1
|
Nochalabadi A, Khazaei M, Rezakhani L. Exosomes and tissue engineering: A novel therapeutic strategy for nerve regenerative. Tissue Cell 2025; 93:102676. [PMID: 39693896 DOI: 10.1016/j.tice.2024.102676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/10/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Damage to nerves negatively impacts quality of life and causes considerable morbidity. Self-regeneration is a special characteristic of the nervous system, yet how successful regeneration is accomplished remains unclear. Research on nerve regeneration is advancing and accelerating successful nerve recovery with potential new approaches. Eukaryote cells release extracellular vesicles (EVs), which control intercellular communication in both health and disease. More and more, EVs such as microvesicles and exosomes (EXOs) are being recognized as viable options for cell-free therapies that address complex tissue regeneration. The present study highlights the functional relevance of EVs in regenerative medicine for nerve-related regeneration. A subclass of EVs, EXOs were first identified as a way for cells to expel undesirable cell products. These nanovesicles have a diameter of 30-150 nm and are secreted by a variety of cells in conditions of both health and illness. Their benefits include the ability to promote endothelial cell growth, inhibit inflammation, encourage cell proliferation, and regulate cell differentiation. They are also known to transport functional proteins, metabolites, and nucleic acids to recipient cells, thus playing a significant role in cellular communication. EXOs impact an extensive array of physiological functions, including immunological responses, tissue regeneration, stem cell conservation, communication within the central nervous system, and pathological processes involving cardiovascular disorders, neurodegeneration, cancer, and inflammation. Their biocompatibility and bi-layered lipid structure (which shields the genetic consignment from deterioration and reduces immunogenicity) make them appealing as therapeutic vectors. They can pass through the blood brain barrier and other major biological membranes because of their small size and membrane composition. The creation of modified EXOs is a dynamic area of research that supports the evaluation of diverse therapeutic freights, improvement of target selectivity, and manufacturing optimization.
Collapse
Affiliation(s)
- Azadeh Nochalabadi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Fan N, Song D, Ding H, Yang H, Xu C, Wang C, Yang Y. E-jet 3D printed aligned nerve guidance conduits incorporated with decellularized extracellular matrix hydrogel encapsulating extracellular vesicles for peripheral nerve repair. Acta Biomater 2025; 194:122-139. [PMID: 39824451 DOI: 10.1016/j.actbio.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Peripheral nerve injury (PNI) as a common clinical issue that presents significant challenges for repair. Factors such as donor site morbidity from autologous transplantation, slow recovery of long-distance nerve damage, and deficiencies in local cytokines and extracellular matrix contribute to the complexity of effective PNI treatment. It is extremely urgent to develop functional nerve guidance conduits (NGCs) as substitutes for nerve autografts. We fabricate an aligned topological scaffold by combining the E-jet 3D printing and electrospinning to exert synergistic topographical cue for peripheral nerve regeneration. To address the limitation of NGCs with hollow lumens in repairing long-distance nerve defects, we modified the internal microenvironment by filling the lumen with umbilical cord-derived decellularized extracellular matrix (dECM) hydrogels and extracellular vesicles (EVs). This approach led to the development of a functional HE-NGC. Herein, the HE-NGCs provided obvious guidance and proliferation to SCs and PC12 in vitro due to the sustained-release effect of dECM hydrogels and the outstanding proliferation-promoting role of EVs. The HE-NGCs was surgically implanted in vivo to bridge 12-mm gap sciatic nerve defect in rats and it had a satisfactory effect in reestablishment of the sciatic nerve, including the recovery of motor functions and the myelination. Further studies revealed that HE-NGCs might promoted axon growth by activating the PI3K/Akt/mTOR and inhibiting the MAPK signaling pathways. These findings indicate that HE-NGCs effectively promote nerve regeneration, offering a promising strategy for applications in peripheral nerve repair. STATEMENT OF SIGNIFICANCE: This study introduces an approach using an E-jet 3D printing system to fabricate three-dimensional aligned scaffolds with varying gap sizes, optimizing the structure for Schwann cells migration. We present, for the first time, a comprehensive investigation into the effects of EVs derived from umbilical cord mesenchymal stem cells on Schwann cells behavior. By leveraging the natural extracellular matrix (ECM), we significantly enhanced the efficacy and longevity of EVs encapsulated within a dECM hydrogel. Our provided strategy involves utilizing EVs to support nerve cell migration and proliferation along aligned NGCs. As the dECM hydrogel degrades, EVs are gradually released, facilitating the deposition of new ECM and enabling the repair of nerve defects up to 12-mm in length.
Collapse
Affiliation(s)
- Na Fan
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China
| | - Da Song
- Department of Orthopedics, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China; Department of Orthopedics, Beijing Jishuitan Hospital Liaocheng Hospital, Liaocheng, Shandong 252000, China
| | - Huairong Ding
- Department of Orthopedics, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China; Department of Orthopedics, Beijing Jishuitan Hospital Liaocheng Hospital, Liaocheng, Shandong 252000, China
| | - Hongli Yang
- Central laboratory of Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China
| | - Cong Xu
- Central laboratory of Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China
| | - Chao Wang
- Institute of BioPharmceutical Research, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Yikun Yang
- Central laboratory of Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China.
| |
Collapse
|
3
|
Shen M, Ye X, Zhou Q, Zheng M, Du M, Wang L, Cong M, Liu C, Deng C, Xu Z, Wang Y, Li J, Feng M, Ye Y, Zhang S, Xu W, Lu Y, Kong J, Gong J, Xia Y, Gu J, Xie H, He Q, Zhang Q, Sun H, Liu X, Gong L, Yu M, Gu X, Zhao J, Zhang N, Ding F, Zhou S. Angiogenesis-promoting effect of SKP-SC-EVs-derived miRNA-30a-5p in peripheral nerve regeneration by targeting LIF and ANGPT2. J Biol Chem 2025; 301:108146. [PMID: 39732166 PMCID: PMC11791313 DOI: 10.1016/j.jbc.2024.108146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 11/24/2024] [Accepted: 12/12/2024] [Indexed: 12/30/2024] Open
Abstract
Ischemia and hypoxia caused by vascular injury intensify nerve damage. Skin precursor-derived Schwann cells have demonstrated an accelerated in vivo prevascularization of tissue-engineered nerves. Furthermore, extracellular vesicles from skin precursor-derived Schwann cells (SKP-SC-EVs) show the potential in aiding peripheral nerve regeneration. Nonetheless, the capacity of SKP-SC-EVs to facilitate nerve repair via angiogenesis remains uncertain. This study observed that SKP-SC-EVs significantly enhanced angiogenesis, evidenced by increased transparency of the tissue-engineered nerve graft and ultrasonic blood flow imaging. In vitro experiments confirmed that SKP-SC-EVs promote the proliferation, migration, and tube formation of human umbilical vein endothelial cells, a standard model for assessing angiogenic potential. Additionally, a comprehensive miRNA expression profile of SKP-SC-EVs was performed, leading to the identification of potential candidates through functional experiments. Among these, miR-30a-5p emerged as a significant candidate, demonstrating remarkable proangiogenic effects both in vivo and in vitro, akin to the effects of SKP-SC-EVs. Furthermore, luciferase reporter assay and functional experiments revealed that miR-30a-5p in SKP-SC-EVs promotes angiogenesis by targeting ANGPT2 and LIF without sufficient VEGFa. Thus, the enrichment of miR-30a-5p in SKP-SC-EVs indicates its pivotal role as a regulator of angiogenesis, presenting a promising avenue for cell-free treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Mi Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Xinli Ye
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Qiang Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Mengru Zheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Mingzhi Du
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Lijuan Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Meng Cong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Chang Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Chunyan Deng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Zhen Xu
- Department of Clinical Medical Research Center, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Jiangsu Province, China
| | - Yu Wang
- Department of Clinical Medical Research Center, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Jiangsu Province, China
| | - Jiyu Li
- Department of Orthopedic Oncology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Min Feng
- Department of Orthopedic Oncology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yujiao Ye
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Shuyu Zhang
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Wenqing Xu
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yi Lu
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Junjie Kong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Jiahuan Gong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Yingjie Xia
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jinhua Gu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong, China
| | - Huimin Xie
- The Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, China
| | - Qianru He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Qi Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Xingjun Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Leilei Gong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Miaomei Yu
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Jian Zhao
- Department of Orthopedic Oncology, Second Affiliated Hospital of Naval Medical University, Shanghai, China.
| | - Ning Zhang
- Department of Clinical Medical Research Center, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Jiangsu Province, China; Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
4
|
Errante EL, Tigre JY, Schaeffer EA, Costello MC, Kloehn AJ, Puerto A, Khan A, Pressman Y, Silvera R, Sanchez FJ, Noga BR, Dietrich WD, Levi AD, Burks SS. Comparison of cellular-based therapies following a long-segmental peripheral nerve defect in a rat model. PLoS One 2025; 20:e0313292. [PMID: 39774446 PMCID: PMC11706366 DOI: 10.1371/journal.pone.0313292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/21/2024] [Indexed: 01/11/2025] Open
Abstract
Peripheral nerve injury (PNI) is characterized by a loss of cellular and axonal integrity, often leading to limited functional recovery and pain. Many PNIs are not amenable to repair with traditional techniques; however, cell therapies, particularly Schwann cells (SCs), offer the promise of neural tissue replacement and functional improvement. Exosomes, which carry cellular signaling molecules, can be secreted by SCs and have shown promise in PNI. Our laboratory has had success using SCs in preclinical and clinical treatment settings. Transplanted cells have several known limitations, which exosomes mitigate. To that end, the current study investigated if implanted SC-derived exosomes in conduits, conduits with SCs, reverse autograft, or empty conduits comparably improve axonal regeneration and pain outcomes 16-weeks after repair of a long gap PNI in adult rats. Results show that there were no differences between groups in the von Frey filament testing or in the Hargreaves test. Electrophysiological testing showed a significant difference between the injured (ipsilateral) and uninjured (contralateral) limbs while histological assessment showed a significant difference between axonal counts in different areas of the conduit. Based on the results of the current study, more research is needed to understand the therapeutic role of exosomes in PNI.
Collapse
Affiliation(s)
- Emily L. Errante
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Joseph Yunga Tigre
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Ericka A. Schaeffer
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Meredith C. Costello
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Andrew J. Kloehn
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Aiko Puerto
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Aisha Khan
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Yelena Pressman
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Risset Silvera
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Francisco J. Sanchez
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Brian R. Noga
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - W. Dalton Dietrich
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Allan D. Levi
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - S. Shelby Burks
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
5
|
Salem EM, Rizk H, Abouelela YS, Prince A, Tohamy AF, Lasheen NA, Ezzat BA, Mostafa S. Regenerative potentials of bone marrow mesenchymal stem cells derived exosomes or its combination with zinc in recovery of degenerated circumvallate papilla following surgical bilateral transection of glossopharyngeal nerve in rats. BMC Oral Health 2024; 24:1320. [PMID: 39478548 PMCID: PMC11523770 DOI: 10.1186/s12903-024-05050-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Taste buds' innervation is necessary to sustain their cell turnover, differentiated taste buds and nerve fibers in circumvallate papilla (CVP) disappear following glossopharyngeal nerve transection. Normally, taste buds recover to baseline number in about 70 days. Bone marrow stem cell (BM-MSC) derived exosomes or their combination with Zinc chloride are used to assess their potential to speed up the regeneration process of CVP following bilateral deafferentation. METHODS Twenty-eight male Sprague-Dawley rats were randomly divided into four groups; Group I: subjected to sham operation followed by IP injection of saline. The other experimental groups (II, III and IV) were subjected to surgical bilateral transection of glossopharyngeal nerve. Group II received single IP injection of saline. Group III received single IV injection of BM-MSC-derived exosomes (100 µg). Group IV received single IV injection of BM-MSC-derived exosomes and single IP injection of zinc chloride (5 mg/kg). After 28 days, CVP was dissected and prepared for histological and histomorphometric analysis, RT-PCR for cytokeratin 8 gene expression, ELISA to assess protein level of brain-derived neurotrophic factor, redox state analysis of malondialdehyde and glutathione content, followed by statistical analysis. RESULTS Histopathologically, group II exhibited great tissue damage with marked reduction in taste buds and signs of degeneration in the remaining ones. Group III was close to control group with marked improvement in taste buds' number and structure. Group IV showed inferior results when compared to group III, with many immature taste buds and signs of degeneration. Statistical results showed that groups I and III have significantly higher values than groups II and IV regarding taste buds' number, cytokeratin 8, and reduced glutathione. However, malondialdehyde demonstrated high significant values in group IV compared to groups I and III. Regarding brain-derived neurotrophic factor, group III had significantly higher values than group II. CONCLUSION BM-MSC-derived exosomes have superior regenerative potentials in acceleration of CVP and nerve healing following bilateral transection of glossopharyngeal nerve in contrary to its combination with zinc chloride.
Collapse
Affiliation(s)
- Eman Mohamed Salem
- Oral Biology Department, College of Oral and Dental Surgery, Misr University for Science and Technology, Giza, 12568, Egypt.
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, 115533, Egypt.
| | - Hamdy Rizk
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Yara S Abouelela
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Abdelbary Prince
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Adel Fathy Tohamy
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Nawal A Lasheen
- Oral Biology Department, College of Oral and Dental Surgery, Misr University for Science and Technology, Giza, 12568, Egypt
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, 115533, Egypt
| | - Bassant A Ezzat
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, 115533, Egypt
| | - Sana Mostafa
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, 115533, Egypt
| |
Collapse
|
6
|
Sun J, Zeng Q, Wu Z, Li Z, Gao Q, Liao Z, Li H, Ling C, Chen C, Wang H, Zhang B. Enhancing intraneural revascularization following peripheral nerve injury through hypoxic Schwann-cell-derived exosomes: an insight into endothelial glycolysis. J Nanobiotechnology 2024; 22:283. [PMID: 38789980 PMCID: PMC11127458 DOI: 10.1186/s12951-024-02536-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Endothelial cell (EC)-driven intraneural revascularization (INRV) and Schwann cells-derived exosomes (SCs-Exos) both play crucial roles in peripheral nerve injury (PNI). However, the interplay between them remains unclear. We aimed to elucidate the effects and underlying mechanisms of SCs-Exos on INRV following PNI. RESULTS We found that GW4869 inhibited INRV, as well as that normoxic SCs-Exos (N-SCs-Exos) exhibited significant pro-INRV effects in vivo and in vitro that were potentiated by hypoxic SCs-Exos (H-SCs-Exos). Upregulation of glycolysis emerged as a pivotal factor for INRV after PNI, as evidenced by the observation that 3PO administration, a glycolytic inhibitor, inhibited the INRV process in vivo and in vitro. H-SCs-Exos more significantly enhanced extracellular acidification rate/oxygen consumption rate ratio, lactate production, and glycolytic gene expression while simultaneously suppressing acetyl-CoA production and pyruvate dehydrogenase E1 subunit alpha (PDH-E1α) expression than N-SCs-Exos both in vivo and in vitro. Furthermore, we determined that H-SCs-Exos were more enriched with miR-21-5p than N-SCs-Exos. Knockdown of miR-21-5p significantly attenuated the pro-glycolysis and pro-INRV effects of H-SCs-Exos. Mechanistically, miR-21-5p orchestrated EC metabolism in favor of glycolysis by targeting von Hippel-Lindau/hypoxia-inducible factor-1α and PDH-E1α, thereby enhancing hypoxia-inducible factor-1α-mediated glycolysis and inhibiting PDH-E1α-mediated oxidative phosphorylation. CONCLUSION This study unveiled a novel intrinsic mechanism of pro-INRV after PNI, providing a promising therapeutic target for post-injury peripheral nerve regeneration and repair.
Collapse
Affiliation(s)
- Jun Sun
- Department of Neurosurgery, the Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, Guangdong, 510630, PR China
| | - Qiuhua Zeng
- Department of Radiology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510000, China
| | - Zhimin Wu
- Department of Neurosurgery, the Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, Guangdong, 510630, PR China
| | - Zhangyu Li
- Department of Neurosurgery, School of Medicine, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361102, China
| | - Qun Gao
- Department of Neurosurgery, Peking University People's Hospital, 11th Xizhi Men South St, Beijing, 100044, China
| | - Zhi Liao
- Department of Neurosurgery, the Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, Guangdong, 510630, PR China
| | - Hao Li
- Department of Neurosurgery, Guangzhou Panyu Central Hospital, No.8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, Guangdong, PR China
| | - Cong Ling
- Department of Neurosurgery, the Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, Guangdong, 510630, PR China
| | - Chuan Chen
- Department of Neurosurgery, the Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, Guangdong, 510630, PR China.
| | - Hui Wang
- Department of Neurosurgery, the Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, Guangdong, 510630, PR China.
| | - Baoyu Zhang
- Department of Neurosurgery, the Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, Guangdong, 510630, PR China
| |
Collapse
|
7
|
Zhang X, Zhang W, Sun H, Wang H. The effects of exosomes originating from different cell sources on the differentiation of bone marrow mesenchymal stem cells into schwann cells. J Nanobiotechnology 2024; 22:220. [PMID: 38698449 PMCID: PMC11067703 DOI: 10.1186/s12951-024-02450-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMSCs) can differentiate into Schwann cells (SCs) during peripheral nerve injury; in our previous research, we showed that SC-derived exosomes (SC-exos) played a direct induction role while fibroblast-derived exosomes (Fb-exos) had no obvious induction role. The induction role of neural stem cell (NSC)-derived exosomes (NSC-exos) has also been widely confirmed. However, no studies have compared the induction effects of these three types of cells at the same time. Therefore, by investigating the effect of these three cell-derived exosomes upon the induction of BMSCs to differentiate into SCs, this study explored the role of different exosomes in promoting the differentiation of stem cells into SCs cells, and conducted a comparison between the two groups by RNA sequencing to further narrow the range of target genes and related gene pathways in order to study their related mechanisms. MATERIALS AND METHODS We extracted exosomes from SCs, fibroblasts (Fb) and neural stem cells (NSC) and then investigated the ability of these exosomes to induce differentiation into BMSCs under different culture conditions. The expression levels of key proteins and gene markers were detected in induced cells by fluorescence immunoassays, western blotting and polymerase chain reaction (PCR); then, we statistically compared the relative induction effects under different conditions. Finally, we analyzed the three types of exosomes by RNA-seq to predict target genes and related gene pathways. RESULTS BMSCs were cultured by three media: conventional (no induction), pre-induction or pre-induction + original induction medium (ODM) with exosomes of the same cell origin under different culture conditions. When adding the three different types of exosomes separately, the overall induction of BMSCs to differentiate into SCs was significantly increased (P < 0.05). The induction ability was ranked as follows: pre-induction + ODM + exosome group > pre-induction + exosome group > non-induction + exosome group. Using exosomes from different cell sources under the same culture conditions, we observed the following trends under the three culture conditions: RSC96-exos group ≥ NSC-exos group > Fb-exos group. The overall ability to induce BMSCs into SCs was significantly greater in the RSC96-exos group and the NSC-exos group. Although there was no significant difference in induction efficiency when comparing these two groups, the overall induction ability of the RSC96-exos group was slightly higher than that of the NSC-exos group. By combining the differentiation induction results with the RNA-seq data, the three types of exosomes were divided into three comparative groups: RSC vs. NSC, RSC vs. Fb and NSC vs. Fb. We identified 203 differentially expressed mRNA target genes in these three groups. Two differentially expressed genes were upregulated simultaneously, namely riboflavin kinase (RFK, ENSRNOG00000022273) and ribosomal RNA processing 36 (Rrp36, ENSRNOG00000017836). We did not identify any co-upregulated target genes for the miRNAs, but did identify one target gene of the lncRNAs, namely ENSRNOG00000065005. Analysis identified 90 GO terms related to nerves and axons in the mRNAs; in addition, KEGG enrichment and GASA analysis identified 13 common differential expression pathways in the three groups. CONCLUSIONS Our analysis found that pre-induction + ODM + RSC96/NSC-exos culture conditions were most conducive with regards to induction and differentiation. RSC96-exos and NSC-exos exhibited significantly greater differentiation efficiency of BMSCs into SCs. Although there was no statistical difference, the data indicated a trend for RSC96-exos to be advantageous We identified 203 differentially expressed mRNAs between the three groups and two differentially expressed target mRNAs were upregulated, namely riboflavin kinase (RFK, ENSRNOG00000022273) and ribosomal RNA processing 36 (Rrp36, ENSRNOG00000017836). 90 GO terms were related to nerves and axons. Finally, we identified 13 common differentially expressed pathways across our three types of exosomes. It is hoped that the efficiency of BMSCs induction differentiation into SCs can be improved, bringing hope to patients and more options for clinical treatment.
Collapse
Affiliation(s)
- Xianxiang Zhang
- Department of Otolaryngology and Head and Neck Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, 101101, China
| | - Weiwei Zhang
- Department of Otolaryngology and Head and Neck Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, 101101, China
| | - Hao Sun
- Department of Otolaryngology and Head and Neck Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, 101101, China
| | - Hui Wang
- Department of Otolaryngology and Head and Neck Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, 101101, China.
| |
Collapse
|
8
|
Izhiman Y, Esfandiari L. Emerging role of extracellular vesicles and exogenous stimuli in molecular mechanisms of peripheral nerve regeneration. Front Cell Neurosci 2024; 18:1368630. [PMID: 38572074 PMCID: PMC10989355 DOI: 10.3389/fncel.2024.1368630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Peripheral nerve injuries lead to significant morbidity and adversely affect quality of life. The peripheral nervous system harbors the unique trait of autonomous regeneration; however, achieving successful regeneration remains uncertain. Research continues to augment and expedite successful peripheral nerve recovery, offering promising strategies for promoting peripheral nerve regeneration (PNR). These include leveraging extracellular vesicle (EV) communication and harnessing cellular activation through electrical and mechanical stimulation. Small extracellular vesicles (sEVs), 30-150 nm in diameter, play a pivotal role in regulating intercellular communication within the regenerative cascade, specifically among nerve cells, Schwann cells, macrophages, and fibroblasts. Furthermore, the utilization of exogenous stimuli, including electrical stimulation (ES), ultrasound stimulation (US), and extracorporeal shock wave therapy (ESWT), offers remarkable advantages in accelerating and augmenting PNR. Moreover, the application of mechanical and electrical stimuli can potentially affect the biogenesis and secretion of sEVs, consequently leading to potential improvements in PNR. In this review article, we comprehensively delve into the intricacies of cell-to-cell communication facilitated by sEVs and the key regulatory signaling pathways governing PNR. Additionally, we investigated the broad-ranging impacts of ES, US, and ESWT on PNR.
Collapse
Affiliation(s)
- Yara Izhiman
- Esfandiari Laboratory, Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Leyla Esfandiari
- Esfandiari Laboratory, Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, United States
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- Department of Electrical and Computer Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
9
|
Hu W, Wang W, Chen Z, Chen Y, Wang Z. Engineered exosomes and composite biomaterials for tissue regeneration. Theranostics 2024; 14:2099-2126. [PMID: 38505616 PMCID: PMC10945329 DOI: 10.7150/thno.93088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/25/2024] [Indexed: 03/21/2024] Open
Abstract
Exosomes, which are small vesicles enclosed by a lipid bilayer and released by many cell types, are widely dispersed and have garnered increased attention in the field of regenerative medicine due to their ability to serve as indicators of diseases and agents with therapeutic potential. Exosomes play a crucial role in mediating intercellular communication through the transfer of many biomolecules, including proteins, lipids, RNA, and other molecular constituents, between cells. The targeted transport of proteins and nucleic acids to specific cells has the potential to enhance or impair specific biological functions. Exosomes have many applications, and they can be used alone or in combination with other therapeutic approaches. The examination of the unique attributes and many functions of these factors has emerged as a prominent field of study in the realm of biomedical research. This manuscript summarizes the origins and properties of exosomes, including their structural, biological, physical, and chemical aspects. This paper offers a complete examination of recent progress in tissue repair and regenerative medicine, emphasizing the possible implications of these methods in forthcoming tissue regeneration attempts.
Collapse
Affiliation(s)
- Weikang Hu
- Department of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Wang Wang
- Department of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zesheng Chen
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yun Chen
- Department of Biomedical Engineering, Hubei Province Key Laboratory of Allergy and Immune Related Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Zijian Wang
- Department of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
- Department of Biomedical Engineering, Hubei Province Key Laboratory of Allergy and Immune Related Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| |
Collapse
|
10
|
Yi D, Zhang Y, Li M, Chen J, Chen X, Wang L, Xing G, Chen S, Zhu Y, Wang Y. Ultrasound-Targeted Microbubble Destruction Assisted Delivery of Platelet-Rich Plasma-Derived Exosomes Promoting Peripheral Nerve Regeneration. Tissue Eng Part A 2023; 29:645-662. [PMID: 37612613 DOI: 10.1089/ten.tea.2023.0133] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Peripheral nerve injury is prevalent and has a high disability rate in clinical settings. Current therapeutic methods have not achieved satisfactory efficacy, underscoring the need for novel approaches to nerve restoration that remains an active area of research in neuroscience and regenerative medicine. In this study, we isolated platelet-rich plasma-derived exosomes (PRP-exos) and found that they can significantly enhance the proliferation, migration, and secretion of trophic factors by Schwann cells (SCs). In addition, there were marked changes in transcriptional and expression profiles of SCs, particularly via the upregulation of genes related to biological functions involved in nerve regeneration and repair. In the rat model of sciatic nerve crush injury, ultrasound-targeted microbubble destruction (UTMD) enhanced the efficiency of PRP-exos delivery to the injury site. This approach ensured a high concentration of PRP-exos in the injured nerve and improved the therapeutic outcomes. In conclusion, PRP-exos may promote nerve regeneration and repair, and UTMD may increase the effectiveness of targeted PRP-exos delivery to the injured nerve and enhance the therapeutic effect.
Collapse
Affiliation(s)
- Dan Yi
- Medical School of Chinese PLA, Beijing, China
- Department of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Yongyi Zhang
- Medical School of Chinese PLA, Beijing, China
- Department of Rehabilitation Medicine, The Second Medical Centre, Chinese PLA General Hospital, Beijing, China
- No.962 Hospital of the PLA Joint Logistic Support Force, Harbin, China
| | - Molin Li
- Medical School of Chinese PLA, Beijing, China
- Department of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jian Chen
- Department of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical College of Nankai University, Tianjin, China
| | - Xianghui Chen
- Medical School of Chinese PLA, Beijing, China
- Department of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Li Wang
- Medical School of Chinese PLA, Beijing, China
- Department of Ultrasound, The Sixth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Guanghui Xing
- Medical School of Chinese PLA, Beijing, China
- Department of Ultrasound, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Siming Chen
- Department of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yaqiong Zhu
- Department of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yuexiang Wang
- Department of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Dahlin LB. The Dynamics of Nerve Degeneration and Regeneration in a Healthy Milieu and in Diabetes. Int J Mol Sci 2023; 24:15241. [PMID: 37894921 PMCID: PMC10607341 DOI: 10.3390/ijms242015241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Appropriate animal models, mimicking conditions of both health and disease, are needed to understand not only the biology and the physiology of neurons and other cells under normal conditions but also under stress conditions, like nerve injuries and neuropathy. In such conditions, understanding how genes and different factors are activated through the well-orchestrated programs in neurons and other related cells is crucial. Knowledge about key players associated with nerve regeneration intended for axonal outgrowth, migration of Schwann cells with respect to suitable substrates, invasion of macrophages, appropriate conditioning of extracellular matrix, activation of fibroblasts, formation of endothelial cells and blood vessels, and activation of other players in healthy and diabetic conditions is relevant. Appropriate physical and chemical attractions and repulsions are needed for an optimal and directed regeneration and are investigated in various nerve injury and repair/reconstruction models using healthy and diabetic rat models with relevant blood glucose levels. Understanding dynamic processes constantly occurring in neuropathies, like diabetic neuropathy, with concomitant degeneration and regeneration, requires advanced technology and bioinformatics for an integrated view of the behavior of different cell types based on genomics, transcriptomics, proteomics, and imaging at different visualization levels. Single-cell-transcriptional profile analysis of different cells may reveal any heterogeneity among key players in peripheral nerves in health and disease.
Collapse
Affiliation(s)
- Lars B. Dahlin
- Department of Translational Medicine—Hand Surgery, Lund University, SE-205 02 Malmö, Sweden; ; Tel.: +46-40-33-17-24
- Department of Hand Surgery, Skåne University Hospital, SE-205 02 Malmö, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
12
|
Wang L, Lu X, Chopp M, Li C, Zhang Y, Szalad A, Liu XS, Zhang ZG. Comparative proteomic analysis of exosomes derived from endothelial cells and Schwann cells. PLoS One 2023; 18:e0290155. [PMID: 37594969 PMCID: PMC10437921 DOI: 10.1371/journal.pone.0290155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/02/2023] [Indexed: 08/20/2023] Open
Abstract
Exosomes derived from endothelial cells and Schwann cells have been employed as novel treatments of neurological diseases, including peripheral neuropathy. Exosomal cargo plays a critical role in mediating recipient cell function. In this study, we thus performed a comprehensive proteomic analysis of exosomes derived from healthy mouse dermal microvascular endothelial cells (EC-Exo) and healthy mouse Schwann cells (SC-Exo). We detected 1,817and 1,579 proteins in EC-Exo and SC-Exo, respectively. Among them, 1506 proteins were present in both EC-Exo and SC-Exo, while 311 and 73 proteins were detected only in EC-Exo and SC-Exo, respectively. Bioinformatic analysis revealed that EC-Exo enriched proteins were involved in neurovascular function, while SC-Exo enriched proteins were related to lipid metabolism. Western blot analysis of 14 enriched proteins revealed that EC-Exo contained proteins involved in mediating endothelial function such as delta-like 4 (DLL4) and endothelial NOS (NOS3), whereas SC-Exo had proteins involved in mediating glial function such as apolipoprotein A-I (APOA1) and phospholipid transfer protein (PLTP). Collectively, the present study identifies differences in the cargo protein profiles of EC-Exo and SC-Exo, thus providing new molecular insights into their biological functions for the treatment of peripheral neuropathy.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - XueRong Lu
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - Michael Chopp
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
- Department of Physics, Oakland University, Rochester, Michigan, United States of America
| | - Chao Li
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - Yi Zhang
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - Alexandra Szalad
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - Xian Shuang Liu
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| |
Collapse
|
13
|
Mayer J, Krug C, Saller M, Feuchtinger A, Giunta R, Volkmer E, Holzbach T. Hypoxic pre-conditioned adipose-derived stem/progenitor cells embedded in fibrin conduits promote peripheral nerve regeneration in a sciatic nerve graft model. Neural Regen Res 2023; 18:652-656. [DOI: 10.4103/1673-5374.346464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
O'Brien AL, West JM, Saffari TM, Nguyen M, Moore AM. Promoting Nerve Regeneration: Electrical Stimulation, Gene Therapy, and Beyond. Physiology (Bethesda) 2022; 37:0. [PMID: 35820181 DOI: 10.1152/physiol.00008.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Peripheral nerve injuries often result in life-altering functional deficits even with optimal management. Unlike the central nervous system, peripheral nerves have the ability to regenerate lost axons after injury; however, axonal regeneration does not equate to full restoration of function. To overcome this physiological shortcoming, advances in nerve regeneration and repair are paramount, including electrical stimulation, gene therapy, and surgical technique advancements.
Collapse
Affiliation(s)
- Andrew L O'Brien
- Department of Plastic and Reconstructive Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Julie M West
- Department of Plastic and Reconstructive Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Tiam M Saffari
- Department of Plastic and Reconstructive Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Minh Nguyen
- Department of Plastic and Reconstructive Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Amy M Moore
- Department of Plastic and Reconstructive Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
15
|
Chen A, Tian H, Yang N, Zhang Z, Yang GY, Cui W, Tang Y. Towards extracellular vesicle delivery systems for tissue regeneration: material design at the molecular level. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:323-356. [PMID: 39697358 PMCID: PMC11648451 DOI: 10.20517/evcna.2022.37] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 12/20/2024]
Abstract
The discovery and development of extracellular vesicles in tissue engineering have shown great potential for tissue regenerative therapies. However, their vesicle nature requires dosage-dependent administration and efficient interactions with recipient cells. Researchers have resorted to biomaterials for localized and sustained delivery of extracellular vesicles to the targeted cells, but not much emphasis has been paid on the design of the materials, which deeply impacts their molecular interactions with the loaded extracellular vesicles and subsequent delivery. Therefore, we present in this review a comprehensive survey of extracellular vesicle delivery systems from the viewpoint of material design at the molecular level. We start with general requirements of the materials and delve into different properties of delivery systems as a result of different designs, from material selections to processing strategies. Based on these differences, we analyzed the performance of extracellular vesicle delivery and tissue regeneration in representative studies. In light of the current missing links within the relationship of material structures, physicochemical properties and delivery performances, we provide perspectives on the interactions of materials and extracellular vesicles and the possible extension of materials. This review aims to be a strategic enlightenment for the future design of extracellular vesicle delivery systems to facilitate their translation from basic science to clinical applications.
Collapse
Affiliation(s)
- Ao Chen
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hengli Tian
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Nana Yang
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, Shandong, China
| | - Zhijun Zhang
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guo-Yuan Yang
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yaohui Tang
- Shanghai Jiao Tong Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
16
|
Vallejo FA, Diaz A, Errante EL, Smartz T, Khan A, Silvera R, Brooks AE, Lee YS, Burks SS, Levi AD. Systematic review of the therapeutic use of Schwann cells in the repair of peripheral nerve injuries: Advancements from animal studies to clinical trials. Front Cell Neurosci 2022; 16:929593. [PMID: 35966198 PMCID: PMC9372346 DOI: 10.3389/fncel.2022.929593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022] Open
Abstract
Objective To systematically evaluate the literature on the therapeutic use of Schwann cells (SC) in the repair of peripheral nerve injuries. Methods The Cochrane Library and PubMed databases were searched using terms [(“peripheral nerve injury” AND “Schwann cell” AND “regeneration”) OR (“peripheral nerve injuries”)]. Studies published from 2008 to 2022 were eligible for inclusion in the present study. Only studies presenting data from in-vivo investigations utilizing SCs in the repair of peripheral nerve injuries qualified for review. Studies attempting repair of a gap of ≥10 mm were included. Lastly, studies needed to have some measure of quantifiable regenerative outcome data such as histomorphometry, immunohistochemical, electrophysiology, or other functional outcomes. Results A search of the PubMed and Cochrane databases revealed 328 studies. After screening using the abstracts and methods, 17 studies were found to meet our inclusion criteria. Good SC adherence and survival in conduit tubes across various studies was observed. Improvement in morphological and functional outcomes with the use of SCs in long gap peripheral nerve injuries was observed in nearly all studies. Conclusion Based on contemporary literature, SCs have demonstrated clear potential in the repair of peripheral nerve injury in animal studies. It has yet to be determined which nerve conduit or graft will prove superior for delivery and retention of SCs for nerve regeneration. Recent developments in isolation and culturing techniques will enable further translational utilization of SCs in future clinical trials.
Collapse
Affiliation(s)
- Frederic A. Vallejo
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anthony Diaz
- Department of Neurosurgery, University of Connecticut, Farmington, CT, United States
| | - Emily L. Errante
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Taylor Smartz
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Aisha Khan
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Risset Silvera
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Adriana E. Brooks
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yee-Shuan Lee
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Stephen Shelby Burks
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Allan D. Levi
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
- *Correspondence: Allan D. Levi
| |
Collapse
|
17
|
Zhu Z, Zhang X, Hao H, Xu H, Shu J, Hou Q, Wang M. Exosomes Derived From Umbilical Cord Mesenchymal Stem Cells Treat Cutaneous Nerve Damage and Promote Wound Healing. Front Cell Neurosci 2022; 16:913009. [PMID: 35846563 PMCID: PMC9279568 DOI: 10.3389/fncel.2022.913009] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Wound repair is a key step in the treatment of skin injury caused by burn, surgery, and trauma. Various stem cells have been proven to promote wound healing and skin regeneration as candidate seed cells. Therefore, exosomes derived from stem cells are emerging as a promising method for wound repair. However, the mechanism by which exosomes promote wound repair is still unclear. In this study, we reported that exosomes derived from umbilical cord mesenchymal stem cells (UC-MSCs) promote wound healing and skin regeneration by treating cutaneous nerve damage. The results revealed that UC-MSCs exosomes (UC-MSC-Exo) promote the growth and migration of dermal fibroblast cells. In in vitro culture, dermal fibroblasts could promote to nerve cells and secrete nerve growth factors when stimulated by exosomes. During the repair process UC-MSC-Exo accelerated the recruitment of fibroblasts at the site of trauma and significantly enhanced cutaneous nerve regeneration in vivo. Interestingly, it was found that UC-MSC-Exo could promote wound healing and skin regeneration by recruiting fibroblasts, stimulating them to secrete nerve growth factors (NGFs) and promoting skin nerve regeneration. Therefore, we concluded that UC-MSC-Exo promote cutaneous nerve repair, which may play an important role in wound repair and skin regeneration.
Collapse
Affiliation(s)
- Ziying Zhu
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
- The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
- *Correspondence: Ziying Zhu,
| | - Xiaona Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Haojie Hao
- The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Heran Xu
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Jun Shu
- The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Qian Hou
- The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
- Medical Innovation Research Center, Chinese People’s Liberation Army General Hospital, Beijing, China
- Qian Hou,
| | - Min Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
- Min Wang,
| |
Collapse
|
18
|
Wan R, Hussain A, Behfar A, Moran SL, Zhao C. The Therapeutic Potential of Exosomes in Soft Tissue Repair and Regeneration. Int J Mol Sci 2022; 23:ijms23073869. [PMID: 35409228 PMCID: PMC8998690 DOI: 10.3390/ijms23073869] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Soft tissue defects are common following trauma and tumor extirpation. These injuries can result in poor functional recovery and lead to a diminished quality of life. The healing of skin and muscle is a complex process that, at present, leads to incomplete recovery and scarring. Regenerative medicine may offer the opportunity to improve the healing process and functional outcomes. Barriers to regenerative strategies have included cost, regulatory hurdles, and the need for cell-based therapies. In recent years, exosomes, or extracellular vesicles, have gained tremendous attention in the field of soft tissue repair and regeneration. These nanosized extracellular particles (30-140 nm) can break the cellular boundaries, as well as facilitate intracellular signal delivery in various regenerative physiologic and pathologic processes. Existing studies have established the potential of exosomes in regenerating tendons, skeletal muscles, and peripheral nerves through different mechanisms, including promoting myogenesis, increasing tenocyte differentiation and enhancing neurite outgrowth, and the proliferation of Schwann cells. These exosomes can be stored for immediate use in the operating room, and can be produced cost efficiently. In this article, we critically review the current advances of exosomes in soft tissue (tendons, skeletal muscles, and peripheral nerves) healing. Additionally, new directions for clinical applications in the future will be discussed.
Collapse
Affiliation(s)
- Rou Wan
- Division of Plastic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (R.W.); (A.H.); (S.L.M.)
| | - Arif Hussain
- Division of Plastic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (R.W.); (A.H.); (S.L.M.)
| | - Atta Behfar
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Steven L. Moran
- Division of Plastic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (R.W.); (A.H.); (S.L.M.)
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence:
| |
Collapse
|
19
|
SWANSON WB, MISHINA Y. New paradigms in regenerative engineering: Emerging role of extracellular vesicles paired with instructive biomaterials. BIOCELL 2022; 46:1445-1451. [PMID: 35221452 PMCID: PMC8881001 DOI: 10.32604/biocell.2022.018781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/24/2021] [Indexed: 11/15/2022]
Abstract
Mesenchymal stem cells (MSCs) have long been regarded as critical components of regenerative medicine strategies, given their multipotency and persistence in a variety of tissues. Recently, the specific role of MSCs in mediating regenerative outcomes has been attributed (in part) to secreted factors from transplanted cells, namely extracellular vesicles. This viewpoint manuscript highlights the promise of cell-derived extracellular vesicles as agents of regeneration, enhanced by synergy with appropriate biomaterials platforms. Extracellular vesicles are a potentially interesting regenerative tool to enhance the synergy between MSCs and biomaterials. As a result, we believe these technologies will improve patient outcomes through efficient therapeutic strategies resulting in predictable patient outcomes.
Collapse
Affiliation(s)
- W. Benton SWANSON
- Department of Biologic and Materials Science & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yuji MISHINA
- Department of Biologic and Materials Science & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
20
|
Klimovich P, Rubina K, Sysoeva V, Semina E. New Frontiers in Peripheral Nerve Regeneration: Concerns and Remedies. Int J Mol Sci 2021; 22:13380. [PMID: 34948176 PMCID: PMC8703705 DOI: 10.3390/ijms222413380] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 01/08/2023] Open
Abstract
Topical advances in studying molecular and cellular mechanisms responsible for regeneration in the peripheral nervous system have highlighted the ability of the nervous system to repair itself. Still, serious injuries represent a challenge for the morphological and functional regeneration of peripheral nerves, calling for new treatment strategies that maximize nerve regeneration and recovery. This review presents the canonical view of the basic mechanisms of nerve regeneration and novel data on the role of exosomes and their transferred microRNAs in intracellular communication, regulation of axonal growth, Schwann cell migration and proliferation, and stromal cell functioning. An integrated comprehensive understanding of the current mechanistic underpinnings will open the venue for developing new clinical strategies to ensure full regeneration in the peripheral nervous system.
Collapse
Affiliation(s)
- Polina Klimovich
- National Cardiology Research Center Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 121552 Moscow, Russia; (P.K.); (E.S.)
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Kseniya Rubina
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Veronika Sysoeva
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Ekaterina Semina
- National Cardiology Research Center Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 121552 Moscow, Russia; (P.K.); (E.S.)
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia;
| |
Collapse
|
21
|
Yu M, Gu G, Cong M, Du M, Wang W, Shen M, Zhang Q, Shi H, Gu X, Ding F. Repair of peripheral nerve defects by nerve grafts incorporated with extracellular vesicles from skin-derived precursor Schwann cells. Acta Biomater 2021; 134:190-203. [PMID: 34289422 DOI: 10.1016/j.actbio.2021.07.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/16/2022]
Abstract
Our previous studies have shown that extracellular vesicles from skin-derived precursor Schwann cells (SKP-SC-EVs) promote neurite outgrowth of sensory and motor neurons in vitro. This study was aimed at generating an artificial nerve graft incorporated with SKP-SC-EVs to examine in vivo effects of SKP-SC-EVs on peripheral nerve regeneration. Here SKP-SC-EVs were isolated and then identified by morphological observation and phenotypic marker expression. Following co-culture with SCs or motoneurons, SKP-SC-EVs were internalized, showing the capability to enhance SC viability or motoneuron neurite outgrowth. In vitro, SKP-SC-EVs released from Matrigel could maintain cellular uptake property and neural activity. Nerve grafts were developed by incorporating Matrigel-encapsulated SKP-SC-EVs into silicone conduits. Functional evaluation, histological investigation, and morphometric analysis were performed to compare the nerve regenerative outcome after bridging the 10-mm long sciatic nerve defect in rats with our developed nerve grafts, silicone conduits (filled with vehicle), and autografts respectively. Our developed nerve grafts significantly accelerated the recovery of motor, sensory, and electrophysiological functions of rats, facilitated outgrowth and myelination of regenerated axons, and alleviated denervation-induced atrophy of target muscles. Collectively, our findings suggested that incorporation of SKP-SC-EVs into nerve grafts might represent a promising paradigm for peripheral nerve injury repair. STATEMENT OF SIGNIFICANCE: Nerve grafts have been progressively developed to meet the increasing requirements for peripheral nerve injury repair. Here we reported a design of nerve grafts featured by incorporation of Matrigel-encapsulated extracellular vesicles from skin-derived precursor Schwann cells (SKP-SC-EVs), because SKP-SC-EVs were found to possess in vitro neural activity, thus raising the possibility of cell-free therapy. Our developed nerve grafts yielded the satisfactory outcome of nerve grafting in rats with a 10-mm long sciatic nerve defect, as evaluated by functional and morphological assessments. The promoting effects of SKP-SC-EVs-incorporating nerve grafts on peripheral nerve regeneration might benefit from in vivo biological cues afforded by SKP-SC-EVs, which had been released from Matrigel and then internalized by residual neural cells in sciatic nerve stumps.
Collapse
Affiliation(s)
- Miaomei Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Guohao Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Meng Cong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mingzhi Du
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wei Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mi Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qi Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Haiyan Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China; Department of Pathophysiology, School of Medicine, Nantong University, Nantong, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China; Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China; Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
22
|
Vogt S, Bobbili MR, Stadlmayr G, Stadlbauer K, Kjems J, Rüker F, Grillari J, Wozniak‐Knopp G. An engineered CD81-based combinatorial library for selecting recombinant binders to cell surface proteins: Laminin binding CD81 enhances cellular uptake of extracellular vesicles. J Extracell Vesicles 2021; 10:e12139. [PMID: 34514736 PMCID: PMC8435527 DOI: 10.1002/jev2.12139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/26/2021] [Accepted: 08/13/2021] [Indexed: 12/20/2022] Open
Abstract
The research of extracellular vesicles (EVs) has boomed in the last decade, with the promise of them functioning as target-directed drug delivery vehicles, able to modulate proliferation, migration, differentiation, and other properties of the recipient cell that are vital for health of the host organism. To enhance the ability of their targeted delivery, we employed an intrinsically overrepresented protein, CD81, to serve for recognition of the desired target antigen. Yeast libraries displaying mutant variants of the large extracellular loop of CD81 have been selected for binders to human placental laminin as an example target. Their specific interaction with laminin was confirmed in a mammalian display system. Derived sequences were reformatted to full-length CD81 and expressed in EVs produced by HeLa cells. These EVs were examined for the presence of the recombinant protein and were shown to exhibit an enhanced uptake into laminin-secreting mammalian cell lines. For the best candidate, the specificity of antigen interaction was demonstrated with a competition experiment. To our knowledge, this is the first example of harnessing an EV membrane protein as mediator of de novo target antigen recognition via in vitro molecular evolution, opening horizons to a broad range of applications in various therapeutic settings.
Collapse
Affiliation(s)
- Stefan Vogt
- acib GmbH (Austrian Centre of Industrial Biotechnology)GrazAustria
- Department of BiotechnologyInstitute of Molecular BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Madhusudhan Reddy Bobbili
- Department of BiotechnologyInstitute of Molecular BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research CenterViennaAustria
| | - Gerhard Stadlmayr
- Department of BiotechnologyChristian Doppler Laboratory for Innovative ImmunotherapeuticsUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Katharina Stadlbauer
- Department of BiotechnologyChristian Doppler Laboratory for Innovative ImmunotherapeuticsUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Jørgen Kjems
- Department of Molecular Biology and GeneticsCentre for Cellular Signal Patterns (CellPat)Interdisciplinary Nanoscience Centre (iNANO)Aarhus UniversityAarhus CDenmark
| | - Florian Rüker
- Department of BiotechnologyInstitute of Molecular BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Johannes Grillari
- Department of BiotechnologyInstitute of Molecular BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research CenterViennaAustria
| | - Gordana Wozniak‐Knopp
- Department of BiotechnologyInstitute of Molecular BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
- Department of BiotechnologyChristian Doppler Laboratory for Innovative ImmunotherapeuticsUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
| |
Collapse
|
23
|
van Erp S, van Berkel AA, Feenstra EM, Sahoo PK, Wagstaff LJ, Twiss JL, Fawcett JW, Eva R, Ffrench-Constant C. Age-related loss of axonal regeneration is reflected by the level of local translation. Exp Neurol 2021; 339:113594. [PMID: 33450233 PMCID: PMC8024785 DOI: 10.1016/j.expneurol.2020.113594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/07/2020] [Accepted: 12/17/2020] [Indexed: 01/08/2023]
Abstract
Regeneration capacity is reduced as CNS axons mature. Using laser-mediated axotomy, proteomics and puromycin-based tagging of newly-synthesized proteins in a human embryonic stem cell-derived neuron culture system that allows isolation of axons from cell bodies, we show here that efficient regeneration in younger axons (d45 in culture) is associated with local axonal protein synthesis (local translation). Enhanced regeneration, promoted by co-culture with human glial precursor cells, is associated with increased axonal synthesis of proteins, including those constituting the translation machinery itself. Reduced regeneration, as occurs with the maturation of these axons by d65 in culture, correlates with reduced levels of axonal proteins involved in translation and an inability to respond by increased translation of regeneration promoting axonal mRNAs released from stress granules. Together, our results provide evidence that, as in development and in the PNS, local translation contributes to CNS axon regeneration.
Collapse
Affiliation(s)
- Susan van Erp
- MRC Centre for Regenerative Medicine and MS Society Edinburgh Centre, Edinburgh bioQuarter, University of Edinburgh, Edinburgh, UK.
| | - Annemiek A van Berkel
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| | - Eline M Feenstra
- MRC Centre for Regenerative Medicine and MS Society Edinburgh Centre, Edinburgh bioQuarter, University of Edinburgh, Edinburgh, UK
| | - Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, Columbia 29208, SC, USA
| | - Laura J Wagstaff
- MRC Centre for Regenerative Medicine and MS Society Edinburgh Centre, Edinburgh bioQuarter, University of Edinburgh, Edinburgh, UK
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia 29208, SC, USA
| | - James W Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Centre for Reconstructive Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Richard Eva
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Charles Ffrench-Constant
- MRC Centre for Regenerative Medicine and MS Society Edinburgh Centre, Edinburgh bioQuarter, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
24
|
Hong P, Xu X, Hu X, Yang H, Wu Y, Chen J, Li K, Tang Z. Therapeutic potential of small extracellular vesicles derived from lipoma tissue in adipose tissue regeneration-an in vitro and in vivo study. Stem Cell Res Ther 2021; 12:222. [PMID: 33789709 PMCID: PMC8011093 DOI: 10.1186/s13287-021-02291-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To explore the adipogenic effects of the small extracellular vesicles derived from the lipoma tissues (sEV-LT), and to find a new cell-free therapeutic approach for adipose tissue regeneration. METHODS Adipose tissue-derived stem cells (ADSCs) and small extracellular vesicles derived from the adipose tissues (sEV-AT) were isolated from human adipose tissue, while sEV-LT were isolated from human lipomatous tissue. ADSCs were characterized by using flow cytometric analysis and adipogenic and osteogenic differentiation assays. sEV was identified by electron microscopy, nanoparticle tracking, and western blotting. ADSCs were treated with sEV-LT and sEV-AT, respectively. Fluorescence confocal microscopy was used to investigate whether sEV-LT and sEV-AT could be taken by ADSCs. The proliferation and migration abilities and adipogenic differentiation assay of ADSCs were evaluated by CCK-8 assays, scratch test, and oil red O staining test, and the expression levels of adipogenic-related genes C/EBP-δ, PPARγ2, and Adiponectin in ADSCs were assessed by real-time quantitative PCR (RT-PCR). The sEV-LT and sEV-AT transplantation tubes were implanted subcutaneously in SD rats, and the neotissues were qualitatively and histologically evaluated at 2, 4, 8, and 12 weeks after transplantation. Hematoxylin and eosin (H&E) staining was subsequently used to observe and compare the adipogenesis and angiogenesis in neotissues, while immunohistochemistry was used to examine the expression and the distribution of C/EBP-α, PPARγ, Adiponectin, and CD31 at the 4th week. RESULTS The in vitro experiments showed that both sEV-LT and sEV-AT could be taken up by ADSCs via endocytosis. The scratch experiment and CCK-8 experiment showed that the migration area and proliferation number of ADSCs in sEV-LT group and sEV-AT group were significantly higher than those in the non-sEV group (p < 0.05). Compared with sEV-AT group, sEV-LT group had larger migration area and proliferation number of ADSCs (p < 0.05). Oil red O staining and RT-PCR experiments showed that, compared with the non-sEVs group, the lipid droplets and the mRNA expression levels of adipogenesis-related genes PPARγ2 and Adiponectin of ADSCs in sEV-LT group and sEV-AT group were significantly upregulated (p < 0.05); however, there was no statistical significance in the expression level of C/EBP-δ (p > 0.05). In addition, no significant difference in the amount of lipid droplets and adipogenesis-related genes between the sEV-LT groups and sEV-AT was seen (p > 0.05). At 2, 4, 8, and 12 weeks, the adipocyte area and the number of capillaries in neotissues in the sEV-LT groups and sEV-AT groups were significantly increased compared with the Matrigel group (p < 0.05); however, there was no dramatic difference between sEV-LT groups and sEV-AT groups (p > 0.05). At the 4th week, neotissues in the sEV-LT groups and sEV-AT groups all showed upregulated expression of C/EBP-α, PPARγ, Adiponectin, and CD31 protein, while neotissues in the Matrigel group only showed positive expression of CD31 protein. CONCLUSIONS This study demonstrated that sEV-LT exerted promotion effects on adipose tissue regeneration by accelerating the proliferation, migration, and adipogenic differentiation of ADSCs in vitro and recruiting adipocytes and promoting angiogenesis in vivo. The sEV-LT could serve as an alternative cell-free therapeutic strategy for generating adipose tissue, thus providing a promising application prospect in tissue engineering.
Collapse
Affiliation(s)
- Pengyu Hong
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - Xiaoyang Xu
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - Xin Hu
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Yang
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - Yue Wu
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - Juan Chen
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - Kun Li
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008, Hunan, China.
| | - Zhangui Tang
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
25
|
Cong M, Shen M, Wu X, Li Y, Wang L, He Q, Shi H, Ding F. Improvement of sensory neuron growth and survival via negatively regulating PTEN by miR-21-5p-contained small extracellular vesicles from skin precursor-derived Schwann cells. Stem Cell Res Ther 2021; 12:80. [PMID: 33494833 PMCID: PMC7831194 DOI: 10.1186/s13287-020-02125-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/25/2020] [Indexed: 12/11/2022] Open
Abstract
Background Patients with peripheral nerve injury (PNI) often suffer from hypoxic ischemic impairments, in particular when combined with vascular damage, causing neuronal dysfunction and death. Increasing attention has been paid on skin precursor-derived Schwann cells (SKP-SCs), and previous study has shown that SKP-SCs could promote sensory recovery after cell therapy for PNI, resembling the effect of naive SCs, and SKP-SC-derived extracellular vesicles (SKP-SC-EVs) are putatively supposed to be promising therapeutic agents for neural regeneration. Methods SKPs were induced to differentiate towards SCs with cocktail factors (N2, neuregulin-1β, and forskolin) in vitro. SKP-SC-EVs were isolated by exoEasy Maxi Kit and characterized by morphology and phenotypic markers of EVs. Rat sensory neurons from dorsal root ganglions (DRGs) were primarily cultured in regular condition or exposed to oxygen-glucose-deprivation (OGD) condition. SKP-SC-EVs were applied to DRGs or sensory neurons, with LY294002 (a PI3K inhibitor) added; the effect on neurite outgrowth and cell survival was observed. Moreover, microRNA (miR) candidate contained in SKP-SC-EVs was screened out, and miR-mimics were transfected into DRG neurons; meanwhile, the negative regulation of PTEN/PI3K/Akt axis and downstream signaling molecules were determined. Results It was shown that SKP-SC-EVs could improve the neurite outgrowth of DRGs and sensory neurons. Furthermore, SKP-SC-EVs enhanced the survival of sensory neurons after OGD exposure by alleviating neuronal apoptosis and strengthening cell viability, and the expression of GAP43 (a neuron functional protein) in neurons was upregulated. Moreover, the neuro-reparative role of SKP-SC-EVs was implicated in the activation of PI3K/Akt, mTOR, and p70S6k, as well as the reduction of Bax/Bcl-2 ratio, that was compromised by LY294002 to some extent. In addition, transferring miR-21-5p mimics into sensory neurons could partly protect them from OGD-induced impairment. Conclusions Sum up, SKP-SC-EVs could improve neurite outgrowth of DRG sensory neurons in physiological and pathological condition. Moreover, the in vitro therapeutic potential of SKP-SC-EVs on the survival and restoration of OGD-injured sensory neurons was evidenced to be associated with miR-21-5p contained in the small EVs and miR-21-5p/PTEN/PI3K/Akt axis. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-020-02125-4.
Collapse
Affiliation(s)
- Meng Cong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, China
| | - Mi Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, China
| | - Xia Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, China
| | - Yan Li
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, China
| | - Liting Wang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, China
| | - Qianru He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, China
| | - Haiyan Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, China. .,Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, China.
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, China. .,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China.
| |
Collapse
|
26
|
Rastogi S, Sharma V, Bharti PS, Rani K, Modi GP, Nikolajeff F, Kumar S. The Evolving Landscape of Exosomes in Neurodegenerative Diseases: Exosomes Characteristics and a Promising Role in Early Diagnosis. Int J Mol Sci 2021; 22:E440. [PMID: 33406804 PMCID: PMC7795439 DOI: 10.3390/ijms22010440] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases (ND) remains to be one of the biggest burdens on healthcare systems and serves as a leading cause of disability and death. Alzheimer's disease (AD) is among the most common of such disorders, followed by Parkinson's disease (PD). The basic molecular details of disease initiation and pathology are still under research. Only recently, the role of exosomes has been linked to the initiation and progression of these neurodegenerative diseases. Exosomes are small bilipid layer enclosed extracellular vesicles, which were once considered as a cellular waste and functionless. These nano-vesicles of 30-150 nm in diameter carry specific proteins, lipids, functional mRNAs, and high amounts of non-coding RNAs (miRNAs, lncRNAs, and circRNAs). As the exosomes content is known to vary as per their originating and recipient cells, these vesicles can be utilized as a diagnostic biomarker for early disease detection. Here we review exosomes, their biogenesis, composition, and role in neurodegenerative diseases. We have also provided details for their characterization through an array of available techniques. Their updated role in neurodegenerative disease pathology is also discussed. Finally, we have shed light on a novel field of salivary exosomes as a potential candidate for early diagnosis in neurodegenerative diseases and compared the biomarkers of salivary exosomes with other blood/cerebrospinal fluid (CSF) based exosomes within these neurological ailments.
Collapse
Affiliation(s)
- Simran Rastogi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.R.); (V.S.); (P.S.B.)
| | - Vaibhav Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.R.); (V.S.); (P.S.B.)
| | - Prahalad Singh Bharti
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.R.); (V.S.); (P.S.B.)
| | - Komal Rani
- Department of Biotechnology, Amity University, Mumbai 410206, India;
| | - Gyan P. Modi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India;
| | - Fredrik Nikolajeff
- Department of Health Science, Lulea Technical University, 97187 Lulea, Sweden
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.R.); (V.S.); (P.S.B.)
| |
Collapse
|
27
|
Leng L, Ma J, Lv L, Wang W, Gao D, Zhu Y, Wu Z. Both Wnt signaling and epidermal stem cell-derived extracellular vesicles are involved in epidermal cell growth. Stem Cell Res Ther 2020; 11:415. [PMID: 32967725 PMCID: PMC7510321 DOI: 10.1186/s13287-020-01933-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/29/2020] [Accepted: 09/10/2020] [Indexed: 11/10/2022] Open
Abstract
Millions suffer from skin diseases. Functional interfollicular epidermal stem cells are needed in skin therapy or drug screening in vitro. We obtained functional interfollicular epidermal stem cells with intact stemness and cell junctions by treating them with Wnt3a. Moreover, epidermal stem cell-derived extracellular vesicles were useful in epidermal cell growth. Finally, functional epidermal 3D organoids with polarity were cultured using Wnt3a and the supernatant derived from interfollicular epidermal stem cells and fresh medium in a 1:1 ratio. These results provide novel directions for the improvement of skin organoids and their potential in clinical application.
Collapse
Affiliation(s)
- Ling Leng
- Stem Cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| | - Jie Ma
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China
| | - Luye Lv
- Institute of NBC Defense, Beijing, China
| | - Wenjuan Wang
- Department of Dermatology, Chinese PLA General Hospital, Beijing, China
| | - Dunqin Gao
- Stem Cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yunping Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China.,Basic Medical School, Anhui Medical University, Hefei, Anhui, China
| | - Zhihong Wu
- Stem Cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
28
|
Extracellular Vesicles as Innovative Tool for Diagnosis, Regeneration and Protection against Neurological Damage. Int J Mol Sci 2020; 21:ijms21186859. [PMID: 32962107 PMCID: PMC7555813 DOI: 10.3390/ijms21186859] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) have recently attracted a great deal of interest as they may represent a new biosignaling paradigm. According to the mode of biogenesis, size and composition, two broad categories of EVs have been described, exosomes and microvesicles. EVs have been shown to carry cargoes of signaling proteins, RNA species, DNA and lipids. Once released, their content is selectively taken up by near or distant target cells, influencing their behavior. Exosomes are involved in cell–cell communication in a wide range of embryonic developmental processes and in fetal–maternal communication. In the present review, an outline of the role of EVs in neural development, regeneration and diseases is presented. EVs can act as regulators of normal homeostasis, but they can also promote either neuroinflammation/degeneration or tissue repair in pathological conditions, depending on their content. Since EV molecular cargo constitutes a representation of the origin cell status, EVs can be exploited in the diagnosis of several diseases. Due to their capability to cross the blood–brain barrier (BBB), EVs not only have been suggested for the diagnosis of central nervous system disorders by means of minimally invasive procedures, i.e., “liquid biopsies”, but they are also considered attractive tools for targeted drug delivery across the BBB. From the therapeutic perspective, mesenchymal stem cells (MSCs) represent one of the most promising sources of EVs. In particular, the neuroprotective properties of MSCs derived from the dental pulp are here discussed.
Collapse
|
29
|
Xia B, Gao J, Li S, Huang L, Zhu L, Ma T, Zhao L, Yang Y, Luo K, Shi X, Mei L, Zhang H, Zheng Y, Lu L, Luo Z, Huang J. Mechanical stimulation of Schwann cells promote peripheral nerve regeneration via extracellular vesicle-mediated transfer of microRNA 23b-3p. Theranostics 2020; 10:8974-8995. [PMID: 32802175 PMCID: PMC7415818 DOI: 10.7150/thno.44912] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: Peripheral nerves are unique in their remarkable elasticity. Schwann cells (SCs), important components of the peripheral nervous system (PNS), are constantly subjected to physiological and mechanical stresses from dynamic stretching and compression forces during movement. So far, it is not clear if SCs sense and respond to mechanical signals. It is also unknown whether mechanical stimuli can interfere with the intercellular communications between neurons and SCs, and what role extracellular vesicles (EVs) play in this process. The present study aimed to examine the effect of mechanical stimuli on the EV-mediated intercellular communication between neurons and SCs, explore their effect on axonal regeneration, and investigate the underlying mechanism. Methods: Purified SCs were stimulated using a magnetic force-based mechanical stimulation (MS) system and EVs were purified from mechanically stimulated SCs (MS-SCs-EVs) and non-stimulated SCs (SCs-EVs). The effect of MS-SCs-EVs on axonal elongation was examined in vitro and in vivo. High throughput miRNA sequencing was performed to compare the differential miRNA profiles between MS-SCs-EVs and SCs-EVs. The functional role of differentially expressed miRNAs on neurite extension in MS-SCs-EVs was examined. Also, the putative target genes of differentially expressed miRNAs in MS-SCs-EVs were predicted by bioinformatics tools, and the regulatory effect of those miRNAs on putative target genes was validated both in vitro and in vivo. Results: The MS-SCs-EVs showed an average size of 137.52±1.77 nm, and could be internalized by dorsal root ganglion (DRG) neurons. Compared to SCs-EVs, MS-SCs-EVs showed a stronger ability to enhance neurite outgrowth in vitro and nerve regeneration in vivo. High throughput miRNA sequencing identified a number of differentially expressed miRNAs in MS-SCs-EVs. Further analysis of those EV-miRNAs demonstrated that miR-23b-3p played a predominant role in MS-SCs-EVs since its deprivation abolished their enhanced axonal elongation. Furthermore, we identified neuropilin 1 (Nrp1) in neurons as the target gene of miR-23b-3p in MS-SCs-EVs. This observation was supported by the evidence that miR-23b-3p could decrease Nrp1-3'-UTR-WT luciferase activity in vitro and down-regulate Nrp1 expression in neurons. Conclusion: Our findings suggested that mechanical stimuli are capable of modulating the intercellular communication between neurons and SCs by altering miRNA composition in MS-SCs-EVs. Transfer of miR-23b-3p by MS-SCs-EVs from mechanically stimulated SCs to neurons decreased neuronal Nrp1 expression, which was responsible, at least in part, for the beneficial effect of MS-SCs-EVs on axonal regeneration. Our results highlighted the potential therapeutic value of MS-SCs-EVs and miR-23b-3p-enriched EVs in peripheral nerve injury repair.
Collapse
Affiliation(s)
- Bing Xia
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jianbo Gao
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Shengyou Li
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Liangliang Huang
- Department of Orthopedics, the General Hospital of Central Theater Command of People's Liberation Army, Wuhan, 430070, People's Republic of China
| | - Lei Zhu
- Department of Spine Surgery, Honghui Hospital Affiliated to Medical School of Xi'an Jiaotong University, Xi'an Shaanxi, 710054, People's Republic of China
| | - Teng Ma
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Laihe Zhao
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yujie Yang
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Kai Luo
- Department of Orthopedics, the 985th Hospital People's Liberation Army Joint Logistics Support Force, Taiyuan, 030000, People's Republic of China
| | - Xiaowei Shi
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Liangwei Mei
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Hao Zhang
- Department of Spinal Surgery, the People's Hospital of Longhua District, Shenzhen, 518109, People's Republic of China
| | - Yi Zheng
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Lei Lu
- Department of Oral Anatomy and Physiology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Zhuojing Luo
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jinghui Huang
- Department of Orthopedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| |
Collapse
|
30
|
Paron F, Dardis A, Buratti E. Pre-mRNA splicing defects and RNA binding protein involvement in Niemann Pick type C disease. J Biotechnol 2020; 318:20-30. [PMID: 32387451 DOI: 10.1016/j.jbiotec.2020.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/22/2022]
Abstract
Niemann-Pick type C (NPC) is an autosomal recessive lysosomal storage disorder due to mutations in NPC1 (95 % cases) or NPC2 genes, encoding NPC1 and NPC2 proteins, respectively. Both NPC1 and NPC2 proteins are involved in transport of intracellular cholesterol and their alteration leads to the accumulation of unesterified cholesterol and other lipids within the lysosomes. The disease is characterized by visceral, neurological and psychiatric symptoms. However, the pathogenic mechanisms that lead to the fatal neurodegeneration are still unclear. To date, several mutations leading to the generation of aberrant splicing variants or mRNA degradation in NPC1 and NPC2 genes have been reported. In addition, different lines of experimental evidence have highlighted the possible role of RNA-binding proteins and RNA-metabolism, in the onset and progression of many neurodegenerative disorders, that could explain NPC neurological features and in general, the disease pathogenesis. In this review, we will provide an overview of the impact of mRNA processing and metabolism on NPC disease pathology.
Collapse
Affiliation(s)
- Francesca Paron
- Molecular Pathology, International Institute for Genetic Engineering and Biotechnology, Trieste, Italy.
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, Academic Hospital Santa Maria della Misericordia, Udine, Italy.
| | - Emanuele Buratti
- Molecular Pathology, International Institute for Genetic Engineering and Biotechnology, Trieste, Italy.
| |
Collapse
|
31
|
El Baradie KBY, Nouh M, O'Brien Iii F, Liu Y, Fulzele S, Eroglu A, Hamrick MW. Freeze-Dried Extracellular Vesicles From Adipose-Derived Stem Cells Prevent Hypoxia-Induced Muscle Cell Injury. Front Cell Dev Biol 2020; 8:181. [PMID: 32266262 PMCID: PMC7099601 DOI: 10.3389/fcell.2020.00181] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
Cellular therapies have tremendous potential for the successful treatment of major extremity wounds in the combat setting, however, the challenges associated with transplanting stem cells in the prolonged field care (PFC) environment are a critical barrier to progress in treating such injuries. These challenges include not only production and storage but also transport and handling issues. Our goal is to develop a new strategy utilizing extracellular vesicles (EVs) secreted by stem cells that can resolve many of these issues and prevent ischemic tissue injury. While EVs can be preserved by freezing or lyophilization, both processes result in decrease in their bioactivity. Here, we describe optimized procedures for EVs production, isolation, and lyophilization from primary human adipose-derived stem cells (hADSCs). We compared two isolation approaches that were ultrafiltration (UF) using a tangential fluid filtration (TFF) system and differential ultracentrifugation (UC). We also optimized EVs lyophilization in conjunction with trehalose and polyvinylpyrrolidone 40 (PVP40) as lyoprotectants. Bioactivity of EVs was assessed based on reversal of hypoxia-induced muscle cell injury. To this end, primary human myoblasts were subjected to hypoxic conditions for 6 h, and then treated with hADSC-derived EVs at a concentration of 50 μg/mL. Subsequently, muscle cell viability and toxicity were evaluated using MTS and LDH assays, respectively. Overall, nanoparticle tracking data indicated that UF/TFF yields threefold more particles than UC. Lyophilization of EVs resulted in a significantly reduced number of particles, which could be attenuated by adding lyoprotections to the freeze-drying solution. Furthermore, EVs isolated by UF/TFF and freeze-dried in the presence of trehalose significantly increased viability (P < 0.0193). Taken together, our findings suggest that the isolation and preservation methods presented in this study may enhance therapeutic applications of EVs.
Collapse
Affiliation(s)
| | - Mohamed Nouh
- Medical College of Georgia, Augusta University, Augusta, GA, United States.,Tanta Cancer Center, Tanta, Egypt
| | | | - Yutao Liu
- Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Sadanand Fulzele
- Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Ali Eroglu
- Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Mark W Hamrick
- Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
32
|
|
33
|
Wang H, Jia Y, Li J, Liu Q. Schwann cell‑derived exosomes induce bone marrow‑derived mesenchymal stem cells to express Schwann cell markers in vitro. Mol Med Rep 2020; 21:1640-1646. [PMID: 32016464 DOI: 10.3892/mmr.2020.10960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 11/27/2019] [Indexed: 11/05/2022] Open
Abstract
Following peripheral nerve injury, factors in the local microenvironment can induce the differentiation of bone marrow‑derived mesenchymal stem cells (BMSCs) into Schwann cells; however, the specific factors that participate in this process remain unclear. The present study aimed to investigate the role of Schwann cell‑derived exosomes in the differentiation of BMSCs into Schwann cells. Exosomes were extracted from Schwann cells or fibroblasts and co‑cultured with BMSCs. The morphology, as well as gene and protein expressions of the BMSCs were measured to determine the effect of exosomes on cell differentiation. The levels of Schwann cell‑specific markers in BMSCs were significantly increased by Schwann cell‑derived exosomes compared with untreated BMSCs; however, fibroblast‑derived exosomes did not demonstrate the same effects. In conclusion, Schwann cell‑derived exosomes may be involved in the differentiation of BMSCs into Schwann cells, which may provide a novel target for promoting nerve regeneration following injury.
Collapse
Affiliation(s)
- Hui Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101199, P.R. China
| | - Yanjun Jia
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Jiamou Li
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Qingsong Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101199, P.R. China
| |
Collapse
|
34
|
Saffari TM, Bedar M, Hundepool CA, Bishop AT, Shin AY. The role of vascularization in nerve regeneration of nerve graft. Neural Regen Res 2020; 15:1573-1579. [PMID: 32209756 PMCID: PMC7437604 DOI: 10.4103/1673-5374.276327] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Vascularization is an important factor in nerve graft survival and function. The specific molecular regulations and patterns of angiogenesis following peripheral nerve injury are in a broad complex of pathways. This review aims to summarize current knowledge on the role of vascularization in nerve regeneration, including the key regulation molecules, and mechanisms and patterns of revascularization after nerve injury. Angiogenesis, the maturation of pre-existing vessels into new areas, is stimulated through angiogenic factors such as vascular endothelial growth factor and precedes the repair of damaged nerves. Vascular endothelial growth factor administration to nerves has demonstrated to increase revascularization after injury in basic science research. In the clinical setting, vascularized nerve grafts could be used in the reconstruction of large segmental peripheral nerve injuries. Vascularized nerve grafts are postulated to accelerate revascularization and enhance nerve regeneration by providing an optimal nutritional environment, especially in scarred beds, and decrease fibroblast infiltration. This could improve functional recovery after nerve grafting, however, conclusive evidence of the superiority of vascularized nerve grafts is lacking in human studies. A well-designed randomized controlled trial comparing vascularized nerve grafts to non-vascularized nerve grafts involving patients with similar injuries, nerve graft repair and follow-up times is necessary to demonstrate the efficacy of vascularized nerve grafts. Due to technical challenges, composite transfer of a nerve graft along with its adipose tissue has been proposed to provide a healthy tissue bed. Basic science research has shown that a vascularized fascial flap containing adipose tissue and a vascular bundle improves revascularization through excreted angiogenic factors, provided by the stem cells in the adipose tissue as well as by the blood supply and environmental support. While it was previously believed that revascularization occurred from both nerve ends, recent studies propose that revascularization occurs primarily from the proximal nerve coaptation. Fascial flaps or vascularized nerve grafts have limited applicability and future directions could lead towards off-the-shelf alternatives to autografting, such as biodegradable nerve scaffolds which include capillary-like networks to enable vascularization and avoid graft necrosis and ischemia.
Collapse
Affiliation(s)
- Tiam M Saffari
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Meiwand Bedar
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Caroline A Hundepool
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Allen T Bishop
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Alexander Y Shin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
35
|
Chignon-Sicard B, Hofman V, Chevallier D, Cucchi JM, Ilié M, Dadone-Montaudié B, Paul F, Carpentier X, Quintens H, Bence-Gauchiez C, Caselles D, Rossant J, Durand M, Bertolotti R. Age-related schwannomatosis with potential exosome-mediated contribution to prostate hyperplasia: a case report and mini-review. Ther Adv Urol 2019; 11:1756287219875578. [PMID: 31632463 PMCID: PMC6767708 DOI: 10.1177/1756287219875578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
A 72-year-old Caucasian man incurring a prostate hypertrophy presented with a
right forearm nodule, the growth of which appeared to parallel the rise in his
blood prostate-specific antigen (PSA) level. Echographic examination was
consistent with a median-nerve schwannoma, and was confirmed upon magnetic
resonance imaging (MRI). Excision of the nodule was readily performed without
significant neural damage, and its schwannoma nature was confirmed upon
immunohistochemistry analysis. Importantly, blood PSA dropped abruptly from ≈13
to ≈5 ng/ml within 2 months postschwannoma resection, a swift drastic reduction
unachievable with oral dutasteride alone. However, 6 weeks later, a new nodule
became apparent on the back of the left knee and was identified as a second
schwannoma, thereby suggesting that its growth could have been stimulated by the
resection of the first schwannoma, as previously described for vestibular
schwannomas. The second schwannoma was in fact two: the bigger one was in the
common fibular nerve and the smaller one in the tibial nerve. Both echography
and MRI results were confirmed upon surgical resection of the bigger knee
schwannoma. Although the third schwannoma has not yet been resected and formally
characterized, we face a schwannomatosis case with an unexpected potential
exosome-mediated stimulating effect on PSA secretion (PSA immunohistochemistry
was negative on both schwannomas). On the other hand, preliminary genomic
analysis showed a deficient balance for chromosome 22, the very chromosome
carrying the three main genes involved in schwannomatosis. This age-related
schwannomatosis case is thus discussed in light of the following: age-related
DNA repair deficiency culminating in loss of chromosome/heterozygosity; CpG
methylation/demethylation-based epigenetic aging; age-related functional decline
of the immune system responsible for inefficient elimination of abnormal cells
and subsequent tumorigenic cell turn-over; exosome-mediated pathologic
intercellular communications; and prostate-invading brain neural progenitors as
pathologic peripheral nervous system (PNS) cells.
Collapse
Affiliation(s)
- Bérengère Chignon-Sicard
- Department of Plastic and Reconstructive Surgery, Pasteur 2 University Hospital, Côte d'Azur University, Nice, France
| | - Véronique Hofman
- Laboratory of Clinical and Experimental Pathology, Pasteur 2 University Hospital, Côte d'Azur University, Nice, France
| | - Daniel Chevallier
- Department of Urology and Kidney Transplantation, Pasteur 2 University Hospital, Côte d'Azur University, 06001 Nice Cedex 1, France
| | | | - Marius Ilié
- Laboratory of Clinical and Experimental Pathology, Pasteur 2 University Hospital, Côte d'Azur University, Nice, France
| | | | - Florence Paul
- Private Medical Imaging Center "777", Saint-Laurent du Var, France
| | | | | | | | | | | | - Matthieu Durand
- Department of Urology and Kidney Transplantation, Pasteur 2 University Hospital, Côte d'Azur University, Nice, France
| | - Roger Bertolotti
- Gene Therapy and Regulation, Faculty of Medicine, Côte d'Azur University, Nice, France
| |
Collapse
|
36
|
Luzhansky ID, Sudlow LC, Brogan DM, Wood MD, Berezin MY. Imaging in the repair of peripheral nerve injury. Nanomedicine (Lond) 2019; 14:2659-2677. [PMID: 31612779 PMCID: PMC6886568 DOI: 10.2217/nnm-2019-0115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022] Open
Abstract
Surgical intervention followed by physical therapy remains the major way to repair damaged nerves and restore function. Imaging constitutes promising, yet underutilized, approaches to improve surgical and postoperative techniques. Dedicated methods for imaging nerve regeneration will potentially provide surgical guidance, enable recovery monitoring and postrepair intervention, elucidate failure mechanisms and optimize preclinical procedures. Herein, we present an outline of promising innovations in imaging-based tracking of in vivo peripheral nerve regeneration. We emphasize optical imaging because of its cost, versatility, relatively low toxicity and sensitivity. We discuss the use of targeted probes and contrast agents (small molecules and nanoparticles) to facilitate nerve regeneration imaging and the engineering of grafts that could be used to track nerve repair. We also discuss how new imaging methods might overcome the most significant challenges in nerve injury treatment.
Collapse
Affiliation(s)
- Igor D Luzhansky
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
- The Institute of Materials Science & Engineering, Washington University, St Louis, MO 63130, USA
| | - Leland C Sudlow
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - David M Brogan
- Department of Orthopedic Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Matthew D Wood
- Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Mikhail Y Berezin
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
- The Institute of Materials Science & Engineering, Washington University, St Louis, MO 63130, USA
| |
Collapse
|
37
|
Dong R, Liu Y, Yang Y, Wang H, Xu Y, Zhang Z. MSC-Derived Exosomes-Based Therapy for Peripheral Nerve Injury: A Novel Therapeutic Strategy. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6458237. [PMID: 31531362 PMCID: PMC6719277 DOI: 10.1155/2019/6458237] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/06/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
Although significant advances have been made in synthetic nerve conduits and surgical techniques, complete regeneration following peripheral nerve injury (PNI) remains far from optimized. The repair of PNI is a highly heterogeneous process involving changes in Schwann cell phenotypes, the activation of macrophages, and the reconstruction of the vascular network. At present, the efficacy of MSC-based therapeutic strategies for PNI can be attributed to paracrine secretion. Exosomes, as a product of paracrine secretion, are considered to be an important regulatory mediator. Furthermore, accumulating evidence has demonstrated that exosomes from mesenchymal stem cells (MSCs) can shuttle bioactive components (proteins, lipids, mRNA, miRNA, lncRNA, circRNA, and DNA) that participate in almost all of the abovementioned processes. Thus, MSC exosomes may represent a novel therapeutic tool for PNI. In this review, we discuss the current understanding of MSC exosomes related to peripheral nerve repair and provide insights for developing a cell-free MSC therapeutic strategy for PNI.
Collapse
Affiliation(s)
- Ruiqi Dong
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Yuxiang Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Haojie Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Yaolu Xu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Ziqiang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| |
Collapse
|
38
|
Hong P, Yang H, Wu Y, Li K, Tang Z. The functions and clinical application potential of exosomes derived from adipose mesenchymal stem cells: a comprehensive review. Stem Cell Res Ther 2019; 10:242. [PMID: 31391108 PMCID: PMC6686455 DOI: 10.1186/s13287-019-1358-y] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Exosomes are extracellular membranous nanovesicles that mediate local and systemic intercellular communication by transporting proteins or nucleic acids (DNA and RNA) into target cells, thus altering the behaviors of recipient cells. Recent studies have revealed that these vesicles play a critical role in many biological functions, such as cell proliferation, immune regulation, nerve regeneration, and cancer. Adipose-derived stem cells (ADSCs) are now considered a multipotent and abundant tool in the field of cell therapy and regenerative medicine. ADSCs can produce and secrete many exosomes, which inherit multiple functions of cells. Therefore, in this review, we will introduce the characteristics of exosomes derived from ADSCs (ADSC-Exos), describe their functions in different biological processes, summarize the latest research achievements, describe their limitations in cell-free therapy, and provide further insights into their clinical application potential for the treatment of certain diseases.
Collapse
Affiliation(s)
- Pengyu Hong
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008 Hunan China
| | - Hao Yang
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008 Hunan China
| | - Yue Wu
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008 Hunan China
| | - Kun Li
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008 Hunan China
| | - Zhangui Tang
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008 Hunan China
| |
Collapse
|
39
|
Carvalho CR, Silva-Correia J, Oliveira JM, Reis RL. Nanotechnology in peripheral nerve repair and reconstruction. Adv Drug Deliv Rev 2019; 148:308-343. [PMID: 30639255 DOI: 10.1016/j.addr.2019.01.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/20/2018] [Accepted: 01/05/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Cristiana R Carvalho
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal.
| |
Collapse
|
40
|
Liu CY, Yin G, Sun YD, Lin YF, Xie Z, English AW, Li QF, Lin HD. Effect of exosomes from adipose-derived stem cells on the apoptosis of Schwann cells in peripheral nerve injury. CNS Neurosci Ther 2019; 26:189-196. [PMID: 31278850 PMCID: PMC6978230 DOI: 10.1111/cns.13187] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/09/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022] Open
Abstract
Aims Recovery after peripheral nerve injury (PNI) is often difficult, and there is no optimal treatment. Schwann cells (SCs) are important for peripheral nerve regeneration, so SC‐targeting treatments have gained importance. Adipose‐derived stem cells (ADSCs) and their exosomes can promote peripheral nerve repair, but their interactions with SCs are unclear. Methods Purified SCs from sciatic nerve injury sites were harvested, and apoptosis and proliferation of SCs at post‐PNI 24 hours were analyzed. The effects of coculture with ADSCs and different concentrations of ADSC‐derived exosomes (ADSC‐Exo) were studied through in vitro experiments by flow cytometry, CCK8 assay, immunofluorescence staining, and histological analysis. The expression of the apoptosis‐related genes Bcl‐2 and Bax was also analyzed by qRT‐PCR. Results ADSC‐Exo reduced the apoptosis of SCs after PNI by upregulating the anti‐apoptotic Bcl‐2 mRNA expression and downregulating the pro‐apoptotic Bax mRNA expression. Further, it also improved the proliferation rate of SCs. This effect was confirmed by the morphological and histological findings in PNI model rats. Conclusion Our results present a novel exosome‐mediated mechanism for ADSC‐SC cross talk that reduces the apoptosis and promotes the proliferation of SCs and may have therapeutic potential in the future.
Collapse
Affiliation(s)
- Cai-Yue Liu
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Plastic Surgery, Changzheng Hospital, The Navy Military Medical University, Shanghai, China
| | - Gang Yin
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yi-Dan Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yao-Fa Lin
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Orthopedic Surgery, Changzheng Hospital, The Navy Military Medical University, Shanghai, China
| | - Zheng Xie
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Orthopedic Surgery, Changzheng Hospital, The Navy Military Medical University, Shanghai, China
| | - Arthur W English
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Qing-Feng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hao-Dong Lin
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Schwann Cell-Like Cells Derived from Human Amniotic Mesenchymal Stem Cells Promote Peripheral Nerve Regeneration through a MicroRNA-214/c-Jun Pathway. Stem Cells Int 2019; 2019:2490761. [PMID: 31354837 PMCID: PMC6636479 DOI: 10.1155/2019/2490761] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/08/2019] [Accepted: 04/17/2019] [Indexed: 12/18/2022] Open
Abstract
Background The use of Schwann cell-like cells (SCLCs) derived from stem cells has been introduced as an effective strategy for promoting peripheral nerve regeneration (PNR). However, molecular mechanisms underlying therapeutic transplantation of SCLCs for PNR are often ignored. Objectives To explore the potential of SCLCs for the treatment of sciatic never injury and investigate the underlying molecule mechanisms. Method SCLCs differentiated from human amniotic mesenchymal stem cells (hAMSCs) and specific markers of Schwann cells were detected. SCLCs were transplanted into the injured sites of a rat model of sciatic nerve injury, and sciatic nerve functional index (SFI) was determined. Results SCLCs expressed specific markers of Schwann cells as well as secreted neurotrophic factors. The transplantation of SCLCs into injured sites of a rat model of sciatic nerve injury promoted the functional recovery. With regard to the underlying molecular mechanisms, we identified c-Jun as a negative regulator of the myelination of SCLCs. Moreover, we discovered a novel signaling transduction pathway in SCLCs; that is, miR-214 directly targets c-Jun to promote the myelination of SCLCs. Finally, we demonstrated that miR-214 upon overexpression in SCLCs enhanced the therapeutic effects of SCLCs on sciatic nerve injury. Conclusions We demonstrate that SCLCs have beneficial effect for myelination. Moreover, our results provide a previously unknown molecular basis underlying the treatment of peripheral nerve injury with SCLCs and also offer a practical strategy for future therapeutic promotion of PNR.
Collapse
|
42
|
Yousefi F, Lavi Arab F, Nikkhah K, Amiri H, Mahmoudi M. Novel approaches using mesenchymal stem cells for curing peripheral nerve injuries. Life Sci 2019; 221:99-108. [PMID: 30735735 DOI: 10.1016/j.lfs.2019.01.052] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 12/23/2022]
Abstract
Peripheral nerve injury (PNI) is a common life-changing disability of peripheral nervous system with significant socioeconomic consequences. Conventional therapeutic approaches for PNI have several drawbacks such as need to autologous nerve scarifying, surplus surgery, and difficult accessibility to donor nerve; therefore, other therapeutic strategies such as mesenchymal stem cells (MSCs) therapy are getting more interesting. MSCs have been proved to be safe and efficient in numerous degenerative diseases of central and peripheral nervous systems. In this paper, we review novel biotechnological advancements in treating PNI using MSCs.
Collapse
Affiliation(s)
- Forouzan Yousefi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Karim Nikkhah
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Amiri
- Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
43
|
Yuan KM, Zhang PH, Qi SS, Zhu QZ, Li P. Emerging Role for Exosomes in the Progress of Stem Cell Research. Am J Med Sci 2018; 356:481-486. [DOI: 10.1016/j.amjms.2018.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/27/2018] [Accepted: 07/13/2018] [Indexed: 01/08/2023]
|
44
|
Ching RC, Wiberg M, Kingham PJ. Schwann cell-like differentiated adipose stem cells promote neurite outgrowth via secreted exosomes and RNA transfer. Stem Cell Res Ther 2018; 9:266. [PMID: 30309388 PMCID: PMC6182785 DOI: 10.1186/s13287-018-1017-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 09/02/2018] [Accepted: 09/26/2018] [Indexed: 12/31/2022] Open
Abstract
Background Adipose derived stem cells can be stimulated to produce a growth factor rich secretome which enhances axon regeneration. In this study we investigated the importance of exosomes, extracellular vesicles released by many different cell types, including stem cells and endogenous nervous system Schwann cells (SCs), on neurite outgrowth. Methods Adipose derived stem cells were differentiated towards a Schwann cell-like phenotype (dADSCs) by in vitro stimulation with a mix of factors (basic fibroblast growth factor, platelet derived growth factor-AA, neuregulin-1 and forskolin). Using a precipitation and low-speed centrifugation protocol the extracellular vesicles were isolated from the medium of the stem cells cultures and also from primary SCs. The conditioned media or concentrated vesicles were applied to neurons in vitro and computerised image analysis was used to assess neurite outgrowth. Total RNA was purified from the extracellular vesicles and investigated using qRT-PCR. Results Application of exosomes derived from SCs significantly enhanced in vitro neurite outgrowth and this was replicated by the exosomes from dADSCs. qRT-PCR demonstrated that the exosomes contained mRNAs and miRNAs known to play a role in nerve regeneration and these molecules were up-regulated by the Schwann cell differentiation protocol. Transfer of fluorescently tagged exosomal RNA to neurons was detected and destruction of the RNA by UV-irradiation significantly reduced the dADSCs exosome effects on neurite outgrowth. In contrast, this process had no significant effect on the SCs-derived exosomes. Conclusions In summary, this work suggests that stem cell-derived exosomes might be a useful adjunct to other novel therapeutic interventions in nerve repair.
Collapse
Affiliation(s)
- Rosanna C Ching
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, 901 87, Umeå, Sweden.,Department of Surgical and Perioperative Sciences, Hand and Plastic Surgery, Umeå University, Umeå, Sweden
| | - Mikael Wiberg
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, 901 87, Umeå, Sweden.,Department of Surgical and Perioperative Sciences, Hand and Plastic Surgery, Umeå University, Umeå, Sweden
| | - Paul J Kingham
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
45
|
Lisak RP, Nedelkoska L, Benjamins JA, Schalk D, Bealmear B, Touil H, Li R, Muirhead G, Bar-Or A. B cells from patients with multiple sclerosis induce cell death via apoptosis in neurons in vitro. J Neuroimmunol 2017; 309:88-99. [DOI: 10.1016/j.jneuroim.2017.05.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/26/2022]
|
46
|
Nawaz M, Fatima F. Extracellular Vesicles, Tunneling Nanotubes, and Cellular Interplay: Synergies and Missing Links. Front Mol Biosci 2017; 4:50. [PMID: 28770210 PMCID: PMC5513920 DOI: 10.3389/fmolb.2017.00050] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/03/2017] [Indexed: 12/15/2022] Open
Abstract
The process of intercellular communication seems to have been a highly conserved evolutionary process. Higher eukaryotes use several means of intercellular communication to address both the changing physiological demands of the body and to fight against diseases. In recent years, there has been an increasing interest in understanding how cell-derived nanovesicles, known as extracellular vesicles (EVs), can function as normal paracrine mediators of intercellular communication, but can also elicit disease progression and may be used for innovative therapies. Over the last decade, a large body of evidence has accumulated to show that cells use cytoplasmic extensions comprising open-ended channels called tunneling nanotubes (TNTs) to connect cells at a long distance and facilitate the exchange of cytoplasmic material. TNTs are a different means of communication to classical gap junctions or cell fusions; since they are characterized by long distance bridging that transfers cytoplasmic organelles and intracellular vesicles between cells and represent the process of heteroplasmy. The role of EVs in cell communication is relatively well-understood, but how TNTs fit into this process is just emerging. The aim of this review is to describe the relationship between TNTs and EVs, and to discuss the synergies between these two crucial processes in the context of normal cellular cross-talk, physiological roles, modulation of immune responses, development of diseases, and their combinatory effects in tissue repair. At the present time this review appears to be the first summary of the implications of the overlapping roles of TNTs and EVs. We believe that a better appreciation of these parallel processes will improve our understanding on how these nanoscale conduits can be utilized as novel tools for targeted therapies.
Collapse
Affiliation(s)
- Muhammad Nawaz
- Department of Pathology and Forensic Medicine, Ribeirao Preto Medical School, University of São PauloSão Paulo, Brazil.,Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Farah Fatima
- Department of Pathology and Forensic Medicine, Ribeirao Preto Medical School, University of São PauloSão Paulo, Brazil
| |
Collapse
|
47
|
Webb RL, Gallegos-Cárdenas A, Miller CN, Solomotis NJ, Liu HX, West FD, Stice SL. Pig Induced Pluripotent Stem Cell-Derived Neural Rosettes Parallel Human Differentiation Into Sensory Neural Subtypes. Cell Reprogram 2017; 19:88-94. [PMID: 28266869 DOI: 10.1089/cell.2016.0057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The pig is the large animal model of choice for study of nerve regeneration and wound repair. Availability of porcine sensory neural cells would conceptually allow for analogous cell-based peripheral nerve regeneration in porcine injuries of similar severity and size to those found in humans. After recently reporting that porcine (or pig) induced pluripotent stem cells (piPSCs) differentiate into neural rosette (NR) structures similar to human NRs, here we demonstrate that pig NR cells could differentiate into neural crest cells and other peripheral nervous system-relevant cell types. Treatment with either bone morphogenetic protein 4 or fetal bovine serum led to differentiation into BRN3A-positive sensory cells and increased expression of sensory neuron TRK receptor gene family: TRKA, TRKB, and TRKC. Porcine sensory neural cells would allow determination of parallels between human and porcine cells in response to noxious stimuli, analgesics, and reparative mechanisms. In vitro differentiation of pig sensory neurons provides a novel model system for neural cell subtype specification and would provide a novel platform for the study of regenerative therapeutics by elucidating the requirements for innervation following injury and axonal survival.
Collapse
Affiliation(s)
- Robin L Webb
- 1 Regenerative Bioscience Center, University of Georgia , Rhodes Center for Animal and Dairy Science, Athens, Georgia .,2 Department of Animal and Dairy Science, Rhodes Center for Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia , Athens, Georgia
| | - Amalia Gallegos-Cárdenas
- 1 Regenerative Bioscience Center, University of Georgia , Rhodes Center for Animal and Dairy Science, Athens, Georgia .,2 Department of Animal and Dairy Science, Rhodes Center for Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia , Athens, Georgia
| | - Colette N Miller
- 2 Department of Animal and Dairy Science, Rhodes Center for Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia , Athens, Georgia
| | - Nicholas J Solomotis
- 1 Regenerative Bioscience Center, University of Georgia , Rhodes Center for Animal and Dairy Science, Athens, Georgia .,2 Department of Animal and Dairy Science, Rhodes Center for Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia , Athens, Georgia
| | - Hong-Xiang Liu
- 1 Regenerative Bioscience Center, University of Georgia , Rhodes Center for Animal and Dairy Science, Athens, Georgia .,2 Department of Animal and Dairy Science, Rhodes Center for Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia , Athens, Georgia
| | - Franklin D West
- 1 Regenerative Bioscience Center, University of Georgia , Rhodes Center for Animal and Dairy Science, Athens, Georgia .,2 Department of Animal and Dairy Science, Rhodes Center for Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia , Athens, Georgia
| | - Steven L Stice
- 1 Regenerative Bioscience Center, University of Georgia , Rhodes Center for Animal and Dairy Science, Athens, Georgia .,2 Department of Animal and Dairy Science, Rhodes Center for Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia , Athens, Georgia
| |
Collapse
|
48
|
Mead B, Tomarev S. Bone Marrow-Derived Mesenchymal Stem Cells-Derived Exosomes Promote Survival of Retinal Ganglion Cells Through miRNA-Dependent Mechanisms. Stem Cells Transl Med 2017; 6:1273-1285. [PMID: 28198592 PMCID: PMC5442835 DOI: 10.1002/sctm.16-0428] [Citation(s) in RCA: 323] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022] Open
Abstract
The loss of retinal ganglion cells (RGC) and their axons is one of the leading causes of blindness and includes traumatic (optic neuropathy) and degenerative (glaucoma) eye diseases. Although no clinical therapies are in use, mesenchymal stem cells (MSC) have demonstrated significant neuroprotective and axogenic effects on RGC in both of the aforementioned models. Recent evidence has shown that MSC secrete exosomes, membrane enclosed vesicles (30–100 nm) containing proteins, mRNA and miRNA which can be delivered to nearby cells. The present study aimed to isolate exosomes from bone marrow‐derived MSC (BMSC) and test them in a rat optic nerve crush (ONC) model. Treatment of primary retinal cultures with BMSC‐exosomes demonstrated significant neuroprotective and neuritogenic effects. Twenty‐one days after ONC and weekly intravitreal exosome injections; optical coherence tomography, electroretinography, and immunohistochemistry was performed. BMSC‐derived exosomes promoted statistically significant survival of RGC and regeneration of their axons while partially preventing RGC axonal loss and RGC dysfunction. Exosomes successfully delivered their cargo into inner retinal layers and the effects were reliant on miRNA, demonstrated by the diminished therapeutic effects of exosomes derived from BMSC after knockdown of Argonaute‐2, a key miRNA effector molecule. This study supports the use of BMSC‐derived exosomes as a cell‐free therapy for traumatic and degenerative ocular disease. Stem Cells Translational Medicine2017;6:1273–1285
Collapse
Affiliation(s)
- Ben Mead
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Stanislav Tomarev
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
49
|
Mead B, Tomarev S. Bone Marrow-Derived Mesenchymal Stem Cells-Derived Exosomes Promote Survival of Retinal Ganglion Cells Through miRNA-Dependent Mechanisms. Stem Cells Transl Med 2017. [DOI: 10.1002/sctm.12056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Ben Mead
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology; National Eye Institute, National Institutes of Health; Bethesda Maryland USA
| | - Stanislav Tomarev
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology; National Eye Institute, National Institutes of Health; Bethesda Maryland USA
| |
Collapse
|
50
|
Dias MVS, Teixeira BL, Rodrigues BR, Sinigaglia-Coimbra R, Porto-Carreiro I, Roffé M, Hajj GNM, Martins VR. PRNP/prion protein regulates the secretion of exosomes modulating CAV1/caveolin-1-suppressed autophagy. Autophagy 2016; 12:2113-2128. [PMID: 27629560 DOI: 10.1080/15548627.2016.1226735] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Prion protein modulates many cellular functions including the secretion of trophic factors by astrocytes. Some of these factors are found in exosomes, which are formed within multivesicular bodies (MVBs) and secreted into the extracellular space to modulate cell-cell communication. The mechanisms underlying exosome biogenesis were not completely deciphered. Here, we demonstrate that primary cultures of astrocytes and fibroblasts from prnp-null mice secreted lower levels of exosomes than wild-type cells. Furthermore, prnp-null astrocytes exhibited reduced MVB formation and increased autophagosome formation. The reconstitution of PRNP expression at the cell membrane restored exosome secretion in PRNP-deficient astrocytes, whereas macroautophagy/autophagy inhibition via BECN1 depletion reestablished exosome release in these cells. Moreover, the PRNP octapeptide repeat domain was necessary to promote exosome secretion and to impair the formation of the CAV1-dependent ATG12-ATG5 cytoplasmic complex that drives autophagosome formation. Accordingly, higher levels of CAV1 were found in lipid raft domains instead of in the cytoplasm in prnp-null cells. Collectively, these findings demonstrate that PRNP supports CAV1-suppressed autophagy to protect MVBs from sequestration into phagophores, thus facilitating exosome secretion.
Collapse
Affiliation(s)
- Marcos V S Dias
- a International Research Center , A.C. Camargo Cancer Center , São Paulo , Brazil , National Institute for Oncogenomics, INCITO
| | - Bianca L Teixeira
- a International Research Center , A.C. Camargo Cancer Center , São Paulo , Brazil , National Institute for Oncogenomics, INCITO
| | - Bruna R Rodrigues
- a International Research Center , A.C. Camargo Cancer Center , São Paulo , Brazil , National Institute for Oncogenomics, INCITO
| | | | | | - Martín Roffé
- a International Research Center , A.C. Camargo Cancer Center , São Paulo , Brazil , National Institute for Oncogenomics, INCITO
| | - Glaucia N M Hajj
- a International Research Center , A.C. Camargo Cancer Center , São Paulo , Brazil , National Institute for Oncogenomics, INCITO
| | - Vilma R Martins
- a International Research Center , A.C. Camargo Cancer Center , São Paulo , Brazil , National Institute for Oncogenomics, INCITO
| |
Collapse
|