1
|
Lai BQ, Wu RJ, Wu CR, Yu HY, Xu J, Yang SB, Chen ZH, Li X, Guo YN, Yang Y, Che MT, Wu TT, Fu GT, Yang YH, Chen Z, Hua N, Liu R, Zheng QJ, Chen YF. DON-Apt19S bioactive scaffold transplantation promotes in situ spinal cord repair in rats with transected spinal cord injury by effectively recruiting endogenous neural stem cells and mesenchymal stem cells. Mater Today Bio 2025; 32:101753. [PMID: 40275960 PMCID: PMC12019207 DOI: 10.1016/j.mtbio.2025.101753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/28/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
The spinal cord's limited regeneration is attributed to the scarcity of endogenous stem cells and a poor post-injury microenvironment in adult mammals. To overcome these challenges, we transplanted a DNA aptamer 19S (Apt19S) sustained-release decellularized optic nerve (DON) scaffold (DON-A) into completely transected spinal cord injury (SCI) site in rats and investigated its effect on endogenous stem cell recruitment and differentiation, which subsequently contributed to in situ SCI repair. It has been demonstrated that Apt19S specifically binds to the membrane receptor alkaline phosphatase highly expressed on neural stem cells (NSCs) and mesenchymal stem cells (MSCs), and our study further proved that Apt19S can simultaneously recruit endogenous NSCs and MSCs to the lesion of SCI. In our study, the DON-A promoted stem cell proliferation in the early stage of the injury, followed by the rapid neurogenesis through NSCs and revascularization via MSCs. Synaptic connections between corticospinal tracts and calcitonin gene-related peptide positive nerve fibers with newborn neurons confirmed the formation of endogenous neuronal relays at the injury site, which improved the rats' motor and sensory functions. This study offers a new strategy for recruiting both NSCs and MSCs to synergistically overcome low spinal cord self-repair ability, holding a high potential for clinical translation.
Collapse
Affiliation(s)
- Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, China
| | - Rong-Jie Wu
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Chuang-Ran Wu
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hai-Yang Yu
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jing Xu
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Shang-Bin Yang
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Zheng-Hong Chen
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Rehabilitation Medicine Department, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xing Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Nan Guo
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Yue Yang
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Ming-Tian Che
- Cedars Sinai Biobank & Research Pathology Resource, Cedars-Sinai, Los Angeles, CA, 90048, USA
| | - Ting-Ting Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Guang-Tao Fu
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yu-Hui Yang
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhen Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Nan Hua
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Rui Liu
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Qiu-Jian Zheng
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yuan-Feng Chen
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Huang S, Lu Y, Fang W, Huang Y, Li Q, Xu Z. Neurodegenerative diseases and neuroinflammation-induced apoptosis. Open Life Sci 2025; 20:20221051. [PMID: 40026360 PMCID: PMC11868719 DOI: 10.1515/biol-2022-1051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/30/2024] [Accepted: 12/27/2024] [Indexed: 03/05/2025] Open
Abstract
Neuroinflammation represents a critical pathway in the brain for the clearance of foreign bodies and the maintenance of homeostasis. When the neuroinflammatory process is dysregulate, such as the over-activation of microglia, which results in the excessive accumulation of free oxygen and inflammatory factors in the brain, among other factors, it can lead to an imbalance in homeostasis and the development of various diseases. Recent research has indicated that the development of numerous neurodegenerative diseases is closely associated with neuroinflammation. The pathogenesis of neuroinflammation in the brain is intricate, involving alterations in numerous genes and proteins, as well as the activation and inhibition of signaling pathways. Furthermore, excessive inflammation can result in neuronal cell apoptosis, which can further exacerbate the extent of the disease. This article presents a summary of recent studies on the relationship between neuronal apoptosis caused by excessive neuroinflammation and neurodegenerative diseases. The aim is to identify the link between the two and to provide new ideas and targets for exploring the pathogenesis, as well as the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shi Huang
- School of Clinical Medicine, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Yaxin Lu
- School of Pharmaceutical Sciences, Wannan Medical College,
241002, Wuhu, Anhui, China
| | - Wanzhen Fang
- School of Stomatology, Wannan Medical College,
241002, Wuhu, Anhui, China
| | - Yanjiao Huang
- Human Anatomy Experimental Training Center, School of Basic Medical Science, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Qiang Li
- Human Anatomy Experimental Training Center, School of Basic Medical Science, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Zhiliang Xu
- Department of Human Anatomy, School of Basic Medical Science, Wannan Medical College, 241002, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Basic Research and Translation of Aging-Related Diseases, Wannan Medical College, Wuhu, 241002, Anhui, China
| |
Collapse
|
3
|
Yuan M, Tang Y, Huang T, Ke L, Huang E. In situ direct reprogramming of astrocytes to neurons via polypyrimidine tract-binding protein 1 knockdown in a mouse model of ischemic stroke. Neural Regen Res 2024; 19:2240-2248. [PMID: 38488558 PMCID: PMC11034579 DOI: 10.4103/1673-5374.390957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/09/2023] [Accepted: 10/16/2023] [Indexed: 04/24/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202410000-00025/figure1/v/2024-02-06T055622Z/r/image-tiff In situ direct reprogramming technology can directly convert endogenous glial cells into functional neurons in vivo for central nervous system repair. Polypyrimidine tract-binding protein 1 (PTB) knockdown has been shown to reprogram astrocytes to functional neurons in situ. In this study, we used AAV-PHP.eB-GFAP-shPTB to knockdown PTB in a mouse model of ischemic stroke induced by endothelin-1, and investigated the effects of GFAP-shPTB-mediated direct reprogramming to neurons. Our results showed that in the mouse model of ischemic stroke, PTB knockdown effectively reprogrammed GFAP-positive cells to neurons in ischemic foci, restored neural tissue structure, reduced inflammatory response, and improved behavioral function. These findings validate the effectiveness of in situ transdifferentiation of astrocytes, and suggest that the approach may be a promising strategy for stroke treatment.
Collapse
Affiliation(s)
- Meng Yuan
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yao Tang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fujian Medical University, Fuzhou, Fujian Province, China
- Scientific Research Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Tianwen Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Vascular Aging, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Lining Ke
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - En Huang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fujian Medical University, Fuzhou, Fujian Province, China
- Scientific Research Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
4
|
Lee S, Kim J, You JS, Hyun YM, Kim JY, Lee JE. Ischemic stroke outcome after promoting CD4+CD25+ Treg cell migration through CCR4 overexpression in a tMCAO animal model. Sci Rep 2024; 14:10201. [PMID: 38702399 PMCID: PMC11068779 DOI: 10.1038/s41598-024-60358-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
The importance of neuroinflammation during the ischemic stroke has been extensively studied. The role of CD4+CD25+ regulatory T (Treg) cells during the recovery phase have shown infarct size reduction and functional improvement, possibly through the mitigation of inflammatory immune responses. We aimed to investigate the molecular factors involved in microglia-Treg cell communication that result in Treg trafficking. First, we observed the migration patterns of CD8+ (cytotoxic) T cells and Treg cells and then searched for chemokines released by activated microglia in an oxygen-glucose deprivation (OGD) model. The transwell migration assay showed increased migration into OGD media for both cell types, in agreement with the increase in chemokines involved in immune cell trafficking from the mouse chemokine profiling array. MSCV retrovirus was transduced to overexpress CCR4 in Treg cells. CCR4-overexpressed Treg cells were injected into the mouse transient middle cerebral artery occlusion (tMCAO) model to evaluate the therapeutic potential via the tetrazolium chloride (TTC) assay and behavioral tests. A general improvement in the prognosis of animals after tMCAO was observed. Our results suggest the increased mobility of CCR4-overexpressed Treg cells in response to microglia-derived chemokines in vitro and the therapeutic potential of Treg cells with increased mobility in cellular therapy.
Collapse
Affiliation(s)
- Seowoo Lee
- Department of Anatomy, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jiwon Kim
- Department of Anatomy, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Je Sung You
- Department of Emergency Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea
| | - Young-Min Hyun
- Department of Anatomy, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Wang J, Wu N, Peng M, Oyang L, Jiang X, Peng Q, Zhou Y, He Z, Liao Q. Ferritinophagy: research advance and clinical significance in cancers. Cell Death Discov 2023; 9:463. [PMID: 38110359 PMCID: PMC10728094 DOI: 10.1038/s41420-023-01753-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/20/2023] Open
Abstract
Ferritinophagy, a process involving selective autophagy of ferritin facilitated by nuclear receptor coactivator 4 (NCOA4), entails the recognition of ferritin by NCOA4 and subsequent delivery to the autophagosome. Within the autophagosome, ferritin undergoes degradation, leading to the release of iron in the lysosome. It is worth noting that excessive iron levels can trigger cell death. Recent evidence has elucidated the significant roles played by ferritinophagy and ferroptosis in regulation the initiation and progression of cancer. Given the crucial role of ferritinophagy in tumor biology, it may serve as a potential target for future anti-tumor therapeutic interventions. In this study, we have provided the distinctive features of ferritinophagy and its distinctions from ferroptosis. Moreover, we have briefly examined the fundamental regulatory mechanisms of ferritinophagy, encompassing the involvement of the specific receptor NCOA4, the Nrf2/HO-1 signaling and other pathways. Subsequently, we have synthesized the current understanding of the impact of ferritinophagy on cancer progression and its potential therapeutic applications, with a particular emphasis on the utilization of chemotherapy, nanomaterials, and immunotherapy to target the ferritinophagy pathway for anti-tumor purposes.
Collapse
Affiliation(s)
- Jiewen Wang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, 410013, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, 410013, China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yujuan Zhou
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, 410013, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, 410013, China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Zuping He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, 410013, China.
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, 410013, China.
| | - Qianjin Liao
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, 410013, China.
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, 410013, China.
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|