1
|
Ghosh D, Saha SK, Kaviraj A, Saha S. Activity pattern of antioxidant enzymes in relation to the time of exposure of hexavalent chromium to Nile tilapia Oreochromis niloticus. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:266-279. [PMID: 39607630 DOI: 10.1007/s10646-024-02832-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Hexavalent chromium (Cr (VI)), a toxicant of environmental concern, frequently enters into water bodies and produces oxidative stress in fish. The antioxidant enzymes, Superoxide dismutase (SOD), Catalase (CAT), and Glutathion S-transferase (GST) are activated to counteract the oxidative stress in fish. This study explores the pattern of activation of these enzymes in gill, muscle, liver, and kidney tissues of Nile tilapia Oreochromis niloticus exposed to 9.35 mg/L and 18.70 mg/L of Cr (VI) for 96 h. The optimal hour of activity of these enzymes was revealed through extensive regression analysis. The results indicate a bell-shaped time response curve in the activity of the enzymes in both the treatments, except CAT in the gill of fish exposed to 18.70 mg/L Cr (VI) and GST in the gill, liver, and kidney of fish exposed to 18.70 mg/L Cr (VI). The results indicate that the optimal hour of activity of SOD changes in tandem with CAT, SOD responding first followed by CAT, both diminishing within 96 h. However, deviating from the bell-shaped pattern, the activity of CAT in gill and GST in gill, liver, and kidney in fish exposed to 18.70 mg/L Cr (VI) continued to rise even at 96 h, indicating that these antioxidant enzymes could not diminish the oxidative stress produced by the higher dose of Cr (VI). It was concluded that the activity of SOD, CAT, and GST between 30 and 70 h in the gill, liver, and kidney of Nile tilapia could serve as excellent biomarkers of oxidative stress under low doses of Cr (VI).
Collapse
Affiliation(s)
- Debkanta Ghosh
- Department of Zoology, West Bengal State University, Berunanpukuria Malikapur, Barasat, West Bengal, India
- Department of Zoology, Vidyasagar College for Women, Kolkata, West Bengal, India
| | - Samir Kumar Saha
- Department of Zoology, West Bengal State University, Berunanpukuria Malikapur, Barasat, West Bengal, India
| | - Anilava Kaviraj
- Department of Zoology, University of Kalyani, Kalyani, West Bengal, India
| | - Subrata Saha
- Department of Basic Sciences and Humanities, University of Engineering and Management, Kolkata, India.
| |
Collapse
|
2
|
Anwar S, Alrumaihi F, Sarwar T, Babiker AY, Khan AA, Prabhu SV, Rahmani AH. Exploring Therapeutic Potential of Catalase: Strategies in Disease Prevention and Management. Biomolecules 2024; 14:697. [PMID: 38927099 PMCID: PMC11201554 DOI: 10.3390/biom14060697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The antioxidant defense mechanisms play a critical role in mitigating the deleterious effects of reactive oxygen species (ROS). Catalase stands out as a paramount enzymatic antioxidant. It efficiently catalyzes the decomposition of hydrogen peroxide (H2O2) into water and oxygen, a potentially harmful byproduct of cellular metabolism. This reaction detoxifies H2O2 and prevents oxidative damage. Catalase has been extensively studied as a therapeutic antioxidant. Its applications range from direct supplementation in conditions characterized by oxidative stress to gene therapy approaches to enhance endogenous catalase activity. The enzyme's stability, bioavailability, and the specificity of its delivery to target tissues are significant hurdles. Furthermore, studies employing conventional catalase formulations often face issues related to enzyme purity, activity, and longevity in the biological milieu. Addressing these challenges necessitates rigorous scientific inquiry and well-designed clinical trials. Such trials must be underpinned by sound experimental designs, incorporating advanced catalase formulations or novel delivery systems that can overcome existing limitations. Enhancing catalase's stability, specificity, and longevity in vivo could unlock its full therapeutic potential. It is necessary to understand the role of catalase in disease-specific contexts, paving the way for precision antioxidant therapy that could significantly impact the treatment of diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Shehwaz Anwar
- Department of Medical Laboratory Technology, Mohan Institute of Nursing and Paramedical Sciences, Mohan Group of Institutions, Bareilly 243302, India;
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Tarique Sarwar
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Sitrarasu Vijaya Prabhu
- Department of Biotechnology, Microbiology and Bioinformatics, National College (Autonomous), Tiruchirapalli 620001, India;
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
3
|
De I, Singh R, Kumar S, Singh S, Singh M, Panda JJ, Ghosh K, Mishra DP, Singh M. Short term biodistribution and in vivo toxicity assessment of intravenously injected pristine graphene oxide nanoflakes in SD rats. Toxicol Res (Camb) 2024; 13:tfae058. [PMID: 38617714 PMCID: PMC11014786 DOI: 10.1093/toxres/tfae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/20/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024] Open
Abstract
The present study aimed to elucidate the short term biodistribution of nano sized graphene oxide (GO) along with the toxicological assessment under in-vivo condition with an intent to analyse the toxic effects of sudden accidental exposure of GO The synthesised GO was characterized using UV-Visible spectroscopy, XRD, FTIR, Raman spectroscopy, TGA and DLS. The morphological imaging was performed using SEM, TEM and AFM. With a lateral size of less than 300 nm, these nanoparticles exhibit significant organ barrier permeability of up to 20%. Upon acute exposure to 10 mg/kg dose of ICG-tagged GO nanoflakes through intravenous route, various organs such as kidney, spleen and liver were observed, and the nanoparticles predominantly accumulated in the liver upon 24 h of exposure. Upon confirming the accumulation of these particles in liver through IVIS imaging, our next attempt was to analyse various biochemical and serum parameters. An elevation in various serum parameters such as ALT, AST, Creatinine and Bilirubin was observed. Similarly, in the case of biochemical parameters tested in liver homogenates, an increase in NO, Catalase, GSH, SOD, ROS, LPO, GR, GPx, and GST was observed. This study highlights the potential toxicological risk associated with GO exposure which must be taken into account for any risk analysis associated with GO based consumer products and the occupational hazards.
Collapse
Affiliation(s)
- Indranil De
- Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, SAS Nagar, 140306, Mohali, Punjab, India
| | - Rashmika Singh
- Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, SAS Nagar, 140306, Mohali, Punjab, India
| | - Sushil Kumar
- Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, SAS Nagar, 140306, Mohali, Punjab, India
| | - Srishti Singh
- Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, SAS Nagar, 140306, Mohali, Punjab, India
| | - Manohar Singh
- CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Jiban Jyoti Panda
- Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, SAS Nagar, 140306, Mohali, Punjab, India
| | - Kaushik Ghosh
- Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, SAS Nagar, 140306, Mohali, Punjab, India
| | | | - Manish Singh
- Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, SAS Nagar, 140306, Mohali, Punjab, India
| |
Collapse
|
4
|
Rajendran P, Al-Saeedi FJ, Ammar RB, Abdallah BM, Ali EM, Al Abdulsalam NK, Tejavat S, Althumairy D, Veeraraghavan VP, Alamer SA, Bekhet GM, Ahmed EA. Geraniol attenuates oxidative stress and neuroinflammation-mediated cognitive impairment in D galactose-induced mouse aging model. Aging (Albany NY) 2024; 16:5000-5026. [PMID: 38517361 PMCID: PMC11006477 DOI: 10.18632/aging.205677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/13/2024] [Indexed: 03/23/2024]
Abstract
D-galactose (D-gal) administration was proven to induce cognitive impairment and aging in rodents' models. Geraniol (GNL) belongs to the acyclic isoprenoid monoterpenes. GNL reduces inflammation by changing important signaling pathways and cytokines, and thus it is plausible to be used as a medicine for treating disorders linked to inflammation. Herein, we examined the therapeutic effects of GNL on D-gal-induced oxidative stress and neuroinflammation-mediated memory loss in mice. The study was conducted using six groups of mice (6 mice per group). The first group received normal saline, then D-gal (150 mg/wt) dissolved in normal saline solution (0.9%, w/v) was given orally for 9 weeks to the second group. In the III group, from the second week until the 10th week, mice were treated orally (without anesthesia) with D-gal (150 mg/kg body wt) and GNL weekly twice (40 mg/kg body wt) four hours later. Mice in Group IV were treated with GNL from the second week up until the end of the experiment. For comparison of young versus elderly mice, 4 month old (Group V) and 16-month-old (Group VI) control mice were used. We evaluated the changes in antioxidant levels, PI3K/Akt levels, and Nrf2 levels. We also examined how D-gal and GNL treated pathological aging changes. Administration of GNL induced a significant increase in spatial learning and memory with spontaneously altered behavior. Enhancing anti-oxidant and anti-inflammatory effects and activating PI3K/Akt were the mechanisms that mediated this effect. Further, GNL treatment upregulated Nrf2 and HO-1 to reduce oxidative stress and apoptosis. This was confirmed using 99mTc-HMPAO brain flow gamma bioassays. Thus, our data suggested GNL as a promising agent for treating neuroinflammation-induced cognitive impairment.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Fatma J. Al-Saeedi
- Department of Nuclear Medicine, College of Medicine, Kuwait University, Safat 13110, Kuwait
| | - Rebai Ben Ammar
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cedria, Technopole of Borj-Cedria PBOX 901, Hammam-Lif 2050, Tunisia
| | - Basem M. Abdallah
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Enas M. Ali
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Najla Khaled Al Abdulsalam
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Sujatha Tejavat
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Duaa Althumairy
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Sarah Abdulaziz Alamer
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Gamal M. Bekhet
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Zoology, Faculty of Science, Alexandria University Egypt, Alexandria 21544, Egypt
| | - Emad A. Ahmed
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Laboratory of Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
5
|
Galani Tietcheu BR, Betrosse T, Ayiseh RB, Yuunoeoene EI, Mfotie Njoya E, Nveikoueng F, Njintang NY, Ndjonka D. In Vitro Filaricidal Properties of Hydro-Methanolic Extracts of Powdery Fractions of Khaya senegalensis (Meliaceae) on Onchocerca ochengi. Acta Parasitol 2023; 68:566-581. [PMID: 37336863 DOI: 10.1007/s11686-023-00686-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/11/2023] [Indexed: 06/21/2023]
Abstract
PURPOSE Onchocerciasis is a neglected tropical disease that remains endemic in sub-Saharan African countries. Unfortunately, only a few microfilaricidal agents have been approved so far. This study aimed to assess the in vitro macro and microfilaricidal potentialities of the hydro-methanolic extracts of the different powdery fractions of Khaya senegalensis against Onchocerca ochengi. METHODS Adult male worms and microfilariae (mf) of O. ochengi were isolated from cowhides in Ngaoundere II, Cameroon. Parasites were incubated for 4 h (mf) or 48 h (adult worms) in RPMI-1640 medium in the presence or absence of ivermectin, flubendazole, or hydro-methanolic extracts of different plant powdery fractions obtained by controlled differential sieving. The filaricidal effect was evaluated using motility (mfs) and mortality tests (worms) and oxidative stress parameters. Cytotoxicity and acute toxicity tests were performed on monkey-derived kidney cell lines (LLC-MK2) and Swiss albino mice, respectively, and selectivity indexes were determined. Phytochemical screening was also carried out using high-performance liquid chromatography/UV (HPLC/UV), molecular networking, and through quantification of phenolic contents. RESULTS The hydro-methanolic extracts of 0-63 µm fractions from leaves and barks exhibited the strongest macrofilaricidal activities with lethal concentrations 50 of 162.4 and 208.8 µg/mL respectively versus 22.78 µg/mL for flubendazole. These two fractions also showed the fastest microfilaricidal activities (T1/2 of 1 h), although it was low when compared to ivermectin (T1/2 < 1 h). Their macrofilaricidal effects were accompanied by a significant inhibition of nitric oxide secretion and a significant increase of glutathione and catalase activity compared to the untreated group. However, no effect was found on superoxide dismutase activity, the GABAergic and glutamatergic receptors. Although neither extract was toxic to Swiss mice until a dose of 2000 mg/kg body weight, the 0-63 µm leaf fraction hydro-methanolic extract was selectively more effective on worms than bark extract (SI = 1.28 versus 0.34). Both extracts were found to contain some flavonoids including procyanidin-, rutin-, myricetin-, and naringenin derivatives as well as new unknown compounds. However, the total polyphenol, flavonoid and tannin contents of the leaf extract were significantly greater (P < 0.05) than that of the bark extract. CONCLUSION These results support the anti-filarial effect of K. senegalensis leaves and highlight stress oxidative markers as new therapeutic targets in O. ochengi. Further, in vivo experiments are required in understanding their anti-parasitic properties, and testing combinations of fine fractions.
Collapse
Affiliation(s)
- Borris Rosnay Galani Tietcheu
- Laboratory of Applied Biochemistry, Department of Biological Sciences, Faculty of Science, University of Ngaoundere, PO Box 454, Ngaoundere, Cameroon.
| | - Theodore Betrosse
- Laboratory of Applied Biochemistry, Department of Biological Sciences, Faculty of Science, University of Ngaoundere, PO Box 454, Ngaoundere, Cameroon
| | - Rene Bilingwe Ayiseh
- ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, PO Box 63, Buea, Cameroon
| | - Emmanuel Issa Yuunoeoene
- Laboratory of Applied Biochemistry, Department of Biological Sciences, Faculty of Science, University of Ngaoundere, PO Box 454, Ngaoundere, Cameroon
| | - Emmanuel Mfotie Njoya
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaounde I, PO Box 812, Yaounde, Cameroon
| | - Francis Nveikoueng
- Laboratory of Applied Biochemistry, Department of Biological Sciences, Faculty of Science, University of Ngaoundere, PO Box 454, Ngaoundere, Cameroon
| | - Nicolas Yanou Njintang
- Laboratory of Applied Biochemistry, Department of Biological Sciences, Faculty of Science, University of Ngaoundere, PO Box 454, Ngaoundere, Cameroon
| | - Dieudonne Ndjonka
- Laboratory of Applied Biochemistry, Department of Biological Sciences, Faculty of Science, University of Ngaoundere, PO Box 454, Ngaoundere, Cameroon
| |
Collapse
|
6
|
Sazaki I, Sakurai T, Yamahata A, Mogi S, Inoue N, Ishida K, Kikkai A, Takeshita H, Sakurai A, Takahashi Y, Chiba H, Hui SP. Oxidized Low-Density Lipoproteins Trigger Hepatocellular Oxidative Stress with the Formation of Cholesteryl Ester Hydroperoxide-Enriched Lipid Droplets. Int J Mol Sci 2023; 24:ijms24054281. [PMID: 36901709 PMCID: PMC10002183 DOI: 10.3390/ijms24054281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Oxidized low-density lipoproteins (oxLDLs) induce oxidative stress in the liver tissue, leading to hepatic steatosis, inflammation, and fibrosis. Precise information on the role of oxLDL in this process is needed to establish strategies for the prevention and management of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Here, we report the effects of native LDL (nLDL) and oxLDL on lipid metabolism, lipid droplet formation, and gene expression in a human liver-derived C3A cell line. The results showed that nLDL induced lipid droplets enriched with cholesteryl ester (CE) and promoted triglyceride hydrolysis and inhibited oxidative degeneration of CE in association with the altered expression of LIPE, FASN, SCD1, ATGL, and CAT genes. In contrast, oxLDL showed a striking increase in lipid droplets enriched with CE hydroperoxides (CE-OOH) in association with the altered expression of SREBP1, FASN, and DGAT1. Phosphatidylcholine (PC)-OOH/PC was increased in oxLDL-supplemented cells as compared with other groups, suggesting that oxidative stress increased hepatocellular damage. Thus, intracellular lipid droplets enriched with CE-OOH appear to play a crucial role in NAFLD and NASH, triggered by oxLDL. We propose oxLDL as a novel therapeutic target and candidate biomarker for NAFLD and NASH.
Collapse
Affiliation(s)
- Iku Sazaki
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Toshihiro Sakurai
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Arisa Yamahata
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Sumire Mogi
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Nao Inoue
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Koutaro Ishida
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Ami Kikkai
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hana Takeshita
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Akiko Sakurai
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuji Takahashi
- School of Medical Technology, Health Sciences University of Hokkaido, Sapporo 002-8072, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Sapporo 007-0894, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Correspondence: ; Tel.: +81-11-706-3693
| |
Collapse
|
7
|
Wang D, Yang S, Zhao Y, Zhang Y, Hua K, Gu Y, Li S, Liao J, Yang T, Zhao J, Huang J. Identifying and validating molecular subtypes of biliary atresia using multiple high-throughput data integration analysis. Front Immunol 2023; 13:1008246. [PMID: 36713418 PMCID: PMC9878701 DOI: 10.3389/fimmu.2022.1008246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
Background Biliary atresia (BA) is the most common form of severe neonatal obstructive jaundice. The etiology and pathogenesis of BA are multifactorial, and different factors may interact to produce heterogeneous pathological features and clinical outcomes. Despite different pathological features, all patients received the same treatment strategy. This study performed integrative clustering analysis based on multiple high-throughput datasets to identify the molecular subtypes of BA and provide a new treatment strategy for personalized treatment of the different subtypes of BA. Methods The RNA sequence dataset GSE122340 in the Gene Expression Omnibus (GEO) database was downloaded; 31 BA and 20 control normal liver tissues were collected at our center for transcriptome sequencing, and clinical and follow-up data of BA patients were available. Molecular subtypes were identified using integrated unsupervised cluster analysis involving gene expression, biliary fibrosis, and immune enrichment scores based on the transcriptome dataset, and the results were validated using independent datasets. Results Based on the results of the integrated unsupervised clustering analysis, four molecular subtypes were identified: autoimmune, inflammatory, virus infection-related, and oxidative stress. The autoimmune subtype with a moderate prognosis was dominated by autoimmune responses and morphogenesis, such as the Fc-gamma receptor and Wnt signaling pathway. The biological process of the inflammatory subtype was mainly the inflammatory response, with the best prognosis, youngest age at surgery, and lowest liver stiffness. The virus infection-related subtype had the worst prognosis and was enriched for a variety of biological processes such as viral infection, immunity, anatomical morphogenesis, and epithelial mesenchymal transition. The oxidative stress subtype was characterized by the activation of oxidative stress and various metabolic pathways and had a poor prognosis. The above results were verified independently in the validation sets. Conclusions This study identified four molecular subtypes of BA with distinct prognosis and biological processes. According to the pathological characteristics of the different subtypes, individualized perioperative and preoperative treatment may be a new strategy to improve the prognosis of BA.
Collapse
|
8
|
Sauzéat L, Eychenne J, Gurioli L, Boyet M, Jessop DE, Moretti R, Monrose M, Holota H, Beaudoin C, Volle DH. Metallome deregulation and health-related impacts due to long-term exposure to recent volcanic ash deposits: New chemical and isotopic insights. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154383. [PMID: 35276143 DOI: 10.1016/j.scitotenv.2022.154383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/09/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Volcanic ash exposure can lead to significant health risks. Damage to the respiratory and pulmonary systems are the most evident toxic side effects although the causes of these symptoms remain unclear. Conversely, the effects on other organs remain largely under-explored, limiting our understanding of the long-term volcanic ash-related risk at the whole-body scale. The metallome i.e. metal concentrations and isotopic compositions within the body, is suspected to be affected by volcanic ash exposure, having thus the potential for capturing some specificities of ash toxicity. However, the means by and extent to which the metallome is affected at the entire body scale and how the consequent chemical and isotopic deregulations correlate with pathophysiological dysfunctions are currently poorly understood. Here, we adopt a transdisciplinary approach combining high precision chemical analyses (major and trace element concentrations) and CuZn isotope measurements in seven organs and two biological fluids of isogenic mice (C57BL/6) exposed to eruption products from La Soufrière de Guadeloupe (Eastern Carribean), in tandem with biological parameters including physiological and morphological data. Based on principal component analysis, we show that after one month of exposure to volcanic ash deposits, the mice metallome; originally organ-specific and isotopically-typified, is highly disrupted as shown for example by heavy metal accumulation in testis (e.g., Fe, Zn) and Cu, Zn isotopic divergence in liver, intestine and blood. These metallomic variations are correlated with early testicular defects and might reflect the warning signs of premature (entero)hepatic impairments that may seriously affect fertility and favor the emergence of liver diseases after prolonged exposure. Monitoring the temporal evolution of the Cu and Zn isotope compositions seems to be a promising technique to identify the main biological processes and vital functions that are vulnerable to environmental volcanogenic pollutants although this will require further validation on human subjects.
Collapse
Affiliation(s)
- Lucie Sauzéat
- Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, INSERM, Institut Génétique, Reproduction et Développement, F-63000 Clermont-Ferrand, France.
| | - Julia Eychenne
- Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, INSERM, Institut Génétique, Reproduction et Développement, F-63000 Clermont-Ferrand, France
| | - Lucia Gurioli
- Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France; Université de Paris, Institut de physique du globe de Paris, CNRS UMR 7154, F-75005 Paris, France; Observatoire volcanologique et sismologique de Guadeloupe, Institut de physique du globe de Paris, F-97113 Gourbeyre, France
| | - Maud Boyet
- Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France
| | - David E Jessop
- Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France; Université de Paris, Institut de physique du globe de Paris, CNRS UMR 7154, F-75005 Paris, France; Observatoire volcanologique et sismologique de Guadeloupe, Institut de physique du globe de Paris, F-97113 Gourbeyre, France
| | - Roberto Moretti
- Université de Paris, Institut de physique du globe de Paris, CNRS UMR 7154, F-75005 Paris, France; Observatoire volcanologique et sismologique de Guadeloupe, Institut de physique du globe de Paris, F-97113 Gourbeyre, France
| | - Mélusine Monrose
- Université Clermont Auvergne, CNRS, INSERM, Institut Génétique, Reproduction et Développement, F-63000 Clermont-Ferrand, France
| | - Hélène Holota
- Université Clermont Auvergne, CNRS, INSERM, Institut Génétique, Reproduction et Développement, F-63000 Clermont-Ferrand, France
| | - Claude Beaudoin
- Université Clermont Auvergne, CNRS, INSERM, Institut Génétique, Reproduction et Développement, F-63000 Clermont-Ferrand, France
| | - David H Volle
- Université Clermont Auvergne, CNRS, INSERM, Institut Génétique, Reproduction et Développement, F-63000 Clermont-Ferrand, France
| |
Collapse
|
9
|
Antioxidant and Antihyperglycemic Effects of Ephedra foeminea Aqueous Extract in Streptozotocin-Induced Diabetic Rats. Nutrients 2022; 14:nu14112338. [PMID: 35684137 PMCID: PMC9182796 DOI: 10.3390/nu14112338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Ephedra foeminea is known in Jordan as Alanda and traditionally. It is used to treat respiratory symptoms such as asthma and skin rashes as an infusion in boiling water. The purpose of this study was to determine the antidiabetic property of Ephedra foeminea aqueous extract in streptozotocin-induced diabetic rats. Methods: The aqueous extract of Ephedra foeminea plant was used to determine the potential of its efficacy in the treatment of diabetes, and this extract was tested on diabetic rats as a model. The chemical composition of Ephedra foeminea aqueous extract was determined using liquid chromatography–mass spectrometry (LC-MS). Antioxidant activity was assessed using two classical assays (ABTS and DPPH). Results: The most abundant compounds in the Ephedra foeminea extract were limonene (6.3%), kaempferol (6.2%), stearic acid (5.9%), β-sitosterol (5.5%), thiamine (4.1%), riboflavin (3.1%), naringenin (2.8%), kaempferol-3-rhamnoside (2.3%), quercetin (2.2%), and ferulic acid (2.0%). The antioxidant activity of Ephedra foeminea aqueous extract was remarkable, as evidenced by radical scavenging capacities of 12.28 mg Trolox/g in ABTS and 72.8 mg GAE/g in DPPH. In comparison to control, induced diabetic rats treated with Ephedra foeminea extract showed significant improvement in blood glucose levels, lipid profile, liver, and kidney functions. Interleukin 1 and glutathione peroxidase levels in the spleen, pancreas, kidney, and liver of induced diabetic rats treated with Ephedra foeminea extract were significantly lower than in untreated diabetic rats. Conclusions: Ephedra foeminea aqueous extract appears to protect diabetic rats against oxidative stress and improve blood parameters. In addition, it has antioxidant properties that might be very beneficial medicinally.
Collapse
|
10
|
Ntamo Y, Ziqubu K, Chellan N, Nkambule BB, Nyambuya TM, Mazibuko-Mbeje SE, Gabuza KB, Orlando P, Tiano L, Dludla PV. Clinical use of N-acetyl cysteine during liver transplantation: Implications of oxidative stress and inflammation as therapeutic targets. Biomed Pharmacother 2022; 147:112638. [DOI: 10.1016/j.biopha.2022.112638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 02/09/2023] Open
|
11
|
Wang X, Yang B, Li Y, Luo J, Wang Y. AKR1C1 alleviates LPS‑induced ALI in mice by activating the JAK2/STAT3 signaling pathway. Mol Med Rep 2021; 24:833. [PMID: 34590152 PMCID: PMC8503743 DOI: 10.3892/mmr.2021.12473] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/05/2021] [Indexed: 01/08/2023] Open
Abstract
Acute lung injury (ALI) is a respiratory tract disease characterized by increased alveolar/capillary permeability, lung inflammation and structural damage to lung tissues, which can progress and transform into acute respiratory distress syndrome (ARDS). Although there are several treatment strategies available to manage this condition, there is still no specific cure for ALI. Aldo‑keto reductase family 1 member C1 (AKR1C1) is a member of the aldo‑keto reductase superfamily, and is a well‑known Nrf2 target gene and an oxidative stress gene. The aim of the present study was to investigate the effects of AKR1C1 on a lipopolysaccharide (LPS)‑induced ALI model. After mice received LPS treatment, the mRNA expression levels of AKR1C1 in the bronchoalveolar lavage fluid and serum were measured using reverse transcription‑quantitative PCR and its relationship with the inflammatory factors and malondialdehyde levels were determined using correlation analysis. Next, AKR1C1 was overexpressed or knocked out in mice, and subsequently ALI was induced in mice using LPS. The severity of ALI, oxidative stress and inflammation in the lungs were measured, and the potential involvement of the Janus kinase 2 (JAK2)/signal transduction activator of transcription 3 (STAT3) signaling pathway was assessed by measuring the changes of lung injury parameters after the agonists of JAK2/STAT3 pathway, including interleukin (IL)‑6 and colivelin, were administrated to mice. The results revealed that AKR1C1 expression was decreased in the LPS‑induced ALI mouse model. AKR1C1 expression was inversely correlated with serum tumor necrosis factor‑α, IL‑6 and malondialdehyde levels, and positively correlated with serum IL‑10 levels. AKR1C1 overexpression significantly attenuated lung injury, as shown by the changes in Evans blue leakage in the lung, lung wet/dry weight ratio, PaO2/FIO2 ratio, survival rate of mice and histological lung changes. In addition, the JAK2/STAT3 signaling pathway was significantly deactivated by AKR1C1+/+. When AKR1C1+/+ mice were treated with JAK2/STAT3 agonists, the effects of AKR1C1 overexpression on lung injury and oxidative stress were abolished. In conclusion, AKR1C1 may protect against oxidative stress and serve as a negative regulator of inflammation in ALI/ARDS. In addition, the JAK2/STAT3 signaling pathway could participate in the protective effects of AKR1C1 against ALI.
Collapse
Affiliation(s)
- Xianjun Wang
- Emergency Observation Ward, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
| | - Baocheng Yang
- Emergency Observation Ward, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
| | - Yuyu Li
- Emergency Observation Ward, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
| | - Jiye Luo
- Emergency Medicine Department, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
| | - Yanli Wang
- Emergency Medicine Department, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
- Emergency Medicine Department, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222002, P.R. China
- Emergency Medicine Department, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu 222000, P.R. China
| |
Collapse
|
12
|
Eteghadi MR, Nasehi M, Vaseghi S, Hesami-Tackallou S. The effect of Crocin on TFAM and PGC-1α expression and Catalase and Superoxide dismutase activities following cholestasis-induced neuroinflammation in the striatum of male Wistar rats. Metab Brain Dis 2021; 36:1791-1801. [PMID: 34019207 DOI: 10.1007/s11011-021-00748-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 04/29/2021] [Indexed: 12/26/2022]
Abstract
Bile secretion is a physiological function that is disrupted following Bile Duct Ligation (BDL) and induces cholestasis. Cholestasis is a bile flow reduction that induces apoptosis, oxidative stress, and inflammation, and alters the expression of genes. Evidence shows the relationship between cholestasis and neuroinflammation. Cholestasis via attenuating mitochondrial biogenesis and anti-oxidant activity can induce neuroinflammation and apoptosis. Mitochondrial transcriptional factor A (TFAM) and Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) are involved in mitochondrial biogenesis, and TFAM, PGC-1α, Catalase (CAT), and Superoxide dismutase (SOD) have a role in upregulating antioxidant pathways. On the other hand, many studies have shown the neuroprotective effects of Crocin, the water-soluble carotenoid of Saffron (Crocus sativus L.). In this study, we aimed to investigate the effect of Crocin on the level of TFAM, PGC-1α, CAT, and SOD following cholestasis-induced neuroinflammation in the rat's striatum. Cholestasis was induced by BDL surgery and administration of Crocin was intraperitoneal, at the dose of 30 mg/kg every day, 24 h after BDL surgery up to thirty days. The results showed that TFAM, PGC-1α, and SOD were decreased following cholestasis; while, CAT was increased. In addition, Crocin restored the effects of cholestasis on the level of TFAM, PGC-1α, and SOD. In conclusion, Crocin may have improvement effects on cholestasis-induced neuroinflammation in the rat's striatum.
Collapse
Affiliation(s)
- Mohammad-Reza Eteghadi
- Department of Biology, Central Tehran Branch, Islamic Azad University, P.O. Box 13145-784, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Saeed Hesami-Tackallou
- Department of Biology, Central Tehran Branch, Islamic Azad University, P.O. Box 13145-784, Tehran, Iran.
| |
Collapse
|
13
|
Adewuyi A, Otuechere CA, Adebayo OL, Ajisodun I. Synthesis and toxicity profiling of sebacic acid-modified cellulose from unexploited watermelon exocarp. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03152-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Lister INE, Ginting CN, Girsang E, Nataya ED, Azizah AM, Widowati W. Hepatoprotective properties of red betel ( Piper crocatum Ruiz and Pav) leaves extract towards H 2O 2-induced HepG2 cells via anti-inflammatory, antinecrotic, antioxidant potency. Saudi Pharm J 2020; 28:1182-1189. [PMID: 33132711 PMCID: PMC7584795 DOI: 10.1016/j.jsps.2020.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Prolonged exposure of free radicals, or known as reactive oxygen species (ROS), in hepatic cells may cause oxidative stress. Without proper treatment, it can induce liver injury and fatal hepatic disease, including cirrhosis. Red betel (Piper crocatum Ruiz and Pav) is one of Indonesia's medicinal plants that has been known to exhibit antioxidant, anti-inflammatory activities. This study aims to determine hepatoprotective effect of red betel leaves extract (RBLE) towards liver injury. METHOD Hydrogen peroxide-induced HepG2 cells were used as liver injury model·H2O2-induced HepG2 cells were treated with 25 µg/mL and 100 µg/mL RBLE. Several parameters were observed, including TNF-α level through ELISA; necrotic, apoptotic, dead, live cells; and ROS level through flow cytometry analysis; and GPX gene expression through qPCR. RESULT The study showed that treatment with RBLE were able to decrease TNF-α level; necrotic and death cells percentage; as well as ROS level. On the other hand, it were able to increase apoptotic and live cells percentage; as well as GPX gene expression. Low concentration (25 µg/mL) of RBLE treatment exhibited stronger anti-inflammatory activity as it was resulted in the lower TNF-α level and were able to switched hepatic cell death pathway from necrosis to apoptosis as shown by the shifted of apoptotic cells and necrotic cells percentage. This lead to lower death cells and ultimately improve live cells percentage. Meanwhile high concentration of RBLE (100 µg/mL) exhibited stronger antioxidant properties as indicated by lower ROS level and higher GPX gene expression. CONCLUSION Overall, this study was able to demonstrate hepatoprotective effect of RBLE towards liver injury model through its anti-inflammatory and antioxidant activities.
Collapse
Affiliation(s)
- I. Nyoman Ehrich Lister
- Faculty of Medicine, Universitas Prima Indonesia, Jl. Belanga No.1, Medan 20118, North Sumatera, Indonesia
| | - Chrismis Novalinda Ginting
- Faculty of Medicine, Universitas Prima Indonesia, Jl. Belanga No.1, Medan 20118, North Sumatera, Indonesia
| | - Ermi Girsang
- Faculty of Medicine, Universitas Prima Indonesia, Jl. Belanga No.1, Medan 20118, North Sumatera, Indonesia
| | - Enden Dea Nataya
- Biomolecular and Biomedical Research Centre, Aretha Medika Utama, Bandung, Jl. Babakan Jeruk 2 No. 9, Bandung 40163, West Java, Indonesia
| | - Alya Mardhotillah Azizah
- Biomolecular and Biomedical Research Centre, Aretha Medika Utama, Bandung, Jl. Babakan Jeruk 2 No. 9, Bandung 40163, West Java, Indonesia
| | - Wahyu Widowati
- Medical Research Center, Faculty of Medicine, Maranatha Christian University, Jl. Prof. Drg. Surya Sumantri 65, Bandung 40163, West Java, Indonesia
| |
Collapse
|
15
|
Hashizume N, Tanaka Y, Asagiri K, Fukahori S, Ishii S, Saikusa N, Yoshida M, Tanikawa K, Asakawa T, Yagi M. Perioperative reactive oxygen species in infants with biliary atresia: A retrospective observational study. Medicine (Baltimore) 2020; 99:e21332. [PMID: 32756118 PMCID: PMC7402746 DOI: 10.1097/md.0000000000021332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Biliary atresia (BA) is a devastating cholestatic disorder of infants that presents during the first several months after birth due to an idiopathic obstruction to the bile flow. Without prompt diagnosis, Kasai portoenterostomy, and deliberate follow-ups, the resulting cholestasis leads to progressive hepatic failure. Oxidative stress is an abnormal phenomenon inside cells or tissues caused by a disturbance in the reactive oxygen species (ROS). We aimed to measure perioperative ROS in BA patients.Data are presented as median (25th, 75th percentiles). We evaluated 15 BA patients (age 55 [48, 69] days) and measured ROS; serum superoxide dismutase (SOD), urinary 8-iso prostaglandin F2α (8-iso-PGF2α) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) preoperatively and 30 days later to compare values with serum liver function tests and histologic grades of liver cholestasis. For compared BA patients, 4 normal subjects as control group (age 55 [27, 75] days) measured ROS and serum liver function tests.In BA patients, the preoperative serum SOD was 6.1 IU/mL (4.7, 7.2), urinary 8-iso-PGF2α was 1969 pg/mg Cre (1697, 2374), and urinary 8-OHdG was 37.1 ng/mg Cre (33.1, 53.7). At the postoperative day 30, the serum SOD was 5.2 IU/mL (4.2, 6.7), urinary 8-iso-PGF2α was 1761 pg/mg Cre (1256, 3036), and urinary 8-OHdG was 42.1 ng/mg Cre (29.65, 72.64). In ROS, there were no significant differences between the 2 periods. In control group, urinary 8-iso-PGF2α was significantly lower than that in preoperative BA patient group. However, other ROS were not significant differences between control group and BA patient group. The concentration of urinary 8-iso-PGF2α was positively correlated with total bilirubin and direct bilirubin levels (preoperatively: r = 0.6921, P = .0042 and r = 0.6639, P = .007, postoperatively: r = 0.6036, P = .0172 and r = 0.6464, P = .0092, respectively). The preoperative ROS were not correlated with histologic grades of liver cholestasis. Various factors such as liver inflammation, lipid malabsorption, and tissue disorders due to jaundice might affect the antioxidant activity and elevated urinary 8-iso-PGF2α. However, at least until 30 days later, urinary 8-OHdG as oxidative DNA damage might persist after the operation whether the cholestasis improved or not.
Collapse
Affiliation(s)
- Naoki Hashizume
- Department of Pediatric Surgery, Kurume University School of Medicine
| | - Yoshiaki Tanaka
- Department of Pediatric Surgery, Kurume University School of Medicine
- Division of Medical Safety Management, Kurume University Hospital
| | - Kimio Asagiri
- Department of Pediatric Surgery, Kurume University School of Medicine
- Department of Pediatric Surgery, St Mary's Hospital
| | - Suguru Fukahori
- Department of Pediatric Surgery, Kurume University School of Medicine
| | - Shinji Ishii
- Department of Pediatric Surgery, Kurume University School of Medicine
| | - Nobuyuki Saikusa
- Department of Pediatric Surgery, Kurume University School of Medicine
| | - Motomu Yoshida
- Department of Pediatric Surgery, Kurume University School of Medicine
| | - Ken Tanikawa
- Departments of Pathology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Takahiro Asakawa
- Department of Pediatric Surgery, Kurume University School of Medicine
- Department of Pediatric Surgery, St Mary's Hospital
| | - Minoru Yagi
- Department of Pediatric Surgery, Kurume University School of Medicine
| |
Collapse
|
16
|
Chang H, Li J, Qu K, Wan Y, Liu S, Zheng W, Zhang Z, Liu C. CRIF1 overexpression facilitates tumor growth and metastasis through inducing ROS/NFκB pathway in hepatocellular carcinoma. Cell Death Dis 2020; 11:332. [PMID: 32382077 PMCID: PMC7205899 DOI: 10.1038/s41419-020-2528-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 12/22/2022]
Abstract
CR6-interacting factor 1 (Crif1) is a mitochondrial protein which is required for the assembly of oxidative phosphorylation (OXPHOS) complexes. Our bioinformatics analysis based on Cancer Genome Atlas (TCGA) database revealed an aberrant overexpression of CRIF1 in hepatocellular carcinoma (HCC). However, the clinical significance and biological functions of CRIF1 are still unclear in this malignancy. Here, we report that CRIF1 is frequently overexpressed in HCC cells mainly due to the downregulation of miR-497-5p, which is associated with poor prognosis of patients with HCC. CRIF1-promoted HCC growth and metastasis by suppressing cell apoptosis and inducing cell cycle progression and epithelial to mesenchymal transition (EMT). Mechanistically, increased mitochondrial ROS production and consequently activation of the NFκB signaling pathway was found to be involved in the promotion of growth and metastasis by CRIF1 in HCC cells. In summary, CRIF1 plays an oncogenic role in HCC progression through activating ROS/NFKB pathway, implying CRIF1 as a potential prognostic factor and therapeutic target in HCC.
Collapse
Affiliation(s)
- Hulin Chang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Department of Hepatobiliary Surgery, The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Juntang Li
- Centre of Inflammation and Cancer Research, Anal-Colorectal Surgery Institute of PLA, Luoyang, 471031, Henan, China.,Department of Pathology, 150th Central Hospital of PLA, Luoyang, 471031, Henan, China
| | - Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yong Wan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Sinan Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Wei Zheng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Zhiyong Zhang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
17
|
Valansa A, Tietcheu Galani BR, Djamen Chuisseu PD, Tontsa Tsamo A, Ayissi Owona VB, Yanou Njintang N. Natural limonoids protect mice from alcohol-induced liver injury. J Basic Clin Physiol Pharmacol 2020; 31:/j/jbcpp.ahead-of-print/jbcpp-2019-0271/jbcpp-2019-0271.xml. [PMID: 32267246 DOI: 10.1515/jbcpp-2019-0271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/11/2020] [Indexed: 01/17/2023]
Abstract
Background Alcoholic liver disease (ALD) is regarded as a global health problem with limited therapeutic options. Previous studies highlighted some anticancer, antiviral, and hepatoprotective activities of limonoids, but the effects of these compounds on ALD remain unknown. The present study aimed to evaluate the effect of some natural limonoids on ethanol-induced liver injury. Methods Thirty-five albino mice (Mus musculus) were administered with 40% ethanol in the presence or absence of the different limonoids [including three havanensin-type limonoids, TS1, TS3, Rubescin D isolated from an African medicinal plant, Trichilia rubescens Oliv. (Meliaceae), and one limonin], or silymarin at 50 mg/kg for 3 days. Thereafter, the effect of the most active compound was evaluated in a chronic model of ALD. For this purpose, 24 mice with each group consisting of six mice were administered orally with 40% ethanol and limonoid at different doses (50, 75, and 100 mg/kg) for 28 days. Finally, biochemical parameters such as alanine aminotransferase (ALT), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), triglyceride (TG), and tumor necrosis factor α (TNF-α) levels were quantified in liver homogenates. Results All tested limonoids significantly (p < 0.01) reduced ALT levels relative to the negative control in the acute model. However, in comparison to other limonoids, limonin at 50 and 75 mg/kg significantly reduced TG, MDA, and TNF-α levels (1.8-fold); alleviated leukocyte infiltration in liver tissue; significantly increased the activity of SOD; and decreased those of CAT better than silymarin used as a positive control at 50 mg/kg. Conclusions These data suggest that limonin possesses protective effects on long-term alcohol poisoning partially due to antioxidant and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Abacuc Valansa
- Laboratory of Applied Biochemistry, Department of Biological Sciences, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon
| | - Borris Rosnay Tietcheu Galani
- Laboratory of Applied Biochemistry, Department of Biological Sciences, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon
| | | | - Armelle Tontsa Tsamo
- Department of Organic Chemistry, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
| | - Vincent Brice Ayissi Owona
- Laboratory of Pharmacology and Molecular Toxicology, Department of Biochemistry, University of Yaoundé 1, Yaounde, Cameroon
| | - Nicolas Yanou Njintang
- Laboratory of Applied Biochemistry, Department of Biological Sciences, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon
| |
Collapse
|
18
|
Ghezelbash B, Shahrokhi N, Khaksari M, Ghaderi-Pakdel F, Asadikaram G. Hepatoprotective effects of Shilajit on high fat-diet induced non-alcoholic fatty liver disease (NAFLD) in rats. Horm Mol Biol Clin Investig 2020; 41:/j/hmbci.ahead-of-print/hmbci-2019-0040/hmbci-2019-0040.xml. [PMID: 32083445 DOI: 10.1515/hmbci-2019-0040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/24/2019] [Indexed: 01/13/2023]
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is the main common cause of chronic liver disease. The aim of this study is to evaluate the effect of Shilajit, a medicine of Ayurveda, on the liver damage caused by NAFLD. Materials and methods Forty male Wistar rats, after being established as fatty liver models by feeding a high-fat diet (HFD, 12 weeks), were divided randomly into five groups as follows: control (standard diet), vehicle (HFD + distilled water), high-dose Shilajit (HFD + 250 mg/kg Shilajit), low-dose Shilajit (HFD + 150 mg/kg Shilajit) and pioglitazone (HFD + 10 mg/kg pioglitazone). The serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), triglycerides (TG), total cholesterol (TC), low-density lipoprotein (LDL), glucose and liver glutathione peroxidase (GPx), superoxide dismutase (SOD) activity, malondialdehyde (MDA) levels, liver weight, and histopathological manifestation outcomes were measured after the 2-week intervention. Results Shilajit treatment significantly reduced the values of AST and ALT, TG, TC, LDL, glucose, liver weight, and steatosis, and instead, increased high-density lipoprotein (HDL) compared with the vehicle group (p < 0.05). Further, Shilajit treatment improved the adverse effects of HFD-induced histopathological changes in the liver as compared with the vehicle group (p < 0.001). MDA level and GPx activity increased but SOD activity decreased in the vehicle group compared with the control group (p < 0.05), while treatment with Shilajit restored the antioxidant/oxidant balance toward a significant increase in the antioxidant system in the Shilajit group (p < 0.05). Conclusions These findings suggest that Shilajit improved the histopathological NAFLD changes in the liver and indicated the potential applicability of Shilajit as a potent agent for NAFLD treatment.
Collapse
Affiliation(s)
- Baran Ghezelbash
- Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nader Shahrokhi
- Physiology Research Center, Kerman University of Medical Sciences, Kerman7616914115,Iran, Phone: +989131420391, Fax: +983433257581
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Firouz Ghaderi-Pakdel
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Gholamreza Asadikaram
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman, Iran.,Department of Biochemistry, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
19
|
Ezzat MI, Okba MM, Ahmed SH, El-Banna HA, Prince A, Mohamed SO, Ezzat SM. In-depth hepatoprotective mechanistic study of Phyllanthus niruri: In vitro and in vivo studies and its chemical characterization. PLoS One 2020; 15:e0226185. [PMID: 31940365 PMCID: PMC6961881 DOI: 10.1371/journal.pone.0226185] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Phyllanthus niruri L. is a widespread tropical plant which is used in Ayurvedic system for liver and kidney ailments. The present study aims at specifying the most active hepatoprotective extract of P. niruri and applying a bio-guided protocol to identify the active compounds responsible for this effect. P. niruri aerial parts were extracted separately with water, 50%, 70% and 80% ethanol. The cytoprotective activity of the extracts was evaluated against CCl4-induced hepatotoxicity in clone-9 and Hepg2 cells. Bioassay-guided fractionation of the aqueous extract (AE) was accomplished for the isolation of the active compounds. Antioxidant activity was assessed using DPPH (1, 1-diphenyl-2-picrylhydrazyl) radical scavenging method and ferric reducing antioxidant power (FRAP). The in vivo hepatoprotective activity of AE was evaluated in CCl4-induced hepatotoxicity in rats at different doses after determination of its LD50. Pretreatment of clone-9 and Hepg2 with different concentrations of AE (1, 0.1, 0.01 mg/ml) had significantly reduced the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) against CCl4 injures, and restored the activity of the natural antioxidants; glutathione (GSH) and superoxide dismutase (SOD) towards normalization. Fractionation of AE gave four fractions (I-IV). Fractions I, II, and IV showed a significant in vitro hepatoprotective activity. Purification of I, II and IV yielded seven compounds; corilagin C1, isocorilagin C2, brevifolin C3, quercetin C4, kaempferol rhamnoside C5, gallic acid C6, and brevifolin carboxylic acid C7. Compounds C1, C2, C5, and C7 showed the highest (p< 0.001) hepatoprotective potency, while C3, C4, and C6 exhibited a moderate (p< 0.001) activity. The AE exhibited strong antioxidant DPPH (IC50 11.6 ± 2 μg/ml) and FRAP (79.352 ± 2.88 mM Ferrous equivalents) activity. In vivo administration of AE in rats (25, 50, 100 and 200 mg/kg) caused normalization of AST, ALT, alkaline phosphatase (ALP), lactate dehydrogenase (LDH), total cholesterol (TC), triglycyrides (TG), total bilirubin (TB), glucose, total proteins (TP), urea and creatinine levels which were elevated by CCl4. AE also decreased TNF-α, NF-KB, IL-6, IL-8, IL10 and COX-2 expression, and significantly antagonizes the effect of CCl4 on the antioxidant enzymes SOD, catalase (CAT), glutathione reductase (GR), and glutathione peroxidase (GSP). The histopathological study also supported the hepatoprotective effect of AE. P. niruri isolates exhibited a potent hepatoprotective activity against CCl4-induced hepatotoxicity in clone-9 and Hepg2 cell lines through reduction of lipid peroxidation and maintaining glutathione in its reduced form. This is attributable to their phenolic nature and hence antioxidative potential.
Collapse
Affiliation(s)
- Marwa I. Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo, Egypt
- * E-mail:
| | - Mona M. Okba
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo, Egypt
| | - Sherif H. Ahmed
- Department of Biochemistry, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Hossny A. El-Banna
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Abdelbary Prince
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Shanaz O. Mohamed
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Shahira M. Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
20
|
Amino Acid Composition, Antioxidant, and Cytoprotective Effect of Blue Mussel ( Mytilus edulis) Hydrolysate through the Inhibition of Caspase-3 Activation in Oxidative Stress-Mediated Endothelial Cell Injury. Mar Drugs 2019; 17:md17020135. [PMID: 30823522 PMCID: PMC6409750 DOI: 10.3390/md17020135] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/16/2019] [Accepted: 02/21/2019] [Indexed: 12/14/2022] Open
Abstract
Enhanced oxidative stress plays a central role in promoting endothelial dysfunction, leading to the development of atherosclerosis. In this study, we investigated the protective effects of the hydrolysates derived from blue mussel (Mytilus edulis) against H₂O₂-mediated oxidative injury in human umbilical vein endothelial cells (HUVECs). The blue mussel hydrolysates were prepared by enzymatic hydrolysis with eight proteases, and blue mussel-α-chymotrypsin hydrolysate (BMCH) showed the highest antioxidant activities in DPPH radical scavenging, ABTS⁺ radical scavenging, and ORAC value compared to those of the other hydrolysates. BMCH also inhibited Cu2+-mediated low density lipoprotein (LDL) oxidation. Treatment of H₂O₂ resulted in the decreased HUVEC viability whereas pre-treatment with BMCH increased HUVEC viability and reduced reactive oxygen species (ROS) generation. BMCH pre-treatment increased cellular antioxidant capacities, including levels of glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) against H₂O₂-mediated oxidative stress in HUVECs. Flow cytometry and western blot analysis revealed that BMCH pre-treatment significantly reduced H₂O₂-mediated HUVEC apoptosis through inhibition of caspase-3 activation. Real-time-qPCR analysis showed that BMCH down-regulated expression of p53 and caspase-3 genes, as well as decreased the bax/bcl-2 ratio. Taken together, these results indicate that BMCH may be useful as functional food ingredients for protecting endothelial dysfunction or related disease.
Collapse
|
21
|
Erukainure OL, Ebuehi OAT, Adeboyejo FO, Oladunmoye OO, Aliyu M, Obode OC, Olasehinde T, Elemo GN. Short-Term Feeding of Fibre-Enriched Biscuits: Protective Effect against Hepatotoxicity in Diabetic Rats. Biochem Res Int 2015; 2015:868937. [PMID: 26713163 PMCID: PMC4680109 DOI: 10.1155/2015/868937] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/17/2015] [Accepted: 11/17/2015] [Indexed: 01/14/2023] Open
Abstract
The effects of fibre-enriched biscuit on biomarkers associated with hepatotoxicity in diabetic rats were investigated. Diabetes was induced by single intraperitoneal injection of alloxan monohydrate. Treatment lasted for 14 days after which the rats were sacrificed by cervical dislocation. Blood serum was analyzed to determine hepatic function enzymes. The liver was also analyzed to determine hepatic lipid profile and antioxidant enzymes. Induction of diabetes led to elevated levels of ALP, AST, and ALT. These were, however, significantly (p < 0.05) reduced in the fibre-enriched biscuit fed (treated) group. There was no significant difference in the serum bilirubin and total protein levels of the studied groups. Reduced albumin level was observed in the diabetic group; this was further lowered on feeding with fibre-enriched biscuits. Induction of diabetes led to increased hepatic level of cholesterol, triglyceride (TG), low density lipoprotein (LDL), and lipid peroxidation and decreased activities of glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD) and HDL level. These were significantly (p < 0.05) reversed on feeding with fibre-enriched biscuit. This study portrays the protective effect of fibre-enriched biscuit on increased oxidative stress and hyperlipidemia in hepatic tissues of alloxan-induced diabetic rats.
Collapse
Affiliation(s)
- Ochuko L. Erukainure
- Department of Food Technology, Federal Institute of Industrial Research, Oshodi 100261, Lagos, Nigeria
- Department of Biochemistry, University of Lagos, Lagos, Nigeria
| | | | - Folasade O. Adeboyejo
- Product Development Programme, Nigeria Institute of Horticultural Research, Ibadan, Nigeria
| | | | - Muhammad Aliyu
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Okukwe C. Obode
- Department of Food Technology, Federal Institute of Industrial Research, Oshodi 100261, Lagos, Nigeria
| | - Tosin Olasehinde
- Department of Food Technology, Federal Institute of Industrial Research, Oshodi 100261, Lagos, Nigeria
| | - Gloria N. Elemo
- Department of Food Technology, Federal Institute of Industrial Research, Oshodi 100261, Lagos, Nigeria
| |
Collapse
|
22
|
The Characteristics of Antioxidant Activity after Liver Transplantation in Biliary Atresia Patients. BIOMED RESEARCH INTERNATIONAL 2015; 2015:421413. [PMID: 26064908 PMCID: PMC4443700 DOI: 10.1155/2015/421413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 12/27/2022]
Abstract
Purpose. Cholestatic liver injury is associated with a high production of free radicals. The pathogenesis of liver injury in biliary atresia (BA) patients is largely undefined. The goal of the present study was to clarify the oxidative damage and the changes in antioxidant enzyme activities that occur during the development of BA and after liver transplantation (LT). Methods. We enrolled BA patients and control subjects and collected their clinical information. The activities of antioxidant enzymes in BA patients before LT (BA group) and after LT (LT group) were analyzed. Results. The number of mitochondrial DNA copies had increased in the LT group compared with the BA group. Similarly, the activity of glutathione peroxidase had increased in the LT group compared with the BA group. The level of glutathione was higher in the LT group than in the BA group. Malondialdehyde levels were decreased in the LT group compared with the BA group. Conclusions. These data indicate that LT is associated with increased antioxidant enzyme activities and decreased malondialdehyde levels in BA patients. The manipulation of mitochondria-associated antioxidative activity might be an important future management strategy for BA.
Collapse
|
23
|
El-Shabrawi MH, Kamal NM, Halawa FA, El-Guindi MA, Sobhy GA. Serum superoxide dismutase activity in acute and chronic paediatric liver diseases. Arab J Gastroenterol 2014; 15:72-75. [PMID: 25097050 DOI: 10.1016/j.ajg.2014.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/23/2014] [Accepted: 04/02/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND STUDY AIMS Measuring serum superoxide dismutase (SOD) levels in infants and children having acute or chronic liver disease of different aetiologies, and correlating these levels with disease aetiology in an attempt to clarify the role of SOD as an antioxidant in these diseases. PATIENTS AND METHODS We prospectively enrolled 58 infants and children and divided them into four groups: Group I, 24 patients with surgical cholestasis; group II, 11 patients with medical cholestasis; group III, nine patients with autoimmune chronic hepatitis; and group IV, 14 patients with viral hepatitis. Forty healthy age- and sex-matched children served as controls. Serum SOD activity was measured in all patients and controls using spectrophotometry. RESULTS The level of SOD showed a statistically significant increase in patients with medical cholestasis compared to healthy controls (p<0.0001). SOD activity of other groups showed no significant difference compared to controls. CONCLUSIONS Significantly increased serum SOD in infants and children with medical cholestasis is probably consequent to its increase in liver tissue in response to the liberation of reactive oxygen species. This suggests that products of free radical reactions might be involved in the pathogenesis and/or progression of medical cholestasis, and that SOD might attempt to minimise the liver injury.
Collapse
Affiliation(s)
| | - Naglaa Mohamed Kamal
- Paediatric Hepatology Unit, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Fawzi A Halawa
- Biochemistry Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed A El-Guindi
- Paediatric Department, National Liver Institute, Menoufya University, Menoufya, Egypt
| | - Gihan Ahmed Sobhy
- Paediatric Department, National Liver Institute, Menoufya University, Menoufya, Egypt
| |
Collapse
|
24
|
|
25
|
Ismail NA, Okasha SH, Dhawan A, Rahman AMOA, Hamid NA, Shaker O. Glutathione peroxidase, superoxide dismutase and catalase activities in children with chronic hepatitis. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/abb.2012.327119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Abd Ellah MR. The role of liver biopsy in detection of hepatic oxidative stress. Vet Med Int 2011; 2011:613602. [PMID: 21403828 PMCID: PMC3042635 DOI: 10.4061/2011/613602] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 12/30/2010] [Accepted: 01/07/2011] [Indexed: 12/16/2022] Open
Abstract
The goal of the current paper is to explore the role of liver biopsy as a tool in detection of hepatic oxidative stress, with brief notes on different types of free radicals, antioxidants, hepatic and blood oxidative stress, and lipid peroxidation. Hepatic oxidative stress was investigated for many years in human and animals, but most of the studies performed in animals were concerned with studying oxidative status in the liver tissues after slaughtering or euthanasia. However, in human medicine, a large number of studies were implemented to investigate the status of antioxidants in liver biopsy specimens. Similar studies are required in animals, as the changes in hepatic antioxidants and formation of lipid peroxide give a good idea about the condition of the liver. On the other hand, hepatic disease may present without significant effect on blood oxidative status, and, consequently, the best way to detect the status of hepatic oxidants and antioxidants is through measuring in liver biopsy. Measuring antioxidants status directly in the liver tissues gives an accurate estimation about the condition of the liver, permits the diagnosis of hepatic dysfunction, and helps to determine the degree of deterioration in the hepatic cells.
Collapse
Affiliation(s)
- Mahmoud Rushdi Abd Ellah
- Clinical Laboratory Diagnosis, Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| |
Collapse
|