1
|
Turnier JL, Vandenbergen SM, McClune ME, Goudsmit C, Matossian S, Riebschleger M, Saad N, Madison JA, Mohan S, Gudjonsson JE, Tsoi LC, Berthier CC, Kahlenberg JM. Tape strip expression profiling of juvenile dermatomyositis skin reveals mitochondrial dysfunction contributing to disease endotype. JCI Insight 2025; 10:e179875. [PMID: 40080076 PMCID: PMC12016934 DOI: 10.1172/jci.insight.179875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025] Open
Abstract
Skin inflammation in juvenile dermatomyositis (JDM) can signal disease onset or flare, and the persistence of cutaneous disease can prevent complete disease remission. The noninvasive study of cutaneous expression signatures through tape stripping (TS) holds the potential to reveal mechanisms underlying disease heterogeneity and organ-specific inflammation. The objectives of this study were to (a) define TS expression signatures in lesional and nonlesional JDM skin, (b) analyze TS signatures to identify JDM disease endotypes, and (c) compare TS and blood signatures. Although JDM lesional skin demonstrated interferon signaling as the top upregulated pathway, nonlesional skin uniquely highlighted pathways involved in metabolism, angiogenesis, and calcium signaling. Both lesional and nonlesional skin shared inflammasome pathway dysregulation. Using unsupervised clustering of skin expression data, we identified a treatment-refractory JDM subgroup distinguished by upregulation of genes associated with mitochondrial dysfunction. The treatment-refractory JDM subgroup also demonstrated higher interferon, angiogenesis, and innate immune expression scores in skin and blood, though scores were more pronounced in skin as compared with blood. TS expression signatures in JDM provided insight into disease mechanisms and molecular subgroups. Skin, as compared with blood, transcriptional profiles served as more sensitive markers to classify disease subgroups and identify candidate treatment targets.
Collapse
Affiliation(s)
- Jessica L. Turnier
- Division of Pediatric Rheumatology, Department of Pediatrics
- Division of Rheumatology, Department of Internal Medicine
| | | | | | | | | | | | - Nadine Saad
- Division of Pediatric Rheumatology, Department of Pediatrics
| | - Jacqueline A. Madison
- Division of Pediatric Rheumatology, Department of Pediatrics
- Division of Rheumatology, Department of Internal Medicine
| | - Smriti Mohan
- Division of Pediatric Rheumatology, Department of Pediatrics
| | - Johann E. Gudjonsson
- Division of Rheumatology, Department of Internal Medicine
- Department of Dermatology
| | - Lam C. Tsoi
- Department of Dermatology
- Department of Computational Medicine and Bioinformatics
- Department of Biostatistics; and
| | - Celine C. Berthier
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
2
|
Sun R, Chu J, Li P. Inflammasomes and idiopathic inflammatory myopathies. Front Immunol 2024; 15:1449969. [PMID: 39723212 PMCID: PMC11668653 DOI: 10.3389/fimmu.2024.1449969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/15/2024] [Indexed: 12/28/2024] Open
Abstract
Idiopathic inflammatory myopathies (IIM) are a group of systemic autoimmune diseases characterized by muscle weakness and elevated serum creatine kinase levels. Recent research has highlighted the role of the innate immune system, particularly inflammasomes, in the pathogenesis of IIM. This review focuses on the role of inflammasomes, specifically NLRP3 and AIM2, and their associated proteins in the development of IIM. We discuss the molecular mechanisms of pyroptosis, a programmed cell death pathway that triggers inflammation, and its association with IIM. The NLRP3 inflammasome, in particular, has been implicated in muscle fiber necrosis and the subsequent release of damage-associated molecular patterns (DAMPs), leading to inflammation. We also explore the potential therapeutic implications of targeting the NLRP3 inflammasome with inhibitors such as glyburide and MCC950, which have shown promise in reducing inflammation and improving muscle function in preclinical models. Additionally, we discuss the role of caspases, particularly caspase-1, in the canonical pyroptotic pathway associated with IIM. The understanding of these mechanisms offers new avenues for therapeutic intervention and a better comprehension of IIM pathophysiology.
Collapse
Affiliation(s)
- Rui Sun
- Department of Rheumatology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Jiyan Chu
- Department of Rheumatology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
- Graduate School, Dalian Medical University, Dalian, Liaoning, China
| | - Ping Li
- Department of Rheumatology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Zhao P, Zhu J, Bai L, Ma W, Li F, Zhang C, Zhao L, Wang L, Zhang S. Neutrophil extracellular traps induce pyroptosis of pulmonary microvascular endothelial cells by activating the NLRP3 inflammasome. Clin Exp Immunol 2024; 217:89-98. [PMID: 38517050 PMCID: PMC11188539 DOI: 10.1093/cei/uxae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 03/23/2024] Open
Abstract
Excessive formation of neutrophil extracellular traps (NETs) may lead to myositis-related interstitial lung disease (ILD). There is evidence that NETs can directly injure vascular endothelial cells and play a pathogenic role in the inflammatory exudation of ILD. However, the specific mechanism is unclear. This study aimed to investigate the specific mechanism underlying NET-induced injury to human pulmonary microvascular endothelial cells (HPMECs). HPMECs were stimulated with NETs (200 ng/ml) in vitro. Cell death was detected by propidium iodide staining. The morphological changes of the cells were observed by transmission electron microscopy (TEM). Pyroptosis markers were detected by western blot, immunofluorescence, and quantitative real-time polymerase chain reaction, and the related inflammatory factor Interleukin-1β (IL-1β) was verified by enzyme-linked immunosorbent assay (ELISA). Compared with the control group, HPMECs mortality increased after NET stimulation, and the number of pyroptosis vacuoles in HPMECs was further observed by TEM. The pulmonary microvascular endothelial cells (PMECs) of the experimental autoimmune myositis mouse model also showed a trend of pyroptosis in vivo. Cell experiment further confirmed the significantly high expression of the NLRP3 inflammasome and pyroptosis-related markers, including GSDMD and inflammatory factor IL-1β. Pretreated with the NLRP3 inhibitor MCC950, the activation of NLRP3 inflammasome and pyroptosis of HPMECs were effectively inhibited. Our study confirmed that NETs promote pulmonary microvascular endothelial pyroptosis by activating the NLRP3 inflammasome, suggesting that NETs-induced pyroptosis of PMECs may be a potential pathogenic mechanism of inflammatory exudation in ILD.
Collapse
Affiliation(s)
- Peipei Zhao
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Jiarui Zhu
- Cui Ying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Ling Bai
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Wenlan Ma
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Feifei Li
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Cen Zhang
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Liangtao Zhao
- Cui Ying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Liuyang Wang
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Sigong Zhang
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Sharmeen S, Christopher-Stine L, Salvemini JN, Gorevic P, Clark R, Yao Q. Amyopathic dermatomyositis may be on the spectrum of autoinflammatory disease: A clinical review. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2024; 5:42-48. [PMID: 38571935 PMCID: PMC10985708 DOI: 10.1515/rir-2024-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 06/13/2023] [Indexed: 04/05/2024]
Abstract
Systemic autoinflammatory diseases (SAIDs) are distinct from autoimmune diseases. The former primarily results from abnormal innate immune response and genetic testing is crucial for disease diagnosis. Similar cutaneous involvement is a main feature for both SAID and dermatomyositis (DM), so they can be confused with each other. A literature search of PubMed and MEDLINE was conducted for relevant articles. The similarities and differences between these two types of diseases were analyzed. We found phenotypic similarities between these two types of disorders. Accumulating data supports a major role of the innate immune system and a similar cytokine profile. Molecular testing using an autoinflammatory disease gene panel may help identify SAID patients from the DM population and may offer therapeutic benefit using interleukin-1 (IL-1) inhibitors. A subset of DM, notably amyopathic dermatomyositis in the absence of autoantibodies may be on the spectrum of autoinflammatory disease.
Collapse
Affiliation(s)
- Saika Sharmeen
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| | | | - Joann N. Salvemini
- Department of Dermatology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| | - Peter Gorevic
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| | - Richard Clark
- Department of Dermatology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| | - Qingping Yao
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| |
Collapse
|
5
|
Ibrahem R, Raghip MA, Abdelwahed MM, Amin NS, Abualfadl EM, Waly NGFM. Role of some inflammasomes in rheumatoid arthritis patients in Egypt. Mol Biol Rep 2023; 50:8809-8815. [PMID: 37659984 PMCID: PMC10635908 DOI: 10.1007/s11033-023-08738-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/02/2023] [Indexed: 09/04/2023]
Abstract
AIM This study aims to demonstrate the role of some inflammasomes genes: NLRC4 (the NLR family, CARD domain-containing protein 4), NLRP1 (NLR family, pyrin domain-containing 1), ASC (Apoptosis-associated speck-like protein containing a CARD), and CASPASE-1 in the pathogenesis of Rheumatoid arthritis (RA) in Egyptian population. MAIN METHODS The expression level of NLRC4, NLRP1, ASC, and CASPASE-1 within PBMCs isolated from all RA subjects by quantitative real-time PCR. GAPDH gene was used as a reference gene. Measurement of serum level of IL-1β and IL-18 was performed using ELISA. KEY FINDINGS Results showed dysregulated inflammasomes expression that may participate in the pathogenesis of the inflammatory process of the disease. SIGNIFICANCE Understanding the role of inflammasomes in RA pathogenesis helps in finding promising therapy for the treatment and management of this disease.
Collapse
Affiliation(s)
- Reham Ibrahem
- Microbiology and Immunology Department, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - Mervat A Raghip
- Microbiology and Immunology Department, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Mamdouh M Abdelwahed
- Medical Microbiology and Immunology Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Noha S Amin
- Medical Microbiology and Immunology Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Esam M Abualfadl
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Nancy G F M Waly
- Microbiology and Immunology Department, Faculty of Pharmacy, Minia University, Minya, Egypt.
| |
Collapse
|
6
|
New-onset dermatomyositis following SARS-CoV-2 infection and vaccination: a case-based review. Rheumatol Int 2022; 42:2267-2276. [PMID: 35939078 PMCID: PMC9358381 DOI: 10.1007/s00296-022-05176-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022]
Abstract
Dermatomyositis is a rare, type I interferon-driven autoimmune disease, which can affect muscle, skin and internal organs (especially the pulmonary system). In 2021, we have noted an increase in new-onset dermatomyositis compared to the years before the SARS-CoV-2 pandemic in our center. We present four cases of new-onset NXP2 and/or MDA5 positive dermatomyositis shortly after SARS-CoV-2 infection or vaccination. Three cases occurred within days after vaccination with Comirnaty and one case after SARS-CoV-2 infection. All patients required intensive immunosuppressive treatment. MDA5 antibodies could be detected in three patients and NXP2 antibodies were found in two patients (one patient was positive for both antibodies). In this case-based systematic review, we further analyze and discuss the literature on SARS-CoV-2 and associated dermatomyositis. In the literature, sixteen reports (with a total of seventeen patients) of new-onset dermatomyositis in association with a SARS-CoV-2 infection or vaccination were identified. Ten cases occurred after infection and seven after vaccination. All vaccination-associated cases were seen in mRNA vaccines. The reported antibodies included for instance MDA5, NXP2, Mi-2 and TIF1γ. The reviewed literature and our cases suggest that SARS-CoV-2 infection and vaccination may be considered as a potential trigger of interferon-pathway. Consequently, this might serve as a stimulus for the production of dermatomyositis-specific autoantibodies like MDA5 and NXP2 which are closely related to viral defense or viral RNA interaction supporting the concept of infection and vaccination associated dermatomyositis.
Collapse
|
7
|
You R, He X, Zeng Z, Zhan Y, Xiao Y, Xiao R. Pyroptosis and Its Role in Autoimmune Disease: A Potential Therapeutic Target. Front Immunol 2022; 13:841732. [PMID: 35693810 PMCID: PMC9174462 DOI: 10.3389/fimmu.2022.841732] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/29/2022] [Indexed: 12/13/2022] Open
Abstract
Autoimmune diseases are a group of heterogeneous diseases with diverse clinical manifestations that can be divided into systemic and organ-specific. The common etiology of autoimmune diseases is the destruction of immune tolerance and the production of autoantibodies, which attack specific tissues and/or organs in the body. The pathogenesis of autoimmune diseases is complicated, and genetic, environmental, infectious, and even psychological factors work together to cause aberrant innate and adaptive immune responses. Although the exact mechanisms are unclear, recently, excessive exacerbation of pyroptosis, as a bond between innate and adaptive immunity, has been proven to play a crucial role in the development of autoimmune disease. Pyroptosis is characterized by pore formation on cell membranes, as well as cell rupture and the excretion of intracellular contents and pro-inflammatory cytokines, such as IL-1β and IL-18. This overactive inflammatory programmed cell death disrupts immune system homeostasis and promotes autoimmunity. This review examines the molecular structure of classical inflammasomes, including NLRP3, AIM2, and P2X7-NLRP3, as the switches of pyroptosis, and their molecular regulation mechanisms. The sophisticated pyroptosis pathways, including the canonical caspase-1-mediated pathway, the noncanonical caspase-4/5/11-mediated pathway, the emerging caspase-3-mediated pathway, and the caspase-independent pathway, are also described. We highlight the recent advances in pyroptosis in autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease, Sjögren's syndrome and dermatomyositis, and attempt to identify its potential advantages as a therapeutic target or prognostic marker in these diseases.
Collapse
Affiliation(s)
- Ruixuan You
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xinglan He
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhuotong Zeng
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yi Zhan
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yangfan Xiao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Rong Xiao
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
8
|
Torres-Ruiz J, Carrillo-Vázquez DA, Leal-Alanis A, Zentella-Dehesa A, Tapia-Rodríguez M, Maravillas-Montero JL, Nuñez-Álvarez CA, Carazo-Vargas ER, Romero-Hernández I, Juárez-Vega G, Alcocer-Varela J, Gómez-Martín D. Low-Density Granulocytes and Neutrophil Extracellular Traps as Biomarkers of Disease Activity in Adult Inflammatory Myopathies. J Clin Rheumatol 2022; 28:e480-e487. [PMID: 34643846 DOI: 10.1097/rhu.0000000000001772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND/OBJECTIVE Biomarkers for disease activity and damage accrual in idiopathic inflammatory myopathies (IIMs) are currently lacking. The purpose of this cross-sectional study is to analyze the relationship among low-density granulocytes (LDGs), neutrophil extracellular traps (NETs), and clinical and immunological features of patients with IIM. METHODS We assessed disease activity, damage accrual, amount of LDGs, NETs, expression of LL-37, and serum cytokines in 65 adult patients with IIM. Differences between groups and correlations were assessed by Kruskal-Wallis, Mann-Whitney U, and Spearman ρ tests. The association between LDGs, NETs, disease activity, calcinosis, and cutaneous ulcers was assessed by logistic regression. To address the capacity of LDGs and NETs to diagnose disease activity, we used receiving operating characteristic curves. RESULTS Low-density granulocytes were higher in patients with active disease, ulcers, calcinosis, and anti-MDA5 antibodies, which correlated with serum levels of IL-17A and IL-18. Neutrophil extracellular traps were higher in patients with calcinosis, elevated titers of antinuclear antibodies, and positive anti-PM/Scl75 tests. The combination of a high proportion of both total LDGs and NETs was associated with the presence of calcinosis and cutaneous ulcers. LL-37 was higher in NETs originating from LDGs. Normal-density neutrophils were elevated in patients with active dermatomyositis. CONCLUSIONS Low-density granulocytes and NETs containing LL-37 are increased in patients with IIM and active disease, and correlate with proinflammatory cytokines. Both total and CD10+ LDGs are potential biomarkers for disease activity and, in combination with NETs, have the potential to detect patients who are at risk for cutaneous ulcers and calcinosis.
Collapse
Affiliation(s)
| | | | - Araceli Leal-Alanis
- Internal Medicine, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran
| | | | - Miguel Tapia-Rodríguez
- Microscopy Unit, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico
| | | | | | | | | | - Guillermo Juárez-Vega
- Flow Cytometry Unit, Red de Apoyo a la Investigación, Coordinacion de Investigación Cientifica, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | | | | |
Collapse
|
9
|
Dubuisson N, Versele R, Davis-López de Carrizosa MA, Selvais CM, Brichard SM, Abou-Samra M. Walking down Skeletal Muscle Lane: From Inflammasome to Disease. Cells 2021; 10:cells10113023. [PMID: 34831246 PMCID: PMC8616386 DOI: 10.3390/cells10113023] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, innate immune system receptors and sensors called inflammasomes have been identified to play key pathological roles in the development and progression of numerous diseases. Among them, the nucleotide-binding oligomerization domain (NOD-), leucine-rich repeat (LRR-) and pyrin domain-containing protein 3 (NLRP3) inflammasome is probably the best characterized. To date, NLRP3 has been extensively studied in the heart, where its effects and actions have been broadly documented in numerous cardiovascular diseases. However, little is still known about NLRP3 implications in muscle disorders affecting non-cardiac muscles. In this review, we summarize and present the current knowledge regarding the function of NLRP3 in diseased skeletal muscle, and discuss the potential therapeutic options targeting the NLRP3 inflammasome in muscle disorders.
Collapse
Affiliation(s)
- Nicolas Dubuisson
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain, 1200 Brussels, Belgium; (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (S.M.B.); (M.A.-S.)
- Neuromuscular Reference Center, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Correspondence:
| | - Romain Versele
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain, 1200 Brussels, Belgium; (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (S.M.B.); (M.A.-S.)
| | - María A. Davis-López de Carrizosa
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain, 1200 Brussels, Belgium; (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (S.M.B.); (M.A.-S.)
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Camille M. Selvais
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain, 1200 Brussels, Belgium; (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (S.M.B.); (M.A.-S.)
| | - Sonia M. Brichard
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain, 1200 Brussels, Belgium; (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (S.M.B.); (M.A.-S.)
| | - Michel Abou-Samra
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain, 1200 Brussels, Belgium; (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (S.M.B.); (M.A.-S.)
| |
Collapse
|
10
|
Kong R, Sun L, Li H, Wang D. The role of NLRP3 inflammasome in the pathogenesis of rheumatic disease. Autoimmunity 2021; 55:1-7. [PMID: 34713773 DOI: 10.1080/08916934.2021.1995860] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inflammasome is a molecular platform that is formed in the cytosolic compartment to mediate host immune responses to infection and cellular damage. Inflammasome can activate caspase-1, leading to the maturation of two inflammatory cytokines interleukin 1β (IL-1β) and IL-18 and initiation of a proinflammatory form of cell death called pyroptosis. Among various inflammasome complexes, the NLRP3 inflammasome is by far the most studied inflammasome. NLRP3 inflammasome is a key factor in regulating host immune defense against infectious microbes and cellular damage. However, the dysregulated NLRP3 inflammasome activation also participates in the pathogenesis of many human disorders. NLRP3 inflammasome plays an important role in the pathogenesis of rheumatic disease such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), ankylosing spondylitis (AS), Sjögren's syndrome (SS), dermatomyositis/polymyositis (DM/PM), gout, and systemic sclerosis (SSc). For example, NLRP3 inflammasome has been found highly activated in synovial tissues and peripheral blood mononuclear cells from RA patients. In this paper, we will discuss the role of NLRP3 inflammasome in the pathogenesis of rheumatic disease.
Collapse
Affiliation(s)
- Ruixue Kong
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Lulu Sun
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Dashan Wang
- Research Center, Shandong Medical College, Linyi, China
| |
Collapse
|
11
|
Szekanecz Z, McInnes IB, Schett G, Szamosi S, Benkő S, Szűcs G. Autoinflammation and autoimmunity across rheumatic and musculoskeletal diseases. Nat Rev Rheumatol 2021; 17:585-595. [PMID: 34341562 DOI: 10.1038/s41584-021-00652-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 12/16/2022]
Abstract
Most rheumatic and musculoskeletal diseases (RMDs) can be placed along a spectrum of disorders, with autoinflammatory diseases (including monogenic systemic autoinflammatory diseases) and autoimmune diseases (such as systemic lupus erythematosus and antiphospholipid syndrome) representing the two ends of this spectrum. However, although most autoinflammatory diseases are characterized by the activation of innate immunity and inflammasomes and classical autoimmunity typically involves adaptive immune responses, there is some overlap in the features of autoimmunity and autoinflammation in RMDs. Indeed, some 'mixed-pattern' diseases such as spondyloarthritis and some forms of rheumatoid arthritis can also be delineated. A better understanding of the pathogenic pathways of autoinflammation and autoimmunity in RMDs, as well as the preferential cytokine patterns observed in these diseases, could help us to design targeted treatment strategies.
Collapse
Affiliation(s)
- Zoltán Szekanecz
- Division of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum fur Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Szilvia Szamosi
- Division of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilvia Benkő
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabriella Szűcs
- Division of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
12
|
Study of the correlation between the noncanonical pathway of pyroptosis and idiopathic inflammatory myopathy. Int Immunopharmacol 2021; 98:107810. [PMID: 34116285 DOI: 10.1016/j.intimp.2021.107810] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/06/2021] [Accepted: 05/21/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The pathogenesis of idiopathic inflammatory myopathy (IIM) is complex and unclear. The purpose of this study was to investigate whether the noncanonical pathway of pyroptosis is involved in the pathogenesis of IIM, and the intervention effect of drugs glyburide and bright blue G (BBG). METHODS After the drug intervention, we detected the expression of the caspase-4, caspase-5, caspase-11, GSDMD, pannexin-1, NLRP3 and P2X7R proteins in skeletal muscle tissues from the six groups using Western blotting. We detected the expression of the caspase-11, GSDMD, pannexin-1, NLRP3 and P2X7R mRNAs in skeletal muscle tissues from the six groups using RT-qPCR and detected the serum IL-18 and IL-1β levels in the six groups using ELISAs. RESULT Lower expression levels of the P2X7R and NLRP3 proteins were observed in the EAM + BBG group than in the EAM1 group (P < 0.05). The expression of NLRP3 in the EAM + glyburide group was lower than in the EAM2 group (P < 0.05). Lower expression levels of the P2X7R and NLRP3 mRNAs were detected in the EAM + BBG group than in the EAM1 group (P < 0.05). NLRP3 was expressed at lower levels in the EAM + glyburide group than in the EAM2 group (P < 0.05). Lower serum IL-1β levels were detected in the EAM + BBG group than in the EAM1 group (P < 0.05), and serum IL-1β and IL-18 levels in the EAM + glyburide group were lower than those in the EAM2 group (P < 0.05). CONCLUSION Our results suggest that the noncanonical pathway of pyroptosis may be involved in the pathogenesis of IIM, and glyburide and BBG exert certain intervention effects on its pathogenesis.
Collapse
|
13
|
Péladeau C, Sandhu JK. Aberrant NLRP3 Inflammasome Activation Ignites the Fire of Inflammation in Neuromuscular Diseases. Int J Mol Sci 2021; 22:ijms22116068. [PMID: 34199845 PMCID: PMC8200055 DOI: 10.3390/ijms22116068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/24/2022] Open
Abstract
Inflammasomes are molecular hubs that are assembled and activated by a host in response to various microbial and non-microbial stimuli and play a pivotal role in maintaining tissue homeostasis. The NLRP3 is a highly promiscuous inflammasome that is activated by a wide variety of sterile triggers, including misfolded protein aggregates, and drives chronic inflammation via caspase-1-mediated proteolytic cleavage and secretion of proinflammatory cytokines, interleukin-1β and interleukin-18. These cytokines further amplify inflammatory responses by activating various signaling cascades, leading to the recruitment of immune cells and overproduction of proinflammatory cytokines and chemokines, resulting in a vicious cycle of chronic inflammation and tissue damage. Neuromuscular diseases are a heterogeneous group of muscle disorders that involve injury or dysfunction of peripheral nerves, neuromuscular junctions and muscles. A growing body of evidence suggests that dysregulation, impairment or aberrant NLRP3 inflammasome signaling leads to the initiation and exacerbation of pathological processes associated with neuromuscular diseases. In this review, we summarize the available knowledge about the NLRP3 inflammasome in neuromuscular diseases that affect the peripheral nervous system and amyotrophic lateral sclerosis, which affects the central nervous system. In addition, we also examine whether therapeutic targeting of the NLRP3 inflammasome components is a viable approach to alleviating the detrimental phenotype of neuromuscular diseases and improving clinical outcomes.
Collapse
Affiliation(s)
- Christine Péladeau
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada;
| | - Jagdeep K. Sandhu
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Correspondence: ; Tel.: +1-613-993-5304
| |
Collapse
|
14
|
Liu D, Xiao Y, Zhou B, Gao S, Li L, Zhao L, Chen W, Dai B, Li Q, Duan H, Zuo X, Luo H, Zhu H. PKM2-dependent glycolysis promotes skeletal muscle cell pyroptosis by activating the NLRP3 inflammasome in dermatomyositis/polymyositis. Rheumatology (Oxford) 2021; 60:2177-2189. [PMID: 33165604 DOI: 10.1093/rheumatology/keaa473] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/19/2020] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Muscle cell necrosis is the most common pathological manifestation of idiopathic inflammatory myopathies. Evidence suggests that glycolysis might participate in it. However, the mechanism is unclear. This study aimed to determine the role of glycolysis in the muscle damage that occurs in DM/PM. METHODS Mass spectrometry was performed on muscle lesions from DM/PM and control subjects. The expression levels of pyruvate kinase isozyme M2 (PKM2), the nucleotide-binding and oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and pyroptosis-related genes in muscle tissues or plasma were determined by real-time PCR, western blot analysis, IF and ELISA. In addition, IFNγ was used to stimulate myotubes, and the relationships among PMK2 expression, NLRP3 inflammasome activation and pyroptosis were investigated. RESULTS Mass spectrometry and bioinformatics analysis suggested that multiple glycolysis processes, the NLRP3 inflammasome and programmed cell death pathway-related proteins were dysregulated in the muscle tissues of DM/PM. PKM2 and the NLRP3 inflammasome were upregulated and positively correlated in the muscle fibres of DM/PM. Moreover, the pyroptosis-related proteins were increased in muscle tissues of DM/PM and were further increased in PM. The levels of PKM2 in muscle tissues and IL-1β in plasma were high in patients with anti-signal recognition particle autoantibody expression. The pharmacological inhibition of PKM2 in IFNγ-stimulated myotubes attenuated NLRP3 inflammasome activation and subsequently inhibited pyroptosis. CONCLUSION Our study revealed upregulated glycolysis in the lesioned muscle tissues of DM/PM, which activated the NLRP3 inflammasome and leaded to pyroptosis in muscle cells. The levels of PKM2 and IL-1β were high in patients with anti-signal recognition particle autoantibody expression. These proteins might be used as new biomarkers for muscle damage.
Collapse
Affiliation(s)
- Di Liu
- Department of Rheumatology and Immunology, Xiangya Hospital
- Institute of Rheumatology and Immunology, Central South University, Changsha
| | - Yizhi Xiao
- Department of Rheumatology and Immunology, Xiangya Hospital
- Institute of Rheumatology and Immunology, Central South University, Changsha
| | - Bin Zhou
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao
| | - Siming Gao
- Department of Rheumatology and Immunology, Beijing Jishuitan Hospital, Beijing
| | - Liya Li
- Department of Rheumatology and Immunology, Xiangya Hospital
- Institute of Rheumatology and Immunology, Central South University, Changsha
| | - Lijuan Zhao
- Department of Rheumatology and Immunology, Xiangya Hospital
- Institute of Rheumatology and Immunology, Central South University, Changsha
| | - Weilin Chen
- Department of Rheumatology and Immunology, Xiangya Hospital
- Institute of Rheumatology and Immunology, Central South University, Changsha
| | - Bingying Dai
- Department of Rheumatology and Immunology, Xiangya Hospital
- Institute of Rheumatology and Immunology, Central South University, Changsha
| | - Qiuxiang Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Huiqian Duan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxia Zuo
- Department of Rheumatology and Immunology, Xiangya Hospital
- Institute of Rheumatology and Immunology, Central South University, Changsha
| | - Hui Luo
- Department of Rheumatology and Immunology, Xiangya Hospital
- Institute of Rheumatology and Immunology, Central South University, Changsha
| | - Honglin Zhu
- Department of Rheumatology and Immunology, Xiangya Hospital
- Institute of Rheumatology and Immunology, Central South University, Changsha
| |
Collapse
|
15
|
Pyroptosis by caspase-11 inflammasome-Gasdermin D pathway in autoimmune diseases. Pharmacol Res 2021; 165:105408. [PMID: 33412278 DOI: 10.1016/j.phrs.2020.105408] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 02/08/2023]
Abstract
Inflammasomes are a group of supramolecular complexes primarily comprise a sensor, adaptor protein and an effector. Among them, canonical inflammasomes are assembled by one specific pattern recognition receptor, the adaptor protein apoptosis-associated speck-like protein containing a CARD and procaspase-1. Murine caspase-11 and its human ortholog caspase-4/5 are identified as cytosolic sensors which directly responds to LPS. Once gaining access to cytosol, LPS further trigger inflammasome activation in noncanonical way. Downstream pore-forming Gasdermin D is a pyroptosis executioner. Emerging evidence announced in recent years demonstrate the vital role played by caspase-11 non-canonical inflammasome in a range of autoimmune diseases. Pharmacological ablation of caspase-11 and its related effector results in potent therapeutic effects. Though recent advances have highlighted the potential of caspase-11 as a drug target, the understanding of caspase-11 molecular activation and regulation mechanism remains to be limited and thus hampered the discovery and progression of novel inhibitors. Here in this timeline review, we explored how caspase-11 get involved in the pathogenesis of autoimmune diseases, we also collected the reported small-molecular caspase-11 inhibitors. Moreover, the clinical implications and therapeutic potential of caspase-11 inhibitors are discussed. Targeting non-canonical inflammasomes is a promising strategy for autoimmune diseases treatment, while information about the toxicity and physiological disposition of the promising caspase-11 inhibitors need to be supplemented before they can be translated from bench to bedside.
Collapse
|
16
|
Cai R, Wang Q, Zhu G, Zhu L, Tao Z. Increased expression of caspase 1 during active phase of connective tissue disease. PeerJ 2019; 7:e7321. [PMID: 31367484 PMCID: PMC6657674 DOI: 10.7717/peerj.7321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/18/2019] [Indexed: 11/25/2022] Open
Abstract
Key factors of pyroptosis play an important role in the inflammatory response to connective tissue disease (CTD). However, information on active and stable stages of CTD is scarce. To distinguish the differences of concentrations of C-reactive protein (CRP), caspase 1, caspase 4, caspase 5 and sCD14 in plasma between the patients with active and stable stages of CTD. A cohort study was conducted to recruit patients diagnosed with CTD of active phase and stable phase as well as health control. These data included the analysis of the concentration of sCD14, caspase 1, caspase 4 and caspase 5 in peripheral plasma by ELISA. The Wilcoxon rank-sum test was used to compare the two groups. The sex ratio and ages of the three groups were not different statistically. The concentrations of sCD14, caspase4 and caspase5 of plasma in the CTD of active phase and the stable phase as well as the health control. The concentration of caspase 1 in active phase of CTD (470.19 [422.33–513.14] pmol/L) was significantly higher than that in stable group (203.95 [160.94–236.12] pmol/L) and healthy control (201.65 [191.11–240.35] pmol/L] pmol/L) (p < 0.001, both), but there was no significant difference between stable group and healthy control (p = 0.2312). Similarly, the concentration of CRP in the active phase of CTD (8.96 [3.06–20.28] mg/L) was significantly higher than that in the stable group (3.00 [1.30–11.40] mg/L) and the healthy control (3.70 [2.30–4.73] mg/L) (p = 0.0013, p = 0.0006, respectively), but there was no significant difference between the stable group and the healthy control (p = 0.3205). However, there were no significant differences in the concentration of sCD14, caspase 4 and caspase 5 in the active phase of CTD and the stable group as well as the health group. Consequently, the patients of the active phase of CTD showed increased expression of caspase 1.
Collapse
Affiliation(s)
- Rentian Cai
- Department of Infectious Diseases, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiongqiong Wang
- Nuclear Medicine Department, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Gongmin Zhu
- Nuclear Medicine Department, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liying Zhu
- Department of Infectious Diseases, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhen Tao
- Department of Infectious Diseases, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Chang CM, Shih PH, Chen TJ, Ho WC, Yang CP. Integrated therapy decreases the mortality of patients with polymyositis and dermatomyositis: A Taiwan-wide population-based retrospective study. JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:70-81. [PMID: 30818007 DOI: 10.1016/j.jep.2019.02.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The issue of whether integrated treatment with conventional medicine (CM) and herbal medicine (HM) can reduce mortality in patients with polymyositis/dermatomyositis (PM/DM) had not been addressed. AIM OF THE STUDY In this study, we investigated the effect of integrated therapy on mortality in a retrospective PM/DM cohort in the Taiwan National Health Insurance Research Database (NHIRD). MATERIALS AND METHODS Patients with PM/DM were retrospectively enrolled from the PM/DM Registry of Catastrophic Illnesses cohort in the Taiwan NHIRD between 1997 and 2011. The patients were divided into an integrated medicine (IM) group that received CM and HM and a non-IM group that received CM alone. The Cox proportional hazards regression model and Kaplan-Meier method were used to evaluate the hazard ratio (HR) for mortality. RESULTS Three hundred and eighty-five of 2595 patients with newly diagnosed PM/DM had received IM and 99 had received non-IM. The adjusted HR for mortality was lower in the IM group than in the non-IM group (0.42, 95% confidence interval 0.26-0.68, p < 0.001). The adjusted HR for mortality was also lower in the IM group that had received CM plus HM than in the group that received CM alone (0.48, 95% confidence interval 0.28-0.84, p < 0.05). The core pattern of HM prescriptions integrated with methylprednisolone, methotrexate, azathioprine, or cyclophosphamide to decrease mortality included "San-Qi" (Panax notoginseng), "Bai-Ji" (Bletilla striata), "Chen-Pi" (Citrus reticulata), "Hou-Po" (Magnolia officinalis), and "Dan-Shan" (Salvia miltiorrhiza). CONCLUSION Integrated therapy has reduced mortality in patients with PM/DM in Taiwan. Further investigation of the clinical effects and pharmaceutical mechanism involved is needed.
Collapse
Affiliation(s)
- Ching-Mao Chang
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Po-Hsuan Shih
- Department of Chinese Medicine, Cheng Hsin General Hospital, Taipei, Taiwan; Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Tzeng-Ji Chen
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Family Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Wen-Chao Ho
- Department of Public Health, China Medical University, Taichung, Taiwan.
| | - Chun-Pai Yang
- Department of Neurology, Kuang Tien General Hospital, Taichung, Taiwan; Department of Nutrition, Huang-Kuang University, Taichung, Taiwan.
| |
Collapse
|
18
|
NOD-like receptors: major players (and targets) in the interface between innate immunity and cancer. Biosci Rep 2019; 39:BSR20181709. [PMID: 30837326 PMCID: PMC6454022 DOI: 10.1042/bsr20181709] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022] Open
Abstract
Innate immunity comprises several inflammation-related modulatory pathways which receive signals from an array of membrane-bound and cytoplasmic pattern recognition receptors (PRRs). The NLRs (NACHT (NAIP (neuronal apoptosis inhibitor protein), C2TA (MHC class 2 transcription activator), HET-E (incompatibility locus protein from Podospora anserina) and TP1 (telomerase-associated protein) and Leucine-Rich Repeat (LRR) domain containing proteins) relate to a large family of cytosolic innate receptors, involved in detection of intracellular pathogens and endogenous byproducts of tissue injury. These receptors may recognize pathogen-associated molecular patterns (PAMPs) and/or danger-associated molecular patterns (DAMPs), activating host responses against pathogen infection and cellular stress. NLR-driven downstream signals trigger a number of signaling circuitries, which may either initiate the formation of inflammasomes and/or activate nuclear factor κB (NF-κB), stress kinases, interferon response factors (IRFs), inflammatory caspases and autophagy. Disruption of those signals may lead to a number of pro-inflammatory conditions, eventually promoting the onset of human malignancies. In this review, we describe the structures and functions of the most well-defined NLR proteins and highlight their association and biological impact on a diverse number of cancers.
Collapse
|
19
|
Liu T, Hou Y, Dai TJ, Yan CZ. Upregulation of Interleukin 21 and Interleukin 21 Receptor in Patients with Dermatomyositis and Polymyositis. Chin Med J (Engl) 2018; 130:2101-2106. [PMID: 28836555 PMCID: PMC5586180 DOI: 10.4103/0366-6999.213419] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background: The immunopathologic mechanism underlying dermatomyositis (DM) and polymyositis (PM) remains poorly understood. Many cytokines play a pathogenic role in DM and PM. Interleukin 21 (IL-21) has a pleiotropic effect on inflammation regulation. This study aimed to detect the serum IL-21 level and investigate the expression of IL-21 and IL-21 receptor (IL-21R) in muscle tissues of patients with DM and PM. Methods: Biopsied muscle samples were obtained from 11 patients with DM, 12 with PM, and six controls; mRNA levels of IL-21 and IL-21R were analyzed by real-time quantitative reverse transcription-polymerase chain reaction; and immunohistochemical staining was used to evaluate the protein expression of IL-21 and IL-21R. Serum samples were obtained from 36 patients with DM, 19 with PM, and 20 healthy controls. The serum IL-21 level was detected by enzyme-linked immunosorbent assay. Results: The expression of IL-21 was upregulated in patients with DM and PM. The IL-21 mRNA level was significantly increased in muscle tissues of patients with DM and PM (DM vs. control, P = 0.001; PM vs. control, P = 0.001), whereas IL-21R mRNA level in patients with DM/PM was not statistically different from that of healthy controls. Immunohistochemical staining showed both IL-21 and IL-21R were significantly expressed in the inflammatory cells in muscle tissues of patients with DM and PM. The serum IL-21 level was also significantly higher in patients with DM/PM than in controls (DM vs. control, 49.12 [45.28, 60.07] pg/ml vs. 42.54 [38.69, 48.85] pg/ml, P = 0.001; PM vs. control, 50.77 [44.19, 60.62] pg/ml vs. 42.54 [38.69, 48.85] pg/ml, P = 0.005). Conclusions: IL-21 expression is upregulated in patients with DM and PM in both muscle tissue and serum. In addition, IL-21R protein is highly expressed in affected muscle tissues of patients with DM and PM. IL-21 may play a pathogenic role through IL-21R in patients with DM and PM.
Collapse
Affiliation(s)
- Tao Liu
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong 250012; Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Ying Hou
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Ting-Jun Dai
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Chuan-Zhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Department of Neurology, Qilu Hospital, Shandong University; Brain Science Research Institute, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
20
|
Abstract
Autoimmune diseases develop as a result of chronic inflammation owing to interactions between genes and the environment. However, the mechanisms by which autoimmune diseases evolve remain poorly understood. Newly discovered risk factors and pathogenic processes in the various idiopathic inflammatory myopathy (IIM) phenotypes (known collectively as myositis) have illuminated innovative approaches for understanding these diseases. The HLA 8.1 ancestral haplotype is a key risk factor for major IIM phenotypes in some populations, and several genetic variants associated with other autoimmune diseases have been identified as IIM risk factors. Environmental risk factors are less well studied than genetic factors but might include viruses, bacteria, ultraviolet radiation, smoking, occupational and perinatal exposures and a growing list of drugs (including biologic agents) and dietary supplements. Disease mechanisms vary by phenotype, with evidence of shared innate and adaptive immune and metabolic pathways in some phenotypes but unique pathways in others. The heterogeneity and rarity of the IIMs make advancements in diagnosis and treatment cumbersome. Novel approaches, better-defined phenotypes, and international, multidisciplinary consensus have contributed to progress, and it is hoped that these methods will eventually enable therapeutic intervention before the onset or major progression of disease. In the future, preemptive strategies for IIM management might be possible.
Collapse
Affiliation(s)
- Frederick W. Miller
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Janine A. Lamb
- Centre for Epidemiology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, UK
| | - Jens Schmidt
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Kanneboyina Nagaraju
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
21
|
Abstract
Histopathological analyses of muscle specimens from myositis patients indicate that skeletal muscle cells play an active role in the interaction with immune cells. Research over the last few decades has shown that skeletal muscle cells exhibit immunobiological properties that perfectly define them as non-professional antigen presenting cells. They are able to present antigens via major histocompatibility complex molecules, exhibit costimulatory molecules and secrete soluble molecules that actively shape the immune response in an either pro- or anti-inflammatory manner. Skeletal muscle cells regulate both innate and adaptive immune responses and are essentially involved in the pathophysiological processes of idiopathic inflammatory myopathies. Understanding the role of skeletal muscle cells might help to identify new therapeutic targets for these devastating diseases. This review summarizes the immunobiological features of skeletal muscle cells, especially in the context of idiopathic inflammatory myopathies, and discusses shortcomings and limitations in skeletal muscle related research providing potential perspectives to overcome them in the future.
Collapse
Affiliation(s)
- Ali Maisam Afzali
- Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich, Germany; Department of Neurology, University of Münster, Germany
| | | | - Heinz Wiendl
- Department of Neurology, University of Münster, Germany
| | - Sven G Meuth
- Department of Neurology, University of Münster, Germany
| | - Tobias Ruck
- Department of Neurology, University of Münster, Germany.
| |
Collapse
|