Sciences, Biotechnology Program, School of Data & Sciences, BRAC University, Dhaka, Bangladesh
| | - Md. Asad Ullah
- Department of Biotechnology & Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering & Biotechnology, School of Life Sciences, Shahjalal University of Science & Technology, Sylhet, Bangladesh
| | - Bishajit Sarkar
- Department of Biotechnology & Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Umme Salma Zohora
- Department of Biotechnology & Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Mohammad Shahedur Rahman
- Department of Biotechnology & Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| |
Collapse
|
45
|
Amedei A, Capasso C, Nannini G, Supuran CT. Microbiota, Bacterial Carbonic Anhydrases, and Modulators of Their Activity: Links to Human Diseases? Mediators Inflamm 2021; 2021:6926082. [PMID: 34803517 PMCID: PMC8601860 DOI: 10.1155/2021/6926082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
The involvement of the human microbiome is crucial for different host functions such as protection, metabolism, reproduction, and especially immunity. However, both endogenous and exogenous factors can affect the balance of the microbiota, creating a state of dysbiosis, which can start various gastrointestinal or systemic diseases. The challenge of future medicine is to remodel the intestinal microbiota to bring it back to healthy equilibrium (eubiosis) and, thus, counteract its negative role in the diseases' onset. The shaping of the microbiota is currently practiced in different ways ranging from diet (or use of prebiotics, probiotics, and synbiotics) to phage therapy and antibiotics, including microbiota fecal transplantation. Furthermore, because microbiota modulation is a capillary process, and because many microbiota bacteria (both beneficial and pathogenic) have carbonic anhydrases (specifically the four classes α, β, γ, and ι), we believe that the use of CA inhibitors and activators can open up new therapeutic strategies for many diseases associated with microbial dysbiosis, such as the various gastrointestinal disorders and the same colorectal cancer.
Collapse
Affiliation(s)
- Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), 50134 Florence, Italy
| | - Clemente Capasso
- CNR, Institute of Biosciences and Bioresources, 80131 Napoli, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | | |
Collapse
|
46
|
Appenteng Osae E, Steven P. Meibomian Gland Dysfunction in Ocular Graft vs. Host Disease: A Need for Pre-Clinical Models and Deeper Insights. Int J Mol Sci 2021; 22:ijms22073516. [PMID: 33805326 PMCID: PMC8036656 DOI: 10.3390/ijms22073516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/20/2022] Open
Abstract
Despite decades of experience with hematopoietic stem cell transplantation, we are still faced with the delicate equipoise of achieving stable ocular health post-transplantation. This is because ocular graft-versus-host disease (oGvHD) following hematopoietic stem cell transplantation frequently occurs (≥50%) among transplant patients. To date, our understanding of the pathophysiology of oGvHD especially the involvement of the meibomian gland is still limited as a result of a lack of suitable preclinical models among other. Herein, the current state of the etiology and, pathophysiology of oGvHD based on existing pre-clinical models are reviewed. The need for additional pre-clinical models and knowledge about the involvement of the meibomian glands in oGvHD are emphasized.
Collapse
Affiliation(s)
- Eugene Appenteng Osae
- College of Optometry, University of Houston, Houston, TX 77004, USA
- Correspondence: ; Tel.: +1-346-317-6273
| | - Philipp Steven
- Department of Ophthalmology, Division for Dry-Eye and Ocular GVHD, Medical Faculty, University of Cologne, 50923 Cologne, Germany;
| |
Collapse
|
47
|
Lorente-Picón M, Laguna A. New Avenues for Parkinson's Disease Therapeutics: Disease-Modifying Strategies Based on the Gut Microbiota. Biomolecules 2021; 11:433. [PMID: 33804226 PMCID: PMC7998286 DOI: 10.3390/biom11030433] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a multifactorial neurodegenerative disorder that currently affects 1% of the population over the age of 60 years, and for which no disease-modifying treatments exist. Neurodegeneration and neuropathology in different brain areas are manifested as both motor and non-motor symptoms in patients. Recent interest in the gut-brain axis has led to increasing research into the gut microbiota changes in PD patients and their impact on disease pathophysiology. As evidence is piling up on the effects of gut microbiota in disease development and progression, another front of action has opened up in relation to the potential usage of microbiota-based therapeutic strategies in treating gastrointestinal alterations and possibly also motor symptoms in PD. This review provides status on the different strategies that are in the front line (i.e., antibiotics; probiotics; prebiotics; synbiotics; dietary interventions; fecal microbiota transplantation, live biotherapeutic products), and discusses the opportunities and challenges the field of microbiome research in PD is facing.
Collapse
Affiliation(s)
- Marina Lorente-Picón
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Ariadna Laguna
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| |
Collapse
|
48
|
Gut Microbiota Influence in Hematological Malignancies: From Genesis to Cure. Int J Mol Sci 2021; 22:ijms22031026. [PMID: 33498529 PMCID: PMC7864170 DOI: 10.3390/ijms22031026] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/13/2022] Open
Abstract
Hematological malignancies, including multiple myeloma, lymphoma, and leukemia, are a heterogeneous group of neoplasms that affect the blood, bone marrow, and lymph nodes. They originate from uncontrolled growth of hematopoietic and lymphoid cells from different stages in their maturation/differentiation and account for 6.5% of all cancers around the world. During the last decade, it has been proven that the gut microbiota, more specifically the gastrointestinal commensal bacteria, is implicated in the genesis and progression of many diseases. The immune-modulating effects of the human microbiota extend well beyond the gut, mostly through the small molecules they produce. This review aims to summarize the current knowledge of the role of the microbiota in modulating the immune system, its role in hematological malignancies, and its influence on different therapies for these diseases, including autologous and allogeneic stem cell transplantation, chemotherapy, and chimeric antigen receptor T cells.
Collapse
|
49
|
Johnson SC, Veres J, Malcolm HR. Exploring the diversity of mechanosensitive channels in bacterial genomes. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:25-36. [PMID: 33244613 DOI: 10.1007/s00249-020-01478-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/08/2020] [Accepted: 11/08/2020] [Indexed: 10/22/2022]
Abstract
Mechanosensitive ion channels are responsible for touch sensation and proprioception in higher level organisms such as humans and recovery after osmotic stress in bacteria. Bacterial mechanosensitive channels are homologous to either the mechanosensitive channel of large conductance (MscL) or the mechanosensitive channel of small conductance (MscS). In the E. coli genome there are seven unique mechanosensitive channels, a single MscL homologue, and six MscS homologues. The six MscS homologues are members of the diverse MscS superfamily of ion channels, and these channels show variation on both the N and C termini when compared to E. coli MscS. In bacterial strains with phenotypic analysis of the endogenous mechanosensors, the quantity of MscS superfamily members in the genome range from 2 to 6 and all of the strains contain a copy of MscL. Here, we show an in-depth analysis of over 150 diverse bacterial genomes, encompassing nine phyla, to determine the number of genomes that contain an MscL homologue and the average number of MscS superfamily members per genome. We determined that the average genome contains 4 ± 3 MscS homologues and 67% of bacterial genomes encode for a MscL homologue.
Collapse
Affiliation(s)
- Sarah C Johnson
- Department of Chemistry, University of North Florida, Jacksonville, FL, USA
| | - Jordyn Veres
- Department of Chemistry, University of North Florida, Jacksonville, FL, USA
| | - Hannah R Malcolm
- Department of Chemistry, University of North Florida, Jacksonville, FL, USA.
| |
Collapse
|
50
|
Li X, Lin Y, Li X, Xu X, Zhao Y, Xu L, Gao Y, Li Y, Tan Y, Qian P, Huang H. Tyrosine supplement ameliorates murine aGVHD by modulation of gut microbiome and metabolome. EBioMedicine 2020; 61:103048. [PMID: 33039712 PMCID: PMC7553238 DOI: 10.1016/j.ebiom.2020.103048] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Microbial communities and their metabolic components in the gut are of vital importance for immune homeostasis and have an influence on the susceptibility of the host to a number of immune-mediated diseases like acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, little is known about the functional connections between microbiome and metabolome in aGVHD due to the complexity of the gastrointestinal environment. METHOD Initially, gut microbiota and fecal metabolic phenotype in aGVHD murine models were unleashed by performing 16S ribosomal DNA gene sequencing and ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS)-based metabolomics. FINDINGS The group with aGVHD experienced a significant drop in Lachnospiraceae_unclassified but an increase in the relative abundance of Clostridium XI, Clostridium XIVa and Enterococcus. Meanwhile, a lower content of tyrosine was observed in the gut of aGVHD mice. The correlation analysis revealed that tyrosine-related metabolites were inversely correlated with Clostridium XIVa, besides, Blautia and Enterococcus also displayed the negative tendency in aGVHD condition. Apart from exploring the importance and function of tyrosine, different tyrosine diets were offered to mice during transplantation. Additional tyrosine supplements can improve overall survival, ameliorate symptoms at the early stage of aGVHD and change the structure and composition of gut microbiota and fecal metabolic phenotype. In addition, aGVHD mice deprived from tyrosine displayed worse manifestations than the vehicle diet group. INTERPRETATION The results demonstrated the roles and mechanisms of gut microbiota, indispensable metabolites and tyrosine in the progression of aGVHD, which can be an underlying biomarker for aGVHD diagnosis and treatment. FUNDING This research was funded by the International Cooperation and Exchange Program (81520108002), the National Key R&D Program of China, Stem Cell and Translation Research (2018YFA0109300), National Natural Science Foundation of China (81670169, 81670148, 81870080 and 91949115) and Natural Science Foundation of Zhejiang Province (LQ19H080006).
Collapse
Affiliation(s)
- Xiaoqing Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China; Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China; Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Yu Lin
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China; Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China; Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Xue Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China; Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China; Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Xiaoxiao Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China; Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China; Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China; Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China; Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Lin Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China; Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China; Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Yang Gao
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Rd., Hangzhou 310016, Zhejiang, PR China
| | - Yixue Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China; Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China; Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Yamin Tan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China; Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China; Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Pengxu Qian
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China; Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China; Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou 310012, PR China; Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China.
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China; Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China; Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China.
| |
Collapse
|