1
|
Chen CY, Zhang Y. Berberine: An isoquinoline alkaloid targeting the oxidative stress and gut-brain axis in the models of depression. Eur J Med Chem 2025; 290:117475. [PMID: 40107207 DOI: 10.1016/j.ejmech.2025.117475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/08/2025] [Accepted: 03/02/2025] [Indexed: 03/22/2025]
Abstract
Depression seriously affects people's quality of life, and there is an urgent need to find novel drugs to cure treatment-resistant depression. Berberine (BBR), extracted from Coptis chinensis Franch., Phellodendron bark, Berberis vulgaris, and Berberis petiolaris, could be a potential multi-target drug for depression. To summarize the effects of BBR on depression in terms of in vitro or in vivo experiments, we searched electronic databases, such as PubMed, Web of Science, Google Scholar, Wanfang Database, and China National Knowledge Infrastructure, from inception until May 2024. Then, we summarize that BBR has indirect antidepressant properties to improve depressive symptoms, manifesting in modulating the gut microbial community, strengthening the intestinal barrier, increasing the abundance of short-chain fatty acid-producing bacteria, and regulating tryptophan metabolism. BBR also exerts antidepressant-like effects via remodulating nuclear factor-erythroid 2-related factor 2/antioxidant response element pathway, hypothalamic-pituitary-adrenal axis, and peroxisome proliferators-activated receptor-delta. Nevertheless, further clinical trials and more high-quality animal studies are needed to show the actual clinical value of BBR for depression.
Collapse
Affiliation(s)
- Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
2
|
Fang Q, Cai Y, Yang Y, Zhang J, Ke J, Luo J, Zheng Y, Zhang Z, Alidu ALJ, Wang Q, Huang X. Curcumin attenuated neuroinflammation via the TLR4/MyD88/NF-κB signaling way in the juvenile rat hippocampus following kainic acid-induced epileptic seizures. Metab Brain Dis 2024; 39:1387-1403. [PMID: 39292432 DOI: 10.1007/s11011-024-01401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/19/2024] [Indexed: 09/19/2024]
Abstract
The study examined curcumin's impart on relieving neuroinflammation of juvenile rats in kainic acid (KA) induced epileptic seizures by inhibiting the TLR4/MyD88/NF-κB pathway. There were five groups: control, KA, KA + curcumin (KC), KA + oxcarbazepine (OXC) (KO), KA + curcumin + OXC (KCO) groups. KA was stereotactically injected into right hippocampus following intraperitoneal injection of curcumin or (and) OXC for seven days. The rats in the above groups were randomly divided into three subgroups (at 6 h, 24 h, and 72 h of KA administration) following the seizure degree assessed. The number of NeuN (+) neurons and GFAP (+) astrocytes was counted. The gene and protein levels of TLR4, MyD88, and NF-κB were detected. Compared with the KA group, the seizure latency was longer, and the incidence of status epilepticus (SE) was lower in the KC, KO, and KCO groups. The most significant changes were in the KCO group. At 72 h following KA injected, the number of neurons was the least, and the number of astrocytes was the most in the KA group. The number of neurons was the most and the number of astrocytes was the least in the KCO group. At 24 h, the mRNA and protein levels of TLR4, MyD88, and NF-κB in the KA group were the most. The above valves were the least in the KCO group. Therefore, curcumin could enhance anti-epileptic effect of OXC, protect injured neurons and reduce proliferated glial cells of the hippocampus of epileptic rats by inhibiting inflammation via the TLR4/MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Qiong Fang
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian Province, China, 350001.
- Department of Pediatrics, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, 134 East Street, Gulou District, Fuzhou, Fujian Province, China, 350001.
| | - Yuehao Cai
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian Province, China, 350001
| | - Yating Yang
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian Province, China, 350001
| | - Jiuyun Zhang
- Department of Emergency, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian Province, China, 350001.
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China, 350001.
- Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Institute of Emergency Medicine, Fujian Emergency Medical Center, 134 East Street, Gulou District, Fuzhou, Fujian Province, China, 350001.
| | - Jun Ke
- Department of Emergency, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian Province, China, 350001
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China, 350001
| | - Jiewei Luo
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China, 350001
| | - Yujinglin Zheng
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, China, 350001
| | - Zhiyuan Zhang
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, China, 350001
| | - Abdul-Latif Jijiri Alidu
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, China, 350001
| | - Qiancheng Wang
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, China, 350001
| | - Xinyi Huang
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, China, 350001
| |
Collapse
|
3
|
Ismail S, Abdullahi AB, Alshana U. Edible oil-based switchable-hydrophilicity solvent liquid-liquid microextraction prior to smartphone digital image colorimetry for the determination of total curcuminoids in food samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3983-3992. [PMID: 38853673 DOI: 10.1039/d4ay00250d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Edible oil-based switchable-hydrophilicity solvent liquid-liquid microextraction was coupled with smartphone digital image colorimetry for the determination of total curcuminoids. Images of the colored extracts were captured in a laboratory-made colorimetric box, which were then split into their red-green-blue channels. Optimum extraction conditions were achieved using 550 μL of almond oil as the extraction solvent and 0.40 M sodium hydroxide for hydrolysis of the oil to the salt of its fatty acid. Phosphoric acid (2.0 mL, 4.0 M) was used as the hydrophilicity-switching trigger, while pH of the sample solution adjusted to 5.50 and extraction time of 1.0 min, were found to be optimum. Optimum detection conditions were achieved at a distance of 7.0 cm from the detection camera, a region of interest of 175 px2, a detection wavelength of 420 nm and 50.0% brightness of the light source. The limit of detection was found to be 0.020 μg mL-1. A good linearity was achieved as indicated by coefficients of determination above 0.9965. The proposed method was used for the determination of total curcuminoids in tea and turmeric samples with percentage relative recoveries of 95.0-105.0% and percentage relative standard deviations below 8.7%.
Collapse
Affiliation(s)
- Salihu Ismail
- Department of Analytical Chemistry, Faculty of Pharmacy, Near East University, 99138, Nicosia, TRNC, Mersin 10, Turkey
- Department of Chemistry, Faculty of Science, Yusuf Maitama Sule University, PMB 3220, Kano, Nigeria.
| | - Aliyu B Abdullahi
- Department of Chemistry, Kano State College of Education and Preliminary Studies, PMB 3145, Kano, Nigeria.
| | - Usama Alshana
- Department of Chemistry, College of Science, Sultan Qaboos University, 123 Al Khod, Muscat, Oman.
| |
Collapse
|
4
|
Spanoudaki M, Papadopoulou SK, Antasouras G, Papadopoulos KA, Psara E, Vorvolakos T, Solovos E, Chrysafi M, Psallas M, Mentzelou M, Ourda D, Giaginis C. Curcumin as a Multifunctional Spice Ingredient against Mental Disorders in Humans: Current Clinical Studies and Bioavailability Concerns. Life (Basel) 2024; 14:479. [PMID: 38672750 PMCID: PMC11050944 DOI: 10.3390/life14040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Mental disorders in terms of depression, anxiety, and stress are one of the major causes of burden globally. Over the last two decades, the use of plant-based substances in the treatment of mental disorders in combination or not with medication has increasingly attracted the interest of the scientific research community. However, even if there is a plethora of naturally occurring bioactive compounds, most of them have low bioavailability, rendering them unable to insert into the bloodstream to exert their biological activities. METHODS This is a comprehensive narrative review that critically summarizes and scrutinizes the new approaches to the treatment of mental disorders using curcumin, also highlighting its bioavailability properties. The most accurate were searched using effective and relevant keywords. RESULTS This narrative review reveals substantial evidence that curcumin can exert significant effects on several mental disorders. However, despite the low cost, the extensive and confirmed potency of curcumin and its involvement in signaling pathways and the scientifically confirmed data regarding its molecular mechanisms of action against mental disorders, this naturally occurring compound presents low oral bioavailability. Pharmaceutical technology has provided solutions to increase the bioavailability of curcumin. Combination with piperine, galactomannosides, liposomal formulation or nanoformulation overcomes the bioavailability and solubility disadvantages. CONCLUSIONS Although curcumin demonstrates anti-anxiety, anti-depressive and anti-stress properties, studies on humans are limited and heterogeneous. Further research is highly recommended to determine the most functional formula, dose, duration, and possible side effects of curcumin on mental disorders in humans. Based on the current knowledge, the curcumin nanoformulation and Theracurmin, a form of colloidal submicroscopic particles, seem to be the most effective bioavailable formulations, which may be examined in future clinical human studies.
Collapse
Affiliation(s)
- Maria Spanoudaki
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece (S.K.P.)
- 424 General Military Hospital of Thessaloniki, 54621 Thessaloniki, Greece; (K.A.P.); (E.S.); (M.P.)
| | - Sousana K. Papadopoulou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece (S.K.P.)
| | - Georgios Antasouras
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Lemnos, Greece; (G.A.); (E.P.); (M.C.); (M.M.)
| | | | - Evmorfia Psara
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Lemnos, Greece; (G.A.); (E.P.); (M.C.); (M.M.)
| | - Theofanis Vorvolakos
- Department of Psychiatry, School of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Evangelos Solovos
- 424 General Military Hospital of Thessaloniki, 54621 Thessaloniki, Greece; (K.A.P.); (E.S.); (M.P.)
| | - Maria Chrysafi
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Lemnos, Greece; (G.A.); (E.P.); (M.C.); (M.M.)
| | - Michalis Psallas
- 424 General Military Hospital of Thessaloniki, 54621 Thessaloniki, Greece; (K.A.P.); (E.S.); (M.P.)
| | - Maria Mentzelou
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Lemnos, Greece; (G.A.); (E.P.); (M.C.); (M.M.)
| | - Despoina Ourda
- Department of Physical Education and Sport Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Lemnos, Greece; (G.A.); (E.P.); (M.C.); (M.M.)
| |
Collapse
|
5
|
Abdeltawab MS, Abdel-Shafi IR, Aboulhoda BE, Mahfoz AM, Hamed AM. The neuroprotective potential of curcumin on T. Spiralis infected mice. BMC Complement Med Ther 2024; 24:99. [PMID: 38388410 PMCID: PMC10882799 DOI: 10.1186/s12906-024-04399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Trichinella spiralis can affect the brain by inducing inflammatory and vascular changes. Drug management with the antiparasitic drug albendazole can be enhanced by natural compounds such as curcumin. The potential benefit of curcumin as an adjuvant to albendazole in the management of cerebral affection during experimental T. spiralis infection was evaluated. Animals received either curcumin 150 mg/Kg, albendazole 50 mg/Kg or a combination of both drugs. Animal groups receiving treatment were compared with infected and non-infected control groups. Blood levels of reduced glutathione (GSH) and dopamine were measured, and brain tissue expression of cyclooxygenase-2 enzyme (COX-2) and CD34 was assessed by immunohistochemistry. RESULTS T. spiralis infection resulted in a state of oxidative stress, which was improved by albendazole and curcumin. Also, both drugs restored the peripheral dopamine level, which was decreased in infected non-treated mice. Curcumin was also found to be efficient in improving brain pathology and reducing local COX-2 and CD 34 expression. CONCLUSIONS Inflammatory and pathological changes during neurotrichinosis can be improved by the addition of curcumin to conventional anti-parasitic drugs.
Collapse
Affiliation(s)
- Magda Sa Abdeltawab
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Iman R Abdel-Shafi
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Basma Emad Aboulhoda
- Anatomy and Embryology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amal M Mahfoz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt.
| | - Alshaimaa Mr Hamed
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Hsieh CCJ, Lo YC, Wang HH, Shen HY, Chen YY, Lee YC. Amelioration of the brain structural connectivity is accompanied with changes of gut microbiota in a tuberous sclerosis complex mouse model. Transl Psychiatry 2024; 14:68. [PMID: 38296969 PMCID: PMC10830571 DOI: 10.1038/s41398-024-02752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Tuberous sclerosis complex (TSC) is a genetic disease that causes benign tumors and dysfunctions in many organs, including the brain. Aside from the brain malformations, many individuals with TSC exhibit neuropsychiatric symptoms. Among these symptoms, autism spectrum disorder (ASD) is one of the most common co-morbidities, affecting up to 60% of the population. Past neuroimaging studies strongly suggested that the impairments in brain connectivity contribute to ASD, whether or not TSC-related. Specifically, the tract-based diffusion tensor imaging (DTI) analysis provides information on the fiber integrity and has been used to study the neuropathological changes in the white matter of TSC patients with ASD symptoms. In our previous study, curcumin, a diet-derived mTOR inhibitor has been shown to effectively mitigate learning and memory deficits and anxiety-like behavior in Tsc2+/- mice via inhibiting astroglial proliferation. Recently, gut microbiota, which is greatly influenced by the diet, has been considered to play an important role in regulating several components of the central nervous system, including glial functions. In this study, we showed that the abnormal social behavior in the Tsc2+/- mice can be ameliorated by the dietary curcumin treatment. Second, using tract-based DTI analysis, we found that the Tsc2+/- mice exhibited altered fractional anisotropy, axial and radial diffusivities of axonal bundles connecting the prefrontal cortex, nucleus accumbens, hypothalamus, and amygdala, indicating a decreased brain network. Third, the dietary curcumin treatment improved the DTI metrics, in accordance with changes in the gut microbiota composition. At the bacterial phylum level, we showed that the abundances of Actinobacteria, Verrucomicrobia, and Tenericutes were significantly correlated with the DTI metrics FA, AD, and RD, respectively. Finally, we revealed that the expression of myelin-associated proteins, myelin bassic protein (MBP) and proteolipid protein (PLP) was increased after the treatment. Overall, we showed a strong correlation between structural connectivity alterations and social behavioral deficits, as well as the diet-dependent changes in gut microbiota composition.
Collapse
Affiliation(s)
| | - Yu-Chun Lo
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Hui Wang
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Ying Shen
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - You-Yin Chen
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Yi-Chao Lee
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan.
- International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
7
|
Halder D, Das S, R S J, Joseph A. Role of multi-targeted bioactive natural molecules and their derivatives in the treatment of Alzheimer's disease: an insight into structure-activity relationship. J Biomol Struct Dyn 2023; 41:11286-11323. [PMID: 36579430 DOI: 10.1080/07391102.2022.2158136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/07/2022] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder involving cognitive dysfunction like short-term memory and behavioral changes as the disease progresses due to other unaltered physiological factors. The solution for this problem is Multi-targeted Drugs (MTDs), which can affect multiple determinants to realize the multifunctional effects. Acetylcholinesterase (AChE) inhibitors donepezil, rivastigmine, galantamine, and N-methyl-D-aspartate (NMDA) receptor antagonist memantine are FDA-approved drugs used to treat AD symptomatically. The key objective of this review is to understand multitargeted bioactive natural molecules that could be considered as leads for further development as effective drugs for treating AD, along with understanding its pharmacology and structure-activity relationship (SAR). Understanding the molecular mechanism of the AD pathophysiology, the role of existing drugs, treatment of AD via amyloid beta (Aβ) plaque, and neurofibrillary tangle (NFT) inhibition by natural bioactive molecules were also discussed in the review. The current quest and recent advancements with natural bioactive compounds like physostigmine, resveratrol, curcumin, and catechins, along with the study of in silico SAR, were reported in the present study. This review summarises the structural properties required for bioactive natural molecules to show anti-Alzheimer's activity by emphasizing on SAR of several bioactive natural molecules targeting various AD pathologies, their key molecular interactions that are critical for target specificity, their role as multitargeted ligands, used with adjunctive therapy for AD followed by related US patents granted recently. This article highlights the significance of the structural features of natural bioactive molecules in the treatment of AD and establishes a connection between them.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Debojyoti Halder
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Jeyaprakash R S
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
8
|
Seyedabadi S, Hoseini ZS, Ferns GA, Bahrami A. Effects of curcumin supplementation on insomnia and daytime sleepiness in young women with premenstrual syndrome and dysmenorrhea: A randomized clinical trial. AVICENNA JOURNAL OF PHYTOMEDICINE 2023; 13:585-596. [PMID: 38106634 PMCID: PMC10719725 DOI: 10.22038/ajp.2023.21916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 02/17/2019] [Accepted: 03/10/2019] [Indexed: 12/19/2023]
Abstract
Objective Premenstrual syndrome and primary dysmenorrhea are common gynecological complaints that are associated with psychological disorders. There is increasing evidence for the neuroprotective properties of curcumin, a polyphenolic natural product. This study aimed to assess the effects of curcumin on sleep complications in women with premenstrual syndrome and dysmenorrhea. Materials and Methods This triple-masked, placebo-controlled clinical trial comprised 124 patients with both premenstrual syndrome and dysmenorrhea. Participants were randomly assigned to curcumin (n=57) or control (n=60) groups. Each participant received one capsule containing either 500 mg of curcumin plus piperine or placebo, daily, from 7 days before until 3 days after menstruation for three consecutive menstrual cycles. Insomnia and sleepiness were assessed using standard questionnaires. Results Scores for insomnia and daytime sleepiness were directly correlated with the Premenstrual Syndrome Screening Tool (PSST) score (p<0.05), but not with the visual analogue scale (VAS) score at baseline (p>0.05). There was a non-significant reduction in insomnia and sleepiness scores in both curcumin and placebo groups after the study intervention. Whilst, improvement rate of insomnia status, daytime sleepiness severity, short sleep duration and difficult sleep initiation was not statistically significant between the curcumin and placebo groups. Conclusion Curcumin does not significantly affect sleep disorders in young women with premenstrual syndrome and dysmenorrhea.
Collapse
Affiliation(s)
- Saman Seyedabadi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Gordon A. Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Afsane Bahrami
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Development Unit of Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Garodia P, Hegde M, Kunnumakkara AB, Aggarwal BB. Curcumin, inflammation, and neurological disorders: How are they linked? Integr Med Res 2023; 12:100968. [PMID: 37664456 PMCID: PMC10469086 DOI: 10.1016/j.imr.2023.100968] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/14/2023] [Accepted: 06/07/2023] [Indexed: 09/05/2023] Open
Abstract
Background Despite the extensive research in recent years, the current treatment modalities for neurological disorders are suboptimal. Curcumin, a polyphenol found in Curcuma genus, has been shown to mitigate the pathophysiology and clinical sequalae involved in neuroinflammation and neurodegenerative diseases. Methods We searched PubMed database for relevant publications on curcumin and its uses in treating neurological diseases. We also reviewed relevant clinical trials which appeared on searching PubMed database using 'Curcumin and clinical trials'. Results This review details the pleiotropic immunomodulatory functions and neuroprotective properties of curcumin, its derivatives and formulations in various preclinical and clinical investigations. The effects of curcumin on neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), brain tumors, epilepsy, Huntington's disorder (HD), ischemia, Parkinson's disease (PD), multiple sclerosis (MS), and traumatic brain injury (TBI) with a major focus on associated signalling pathways have been thoroughly discussed. Conclusion This review demonstrates curcumin can suppress spinal neuroinflammation by modulating diverse astroglia mediated cascades, ensuring the treatment of neurological disorders.
Collapse
Affiliation(s)
| | - Mangala Hegde
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | | | | |
Collapse
|
10
|
Tiberi J, Segatto M, Fiorenza MT, La Rosa P. Apparent Opportunities and Hidden Pitfalls: The Conflicting Results of Restoring NRF2-Regulated Redox Metabolism in Friedreich's Ataxia Pre-Clinical Models and Clinical Trials. Biomedicines 2023; 11:biomedicines11051293. [PMID: 37238963 DOI: 10.3390/biomedicines11051293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
Friedreich's ataxia (FRDA) is an autosomal, recessive, inherited neurodegenerative disease caused by the loss of activity of the mitochondrial protein frataxin (FXN), which primarily affects dorsal root ganglia, cerebellum, and spinal cord neurons. The genetic defect consists of the trinucleotide GAA expansion in the first intron of FXN gene, which impedes its transcription. The resulting FXN deficiency perturbs iron homeostasis and metabolism, determining mitochondrial dysfunctions and leading to reduced ATP production, increased reactive oxygen species (ROS) formation, and lipid peroxidation. These alterations are exacerbated by the defective functionality of the nuclear factor erythroid 2-related factor 2 (NRF2), a transcription factor acting as a key mediator of the cellular redox signalling and antioxidant response. Because oxidative stress represents a major pathophysiological contributor to FRDA onset and progression, a great effort has been dedicated to the attempt to restore the NRF2 signalling axis. Despite this, the beneficial effects of antioxidant therapies in clinical trials only partly reflect the promising results obtained in preclinical studies conducted in cell cultures and animal models. For these reasons, in this critical review, we overview the outcomes obtained with the administration of various antioxidant compounds and critically analyse the aspects that may have contributed to the conflicting results of preclinical and clinical studies.
Collapse
Affiliation(s)
- Jessica Tiberi
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Marco Segatto
- Department of Bioscience and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Maria Teresa Fiorenza
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- European Center for Brain Research, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00179 Rome, Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- European Center for Brain Research, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00179 Rome, Italy
| |
Collapse
|
11
|
Sabouni N, Marzouni HZ, Palizban S, Meidaninikjeh S, Kesharwani P, Jamialahmadi T, Sahebkar A. Role of curcumin and its nanoformulations in the treatment of neurological diseases through the effects on stem cells. J Drug Target 2023; 31:243-260. [PMID: 36305097 DOI: 10.1080/1061186x.2022.2141755] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Curcumin from turmeric is a natural phenolic compound with a promising potential to regulate fundamental processes involved in neurological diseases, including inflammation, oxidative stress, protein aggregation, and apoptosis at the molecular level. In this regard, employing nanoformulation can improve curcumin efficiency by reducing its limitations, such as low bioavailability. Besides curcumin, growing data suggest that stem cells are a noteworthy candidate for neurodegenerative disorders therapy due to their anti-inflammatory, anti-oxidative, and neuronal-differentiation properties, which result in neuroprotection. Curcumin and stem cells have similar neurogenic features and can be co-administered in a cell-drug delivery system to achieve better combination therapeutic outcomes for neurological diseases. Based on the evidence, curcumin can induce the neuroprotective activity of stem cells by modulating their related signalling pathways. The present review is about the role of curcumin and its nanoformulations in the improvement of neurological diseases alone and through the effect on different categories of stem cells by discussing the underlying mechanisms to provide a roadmap for future investigations.
Collapse
Affiliation(s)
- Nasim Sabouni
- Department of Immunology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Zare Marzouni
- Qaen School of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Sepideh Palizban
- Semnan Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Sepideh Meidaninikjeh
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.,Cancer Biomedical Center (CBC) Research Institute, Tehran, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Mikolaskova I, Crnogorac-Jurcevic T, Smolkova B, Hunakova L. Nutraceuticals as Supportive Therapeutic Agents in Diabetes and Pancreatic Ductal Adenocarcinoma: A Systematic Review. BIOLOGY 2023; 12:158. [PMID: 36829437 PMCID: PMC9953002 DOI: 10.3390/biology12020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
The correlation between pancreatic ductal adenocarcinoma (PDAC) and diabetes-related mechanisms support the hypothesis that early therapeutic strategies targeting diabetes can contribute to PDAC risk reduction and treatment improvement. A systematic review was conducted, using PubMed, Embase and Cochrane Library databases, to evaluate the current evidence from clinical studies qualitatively examining the efficacy of four natural products: Curcumin-Curcuma longa L.; Thymoquinone-Nigella sativa L.; Genistein-Glycine max L.; Ginkgo biloba L.; and a low-carbohydrate ketogenic diet in type 2 diabetes (T2D) and PDAC treatment. A total of 28 clinical studies were included, showing strong evidence of inter-study heterogeneity. Used as a monotherapy or in combination with chemo-radiotherapy, the studied substances did not significantly improve the treatment response of PDAC patients. However, pronounced therapeutic efficacy was confirmed in T2D. The natural products and low-carbohydrate ketogenic diet, combined with the standard drugs, have the potential to improve T2D treatment and thus potentially reduce the risk of cancer development and improve multiple biological parameters in PDAC patients.
Collapse
Affiliation(s)
- Iveta Mikolaskova
- Institute of Immunology, Faculty of Medicine, Comenius University, Odborarske Namestie 14, 811 08 Bratislava, Slovakia
| | - Tatjana Crnogorac-Jurcevic
- Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University, Charterhouse Square, London EC1M 6BQ, UK
| | - Bozena Smolkova
- Biomedical Research Center, Slovak Academy of Sciences, Cancer Research Institute, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Luba Hunakova
- Institute of Immunology, Faculty of Medicine, Comenius University, Odborarske Namestie 14, 811 08 Bratislava, Slovakia
| |
Collapse
|
13
|
Kaokaen P, Sorraksa N, Phonchai R, Chaicharoenaudomrung N, Kunhorm P, Noisa P. Enhancing Neurological Competence of Nanoencapsulated Cordyceps/Turmeric Extracts in Human Neuroblastoma SH-SY5Y Cells. Cell Mol Bioeng 2022; 16:81-93. [PMID: 36660588 PMCID: PMC9842810 DOI: 10.1007/s12195-022-00752-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Neurological diseases, including Alzheimer's, Parkinson's diseases, and brain cancers, are reportedly caused by genetic aberration and cellular malfunction. Herbs with bioactive compounds that have anti-oxidant effects such as cordyceps and turmeric, are of interest to clinical applications due to their minimal adverse effects. The aim of study is to develop the nanoencapsulated cordyceps and turmeric extracts and investigate their capability to enhance the biological activity and improve neuronal function. Methods Human neuroblastoma SH-SY5Y cells were utilized as a neuronal model to investigate the properties of nanoencapsulated cordyceps or turmeric extracts, called CMP and TEP, respectively. SH-SY5Y cells were treated with either CMP or TEP and examined the biological consequences, including neuronal maturation and neuronal function. Results The results showed that both CMP and TEP improved cellular uptake efficiency within 6 h by 2.3 and 2.8 times, respectively. Besides, they were able to inhibit cellular proliferation of SH-SY5Y cells up to 153- and 218-fold changes, and increase the expression of mature neuronal markers (TUJ1, PAX6, and NESTIN). Upon the treatment of CMP and TEP, the expression of dopaminergic-specific genes (LMX1B, FOXA2, EN1, and NURR1), and the secretion level of dopamine were significantly improved up to 3.3-fold and 3.0-fold, respectively, while the expression of Alzheimer genes (PSEN1, PSEN2, and APP), and the secretion of amyloid precursor protein were significantly reduced by 32-fold and 108-fold, respectively. Importantly, the autophagy activity was upregulated by CMP and TEP at 6.3- and 5.5-fold changes, respectively. Conclusions This finding suggested that the nanoencapsulated cordyceps and turmeric extracts accelerated neuronal maturation and alleviated neuronal pathology in human neural cells. This paves the way for nanotechnology-driven drug delivery systems that could potentially be used as an alternative medicine in the future for neurological diseases.
Collapse
Affiliation(s)
- Palakorn Kaokaen
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000 Thailand
| | - Natchadaporn Sorraksa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000 Thailand
| | - Ruchee Phonchai
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000 Thailand
| | - Nipha Chaicharoenaudomrung
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000 Thailand
| | - Phongsakorn Kunhorm
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000 Thailand
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000 Thailand
| |
Collapse
|
14
|
Bagherniya M, Mahdavi A, Shokri-Mashhadi N, Banach M, Von Haehling S, Johnston TP, Sahebkar A. The beneficial therapeutic effects of plant-derived natural products for the treatment of sarcopenia. J Cachexia Sarcopenia Muscle 2022; 13:2772-2790. [PMID: 35961944 PMCID: PMC9745475 DOI: 10.1002/jcsm.13057] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/12/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022] Open
Abstract
Sarcopenia is an age-related muscle disorder typically associated with a poor quality of life. Its definition has evolved over time, and several underlying causes of sarcopenia in the elderly have been proposed. However, the exact mechanisms involved in sarcopenia, as well as effective treatments for this condition, are not fully understood. The purpose of this article was to conduct a comprehensive review of previous evidence regarding the definition, diagnosis, risk factors, and efficacy of plant-derived natural products for sarcopenia. The methodological approach for the current narrative review was performed using PubMed, Scopus, and Web of Science databases, as well as Google Scholar (up to March 2021) in order to satisfy our objectives. The substantial beneficial effects along with the safety of some plant-derived natural products including curcumin, resveratrol, catechin, soy protein, and ginseng on sarcopenia are reported in this review. Based on clinical studies, nutraceuticals and functional foods may have beneficial effects on physical performance, including handgrip and knee-extension strength, weight-lifting capacity, time or distance travelled before feeling fatigued, mitochondrial function, muscle fatigue, mean muscle fibre area, and total number of myonuclei. In preclinical studies, supplementation with herbs and natural bioactive compounds resulted in beneficial effects including increased plantaris mass, skeletal muscle mass and strength production, increased expression of anabolic factors myogenin, Myf5 and MyoD, enhanced mitochondrial capacity, and inhibition of muscle atrophy and sarcopenia. We found that several risk factors such as nutritional status, physical inactivity, inflammation, oxidative stress, endocrine system dysfunction, insulin resistance, history of chronic disease, mental health, and genetic factors are linked or associated with sarcopenia. The substantial beneficial effects of some nutraceuticals and functional foods on sarcopenia, including curcumin, resveratrol, catechin, soy protein, and ginseng, without any significant side effects, are reported in this review. Plant-derived natural products might have a beneficial effect on various components of sarcopenia. Nevertheless, due to limited human trials, the clinical benefits of plant-derived natural products remain inconclusive. It is suggested that comprehensive longitudinal clinical studies to better understand risk factors over time, as well as identifying a treatment strategy for sarcopenia that is based on its pathophysiology, be undertaken in future investigations.
Collapse
Affiliation(s)
- Mohammad Bagherniya
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atena Mahdavi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Shokri-Mashhadi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Lodz, Poland.,Cardiovascular Research Centre, University of Zielona-Gora, Zielona-Gora, Poland
| | - Stephan Von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia
| |
Collapse
|
15
|
D'Aloisio LD, Shetty V, Ballal M, Gibson DL. Following the Indian Immigrant: adoption of westernization results in a western gut microbiome and an increased risk of inflammatory bowel diseases. FEMS Microbiol Ecol 2022; 98:6825449. [PMID: 36370451 DOI: 10.1093/femsec/fiac133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
Indians who migrate to westernized countries such as Canada, the USA, and the UK are at an increased risk of developing inflammatory bowel disease (IBD). While the underlying aetiology of IBD remains unclear, a gut microbiome, i.e. no longer symbiotic with its host, is a major player. Increasing IBD incidence in Indian immigrants may be due to the adoption of western practices that result in loss of tolerance of a symbiotic community in the gut and its underlying immune responses. However, little is known about the microbial changes in the Indian gut, including shifts in the microbiome when they migrate to westernized countries. In this Current Opinion, we discuss what is known about the Indian gut microbiome and how living in a westernized environment may be impeding what was once a symbiotic relationship with their gut microbiome and intestinal mucosae, which may be the driving factor in their increased risk of IBD.
Collapse
Affiliation(s)
- Leah D D'Aloisio
- Department of Biology, University of British Columbia- Okanagan Campus, V1V 1V7 Kelowna, Canada
| | - Vignesh Shetty
- Enteric Disease Division, Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, 576104 Manipal, India.,Department of Medicine, University of Cambridge, CB2 2QQ Cambridge, United Kingdom
| | - Mamatha Ballal
- Enteric Disease Division, Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, 576104 Manipal, India
| | - Deanna L Gibson
- Department of Biology, University of British Columbia- Okanagan Campus, V1V 1V7 Kelowna, Canada.,Department of Medicine, University of British Columbia- Okanagan Campus, V1V 1V7 Kelowna, Canada
| |
Collapse
|
16
|
Ji D, Luo ZW, Ovcjak A, Alanazi R, Bao MH, Feng ZP, Sun HS. Role of TRPM2 in brain tumours and potential as a drug target. Acta Pharmacol Sin 2022; 43:759-770. [PMID: 34108651 PMCID: PMC8975829 DOI: 10.1038/s41401-021-00679-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023]
Abstract
Ion channels are ubiquitously expressed in almost all living cells, and are the third-largest category of drug targets, following enzymes and receptors. The transient receptor potential melastatin (TRPM) subfamily of ion channels are important to cell function and survival. Studies have shown upregulation of the TRPM family of ion channels in various brain tumours. Gliomas are the most prevalent form of primary malignant brain tumours with no effective treatment; thus, drug development is eagerly needed. TRPM2 is an essential ion channel for cell function and has important roles in oxidative stress and inflammation. In response to oxidative stress, ADP-ribose (ADPR) is produced, and in turn activates TRPM2 by binding to the NUDT9-H domain on the C-terminal. TRPM2 has been implicated in various cancers and is significantly upregulated in brain tumours. This article reviews the current understanding of TRPM2 in the context of brain tumours and overviews the effects of potential drug therapies targeting TRPM2 including hydrogen peroxide (H2O2), curcumin, docetaxel and selenium, paclitaxel and resveratrol, and botulinum toxin. It is long withstanding knowledge that gliomas are difficult to treat effectively, therefore investigating TRPM2 as a potential therapeutic target for brain tumours may be of considerable interest in the fields of ion channels and pharmacology.
Collapse
Affiliation(s)
- Delphine Ji
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zheng-Wei Luo
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Andrea Ovcjak
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Rahmah Alanazi
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mei-Hua Bao
- Science Research Center, Changsha Medical University, Changsha, 410219, China
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Hong-Shuo Sun
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
17
|
Mukherjee PK, Efferth T, Das B, Kar A, Ghosh S, Singha S, Debnath P, Sharma N, Bhardwaj PK, Haldar PK. Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153930. [PMID: 35114450 PMCID: PMC8730822 DOI: 10.1016/j.phymed.2022.153930] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 05/07/2023]
Abstract
BACKGROUND The worldwide corona virus disease outbreak, generally known as COVID-19 pandemic outbreak resulted in a major health crisis globally. The morbidity and transmission modality of COVID-19 appear more severe and uncontrollable. The respiratory failure and following cardiovascular complications are the main pathophysiology of this deadly disease. Several therapeutic strategies are put forward for the development of safe and effective treatment against SARS-CoV-2 virus from the pharmacological view point but till date there are no specific treatment regimen developed for this viral infection. PURPOSE The present review emphasizes the role of herbs and herbs-derived secondary metabolites in inhibiting SARS-CoV-2 virus and also for the management of post-COVID-19 related complications. This approach will foster and ensure the safeguards of using medicinal plant resources to support the healthcare system. Plant-derived phytochemicals have already been reported to prevent the viral infection and to overcome the post-COVID complications like parkinsonism, kidney and heart failure, liver and lungs injury and mental problems. In this review, we explored mechanistic approaches of herbal medicines and their phytocomponenets as antiviral and post-COVID complications by modulating the immunological and inflammatory states. STUDY DESIGN Studies related to diagnosis and treatment guidelines issued for COVID-19 by different traditional system of medicine were included. The information was gathered from pharmacological or non-pharmacological interventions approaches. The gathered information sorted based on therapeutic application of herbs and their components against SARSCoV-2 and COVID-19 related complications. METHODS A systemic search of published literature was conducted from 2003 to 2021 using different literature database like Google Scholar, PubMed, Science Direct, Scopus and Web of Science to emphasize relevant articles on medicinal plants against SARS-CoV-2 viral infection and Post-COVID related complications. RESULTS Collected published literature from 2003 onwards yielded with total 625 articles, from more than 18 countries. Among these 625 articles, more than 95 medicinal plants and 25 active phytomolecules belong to 48 plant families. Reports on the therapeutic activity of the medicinal plants belong to the Lamiaceae family (11 reports), which was found to be maximum reported from 4 different countries including India, China, Australia, and Morocco. Other reports on the medicinal plant of Asteraceae (7 reports), Fabaceae (8 reports), Piperaceae (3 reports), Zingiberaceae (3 reports), Ranunculaceae (3 reports), Meliaceae (4 reports) were found, which can be explored for the development of safe and efficacious products targeting COVID-19. CONCLUSION Keeping in mind that the natural alternatives are in the priority for the management and prevention of the COVID-19, the present review may help to develop an alternative approach for the management of COVID-19 viral infection and post-COVID complications from a mechanistic point of view.
Collapse
Affiliation(s)
- Pulok K Mukherjee
- Institute of Bioresources and Sustainable Development, Imphal-795001, India; School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Bhaskar Das
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Amit Kar
- Institute of Bioresources and Sustainable Development, Imphal-795001, India
| | - Suparna Ghosh
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Seha Singha
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Pradip Debnath
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Imphal-795001, India
| | | | - Pallab Kanti Haldar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| |
Collapse
|
18
|
Fuloria S, Mehta J, Chandel A, Sekar M, Rani NNIM, Begum MY, Subramaniyan V, Chidambaram K, Thangavelu L, Nordin R, Wu YS, Sathasivam KV, Lum PT, Meenakshi DU, Kumarasamy V, Azad AK, Fuloria NK. A Comprehensive Review on the Therapeutic Potential of Curcuma longa Linn. in Relation to its Major Active Constituent Curcumin. Front Pharmacol 2022; 13:820806. [PMID: 35401176 PMCID: PMC8990857 DOI: 10.3389/fphar.2022.820806] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/27/2022] [Indexed: 12/16/2022] Open
Abstract
Curcuma longa Linn. (C. longa), popularly known as turmeric, belongs to the Zingiberaceae family and has a long historical background of having healing properties against many diseases. In Unani and Ayurveda medicine, C. longa has been used for liver obstruction and jaundice, and has been applied externally for ulcers and inflammation. Additionally, it is employed in several other ailments such as cough, cold, dental issues, indigestion, skin infections, blood purification, asthma, piles, bronchitis, tumor, wounds, and hepatic disorders, and is used as an antiseptic. Curcumin, a major constituent of C. longa, is well known for its therapeutic potential in numerous disorders. However, there is a lack of literature on the therapeutic potential of C. longa in contrast to curcumin. Hence, the present review aimed to provide in-depth information by highlighting knowledge gaps in traditional and scientific evidence about C. longa in relation to curcumin. The relationship to one another in terms of biological action includes their antioxidant, anti-inflammatory, neuroprotective, anticancer, hepatoprotective, cardioprotective, immunomodulatory, antifertility, antimicrobial, antiallergic, antidermatophytic, and antidepressant properties. Furthermore, in-depth discussion of C. longa on its taxonomic categorization, traditional uses, botanical description, phytochemical ingredients, pharmacology, toxicity, and safety aspects in relation to its major compound curcumin is needed to explore the trends and perspectives for future research. Considering all of the promising evidence to date, there is still a lack of supportive evidence especially from clinical trials on the adjunct use of C. longa and curcumin. This prompts further preclinical and clinical investigations on curcumin.
Collapse
Affiliation(s)
| | - Jyoti Mehta
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Aditi Chandel
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | | | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Lakshmi Thangavelu
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Rusli Nordin
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor, Malaysia
| | - Yuan Seng Wu
- Department of Biological Sciences and Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Selangor, Malaysia
| | | | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | | | - Vinoth Kumarasamy
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor, Malaysia
- Department of Preclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Perak, Malaysia
| | | | - Neeraj Kumar Fuloria
- Faculty of Pharmacy, AIMST University, Kedah, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
19
|
Shumail H, Khalid S, Alqahtani T, Algahtany M, Azhar Ud Din M, Alqahtani A. An overview on therapeutic role of Diferuloylmethane (Curcumin) in Azheimer’s disease and sleep disorders. MAIN GROUP CHEMISTRY 2021. [DOI: 10.3233/mgc-210075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Curcumin is widely used in spices in Asia. It has been widely explored for various diseases as therapeutic agent. Alzheimer’s disease (AD) is a neurodegenerative disease associated with dementia and cognitive disabilities. With the progression of disease, various changes appear in the brain cells that greatly affect the daily routine of the patient including sleep-wake disturbances. In the last few decades, extensive research has been carried out on this disease suggesting the development of non-steroidal anti-inflammatory drugs for its treatment. Since long, turmeric has been used in Asian countries as a home remedy for treating various ailments. Curcumin is an active ingredient isolated from the turmeric plant and is composed of curcuminoids. Because of its anti-inflammatory, antioxidant, anti-apoptotic and neuroprotective properties, curcumin can be safely administered to stop the progression of dementia and can be used for the development of such drugs that can reverse the neurotic damage caused by AD. This review article provides a comprehensive overview on the research carried out for AD using curcumin as active model drug.
Collapse
Affiliation(s)
- Hoor Shumail
- Department of Microbiology, Women University Mardan, Pakistan
| | - Shah Khalid
- Department of Botany, Islamia College Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mubarak Algahtany
- Division of Neurosurgery, Department of Surgery, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - M. Azhar Ud Din
- Professor Xu Jiaping Molecular Biology Laboratory, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, PR China
| | - Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
20
|
Heidari Z, Daei M, Boozari M, Jamialahmadi T, Sahebkar A. Curcumin supplementation in pediatric patients: A systematic review of current clinical evidence. Phytother Res 2021; 36:1442-1458. [PMID: 34904764 DOI: 10.1002/ptr.7350] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/01/2023]
Abstract
This systematic review was designed to determine the clinical efficacy and safety of curcumin supplementation for pediatric patients based on clinical trials in children. We systematically searched electronic databases including PubMed, EMBASE, Web of Science, and Scopus for all studies that investigated curcumin administration in the pediatric population without any time frame limitation. Finally, we identified 16 studies for this review. Clinical efficacy and safety of curcumin were assessed in children with inflammatory and immune disorders (including asthma, inflammatory bowel disease (IBD), and juvenile idiopathic arthritis (JIA)), metabolic disorders, autosomal dominant polycystic kidney disease (ADPKD), cystic fibrosis (CF), tetralogy of Fallot (TOF), and infectious diseases. Curcumin was administered in a wide range of doses (45 mg-4,000 mg daily) and durations (2-48 weeks). Overall, curcumin was well tolerated in all studies and improved the severity of inflammatory and immune disorders and metabolic diseases. However, more studies are needed to clarify the role of curcumin supplementation among children with ADPKD, CF, TOF, and infectious diseases. Because of substantial heterogeneity in methodological quality, design, outcomes, dose, duration of intake, formulations, and study populations across studies, no quantitative analysis was performed. Additional large-scale, randomized, placebo-controlled clinical trials are needed to confirm the results of the conducted studies.
Collapse
Affiliation(s)
- Zinat Heidari
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Daei
- Department of Clinical Pharmacy, Faculty of Pharmacy, Alborz University of Medical Sciences, Alborz, Iran
| | - Motahareh Boozari
- Department of Pharmacognosy, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Ebrahimi N, Sadeghi R. Carbohydrate-based aqueous biphasic systems for biomolecules extraction. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Arora K, Tomar PC, Mohan V. Diabetic neuropathy: an insight on the transition from synthetic drugs to herbal therapies. J Diabetes Metab Disord 2021; 20:1773-1784. [PMID: 34900824 PMCID: PMC8630252 DOI: 10.1007/s40200-021-00830-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
The global pandemic of prediabetes and diabetes has led to a severe corresponding complication of these disorders. Neuropathy is one of the most prevalent complication of diabetes is, affecting blood supply of the peripheral nervous system that may eventually results into loss of sensations, injuries, diabetic foot and death. The utmost identified risk of diabetic neuropathy is uncontrolled high blood glucose levels. However, aging, body mass index (BMI), oxidative stress, inflammation, increased HbA1c levels and blood pressure are among the other key factors involved in the upsurge of this disease. The so far treatment to deal with diabetic neuropathy is controlling metabolic glucose levels. Apart from this, drugs like reactive oxygen species (ROS) inhibitors, aldose reductase inhibitors, PKC inhibitors, Serotonin-norepinephrine reuptake inhibitors (SNRIs), anticonvulsants, N-methyl-D-aspartate receptor (NMDAR) antagonists, are the other prescribed medications. However, the related side-effects (hallucinations, drowsiness, memory deficits), cost, poor pharmacokinetics and drug resistance brought the trust of patients down and thus herbal renaissance is occurring all over the word as the people have shifted their intentions from synthetic drugs to herbal remedies. Medicinal plants have widely been utilized as herbal remedies against number of ailments in Indian medicinal history. Their bioactive components are very much potent to handle different chronic disorders and complications with lesser-known side effects. Therefore, the current article mainly concludes the etiology and pathophysiology of diabetic neuropathy. Furthermore, it also highlights the important roles of medicinal plants and their naturally occurring bioactive compounds in addressing this disease.
Collapse
Affiliation(s)
- Komal Arora
- Department of Life Sciences, Neurosciences, Gurugram University, Gurugram, India
| | - Pushpa C. Tomar
- Department of Biotechnology, Faculty of Engineering & Technology, Manav Rachna International Institute of Research & Studies, Haryana 121004 Faridabad, India
| | - Vandana Mohan
- Department of Life Sciences, Neurosciences, Gurugram University, Gurugram, India
| |
Collapse
|
23
|
Liu L, Lim MA, Jung SN, Oh C, Won HR, Jin YL, Piao Y, Kim HJ, Chang JW, Koo BS. The effect of Curcumin on multi-level immune checkpoint blockade and T cell dysfunction in head and neck cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153758. [PMID: 34592487 DOI: 10.1016/j.phymed.2021.153758] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/13/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Despite recent advances in understanding the complex immunologic dysfunction in the tumor microenvironment (TME), fewer than 20% of patients with head and neck squamous cell carcinoma (HNSCC) respond to immune checkpoint blockade (ICB). Thus, it is important to understand how inhibitory IC receptors maintain the suppressed dysfunctional TME, and to develop more effective combination immunotherapy. This study evaluated the immune-modulating effects of Curcumin, which has well-established anti-cancer and chemopreventive properties, and its long-term safety as a phytochemical drug. METHODS We carried out the western blot and small interfering RNA (siRNA) transfection assay to evaluate the effects of Curcumin on IC ligands and IC ligands function in HNSCC. Through T-cell cytotoxicity assay and measurements of cytokine secretion, we assessed the effects of combination of Curcumin with programmed death-ligand 1 (PD-L1) Ab on cancer cell killing. Flow cytometry were used to analyze the effects of Curcumin on the expression of programmed cell death protein 1 (PD-1) and T-cell immunoglobulin and mucin-domain3 (TIM-3) on CD4, CD8 and Treg. Immunofluorescence, immunohistochemistry and western blot were used to detecte the cytokine (IFN-γ, Granzyme B), IC receptors (PD-1 and TIM-3) and its ligands (PD-L1, PD-L2, Galectin-9) in xenograft mouse model and 4-nitroquinoline-1-oxide (4-NQO) oral cancer model. RESULTS We found that Curcumin decreased the expression of IC ligands such as PD-L1, PD-L2, and Galectin-9 in HNSCC, leading to regulation of epithelial-to-mesenchymal transition-associated tumor invasion. Curcumin also effectively restored the ability of CD8+ cytotoxic T cells to lyse cancer cells. To evaluate the effect of Curcumin on the TME further, the 4-NQO oral cancer model was used. Curcumin increased T-cell proliferation, tumor-infiltrating lymphocytes (TILs), and effector cytokines, and decreased the expression of PD-1, TIM-3, suppressive IC receptors and their ligands (PD-L1, PD-L2, and Galectin-9) in the TME, implying reinvigoration of the exhausted CD8+ T cells. In addition, Curcumin inhibited expression of CD4+CD25+FoxP3+ Treg cells as well as PD-1 and TIM-3. CONCLUSIONS These results show that Curcumin reinvigorates defective T cells via multiple (PD-1 and TIM-3) and multi-level (IC receptors and its ligands) IC axis suppression, thus providing a rationale to combine Curcumin with conventional targeted therapy or ICB as a multi-faceted approach for treating patients with HNSCC.
Collapse
Affiliation(s)
- Lihua Liu
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Mi Ae Lim
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Seung-Nam Jung
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Chan Oh
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ho-Ryun Won
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea; Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Yan Li Jin
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yudan Piao
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hae Jong Kim
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jae Won Chang
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea; Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
| | - Bon Seok Koo
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea; Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
24
|
Moragrega I, Ríos JL. Medicinal Plants in the Treatment of Depression: Evidence from Preclinical Studies. PLANTA MEDICA 2021; 87:656-685. [PMID: 33434941 DOI: 10.1055/a-1338-1011] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Medicinal plants and their extracts are natural remedies with enormous potential for treating various diseases, including depression and anxiety. In the case of depression, hundreds of plants have traditionally been used in folk medicine for generations. Different plant extracts and natural products have been analyzed as potential antidepressant agents with validated models to test for antidepressant-like effects in animals, although other complementary studies have also been employed. Most of these studies focus on the possible mediators implicated in these potential effects, with dopamine, serotonin, and noradrenaline being the principal neurotransmitters implicated, both through interference with receptors and with their metabolism by monoamino oxidases, as well as through neuro-endocrine and neuroprotective effects. There are approximately 650 reports of antidepressant-like medicinal plants in PubMed; 155 of them have been compiled in this review, with a relevant group yielding positive results. Saffron and turmeric are the most relevant species studied in both preclinical and clinical studies; St. John's wort or kava have also been tested extensively. To the best of our knowledge, no review to date has provided a comprehensive understanding of the biomolecular mechanisms of action of these herbs or of whether their potential effects could have real benefits. The purpose of this narrative review is to provide an update regarding medicinal plants from the year 2000 to the present to examine the therapeutic potential of these antidepressant-like plants in order to contribute to the development of new therapeutic methods to alleviate the tremendous burden that depression causes worldwide.
Collapse
Affiliation(s)
- Inés Moragrega
- Departament de Psicobiologia, Facultat de Psicologia, Universitat de València
| | - José Luis Ríos
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València
| |
Collapse
|
25
|
Firdaus Z, Singh TD. An Insight in Pathophysiological Mechanism of Alzheimer's Disease and its Management Using Plant Natural Products. Mini Rev Med Chem 2021; 21:35-57. [PMID: 32744972 DOI: 10.2174/1389557520666200730155928] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is an age-associated nervous system disorder and a leading cause of dementia worldwide. Clinically, it is described by cognitive impairment and pathophysiologically by deposition of amyloid plaques and neurofibrillary tangles in the brain and neurodegeneration. This article reviews the pathophysiology, course of neuronal degeneration, and the various possible hypothesis of AD progression. These hypotheses include amyloid cascade, tau hyperphosphorylation, cholinergic disruption, metal dysregulation, vascular dysfunction, oxidative stress, and neuroinflammation. There is an exponential increase in the occurrence of AD in the recent few years that indicate an urgent need to develop some effective treatment. Currently, only 2 classes of drugs are available for AD treatment, namely acetylcholinesterase inhibitor and NMDA receptor antagonist. Since AD is a complex neurological disorder and these drugs use a single target approach, alternatives are needed due to limited effectiveness and unpleasant side-effects of these drugs. Currently, plants have been used for drug development research especially because of their multiple sites of action and fewer side effects. Uses of some herbs and phytoconstituents for the management of neuronal disorders like AD have been documented in this article. Phytochemical screening of these plants shows the presence of many beneficial constituents like flavonoids, triterpenes, alkaloids, sterols, polyphenols, and tannins. These compounds show a wide array of pharmacological activities, such as anti-amyloidogenic, anticholinesterase, and antioxidants. This article summarizes the present understanding of AD progression and gathers biochemical evidence from various works on natural products that can be useful in the management of this disease.
Collapse
Affiliation(s)
- Zeba Firdaus
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi - 221005, India
| | - Tryambak Deo Singh
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi - 221005, India
| |
Collapse
|
26
|
Nissankara Rao LS, Kilari EK, Kola PK. Protective effect of Curcuma amada acetone extract against high-fat and high-sugar diet-induced obesity and memory impairment. Nutr Neurosci 2021; 24:212-225. [PMID: 31149894 DOI: 10.1080/1028415x.2019.1616436] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objectives: Curcuma amada Roxb. (Mango ginger) was evaluated for anti-obesity, anti-amnesic and neuroprotection using high-fat and high-sugar diet (HFHS)-induced obesity and cognitive impairment in rats. Methods: Animals were exposed to HFHS diet to evaluate lipid parameters and subjected to Y maze test and Pole climbing test to evaluate the memory. In addition, oxidative stress parameters, acetyl cholinesterase activity (AChE), neurochemicals and histopathology were assessed in the brain. Results: HFHS diet led to increased body weight and lipid parameters (total cholesterol, low-density lipoprotein [LDL], and very low-density lipoprotein [VLDL], triglycerides [TG]) but not high-density lipoprotein (HDL). Elevated serum glutamate oxalate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT), oxidative biomarker, decreased enzymatic and non-enzymatic antioxidants, Acetylcholinesterase (AChE) activity and reduced percentage of spontaneous alternation behaviour (% SAB in Y-maze test) as well as reduced serotonin and dopamine levels and neurodegeneration were observed in HFHS diet-fed rats. Curcuma amada (CAAE1, 100 mg/kg and CAAE2, 300 mg/kg) treatment to HFHS diet-fed rats (21 days after HFHS diet feeding alone) showed dose-dependent activity and ameliorated the HFHS diet-induced alterations in lipid parameters related to obesity, hepatological parameters, memory, oxidative stress, neurochemicals and neurodegeneration. Furthermore, 300 mg/kg of C. amada (CAAE2) augmented the memory by inhibiting acetylcholinesterase (AChE) activity; it also ameliorated the effect of antioxidants such as glutathione, superoxide dismutase (SOD), and total thiol and mitigated the effect of malondialdehyde (MDA). CAAE2 also controlled the level of dopamine and serotonin and reduced the neurodegeneration in the hippocampus CA1 region. Discussion: The results of the present study indicated that treatment with C. amada 300 mg/kg (CAAE2) attenuated the HFHS diet-induced obesity, memory loss, oxidative stress, and neurodegeneration. These study results indicated that the administration of C. amada offers a potential treatment option for obesity and memory loss, and it requires further preclinical and clinical evaluations.
Collapse
Affiliation(s)
| | - Eswar Kumar Kilari
- Department of Pharmacology, University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, India
| | - Phani Kumar Kola
- Department of Pharmacology, University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| |
Collapse
|
27
|
Rodrigues FC, Kumar NA, Thakur G. The potency of heterocyclic curcumin analogues: An evidence-based review. Pharmacol Res 2021; 166:105489. [PMID: 33588007 DOI: 10.1016/j.phrs.2021.105489] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/29/2022]
Abstract
Curcumin, a potent phytochemical, has been a significant lead compound and has been extensively investigated for its multiple bioactivities. Owing to its natural origin, non-toxic, safe, and pleiotropic behavior, it has been extensively explored. However, several limitations such as its poor stability, bioavailability, and fast metabolism prove to be a constraint to achieve its full therapeutic potential. Many approaches have been adopted to improve its profile, amongst which, structural modifications have indicated promising results. Its symmetric structure and simple chemistry have prompted organic and medicinal chemists to manipulate its arrangement and study its implications on the corresponding activity. One such recurring and favorable modification is at the diketo moiety with the aim to achieve isoxazole and pyrazole analogues of curcumin. A modification at this site is not only simple to achieve, but also has indicated a superior activity consistently. This review is a comprehensive and wide-ranged report of the different methods adopted to achieve several cyclized curcumin analogues along with the improvement in the efficacy of the corresponding activities observed.
Collapse
Affiliation(s)
- Fiona C Rodrigues
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Nv Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Goutam Thakur
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, India.
| |
Collapse
|
28
|
Şahin İO. How curcumin affects hyperglycemia-induced optic nerve damage: A short review. J Chem Neuroanat 2021; 113:101932. [PMID: 33581265 DOI: 10.1016/j.jchemneu.2021.101932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 11/19/2022]
Abstract
Considered to be one of the most important non-contagious systemic diseases worldwide, diabetes mellitus is still a topical issue on the health agenda with the problems it causes. Exposure to long-term hyperglycemia causes diabetic complications (diabetic neuropathy, nephropathy and retinopathy). The optic nerve can suffer damage by both diabetic retinopathy and neuropathy during diabetes, both because it is formed by axons of retinal ganglion cells and these axons belong to the central nervous system. The issue of hyperglycemia on the optic nerve have been described as diabetic papillopathy, posterior ischemic optic neuropathy, nonarteritic anterior ischemic optic neuropathy and optic atrophy in clinical studies. Experimental studies indicated axon-myelin degeneration in addition to microvascular and ultrastructural changes caused by the hyperglycemia-induced optic nerve damage. Although there are several proposed biochemical mechanisms to cause these damages, oxidative stress emerges as an important factor among them. Oxidative stress leads to pathological state on the nerve cells by affecting the DNA, protein and lipids at different levels. These are causing deterioration on nerve conduction velocity, myelin sheath and nerve structure, neurotrophic support system, glial cells and nerve function. Curcumin, as an important antioxidant, can be an ideal prophylactic agent to eliminate damages on optic nerve. Curcumin helps to regulate the balance of antioxidant and reactive oxygen species by targeting various molecules (NF-κB, STAT3, MAPK, Mfn2, Nrf2, pro-inflammatory cytokines). In addition, it shows healing or preventive effects on myelin sheath damage via regulating ferritin protein in oligodendrocytes. It is also effective in preventing neurovascular damage.
Collapse
Affiliation(s)
- İzem Olcay Şahin
- Department of Histology and Embryology, Medical School, Ondokuz Mayis University, 55139 Samsun, Turkey.
| |
Collapse
|
29
|
Zhang L, Ma Z, Wu Z, Jin M, An L, Xue F. Curcumin Improves Chronic Pain Induced Depression Through Regulating Serum Metabolomics in a Rat Model of Trigeminal Neuralgia. J Pain Res 2020; 13:3479-3492. [PMID: 33402844 PMCID: PMC7778445 DOI: 10.2147/jpr.s283782] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/12/2020] [Indexed: 12/11/2022] Open
Abstract
Background Depression is a prevalent and complex psychiatric disorder with high incidence in patients with chronic pain. The underlying pathogenesis of chronic pain-induced depression is complicated and remains largely unclear. An integrated analysis of endogenous substance-related metabolisms would help to understand the molecular mechanism of chronic pain-induced depression. Curcumin was reported to exert various health benefits, such as anti-depression, antioxidant, antineoplastic, analgesia, and anti-inflammation. Objective The aim of this study was to analyze the biomarkers related to depression in serum and to evaluate the anti-depression properties of curcumin in a chronic pain-induced depression model of rats. Design This is a randomized, controlled experiment. Setting This study was conducted at the Experimental Animal Center, Beijing Friendship Hospital, Capital Medical University. Methods Trigeminal neuralgia (TN) was produced by injecting 4 µL, 10% cobra venom saline solution into the infraorbital nerve (ION). Curcumin was administered by gavage twice a day from post-operation day (POD) 15 to POD 42. Mechanical allodynia was assessed using von Frey filaments. Sucrose preference and forced swimming tests were performed to evaluate depression-like behaviors. The metabolomics analysis was preceded by LCMS-IT-TOF and multivariate statistical methods for sample detection and biomarker screening. Results Cobra venom intra-ION injection led to chronic mechanical allodynia, reduced sucrose preference, and prolonged immobility during forced swimming. Curcumin treatment alleviated chronic mechanical allodynia, regained sucrose preference, and reduced immobility time. Differential analysis identified 30 potential metabolites changed under TN condition. The integrated analyses further revealed two major metabolic changes by comparing the serums from sham operated rats, TN rats, and TN rats treated with curcumin: 1) ether lipid metabolism; and 2) glycerophospholipid metabolism, and suggested that curcumin may improve chronic pain-induced depression by regulating these two types of lipid metabolisms. Conclusion Ether lipid and glycerophospholipid metabolism might be two of the pathways with the most potential related to chronic pain induced-depression; and curcumin could alleviate chronic pain induced-depression by modulating these two pathways. These results provide further insights into the mechanisms of chronic pain-induced depression and may help to identify potential targets for anti-depression properties of curcumin.
Collapse
Affiliation(s)
- Li Zhang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Zhijie Ma
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zhe Wu
- Department of Anesthesiology, Pain Medicine & Critical Care Medicine, Aviation General Hospital of China Medical University, Beijing 100012, People's Republic of China
| | - Mu Jin
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Lixin An
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Fushan Xue
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| |
Collapse
|
30
|
Stasiłowicz A, Tykarska E, Lewandowska K, Kozak M, Miklaszewski A, Kobus-Cisowska J, Szymanowska D, Plech T, Jenczyk J, Cielecka-Piontek J. Hydroxypropyl-β-cyclodextrin as an effective carrier of curcumin - piperine nutraceutical system with improved enzyme inhibition properties. J Enzyme Inhib Med Chem 2020; 35:1811-1821. [PMID: 32967477 PMCID: PMC7534320 DOI: 10.1080/14756366.2020.1801670] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/10/2020] [Accepted: 07/18/2020] [Indexed: 01/10/2023] Open
Abstract
The nutraceutical system of curcumin-piperine in 2-hydroxypropyl-β-cyclodextrin was prepared by using the kneading technique. Interactions between the components of the system were defined by X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR). Application of hydroxypropyl-β-cyclodextrin as a carrier-solubiliser improved solubility of the curcumin-piperine system, its permeability through biological membranes (gastrointestinal tract, blood-brain barrier) as well as the antioxidant, antimicrobial and enzyme inhibitory activities against acetylcholinesterase and butyrylcholinesterase.
Collapse
Affiliation(s)
- Anna Stasiłowicz
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, Poznań, Poland
| | - Ewa Tykarska
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Poznan, Poland
| | - Kornelia Lewandowska
- Department of Molecular Crystals Institute, Molecular Physics Polish Academy Sciences, Poznan, Poland
| | - Maciej Kozak
- Department of Macromolecular Physics, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Andrzej Miklaszewski
- Division of Functional Nanomaterials, Poznan University of Technology, Poznan, Poland
| | - Joanna Kobus-Cisowska
- Department of Gastronomy Sciences and Functional Foods, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Poznan, Poland
| | - Daria Szymanowska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznan, Poland
| | - Tomasz Plech
- Department of Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Jacek Jenczyk
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
31
|
Neuroprotective effects of Riluzole and Curcumin in human astrocytes and spinal cord white matter hypoxia. Neurosci Lett 2020; 738:135351. [PMID: 32891672 DOI: 10.1016/j.neulet.2020.135351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
Damage to the spinal cord (SC) can result in irreversible impairments or complete loss of motor, sensory, and autonomic functions. Riluzole, a sodium channel-blocker and glutamate inhibitor, is in preclinical use for SC injury (SCI), and curcumin is an intracellular calcium inhibitor that attenuates glutamate-induced neurotoxicity. As riluzole and curcumin have different mechanisms to protect against SCI, we aimed to investigate the neuroprotective effects of a combination of riluzole and curcumin in human astrocytes and white matter injury (WMI) model of SCI. Our data show that a combination of riluzole (1 μM) and curcumin (1 μM) was effective in inhibiting hydrogen peroxide (H2O2)-induced oxidative dress in astrocytes derived from human SC, however, curcumin alone showed a significant inhibition. In addition, our results demonstrated that curcumin alone downregulates the hypoxia-induced expression of HIF-1, GFAP, and NF-H proteins in WMI, whereas riluzole alone and in combination with curcumin remained ineffective in changing the expression of these proteins. Contrarily, after inhibiting Ca2+ influx with EGTA, riluzole alone and in combination with curcumin significantly downregulated hypoxia-induced expression of GFAP and NF-H. After analysis of caspase 9 and cleaved caspase 9, we observed that curcumin and riluzole both inhibit apoptosis significantly, whereas their combination remains ineffective. Furthermore, we observed that neuroprotective effects of curcumin and riluzole are mediated through Nrf2/HO-1 signaling. In conclusion, our results demonstrate that curcumin and riluzole protect astrocytes from oxidative stress and white matter from hypoxia. However, their combination is not beneficial to reduce hypoxia-induced astrocytosis, axonal damage, and apoptosis. From our results, it is evident that curcumin is more effective in reducing WMI than riluzole.
Collapse
|
32
|
Huang R, Zhu Y, Lin L, Song S, Cheng L, Zhu R. Solid Lipid Nanoparticles Enhanced the Neuroprotective Role of Curcumin against Epilepsy through Activation of Bcl-2 Family and P38 MAPK Pathways. ACS Chem Neurosci 2020; 11:1985-1995. [PMID: 32464055 DOI: 10.1021/acschemneuro.0c00242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress of neurons caused by a series of complex neuropathological processes will induce certain neurodegenerative disorders including epilepsy. Curcumin (Cur) is an effective natural antioxidant compound; however, the poor bioavailability obstructs its neural protective applications. In this study, Cur is encapsulated in solid lipid nanoparticles (SLNs) for better neuroprotective efficacy. In vitro study certified that Cur-SLNs functioned obviously better against neuronal apoptosis than Cur, by significantly decreasing the level of free radical and reversing mitochondrial function through the activation of the Bcl-2 family. In vivo experiments showed that SLNs transported Cur through the blood-brain barrier (BBB). The behavioral performance of epileptic mice was improved by Cur-SLNs, with more NeuN but less TUNEL positive cells observed in hippocampus. The in vivo mechanism was also explored. Cur-SLNs reduced neuronal apoptosis through Bcl2 family and P38 MAPK pathways. Overall, Cur-SLNs have better protective effects toward oxidative stress in neurons than free Cur both in vitro and in vivo, which suggests they may be a promising agent against neurodegenerative disorders including epilepsy.
Collapse
Affiliation(s)
- Ruiqi Huang
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai 200065, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji University, Shanghai 200065, China
| | - Yanjing Zhu
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai 200065, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji University, Shanghai 200065, China
| | - Lijuan Lin
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai 200065, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji University, Shanghai 200065, China
| | - Simin Song
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai 200065, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji University, Shanghai 200065, China
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai 200065, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji University, Shanghai 200065, China
| | - Rongrong Zhu
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai 200065, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji University, Shanghai 200065, China
| |
Collapse
|
33
|
Hsieh CCJ, Lo YC, Li SJ, Lin TC, Chang CW, Chen TC, Yang SH, Lee YC, Chen YY. Detection of endophenotypes associated with neuropsychiatric deficiencies in a mouse model of tuberous sclerosis complex using diffusion tensor imaging. Brain Pathol 2020; 31:4-19. [PMID: 32530070 PMCID: PMC8018051 DOI: 10.1111/bpa.12870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/09/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare hereditary disease, which results from the mutation of either TSC1 or TSC2, and its clinical features include benign tumors and dysfunctions in numerous organs, including the brain. Many individuals with TSC manifest neuropsychiatric symptoms, such as learning impairments, cognitive deficits and anxiety. Current pharmacological treatment for TSC is the use of mTOR inhibitors. However, they are not effective in treating neuropsychiatric symptoms. We previously used curcumin, a diet-derived mTOR inhibitor, which possesses both anti-inflammatory and antiproliferative properties, to improve learning and memory deficits in Tsc2+/- mice. Diffusion tensor imaging (DTI) provides microstructural information in brain tissue and has been used to study the neuropathological changes in TSC. In this study, we confirmed that the impaired recognition memory and increased anxiety-like behavior in Tsc2+/- mice can be reversed by curcumin treatment. Second, we found altered fractional anisotropy and mean diffusivity in the anterior cingulate cortex and the hippocampus of the Tsc2+/- mice, which may indicate altered circuitry. Finally, the mTOR complex 1 hyperactivity was found in the cortex and hippocampus, coinciding with abnormal cortical myelination and increased glial fibrillary acidic protein expression in the hippocampal CA1 of Tsc2+/- mice, both of which can be rescued with curcumin treatment. Overall, DTI is sensitive to the subtle alterations that cannot be detected by conventional imaging, suggesting that noninvasive DTI may be suitable for longitudinally monitoring the in vivo neuropathology associated with the neuropsychiatric symptoms in TSC, thereby facilitating future clinical trials of pharmacological treatments.
Collapse
Affiliation(s)
- Christine Chin-Jung Hsieh
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, 11574, Taiwan.,Department of Biomedical Engineering, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Yu-Chun Lo
- PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Ting-Chun Lin
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Ting-Chieh Chen
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Shih-Hung Yang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yi-Chao Lee
- PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - You-Yin Chen
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, 11574, Taiwan.,Department of Biomedical Engineering, National Yang-Ming University, Taipei, 11221, Taiwan.,PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
34
|
Verma AK, Khan E, Mishra SK, Mishra A, Charlet-Berguerand N, Kumar A. Curcumin Regulates the r(CGG) exp RNA Hairpin Structure and Ameliorate Defects in Fragile X-Associated Tremor Ataxia Syndrome. Front Neurosci 2020; 14:295. [PMID: 32317919 PMCID: PMC7155420 DOI: 10.3389/fnins.2020.00295] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
Fragile X-associated tremor ataxia syndrome is an untreatable neurological and neuromuscular disorder caused by unstable expansion of 55–200 CGG nucleotide repeats in 5′ UTR of Fragile X intellectual disability 1 (FMR1) gene. The expansion of CGG repeats in the FMR1 mRNA elicits neuronal cell toxicity through two main pathogenic mechanisms. First, mRNA with CGG expanded repeats sequester specific RNA regulatory proteins resulting in splicing alterations and formation of ribonuclear inclusions. Second, repeat-associated non-canonical translation (RANT) of the CGG expansion produces a toxic homopolymeric protein, FMRpolyG. Very few small molecules are known to modulate these pathogenic events, limiting the therapeutic possibilities for FXTAS. Here, we found that a naturally available biologically active small molecule, Curcumin, selectively binds to CGG RNA repeats. Interestingly, Curcumin improves FXTAS associated alternative splicing defects and decreases the production and accumulation of FMRpolyG protein inclusion. Furthermore, Curcumin decreases cell cytotoxicity promptly by expression of CGG RNA in FXTAS cell models. In conclusion, our data suggest that small molecules like Curcumin and its derivatives may be explored as a potential therapeutic strategy against the debilitating repeats associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Arun Kumar Verma
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Eshan Khan
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Subodh Kumar Mishra
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Nicolas Charlet-Berguerand
- Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, Strasbourg, France
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
35
|
Ayati Z, Sarris J, Chang D, Emami SA, Rahimi R. Herbal medicines and phytochemicals for obsessive–compulsive disorder. Phytother Res 2020; 34:1889-1901. [DOI: 10.1002/ptr.6656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 02/03/2020] [Accepted: 02/16/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Zahra Ayati
- Department of Traditional Pharmacy, School of PharmacyMashhad University of Medical Sciences Mashhad Iran
- NICM Heath Research InstituteWestern Sydney University Penrith Australia
| | - Jerome Sarris
- NICM Heath Research InstituteWestern Sydney University Penrith Australia
- Professorial Unit, The Melbourne Clinic, Department of PsychiatryThe University of Melbourne Melbourne Australia
| | - Dennis Chang
- NICM Heath Research InstituteWestern Sydney University Penrith Australia
| | - Seyed A. Emami
- Department of Traditional Pharmacy, School of PharmacyMashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacognosy, School of Pharmacy, Biotechnology Research CenterMashhad University of Medical Sciences Mashhad Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian MedicineTehran University of Medical Sciences Tehran Iran
| |
Collapse
|
36
|
Khan AU, Akram M, Daniyal M, Akhter N, Riaz M, Akhtar N, Shariati MA, Anjum F, Khan SG, Parveen A, Ahmad S. Awareness and current knowledge of epilepsy. Metab Brain Dis 2020; 35:45-63. [PMID: 31605258 DOI: 10.1007/s11011-019-00494-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/12/2019] [Indexed: 12/29/2022]
Abstract
Epilepsy is a severe neural disorder that affects approximately fifty million individuals globally. Despite the fact that for most of the people with epilepsy, convulsions are better controlled by current accessible antiepileptic medicines, yet there are more than 30% of individuals affected with medically intractable epilepsy and around 30-40% of all patients with epilepsy affected by many adverse reactions and convulsion resistance to the present antiepileptic drugs. Consequently, various scientists attempt to develop new strategies to treat epilepsy, for instance, to find out novel antiepileptic ingredients from traditional medicines. This work aims to present a complete summary of natural medicines prescribed as antiepileptic agents all over the world by ethnic groups and different tribes. We undertook an extensive bibliographic analysis by searching peer reviewed papers and classical textbooks and further consulting well accepted worldwide scientific databases. We carried out PubMed, EMbase and CENTRAL searches by means of terms such as "antiepileptic" and "anti-convulsant" activity of plants. Medicinal plants have been prescribed to treat epilepsy and have been recognized as antiepileptic medicines. In this review, a variety of herbs have been reviewed for thorough studies such as Cuminum cyminum, Butea monosperma, Solanum americanum, Anacyclus pyrethrum, Leonotis leonurus, Elaeocarpus ganitrus and Angelica archangelica. This paper shows that it was high time experimental studies are increased to obtain novel potential active principles from medicinal plants. Plant extracts and their chemical constituents should be further evaluated to clarify their mechanisms of action. This paper provides a solid base upon which to further investigate the clinical efficacy of medicinal plants that are both currently prescribed by physicians as traditional antiepileptic agents, but also could be effective as an antiepileptic drug with further research and study.
Collapse
Affiliation(s)
- Asmat Ullah Khan
- Department of Eastern Medicine, The University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University, Faisalabad, Pakistan
| | - Muhammad Daniyal
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Naheed Akhter
- College of Allied Health Professional, Government College University, Faisalabad, Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Naheed Akhtar
- Department of Pharmacy, The University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Mohammad Ali Shariati
- Kazakh Research Institute of Processing and Food industry (Semey branch), Semey, Kazakhstan
| | - Fozia Anjum
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Samreen Gul Khan
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Abida Parveen
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Saeed Ahmad
- University College of Agriculture, University of Sargodha, Sargodha, Pakistan.
| |
Collapse
|
37
|
Forouzanfar F, Read MI, Barreto GE, Sahebkar A. Neuroprotective effects of curcumin through autophagy modulation. IUBMB Life 2019; 72:652-664. [DOI: 10.1002/iub.2209] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Fatemeh Forouzanfar
- Neuroscience Research CenterMashhad University of Medical Sciences Mashhad Iran
- Department of Neuroscience, Faculty of MedicineMashhad University of Medical Sciences Mashhad Iran
| | - Morgayn I. Read
- Department of PharmacologySchool of Medical Sciences, University of Otago Dunedin New Zealand
| | - George E. Barreto
- Department of Biological SciencesUniversity of Limerick Limerick Ireland
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile Santiago Chile
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA Tehran Iran
- Biotechnology Research CenterPharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
- Neurogenic Inflammation Research CenterMashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
38
|
Bhat A, Mahalakshmi AM, Ray B, Tuladhar S, Hediyal TA, Manthiannem E, Padamati J, Chandra R, Chidambaram SB, Sakharkar MK. Benefits of curcumin in brain disorders. Biofactors 2019; 45:666-689. [PMID: 31185140 DOI: 10.1002/biof.1533] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022]
Abstract
Curcumin is widely consumed in Asia either as turmeric directly or as one of the culinary ingredients in food recipes. The benefits of curcumin in different organ systems have been reported extensively in several neurological diseases and cancer. Curcumin has got its global recognition because of its strong antioxidant, anti-inflammatory, anti-cancer, and antimicrobial activities. Additionally, it is used in diabetes and arthritis as well as in hepatic, renal, and cardiovascular diseases. Recently, there is growing attention on usage of curcumin to prevent or delay the onset of neurodegenerative diseases. This review summarizes available data from several recent studies on curcumin in various neurological diseases such as Alzheimer's disease, Parkinson's disease, Multiple Sclerosis, Huntington's disease, Prions disease, stroke, Down's syndrome, autism, Amyotrophic lateral sclerosis, anxiety, depression, and aging. Recent advancements toward increasing the therapeutic efficacy of curcuma/curcumin formulation and the novel delivery strategies employed to overcome its minimal bioavailability and toxicity studies have also been discussed. This review also summarizes the ongoing clinical trials on curcumin for different neurodegenerative diseases and patent details of curcuma/curcumin in India.
Collapse
Affiliation(s)
- Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Arehally M Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Sunanda Tuladhar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Tousif A Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Esther Manthiannem
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Jagadeeswari Padamati
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Ramesh Chandra
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi, India
- Dr. B. R. Ambedkar Centre for Biomedical Research University of Delhi, Delhi, India
| | - Saravana B Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Meena K Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
39
|
Sarraf P, Parohan M, Javanbakht MH, Ranji-Burachaloo S, Djalali M. Short-term curcumin supplementation enhances serum brain-derived neurotrophic factor in adult men and women: a systematic review and dose-response meta-analysis of randomized controlled trials. Nutr Res 2019; 69:1-8. [DOI: 10.1016/j.nutres.2019.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 02/08/2023]
|
40
|
Asadi S, Gholami MS, Siassi F, Qorbani M, Khamoshian K, Sotoudeh G. Nano curcumin supplementation reduced the severity of diabetic sensorimotor polyneuropathy in patients with type 2 diabetes mellitus: A randomized double-blind placebo- controlled clinical trial. Complement Ther Med 2019; 43:253-260. [PMID: 30935539 DOI: 10.1016/j.ctim.2019.02.014] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/04/2019] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Diabetic Sensorimotor Polyneuropathy (DSPN) is a common complication of diabetes mellitus. Curcumin is the most important ingredient found in turmeric which has a very high potential for eliminating free radicals and inhibiting oxidative stress as an antioxidant agent. The aim of this study was to determine the effect of Nano-curcumin supplementation on the severity of sensorimotor polyneuropathy in patients with Type 2 diabetes mellitus (T2DM). METHOD This parallel, double-blind randomized, placebo-controlled clinical trial was conducted on 80 diabetic patients. Participants were allocated randomly to the intervention (n = 40) and the control group (n = 40). They received 80 mg of nano-curcumin or placebo capsules for 8 weeks. Anthropometric measurements, dietary intake, physical activity, glycemic indices and the severity of DSPN were measured before and after the intervention. RESULT Supplementation of nano curcumin was accounted for a significant reduction in Glycated hemoglobin(HbA1c) (p < 0.001) and Fast Blood Sugar(FBS) (p = 0.004), total score of neuropathy (p < 0.001), total reflex score (p = 0.04) and temperature (p = 0.01) compared to placebo group. CONCLUSION Our findings indicated that curcumin supplementation for 2 months improved and reduced the severity of DSPN in patients with T2DM.
Collapse
Affiliation(s)
- Sara Asadi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Saeed Gholami
- Department of Community Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fereydoun Siassi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mostafa Qorbani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Kianoosh Khamoshian
- Department of Community Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gity Sotoudeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Zhang J, He L, Yang Z, Li L, Cai W. Lithium chloride promotes proliferation of neural stem cells in vitro, possibly by triggering the Wnt signaling pathway. Anim Cells Syst (Seoul) 2018; 23:32-41. [PMID: 30834157 PMCID: PMC6394309 DOI: 10.1080/19768354.2018.1487334] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/04/2018] [Indexed: 01/09/2023] Open
Abstract
The objective of this study was to clarify the relationship between the effect and associated mechanisms of lithium chloride on neural stem cells (NSCs) and the Wnt signaling pathway. The expression of key molecules proteins related to the Wnt signaling pathway in the proliferation and differentiation of control NSCs and lithium chloride-treated NSCs was detected by Western blot analysis. Flow cytometry analysis was applied to study the cell cycle dynamics of control NSCs and NSCs treated with lithium chloride. The therapeutic concentrations of lithium chloride stimulated NSC proliferation. β-catenin expression gradually decreased, while Gsk-3β expression gradually increased (P < 0.01). Furthermore, NSCs treated with lithium chloride showed significantly enhanced β-catenin expression and inhibited Gsk-3β expression in a dose-dependent manner. NSCs in the G0/G1-phases were activated with an increased therapeutic concentration of lithium chloride, while NSCs in the S-phase, as well as G2/M-phases, were arrested (P < 0.01). These data confirm that the proliferation of NSCs is remarkably promoted through changes of cell dynamics after treatment with lithium chloride. Our results provide insight into the effects of lithium chloride in promoting the proliferation abilities of NSCs in vitro and preventing the cells from differentiating, which is potentially mediated by activation of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Geriatrics, Chinese PLA 113rd Hospital, Ningbo, People's Republic of China
| | - Lu He
- Department of Geriatrics, Chinese PLA 113rd Hospital, Ningbo, People's Republic of China
| | - Zhong Yang
- Department of Neurobiology, The Third Military Medical University, Chongqing, People's Republic of China
| | - Lihong Li
- Department of Neurobiology, The Third Military Medical University, Chongqing, People's Republic of China
| | - Wenqin Cai
- Department of Neurobiology, The Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
42
|
Fan J, Zhang K, Jin Y, Li B, Gao S, Zhu J, Cui R. Pharmacological effects of berberine on mood disorders. J Cell Mol Med 2018; 23:21-28. [PMID: 30450823 PMCID: PMC6307759 DOI: 10.1111/jcmm.13930] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/29/2018] [Indexed: 12/23/2022] Open
Abstract
Berberine, a natural isoquinoline alkaloid, is used in herbal medicine and has recently been shown to have efficacy in the treatment of mood disorders. Furthermore, berberine modulates neurotransmitters and their receptor systems within the central nervous system. However, the detailed mechanisms of its action remain unclear. This review summarizes the pharmacological effects of berberine on mood disorders. Therefore, it may be helpful for potential application in the treatment of mood disorders.
Collapse
Affiliation(s)
- Jie Fan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Kun Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Yang Jin
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Bingjini Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Shuohui Gao
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiaming Zhu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
43
|
Jacob J, Amalraj A, Raj KKJ, Divya C, Kunnumakkara AB, Gopi S. A novel bioavailable hydrogenated curcuminoids formulation (CuroWhite™) improves symptoms and diagnostic indicators in rheumatoid arthritis patients - A randomized, double blind and placebo controlled study. J Tradit Complement Med 2018; 9:346-352. [PMID: 31453131 PMCID: PMC6702143 DOI: 10.1016/j.jtcme.2018.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/01/2018] [Indexed: 01/08/2023] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory disease that cause chronic pain, disability and joint destruction. The present placebo controlled randomized study aimed to evaluate the efficacy of a novel hydrogenated curcuminoid formulation-CuroWhite™, in rheumatoid arthritis (RA) patients. Twenty four RA patients were randomized in 1:1:1 ratio to receive 250 mg, 500 mg CuroWhite or placebo as one capsule a day, over a period of three months. Improvement in the ACR response, changes in disease activity assessed using the DAS 28 score, change in physical function assessed on change in ESR, CRP, RF values were evaluated before and after the study. Results suggested that patients who received CuroWhite both low and high doses reported statistically significant changes in their clinical symptoms towards end of the study when compared with placebo. There were significant changes in DAS28 (50–64%) VAS (63–72%) ESR (88–89%), CRP (31–45%) RF (80–84%) values and ACR response for CuroWhite groups in comparison with placebo. Thus, CuroWhite acts as the analgesic and anti-inflammatory product for management of RA by the reduction of the inflammatory action which was confirmed by improvement in ESR, CRP, VAS, RF, DAS-28 and ACR responses. CuroWhite was significantly effective against RA with highly safe without serious side effects and well tolerated.
Collapse
Affiliation(s)
- Joby Jacob
- R&D Centre, Aurea Biolabs (P) Ltd, 682311, Kolenchery, Cochin, India
| | - Augustine Amalraj
- R&D Centre, Aurea Biolabs (P) Ltd, 682311, Kolenchery, Cochin, India
| | - K K Jithin Raj
- R&D Centre, Aurea Biolabs (P) Ltd, 682311, Kolenchery, Cochin, India
| | | | - Ajaikumar B Kunnumakkara
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sreeraj Gopi
- R&D Centre, Aurea Biolabs (P) Ltd, 682311, Kolenchery, Cochin, India
| |
Collapse
|
44
|
Dhir A. Curcumin in epilepsy disorders. Phytother Res 2018; 32:1865-1875. [PMID: 29917276 DOI: 10.1002/ptr.6125] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/01/2018] [Accepted: 05/11/2018] [Indexed: 12/20/2022]
Abstract
Curcumin, a principal curcuminoid present in turmeric, has an antioxidant, anti-inflammatory and neuroprotective properties. Preclinical studies have indicated its beneficial effect for the treatment of epilepsy disorders. The molecule has an anti-seizure potential in preclinical studies, including chemical and electrical models of acute and chronic epilepsy. Curcumin also possesses an anti-epileptogenic activity as it reduces spontaneous recurrent seizures severity in a kainate model of temporal lobe epilepsy. The antioxidant and anti-inflammatory nature of curcumin might be responsible for its observed anti-seizure effects; nevertheless, the exact mechanism is not yet clear. The poor availability of curcumin to the brain limits its use in clinics. The application of nanoliposome and liposome technologies has been tested to enhance its brain availability and penetrability. Unfortunately, there are no randomized, double-blinded controlled clinical trials validating the use of curcumin in epilepsy. The present article analyzes different preclinical evidence illustrating the effect of curcumin in seizure models. The review encourages carrying out clinical trials in this important area of research. In conclusion, curcumin might be beneficial in patients with epilepsy disorders, if its bioavailability issues are resolved.
Collapse
Affiliation(s)
- Ashish Dhir
- Department of Neurology, School of Medicine, University of California, Davis, CA, 95817
| |
Collapse
|
45
|
Paolucci T, Piccinini G, Nusca SM, Marsilli G, Mannocci A, La Torre G, Saraceni VM, Vulpiani MC, Villani C. Efficacy of dietary supplement with nutraceutical composed combined with extremely-low-frequency electromagnetic fields in carpal tunnel syndrome. J Phys Ther Sci 2018; 30:777-784. [PMID: 29950763 PMCID: PMC6016299 DOI: 10.1589/jpts.30.777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/08/2018] [Indexed: 01/09/2023] Open
Abstract
[Purpose] The aim of this study was to investigate the clinical effects of a nutraceutical composed (Xinepa®) combined with extremely-low-frequency electromagnetic fields in the carpal tunnel syndrome. [Subjects and Methods] Thirty-one patients with carpal tunnel syndrome were randomized into group 1-A (N=16) (nutraceutical + extremely-low-frequency electromagnetic fields) and group 2-C (n=15) (placebo + extremely-low-frequency electromagnetic fields). The dietary supplement with nutraceutical was twice daily for one month in the 1-A group and both groups received extremely-low-frequency electromagnetic fields at the level of the carpal tunnel 3 times per week for 12 sessions. The Visual Analogue Scale for pain, the Symptoms Severity Scale and Functional Severity Scale of the Boston Carpal Tunnel Questionnaire were used at pre-treatment (T0), after the end of treatment (T1) and at 3 months post-treatment (T2). [Results] At T1 and T2 were not significant differences in outcome measures between the two groups. In group 1-A a significant improvement in the scales were observed at T1 and T2. In group 2-C it was observed only at T1. [Conclusion] Significant clinical effects from pre-treatment to the end of treatment were shown in both groups. Only in group 1-A they were maintained at 3 months post-treatment.
Collapse
Affiliation(s)
- Teresa Paolucci
- Complex Unit of Physical Medicine and Rehabilitation,
Policlinico Umberto I Hospital, “Sapienza” University of Rome, Italy
| | - Giulia Piccinini
- Unit of Physical Medicine and Rehabilitation, Sant’Andrea
Hospital, “Sapienza” University of Rome: Via di Grottarossa 1035/1039, 00189, Rome,
Italy
| | - Sveva Maria Nusca
- Unit of Physical Medicine and Rehabilitation, Sant’Andrea
Hospital, “Sapienza” University of Rome: Via di Grottarossa 1035/1039, 00189, Rome,
Italy
| | - Gabriella Marsilli
- Unit of Physical Medicine and Rehabilitation, Sant’Andrea
Hospital, “Sapienza” University of Rome: Via di Grottarossa 1035/1039, 00189, Rome,
Italy
| | - Alice Mannocci
- Department of Public Health and Infectious Diseases,
Policlinico Umberto I Hospital, “Sapienza” University of Rome, Italy
| | - Giuseppe La Torre
- Department of Public Health and Infectious Diseases,
Policlinico Umberto I Hospital, “Sapienza” University of Rome, Italy
| | - Vincenzo Maria Saraceni
- Complex Unit of Physical Medicine and Rehabilitation,
Policlinico Umberto I Hospital, “Sapienza” University of Rome, Italy
| | - Maria Chiara Vulpiani
- Unit of Physical Medicine and Rehabilitation, Sant’Andrea
Hospital, “Sapienza” University of Rome: Via di Grottarossa 1035/1039, 00189, Rome,
Italy
| | - Ciro Villani
- University Department of Anatomic, Histologic, Forensic and
Locomotor Apparatus Sciences, Section of Locomotor Apparatus Sciences, Policlinico Umberto
I Hospital, “Sapienza” University of Rome, Italy
| |
Collapse
|
46
|
Moore K. N-Acetyl Cysteine and Curcumin in Pediatric Acute-Onset Neuropsychiatric Syndrome. J Child Adolesc Psychopharmacol 2018; 28:293-294. [PMID: 29641241 DOI: 10.1089/cap.2017.0165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Keonie Moore
- ReMed Natural Medicine Clinic , Lower Plenty, Victoria, Australia
| |
Collapse
|
47
|
Jha SK, Jha NK, Kumar D, Sharma R, Shrivastava A, Ambasta RK, Kumar P. Stress-Induced Synaptic Dysfunction and Neurotransmitter Release in Alzheimer's Disease: Can Neurotransmitters and Neuromodulators be Potential Therapeutic Targets? J Alzheimers Dis 2018; 57:1017-1039. [PMID: 27662312 DOI: 10.3233/jad-160623] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The communication between neurons at synaptic junctions is an intriguing process that monitors the transmission of various electro-chemical signals in the central nervous system. Albeit any aberration in the mechanisms associated with transmission of these signals leads to loss of synaptic contacts in both the neocortex and hippocampus thereby causing insidious cognitive decline and memory dysfunction. Compelling evidence suggests that soluble amyloid-β (Aβ) and hyperphosphorylated tau serve as toxins in the dysfunction of synaptic plasticity and aberrant neurotransmitter (NT) release at synapses consequently causing a cognitive decline in Alzheimer's disease (AD). Further, an imbalance between excitatory and inhibitory neurotransmission systems induced by impaired redox signaling and altered mitochondrial integrity is also amenable for such abnormalities. Defective NT release at the synaptic junction causes several detrimental effects associated with altered activity of synaptic proteins, transcription factors, Ca2+ homeostasis, and other molecules critical for neuronal plasticity. These detrimental effects further disrupt the normal homeostasis of neuronal cells and thereby causing synaptic loss. Moreover, the precise mechanistic role played by impaired NTs and neuromodulators (NMs) and altered redox signaling in synaptic dysfunction remains mysterious, and their possible interlink still needs to be investigated. Therefore, this review elucidates the intricate role played by both defective NTs/NMs and altered redox signaling in synaptopathy. Further, the involvement of numerous pharmacological approaches to compensate neurotransmission imbalance has also been discussed, which may be considered as a potential therapeutic approach in synaptopathy associated with AD.
Collapse
|
48
|
Abstract
Chronic pain is one of the most common conditions seen in the clinic, and it is often one of the most frustrating for both clinicians and patients. This condition stems from common comorbidities, including depression, insomnia, fatigue, and physical deconditioning, which often create barriers to recovery. In addition, chronic pain has had divergent approaches for treatment, including an overemphasis on analgesia and curative treatments while underemphasizing the biopsychosocial needs of those in pain. This article attempts to provide an initial framework for approaching those in pain and initiating patient-centered options to support improvements in pain, function, and self-care.
Collapse
Affiliation(s)
- Robert Alan Bonakdar
- Scripps Center for Integrative Medicine, 10820 North Torrey Pines Road, Maildrop FC2, La Jolla, CA 92037, USA.
| |
Collapse
|
49
|
Ginsenoside improves physicochemical properties and bioavailability of curcumin-loaded nanostructured lipid carrier. Arch Pharm Res 2017; 40:864-874. [PMID: 28712035 DOI: 10.1007/s12272-017-0930-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/12/2017] [Indexed: 12/17/2022]
Abstract
The aim of this study was to develop a ginsenoside-modified nanostructured lipid carrier (G-NLC) dispersion containing curcumin. The NLC was prepared by melt emulsification with slight modification process. Different G-NLC dispersion systems were prepared using lipid carrier matrix composed of ginsenoside, phosphatidylcholine, lysophosphatidylcholine, and hydrogenated bean oil. TEM image of the nanoparticles in the NLC dispersion showed core/shell structure, and there was corona-like layer surrounding the particles in the G-NLC. The mean particle size of G-NLC dispersion was in the range of about 300-500 nm and stayed submicron size up to 12 months. The in vitro release of curcumin was faster in pH 1.2 compared to pH 6.8 and it showed linear release pattern after lag time of 1 h. When the G-NLC dispersion was orally administered to rats, Cmax of the free curcumin was 15.2 and 32.3 ng/mL at doses of 50 and 100 mg/kg, respectively, while it was below quantification limit when curcumin was administered as of dispersion in distilled water. Based on these results, it is certain that ginsenoside modulated the NLC dispersion, leading to enduring shelf-life of the dispersion system and enhanced bioavailability. These results strongly suggest that ginsenoside holds a promising potential as a pharmaceutical excipient in the pharmaceutical industries to increase the utility of various bioactives.
Collapse
|
50
|
Warner ME, Naranjo J, Pollard EM, Weingarten TN, Warner MA, Sprung J. Serotonergic medications, herbal supplements, and perioperative serotonin syndrome. Can J Anaesth 2017; 64:940-946. [PMID: 28667541 DOI: 10.1007/s12630-017-0918-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/10/2017] [Accepted: 06/16/2017] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Perioperative use of serotonergic agents increases the risk of serotonin syndrome. We describe the occurrence of serotonin syndrome after fentanyl use in two patients taking multiple serotonergic agents. CLINICAL FEATURES Two patients who had been taking multiple serotonergic medications or herbal supplements (one patient taking fluoxetine, turmeric supplement, and acyclovir; the other taking fluoxetine and trazodone) developed serotonin syndrome perioperatively when undergoing outpatient procedures. Both experienced acute loss of consciousness and generalized myoclonus after receiving fentanyl. In one patient, the serotonin syndrome promptly resolved after naloxone administration. In the other patient, the onset of serotonin syndrome was delayed and manifested after discharge, most likely attributed to the intraoperative use of midazolam for sedation. CONCLUSION Even small doses of fentanyl administered to patients taking multiple serotonergic medications and herbal supplements may trigger serotonin syndrome. Prompt reversal of serotonin toxicity in one patient by naloxone illustrates the likely opioid-mediated pathogenesis of serotonin syndrome in this case. It also highlights that taking serotonergic agents concomitantly can produce the compounding effect that causes serotonin syndrome. The delayed presentation of serotonin syndrome in the patient who received a large dose of midazolam suggests that outpatients taking multiple serotonergic drugs who receive benzodiazepines may require longer postprocedural monitoring.
Collapse
Affiliation(s)
- Mary E Warner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Julian Naranjo
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Emily M Pollard
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Toby N Weingarten
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Mark A Warner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Juraj Sprung
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|