1
|
Fisher DT, Mackey E, Kononov E, Bogner PN, Sharma U, Yu H, Cetrulo CL, Seshadri M, Kalinski P, Skitzki JJ, Repasky EA, Kim M. Chronic rejection models for vascularized composite tissue allotransplantation. Sci Rep 2025; 15:16882. [PMID: 40374749 PMCID: PMC12081738 DOI: 10.1038/s41598-025-01803-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 05/08/2025] [Indexed: 05/18/2025] Open
Abstract
Vascularized composite tissue allotransplantation (VCA) has transformed patients' lives by enabling limb, face, abdominal wall, and penile transplants. Despite advancements in screening and immunosuppression, chronic rejection continues to limit the success of VCA. Lack of reliable preclinical models exacerbates this challenge. Here, we report on new mouse models of chronic rejection following heterotopic hind limb VCA. We employed different levels of MHC mismatch using CD8 knockout C57BL/6 mice as recipients along with BALB/c or B6 H2-Ab1bm12 mice as donors. Transient CD4 T cell depletion was induced to allow graft maturation. Evaluation included gross findings, changes in immune status changes, production of donor-specific antibodies (DSA), C4d levels, and histopathological alterations. Two chronic rejection models displayed common features of clinical chronic graft rejection, such as skin stricture, hair loss, adnexal atrophy, extensive fibrosis and mast cell infiltration without widespread necrotic changes common in acute rejection. Similar to chronic rejection patients, large populations of activated B and plasma cells were detected in the recipient's immune system as well as increased DSA and C4d production. Collectively, our models closely replicate the immunological and histopathological aspects of chronic graft rejection post-VCA, and could provide a new platform for evaluation of novel therapeutic interventions prior to clinical evaluation.
Collapse
Affiliation(s)
- Daniel T Fisher
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Emily Mackey
- Comparative Oncology Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Eugene Kononov
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Paul N Bogner
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Umesh Sharma
- Department of Medicine, Division of Cardiology, University at Buffalo, Buffalo, NY, USA
| | - Han Yu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Curtis L Cetrulo
- Department of Surgery, Division of Plastic Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mukund Seshadri
- Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Pawel Kalinski
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Joseph J Skitzki
- Department of General Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Minhyung Kim
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
- Comparative Oncology Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
2
|
Holguín-Ruíz JA, Rodríguez L, Ferreira-Galvao FH, Muñoz-Botina J, Bedoya Duque MA, Varela-Vásquez MDM, Rodríguez-Galviz H, Zambrano-Galeano R, Castaño-Valencia S, Gutiérrez-Montes JO. An innovative ear transplantation for vascularized composite allotransplantation research in porcine model. Sci Rep 2024; 14:30896. [PMID: 39730666 DOI: 10.1038/s41598-024-81908-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
Vascularized composite allotransplantation (VCA) represents a clinical challenge for transplant therapy, as it involves different tissues with unique immunogenicity. Even when receiving immunosuppressive therapy, they are more vulnerable to severe hypoxia, microvascular damage, and ultimately the rejection or chronic graft dysfunction after transplantation. This study aimed to develop a surgical protocol for VCA of the ear in a porcine biomodel in the absence of immunosuppression, maintaining the in vitro co-culture of the allograft and assessing their relationship with allograft survival. We employed four crossbred pigs and four outbred mini pig biomodels (Sus scrofa), as donors and recipients, to perform four VCAs. Blood samples were taken from each biomodel for crossmatch testing and SLA haplotype identification. Bone marrow samples were taken from each recipient for subsequent co-culture. In vitro culture and co-culture conditions were maintained and assessed. Histological analysis using hematoxylin and eosin staining was performed on the allograft that lasted the longest time showing the smallest macroscopic signs of rejection. A surgical protocol for Vascularized Composite Allograft (VCA) ear transplantation in a porcine biomodel was developed, including the skin. The presence of SLA-DRB1*01:02 and SLA-DRB1*06:01 haplotypes in the recipient and donor, respectively, showed concordance with positive crossmatch tests. In the allograft with the highest survival time, no histological signs of hyperacute rejection were found ten days after transplantation in the anastomosis area. The results obtained from this protocol can provide valuable recommendations for translational applications in face transplantation and regenerative medicine.
Collapse
Affiliation(s)
- Jorge A Holguín-Ruíz
- Pharmacology Research Group, Universidad del Valle, Colombia, Cali, 760043
- School of Basic Sciences Department of Physiological Sciences, Universidad del Valle, Cali, Colombia, 760043
| | - Laura Rodríguez
- Pharmacology Research Group, Universidad del Valle, Colombia, Cali, 760043.
- Department of Pharmaceutical and Chemical Sciences, Universidad Icesi, Calle 18 No. 122-135, Cali, Colombia, 760008.
| | | | - Jaime Muñoz-Botina
- Pharmacology Research Group, Universidad del Valle, Colombia, Cali, 760043
- School of Basic Sciences Department of Physiological Sciences, Universidad del Valle, Cali, Colombia, 760043
| | - Maria Alejandra Bedoya Duque
- Department of Pharmaceutical and Chemical Sciences, Universidad Icesi, Calle 18 No. 122-135, Cali, Colombia, 760008
| | - María Del Mar Varela-Vásquez
- Department of Pharmaceutical and Chemical Sciences, Universidad Icesi, Calle 18 No. 122-135, Cali, Colombia, 760008
| | | | | | - Santiago Castaño-Valencia
- Pharmacology Research Group, Universidad del Valle, Colombia, Cali, 760043
- School of Basic Sciences Department of Physiological Sciences, Universidad del Valle, Cali, Colombia, 760043
| | - José Oscar Gutiérrez-Montes
- Pharmacology Research Group, Universidad del Valle, Colombia, Cali, 760043
- School of Basic Sciences Department of Physiological Sciences, Universidad del Valle, Cali, Colombia, 760043
| |
Collapse
|
3
|
Toma AI, Shah D, Roth D, Piña JO, Hymel L, Turner T, Kamalakar A, Liu K, Bartsch P, Jacobs L, D'Souza R, Liotta D, Botchwey E, Willett NJ, Goudy SL. Accelerating Oral Wound Healing Using Bilayer Biomaterial Delivery of FTY720 Immunotherapy. Adv Healthc Mater 2024; 13:e2401480. [PMID: 39388502 PMCID: PMC11616256 DOI: 10.1002/adhm.202401480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/27/2024] [Indexed: 10/12/2024]
Abstract
Orofacial clefts are the most common congenital craniofacial anomaly. Adverse healing following cleft palate repair can lead to oronasal fistula (ONF), a persistent connection between the oral and nasal cavities. Although human allograft tissues are currently the gold standard for ONF repair, these methods carry risks of infection and rejection, often requiring surgical revision. Immunoregenerative therapies present a novel alternative approach to harness the body's immune response and enhance the wound healing environment. An FDA-approved immunomodulatory drug, FTY720, is repurposed to reduce lymphocyte egress and induce immune cell fate switching toward pro-regenerative phenotypes. In this study, a bilayer biomaterial system is engineered using Tegaderm to secure and control the delivery of FTY720-nanofiber scaffolds (FTY720-NF). The release kinetics of the bilayer FTY720-NF is optimized to maintain drug release for up to 7 days, ensuring safe transdermal absorption and tissue biodistribution. The comprehensive immunophenotyping results demonstrate a regenerative state transition in hybrid immune cells recruited to the wound site. Further, histological evaluations reveal a significant ONF closure in mice by day 7 following bilayer FTY720-NF implantation. These findings demonstrate the utility of immunomodulatory strategies for oral wound healing, better positing the field to develop more efficacious treatment options in pediatric patients.
Collapse
Affiliation(s)
- Afra I. Toma
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyEmory UniversityAtlantaGA30322USA
- Department of Pediatrics and OtolaryngologyChildren's Healthcare of AtlantaAtlantaGA30329USA
| | - Daniel Shah
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyEmory UniversityAtlantaGA30322USA
| | - Daniela Roth
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMD20892USA
| | - Jeremie Oliver Piña
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMD20892USA
| | - Lauren Hymel
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyEmory UniversityAtlantaGA30322USA
| | - Thomas Turner
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyEmory UniversityAtlantaGA30322USA
| | - Archana Kamalakar
- Department of Pediatrics and OtolaryngologyChildren's Healthcare of AtlantaAtlantaGA30329USA
| | - Ken Liu
- Department of ChemistryEmory UniversityAtlantaGA30322USA
| | - Perry Bartsch
- Department of ChemistryEmory UniversityAtlantaGA30322USA
| | - Leon Jacobs
- Department of ChemistryEmory UniversityAtlantaGA30322USA
| | - Rena D'Souza
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMD20892USA
| | - Dennis Liotta
- Department of ChemistryEmory UniversityAtlantaGA30322USA
| | - Edward Botchwey
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyEmory UniversityAtlantaGA30322USA
| | - Nick J. Willett
- Phil and Penny Knight Campus for Accelerating Scientific ImpactUniversity of OregonEugeneOR97403USA
| | - Steven L. Goudy
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyEmory UniversityAtlantaGA30322USA
- Department of Pediatrics and OtolaryngologyChildren's Healthcare of AtlantaAtlantaGA30329USA
| |
Collapse
|
4
|
Owen MC, Kopecky BJ. Targeting Macrophages in Organ Transplantation: A Step Toward Personalized Medicine. Transplantation 2024; 108:2045-2056. [PMID: 38467591 PMCID: PMC11390981 DOI: 10.1097/tp.0000000000004978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Organ transplantation remains the most optimal strategy for patients with end-stage organ failure. However, prevailing methods of immunosuppression are marred by adverse side effects, and allograft rejection remains common. It is imperative to identify and comprehensively characterize the cell types involved in allograft rejection, and develop therapies with greater specificity. There is increasing recognition that processes mediating allograft rejection are the result of interactions between innate and adaptive immune cells. Macrophages are heterogeneous innate immune cells with diverse functions that contribute to ischemia-reperfusion injury, acute rejection, and chronic rejection. Macrophages are inflammatory cells capable of innate allorecognition that strengthen their responses to secondary exposures over time via "trained immunity." However, macrophages also adopt immunoregulatory phenotypes and may promote allograft tolerance. In this review, we discuss the roles of macrophages in rejection and tolerance, and detail how macrophage plasticity and polarization influence transplantation outcomes. A comprehensive understanding of macrophages in transplant will guide future personalized approaches to therapies aimed at facilitating tolerance or mitigating the rejection process.
Collapse
Affiliation(s)
- Macee C Owen
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MI
| | - Benjamin J Kopecky
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MI
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
5
|
Huelsboemer L, Moscarelli J, Dony A, Boroumand S, Kochen A, Knoedler L, Yu CT, Hauc SC, Stögner VA, Formica RN, Lian CG, Murphy GF, Pomahac B, Kauke-Navarro M. The role of C4d and donor specific antibodies in face and hand transplantation-a systematic review. FRONTIERS IN TRANSPLANTATION 2024; 3:1442006. [PMID: 39291278 PMCID: PMC11405992 DOI: 10.3389/frtra.2024.1442006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/11/2024] [Indexed: 09/19/2024]
Abstract
To date, little is known about the mechanisms of rejection in vascularized composite allotransplantation, particularly for antibody mediated rejection. Additionally, no clear guidelines exist for the diagnosis and management of antibody-mediated rejection in vascularized composite allotransplantation. A systematic review of electronic databases (Embase and PubMed) was conducted to evaluate the relationship of donor specific antibodies and C4d deposition in correlation with cellular rejection following hand and face transplantation reported by centers between 1998 and July 2023. We extracted data on serum donor specific antibodies at the time of biopsy proven rejection according to Banff classification and C4d staining of target tissues. Mann-Whitney U tests were performed to compare rejection grade between groups divided by status of C4d deposition and serum donor specific antibodies, and Fisher's Exact test was used to assess association between the two markers. This review adhered to PRISMA guidelines. A total of 26 patients (5 face, 21 hand) were identified and data on 90 acute rejection episodes with information on Banff grade, donor specific antibody status, and C4d deposition were available. Donor specific antibodies were found to be associated with higher rejection grade (p = 0.005). C4d was not found to be associated with higher rejection grade (p = 0.33). Finally, no significant association was found between concurrent status of the two markers (p = 0.23). These findings suggest that the presence of donor specifc antibodies may be associated with higher grades of acute cellular rejection following hand and face transplantation. More consistent reporting on rejection episodes is needed in order to better understand antibody-mediated rejection in vascularized composite allotransplantation.
Collapse
Affiliation(s)
- Lioba Huelsboemer
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Jake Moscarelli
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Alna Dony
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, United States
- School of Medicine, University of Leeds, Woodhouse, Leeds, United Kingdom
| | - Sam Boroumand
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Alejandro Kochen
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Leonard Knoedler
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, United States
- University of Regensburg, Regensburg, Germany
| | - Catherine T Yu
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Sacha C Hauc
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Viola A Stögner
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Richard N Formica
- Department of Medicine, Section of Nephrology and Transplantation, Yale School of Medicine, New Haven, CT, United States
| | - Christiane G Lian
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Georg F Murphy
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Bohdan Pomahac
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Martin Kauke-Navarro
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
6
|
Pu Z, Chen S, Lu Y, Wu Z, Cai Z, Mou L. Exploring the molecular mechanisms of macrophages in islet transplantation using single-cell analysis. Front Immunol 2024; 15:1407118. [PMID: 39267737 PMCID: PMC11391485 DOI: 10.3389/fimmu.2024.1407118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/02/2024] [Indexed: 09/15/2024] Open
Abstract
Background Islet transplantation is a promising treatment for type 1 diabetes that aims to restore insulin production and improve glucose control, but long-term graft survival remains a challenge due to immune rejection. Methods ScRNA-seq data from syngeneic and allogeneic islet transplantation grafts were obtained from GSE198865. Seurat was used for filtering and clustering, and UMAP was used for dimension reduction. Differentially expressed genes were analyzed between syngeneic and allogeneic islet transplantation grafts. Gene set variation analysis (GSVA) was performed on the HALLMARK gene sets from MSigDB. Monocle 2 was used to reconstruct differentiation trajectories, and cytokine signature enrichment analysis was used to compare cytokine responses between syngeneic and allogeneic grafts. Results Three distinct macrophage clusters (Mø-C1, Mø-C2, and Mø-C3) were identified, revealing complex interactions and regulatory mechanisms within macrophage populations. The significant activation of macrophages in allogeneic transplants was marked by the upregulation of allograft rejection-related genes and pathways involved in inflammatory and interferon responses. GSVA revealed eight pathways significantly upregulated in the Mø-C2 cluster. Trajectory analysis revealed that Mø-C3 serves as a common progenitor, branching into Mø-C1 and Mø-C2. Cytokine signature enrichment analysis revealed significant differences in cytokine responses, highlighting the distinct immunological environments created by syngeneic and allogeneic grafts. Conclusion This study significantly advances the understanding of macrophage roles within the context of islet transplantation by revealing the interactions between immune pathways and cellular fate processes. The findings highlight potential therapeutic targets for enhancing graft survival and function, emphasizing the importance of understanding the immunological aspects of transplant acceptance and longevity.
Collapse
Affiliation(s)
- Zuhui Pu
- Imaging Department, Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
- MetaLife Lab, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
| | - Shujuan Chen
- Department of Endocrinology, Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Ying Lu
- MetaLife Lab, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
| | - Zijing Wu
- MetaLife Lab, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
| | - Zhiming Cai
- BGI Medical Group, Shenzhen, Guangdong, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Lisha Mou
- MetaLife Lab, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
- Department of Endocrinology, Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Kaes J, Pollenus E, Hooft C, Liu H, Aelbrecht C, Cambier S, Jin X, Van Slambrouck J, Beeckmans H, Kerckhof P, Velde GV, Van Raemdonck D, Yildirim AÖ, Van den Steen PE, Vos R, Ceulemans LJ, Vanaudenaerde BM. The Immunopathology of Pulmonary Rejection after Murine Lung Transplantation. Cells 2024; 13:241. [PMID: 38334633 PMCID: PMC10854916 DOI: 10.3390/cells13030241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
To improve outcomes following lung transplantation, it is essential to understand the immunological mechanisms that result in chronic graft failure. The associated clinical syndrome is termed chronic lung allograft dysfunction (CLAD), which is known to be induced by alloimmune-dependent (i.e., rejection) and alloimmune-independent factors (e.g., infections, reflux and environmental factors). We aimed to explore the alloimmune-related mechanism, i.e., pulmonary rejection. In this study, we use a murine orthotopic left lung transplant model using isografts and allografts (C57BL/6 or BALB/c as donors to C57BL/6 recipients), with daily immunosuppression (10 mg/kg cyclosporin A and 1.6 mg/kg methylprednisolone). Serial sacrifice was performed at days 1, 7 and 35 post-transplantation (n = 6 at each time point for each group). Left transplanted lungs were harvested, a single-cell suspension was made and absolute numbers of immune cells were quantified using multicolor flow cytometry. The rejection process followed the principles of a classic immune response, including innate but mainly adaptive immune cells. At day 7 following transplantation, the numbers of interstitial macrophages, monocytes, dendritic cells, NK cells, NKT cells, CD4+ T cells and CD8+ T and B cells were increased in allografts compared with isografts. Only dendritic cells and CD4+ T cells remained elevated at day 35 in allografts. Our study provides insights into the immunological mechanisms of true pulmonary rejection after murine lung transplantation. These results might be important in further research on diagnostic evaluation and treatment for CLAD.
Collapse
Affiliation(s)
- Janne Kaes
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.K.)
| | - Emilie Pollenus
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (E.P.)
| | - Charlotte Hooft
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.K.)
| | - Hengshuo Liu
- Comprehensive Pneumology Center, Institute of Lung Health and Immunity, Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764 Munich, Germany (A.Ö.Y.)
| | - Celine Aelbrecht
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.K.)
| | - Seppe Cambier
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium;
| | - Xin Jin
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.K.)
| | - Jan Van Slambrouck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.K.)
| | - Hanne Beeckmans
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.K.)
| | - Pieterjan Kerckhof
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.K.)
| | - Greetje Vande Velde
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Dirk Van Raemdonck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.K.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center, Institute of Lung Health and Immunity, Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764 Munich, Germany (A.Ö.Y.)
| | - Philippe E. Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (E.P.)
| | - Robin Vos
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.K.)
- Department of Respiratory Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Laurens J. Ceulemans
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.K.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Bart M. Vanaudenaerde
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.K.)
| |
Collapse
|
8
|
Tiwari A, Mukherjee S. Role of Complement-dependent Cytotoxicity Crossmatch and HLA Typing in Solid Organ Transplant. Rev Recent Clin Trials 2024; 19:34-52. [PMID: 38155466 DOI: 10.2174/0115748871266738231218145616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Solid organ transplantation is a life-saving medical operation that has progressed greatly because of developments in diagnostic tools and histocompatibility tests. Crossmatching for complement-dependent cytotoxicity (CDC) and human leukocyte antigen (HLA) typing are two important methods for checking graft compatibility and reducing the risk of graft rejection. HLA typing and CDC crossmatching are critical in kidney, heart, lung, liver, pancreas, intestine, and multi-organ transplantation. METHODS A systematic literature search was conducted on the internet, using PubMed, Scopus, and Google Scholar databases, to identify peer-reviewed publications about solid organ transplants, HLA typing, and CDC crossmatching. CONCLUSION Recent advances in HLA typing have allowed for high-resolution evaluation, epitope matching, and personalized therapy methods. Genomic profiling, next-generation sequencing, and artificial intelligence have improved HLA typing precision, resulting in better patient outcomes. Artificial intelligence (AI) driven virtual crossmatching and predictive algorithms have eliminated the requirement for physical crossmatching in the context of CDC crossmatching, boosting organ allocation and transplant efficiency. This review elaborates on the importance of HLA typing and CDC crossmatching in solid organ transplantation.
Collapse
Affiliation(s)
- Arpit Tiwari
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
| | - Sayali Mukherjee
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
| |
Collapse
|
9
|
Toma AI, Shah D, Roth D, Oliver Piña J, Hymel L, Turner T, Kamalakar A, Liu K, Bartsch P, Jacobs L, D'Souza R, Liotta D, Botchwey E, Willett NJ, Goudy SL. Harnessing Bilayer Biomaterial Delivery of FTY720 as an Immunotherapy to Accelerate Oral Wound Healing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573096. [PMID: 38187740 PMCID: PMC10769397 DOI: 10.1101/2023.12.22.573096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Orofacial clefts are the most common craniofacial congenital anomaly. Following cleft palate repair, up to 60% of surgeries have wound healing complications leading to oronasal fistula (ONF), a persistent connection between the roof of the mouth and the nasal cavity. The current gold standard methods for ONF repair use human allograft tissues; however, these procedures have risks of graft infection and/or rejection, requiring surgical revisions. Immunoregenerative therapies present a novel alternative approach to harness the body's immune response and enhance the wound healing environment. We utilized a repurposed FDA-approved immunomodulatory drug, FTY720, to reduce the egress of lymphocytes and induce immune cell fate switching toward pro-regenerative phenotypes. Here, we engineered a bilayer biomaterial system using Tegaderm™, a liquid-impermeable wound dressing, to secure and control the delivery of FTY720- nanofiber scaffolds (FTY720-NF). We optimized release kinetics of the bilayer FTY720-NF to sustain drug release for up to 7d with safe, efficacious transdermal absorption and tissue biodistribution. Through comprehensive immunophenotyping, our results illustrate a pseudotime pro-regenerative state transition in recruited hybrid immune cells to the wound site. Additional histological assessments established a significant difference in full thickness ONF closure in mice on Day 7 following treatment with bilayer FTY720-NF, compared to controls. These findings demonstrate the utility of immunomodulatory strategies for oral wound healing, better positing the field to develop more efficacious treatment options for pediatric patients. One Sentence Summary Local delivery of bilayer FTY720-nanofiber scaffolds in an ONF mouse model promotes complete wound closure through modulation of pro-regenerative immune and stromal cells.
Collapse
|
10
|
Longo B, Pomahac B, Giacalone M, Cardillo M, Cervelli V. 18 years of face transplantation: Adverse outcomes and challenges. J Plast Reconstr Aesthet Surg 2023; 87:187-199. [PMID: 37879143 DOI: 10.1016/j.bjps.2023.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 08/19/2023] [Accepted: 09/12/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Since the first procedure performed in 2005, face transplantation has been debated as viable approach for the treatment of severe craniofacial defects. Despite the benefits provided, the experience in face allotransplantation has brought to light a significant risk of complications, including allograft removal or loss, and mortality. The present study is intended to provide an updated review on complications and major challenges witnessed over 18 years of experience in the field. METHODS A systematic review of PubMed, MEDLINE, Cochrane, Google, and Google Scholar databases on face transplantation was conducted according to PRISMA guidelines up to April 2023. Articles providing details on cases of face allograft loss, removal, and patient death were included. Online articles and media reports were assessed to include information not disclosed in peer-reviewed literature. Face transplant centers were contacted to have updated follow-up information on single-face transplant cases. RESULTS The search yielded 1006 reports, of which 28 were included. On a total of 48 procedures performed in 46 patients, adverse outcomes were gleaned in 14 cases (29%), including seven allograft losses (14.6%), and the death of ten patients (21.7%). Chronic rejection was the leading cause of allograft loss, with a median time from transplant to irreversible rejection of 90 months (IQR 88.5-102). The main causes of death were infectious complications, followed by malignancies, non-compliance to immunosuppression, and suicide. The median time to death was 48.5 months (IQR 19-122). CONCLUSIONS To the best of our knowledge, this is the first study providing a comprehensive review of adverse outcomes in face transplantation. Considering the high rate of major complications, the heterogeneity of cases and single-center approaches, and the absence of published standards of care, the development of a consensus by face transplant teams holds the key to the field's advancement.
Collapse
Affiliation(s)
- Benedetto Longo
- Chair of Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University of Rome, Rome, Italy.
| | - Bohdan Pomahac
- Division of Plastic and Reconstructive Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Martina Giacalone
- Chair of Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University of Rome, Rome, Italy
| | - Massimo Cardillo
- National Transplants Center, National Institute of Health, Italian Ministry of Health, Rome, Italy
| | - Valerio Cervelli
- Chair of Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University of Rome, Rome, Italy
| |
Collapse
|
11
|
Vafadar A, Vosough P, Jahromi HK, Tajbakhsh A, Savardshtaki A, Butler AE, Sahebkar A. The role of efferocytosis and transplant rejection: Strategies in promoting transplantation tolerance using apoptotic cell therapy and/or synthetic particles. Cell Biochem Funct 2023; 41:959-977. [PMID: 37787641 DOI: 10.1002/cbf.3852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/26/2023] [Accepted: 08/24/2023] [Indexed: 10/04/2023]
Abstract
Recently, efforts have been made to recognize the precise reason(s) for transplant failure and the process of rejection utilizing the molecular signature. Most transplant recipients do not appreciate the unknown length of survival of allogeneic grafts with the existing standard of care. Two noteworthy immunological pathways occur during allogeneic transplant rejection. A nonspecific innate immune response predominates in the early stages of the immune reaction, and allogeneic antigens initiate a donor-specific adaptive reaction. Though the adaptive response is the major cause of allograft rejection, earlier pro-inflammatory responses that are part of the innate immune response are also regarded as significant in graft loss. The onset of the innate and adaptive immune response causes chronic and acute transplant rejection. Currently employed immunosuppressive medications have shown little or no influence on chronic rejection and, as a result, on overall long-term transplant survival. Furthermore, long-term pharmaceutical immunosuppression is associated with side effects, toxicity, and an increased risk of developing diseases, both infectious and metabolic. As a result, there is a need for the development of innovative donor-specific immunosuppressive medications to regulate the allorecognition pathways that induce graft loss and to reduce the side effects of immunosuppression. Efferocytosis is an immunomodulatory mechanism with fast and efficient clearance of apoptotic cells (ACs). As such, AC therapy strategies have been suggested to limit transplant-related sequelae. Efferocytosis-based medicines/treatments can also decrease the use of immunosuppressive drugs and have no detrimental side effects. Thus, this review aims to investigate the impact of efferocytosis on transplant rejection/tolerance and identify approaches using AC clearance to increase transplant viability.
Collapse
Affiliation(s)
- Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Vosough
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Kargar Jahromi
- Research Center for Non-Communicable Disease, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Amir Tajbakhsh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardshtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland - Bahrain, Adliya, Bahrain
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Xu Z, Cheng Z, Li J, Zhang Y. Extra-articular blocking technique for acetabular bone defect reconstruction. ANNALS OF JOINT 2023; 9:2. [PMID: 38529298 PMCID: PMC10929398 DOI: 10.21037/aoj-23-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/21/2023] [Indexed: 03/27/2024]
Abstract
The acetabular bone defect reconstruction is of great challenge in total hip arthroplasty (THA). Although several solutions such as autologous bone grafting, trabecular metal augment, or compromising techniques such as the medial protrusion, high inclination angle, and elevated hip center have been raised, their efficacy and reliability have not been fully substantiated. Traditional reconstruction methods may lead to bone resorption, aggravation of bone defects, unequal length of lower limbs, unbalance of hip-spine relationship, increased costs, and so on. Our team proved a new technique named extra-articular blocking to resolve this problem. The extra-articular blocking technique was a simple, economic and effective acetabular reconstructive method to resolve the massive acetabular bone defect in congenital (especially for developmental dysplasia of the hip, DDH), inflammatory, and osteolytic pathologies. This article organized as surgical technique, aims to report the surgical principle, indication, and procedure of using extra-articular blocking technique. With this technique, we have successfully solved the difficult problem of acetabular bone defect reconstruction. We found after 3 months of the surgery, there were fluoroscopic healing and remodeling. And there were no bone loss or graft absorption until the last follow-up as evidenced by radiographic observation. The survival rate of the acetabular component was 100%, no radiolucent line, changes in inclination and anteversion of the shell, as well as migration of the rotation center were identified.
Collapse
Affiliation(s)
- Zhonghua Xu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zhiming Cheng
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jie Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuan Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
13
|
Das A, Mehrotra S, Kumar A. Advances in Fabrication Technologies for the Development of Next-Generation Cardiovascular Stents. J Funct Biomater 2023; 14:544. [PMID: 37998113 PMCID: PMC10672426 DOI: 10.3390/jfb14110544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Coronary artery disease is the most prevalent cardiovascular disease, claiming millions of lives annually around the world. The current treatment includes surgically inserting a tubular construct, called a stent, inside arteries to restore blood flow. However, due to lack of patient-specific design, the commercial products cannot be used with different vessel anatomies. In this review, we have summarized the drawbacks in existing commercial metal stents which face problems of restenosis and inflammatory responses, owing to the development of neointimal hyperplasia. Further, we have highlighted the fabrication of stents using biodegradable polymers, which can circumvent most of the existing limitations. In this regard, we elaborated on the utilization of new fabrication methodologies based on additive manufacturing such as three-dimensional printing to design patient-specific stents. Finally, we have discussed the functionalization of these stent surfaces with suitable bioactive molecules which can prove to enhance their properties in preventing thrombosis and better healing of injured blood vessel lining.
Collapse
Affiliation(s)
- Ankita Das
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India;
| | - Shreya Mehrotra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India;
- Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India;
- Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre of Excellence for Orthopaedics and Prosthetics, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| |
Collapse
|
14
|
Serafini E, Corti A, Gallo D, Chiastra C, Li XC, Casarin S. An agent-based model of cardiac allograft vasculopathy: toward a better understanding of chronic rejection dynamics. Front Bioeng Biotechnol 2023; 11:1190409. [PMID: 37771577 PMCID: PMC10523786 DOI: 10.3389/fbioe.2023.1190409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/17/2023] [Indexed: 09/30/2023] Open
Abstract
Cardiac allograft vasculopathy (CAV) is a coronary artery disease affecting 50% of heart transplant (HTx) recipients, and it is the major cause of graft loss. CAV is driven by the interplay of immunological and non-immunological factors, setting off a cascade of events promoting endothelial damage and vascular dysfunction. The etiology and evolution of tissue pathology are largely unknown, making disease management challenging. So far, in vivo models, mostly mouse-based, have been widely used to study CAV, but they are resource-consuming, pose many ethical issues, and allow limited investigation of time points and important biomechanical measurements. Recently, agent-based models (ABMs) proved to be valid computational tools for deciphering mechanobiological mechanisms driving vascular adaptation processes at the cell/tissue level, augmenting cost-effective in vivo lab-based experiments, at the same time guaranteeing richness in observation time points and low consumption of resources. We hypothesize that integrating ABMs with lab-based experiments can aid in vivo research by overcoming those limitations. Accordingly, this work proposes a bidimensional ABM of CAV in a mouse coronary artery cross-section, simulating the arterial wall response to two distinct stimuli: inflammation and hemodynamic disturbances, the latter considered in terms of low wall shear stress (WSS). These stimuli trigger i) inflammatory cell activation and ii) exacerbated vascular cell activities. Moreover, an extensive analysis was performed to investigate the ABM sensitivity to the driving parameters and inputs and gain insights into the ABM working mechanisms. The ABM was able to effectively replicate a 4-week CAV initiation and progression, characterized by lumen area decrease due to progressive intimal thickening in regions exposed to high inflammation and low WSS. Moreover, the parameter and input sensitivity analysis highlighted that the inflammatory-related events rather than the WSS predominantly drive CAV, corroborating the inflammatory nature of the vasculopathy. The proof-of-concept model proposed herein demonstrated its potential in deepening the pathology knowledge and supporting the in vivo analysis of CAV.
Collapse
Affiliation(s)
- Elisa Serafini
- PolitoMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- LaSIE, UMR 7356 CNRS, La Rochelle Université, La Rochelle, France
- Center for Precision Surgery, Houston Methodist Research Institute, Houston, TX, United States
| | - Anna Corti
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Diego Gallo
- PolitoMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Claudio Chiastra
- PolitoMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Xian C. Li
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX, United States
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY, United States
- Department of Surgery, Houston Methodist Hospital, Houston, TX, United States
| | - Stefano Casarin
- LaSIE, UMR 7356 CNRS, La Rochelle Université, La Rochelle, France
- Center for Precision Surgery, Houston Methodist Research Institute, Houston, TX, United States
- Department of Surgery, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
15
|
Strizova Z, Benesova I, Bartolini R, Novysedlak R, Cecrdlova E, Foley L, Striz I. M1/M2 macrophages and their overlaps - myth or reality? Clin Sci (Lond) 2023; 137:1067-1093. [PMID: 37530555 PMCID: PMC10407193 DOI: 10.1042/cs20220531] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023]
Abstract
Macrophages represent heterogeneous cell population with important roles in defence mechanisms and in homoeostasis. Tissue macrophages from diverse anatomical locations adopt distinct activation states. M1 and M2 macrophages are two polarized forms of mononuclear phagocyte in vitro differentiation with distinct phenotypic patterns and functional properties, but in vivo, there is a wide range of different macrophage phenotypes in between depending on the microenvironment and natural signals they receive. In human infections, pathogens use different strategies to combat macrophages and these strategies include shaping the macrophage polarization towards one or another phenotype. Macrophages infiltrating the tumours can affect the patient's prognosis. M2 macrophages have been shown to promote tumour growth, while M1 macrophages provide both tumour-promoting and anti-tumour properties. In autoimmune diseases, both prolonged M1 activation, as well as altered M2 function can contribute to their onset and activity. In human atherosclerotic lesions, macrophages expressing both M1 and M2 profiles have been detected as one of the potential factors affecting occurrence of cardiovascular diseases. In allergic inflammation, T2 cytokines drive macrophage polarization towards M2 profiles, which promote airway inflammation and remodelling. M1 macrophages in transplantations seem to contribute to acute rejection, while M2 macrophages promote the fibrosis of the graft. The view of pro-inflammatory M1 macrophages and M2 macrophages suppressing inflammation seems to be an oversimplification because these cells exploit very high level of plasticity and represent a large scale of different immunophenotypes with overlapping properties. In this respect, it would be more precise to describe macrophages as M1-like and M2-like.
Collapse
Affiliation(s)
- Zuzana Strizova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Iva Benesova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Robin Bartolini
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, U.K
| | - Rene Novysedlak
- Third Department of Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Eva Cecrdlova
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Lily Koumbas Foley
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, U.K
| | - Ilja Striz
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
16
|
Handelsman S, Overbey J, Chen K, Lee J, Haj D, Li Y. PD-L1's Role in Preventing Alloreactive T Cell Responses Following Hematopoietic and Organ Transplant. Cells 2023; 12:1609. [PMID: 37371079 DOI: 10.3390/cells12121609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Over the past decade, Programmed Death-Ligand 1 (PD-L1) has emerged as a prominent target for cancer immunotherapies. However, its potential as an immunosuppressive therapy has been limited. In this review, we present the immunological basis of graft rejection and graft-versus-host disease (GVHD), followed by a summary of biologically relevant molecular interactions of both PD-L1 and Programmed Cell Death Protein 1 (PD-1). Finally, we present a translational perspective on how PD-L1 can interrupt alloreactive-driven processes to increase immune tolerance. Unlike most current therapies that block PD-L1 and/or its interaction with PD-1, this review focuses on how upregulation or reversed sequestration of this ligand may reduce autoimmunity, ameliorate GVHD, and enhance graft survival following organ transplant.
Collapse
Affiliation(s)
- Shane Handelsman
- BioMedical Engineering, Department of Orthopaedic Surgery, Homer Stryker MD School of Medicine (WMed), Western Michigan University, Kalamazoo, MI 49007, USA
| | - Juliana Overbey
- BioMedical Engineering, Department of Orthopaedic Surgery, Homer Stryker MD School of Medicine (WMed), Western Michigan University, Kalamazoo, MI 49007, USA
| | - Kevin Chen
- BioMedical Engineering, Department of Orthopaedic Surgery, Homer Stryker MD School of Medicine (WMed), Western Michigan University, Kalamazoo, MI 49007, USA
| | - Justin Lee
- BioMedical Engineering, Department of Orthopaedic Surgery, Homer Stryker MD School of Medicine (WMed), Western Michigan University, Kalamazoo, MI 49007, USA
| | - Delour Haj
- BioMedical Engineering, Department of Orthopaedic Surgery, Homer Stryker MD School of Medicine (WMed), Western Michigan University, Kalamazoo, MI 49007, USA
| | - Yong Li
- BioMedical Engineering, Department of Orthopaedic Surgery, Homer Stryker MD School of Medicine (WMed), Western Michigan University, Kalamazoo, MI 49007, USA
| |
Collapse
|
17
|
Derhambakhsh S, Mohammadi J, Shokrgozar MA, Rabbani H, Sadeghi N, Nekounam H, Mohammadi S, Lee KB, Khakbiz M. Investigation of electrical stimulation on phenotypic vascular smooth muscle cells differentiation in tissue-engineered small-diameter vascular graft. Tissue Cell 2023; 81:101996. [PMID: 36657256 DOI: 10.1016/j.tice.2022.101996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
In the development of vascular tissue engineering, particularly in the case of small diameter vessels, one of the key obstacles is the blockage of these veins once they enter the in vivo environment. One of the contributing factors to this problem is the aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) from the media layer of the artery to the interior of the channel. Two distinct phenotypes have been identified for smooth muscle cells, namely synthetic and contractile. Since the synthetic phenotype plays an essential role in the unusual growth and migration, the aim of this study was to convert the synthetic phenotype into the contractile one, which is a solution to prevent the abnormal growth of VSMCs. To achieve this goal, these cells were subjected to electrical signals, using a 1000 μA sinusoidal stimulation at 10 Hz for four days, with 20 min duration per 24 h. The morphological transformations and changes in the expression of vimentin, nestin, and β-actin proteins were then studied using ICC and flow cytometry assays. Also, the expression of VSMC specific markers such as smooth muscle myosin heavy chain (SMMHC) and smooth muscle alpha-actin (α-SMA) were evaluated using RT-PCR test. In the final phase of this study, the sheep decellularized vessel was employed as a scaffold for seeding these cells. Based on the results, electrical stimulation resulted in some morphological alterations in VSMCs. Furthermore, the observed reductions in the expression levels of vimentin, nestin and β-actin proteins and increase in the expression of SMMHC and α-SMA markers showed that it is possible to convert the synthetic phenotype to the contractile one using the studied regime of electrical stimulation. Finally, it can be concluded that electrical stimulation can significantly affect the phenotype of VSMCs, as demonstrated in this study.
Collapse
Affiliation(s)
- Sara Derhambakhsh
- Division of Biomedical Engineering, Department of Life Science, Faculty of New Sciences and Technologies, University of Tehran, Tehran 439957131, Iran
| | - Javad Mohammadi
- Division of Biomedical Engineering, Department of Life Science, Faculty of New Sciences and Technologies, University of Tehran, Tehran 439957131, Iran.
| | | | - Hodjattallah Rabbani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Niloufar Sadeghi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Houra Nekounam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Sotoudeh Mohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Mehrdad Khakbiz
- Division of Biomedical Engineering, Department of Life Science, Faculty of New Sciences and Technologies, University of Tehran, Tehran 439957131, Iran.
| |
Collapse
|
18
|
Comparative transcriptome profile of mouse macrophages treated with the RhoA/Rock pathway inhibitors Y27632, Fingolimod (Gilenya), and Rezurock (Belumosudil, SLx-2119). Int Immunopharmacol 2023; 118:110017. [PMID: 36931169 DOI: 10.1016/j.intimp.2023.110017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
Macrophages play a crucial role in, the currently uncurable, chronic rejection of transplants. In rodent transplantation models, inhibition of the RhoA/Rock pathway disrupts actin-related functions of macrophages, preventing them from entering the graft, and reducing vessel occlusion, fibrosis, and chronic rejection. Among RhoA/Rock inhibitors that inhibit chronic rejection in mouse transplantation are Y27632, Fingolimod, and Rezurock. In a mouse model, Rezurok is more effective in preventing fibrosis and less effective in preventing vessel occlusion than Y27632 or Fingolimod. Fingolimod is FDA-approved for treating multiple sclerosis (MS) and Rezurock for chronic graft versus host disease (GVHD). Still, none had been tested for chronic rejection in humans. To explain the differences in the anti-chronic rejection properties of Y27632, Fingolimod, and Rezurock, we compared the transcriptome profile of mouse macrophages treated with these compounds separately. Treatment with Y27632 or Fingolimod downregulated GTPase and actin pathways involved in cell migration. Rezurock downregulated genes related to fibrosis, such as PTX3, CCR2, CCL2, cell cycle, DNA replication, adaptive immune response, and organelle assembly, while Fingolimod also specifically downregulated NOTCH1 at mRNA . The result of this study not only uncovers which pathways are shared or specific for these drugs but will help in the development of macrophage pathway-targeted therapies in human transplantation, MS, and GVHD. Because macrophages are the major players in immune response, tissue regeneration, renewal, and homeostasis, and development of many diseases, including cancer, the data compiled here will help in designing novel or improved therapies in many clinical applications.
Collapse
|
19
|
Abstract
Solid organ transplantation is a life-saving treatment for people with end-stage organ disease. Immune-mediated transplant rejection is a common complication that decreases allograft survival. Although immunosuppression is required to prevent rejection, it also increases the risk of infection. Some infections, such as cytomegalovirus and BK virus, can promote inflammatory gene expression that can further tip the balance toward rejection. BK virus and other infections can induce damage that resembles the clinical pathology of rejection, and this complicates accurate diagnosis. Moreover, T cells specific for viral infection can lead to rejection through heterologous immunity to donor antigen directly mediated by antiviral cells. Thus, viral infections and allograft rejection interact in multiple ways that are important to maintain immunologic homeostasis in solid organ transplant recipients. Better insight into this dynamic interplay will help promote long-term transplant survival.
Collapse
Affiliation(s)
- Lauren E Higdon
- Department of Medicine/Nephrology, Stanford University, Palo Alto, CA
| | - Jane C Tan
- Department of Medicine/Nephrology, Stanford University, Palo Alto, CA
| | - Jonathan S Maltzman
- Department of Medicine/Nephrology, Stanford University, Palo Alto, CA
- Geriatric Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA
| |
Collapse
|
20
|
Xu Z, Li Z, Li J, Zhang Y, Wang M, Zhang Y. Extra-articular Blocking Technique to Resolve Severe Acetabular Bone Defect in Developmental Dysplasia of the Hip. Orthop Surg 2023; 15:1187-1195. [PMID: 36846951 PMCID: PMC10102295 DOI: 10.1111/os.13688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 03/01/2023] Open
Abstract
OBJECTIVE The reconstruction of acetabular bone defect in developmental dysplasia of the hip (DDH) is a great challenge. Although several successful solutions have been raised, their efficacy and reliability have not been fully substantiated. This work aims to present a simple, economic and effective acetabular reconstructive technique to resolve the massive acetabular bone defect in DDH scenario. METHODS This is a case series and observational study investigating the effectiveness and safety of extra-articular blocking technique in patients diagnosed as DDH of Crowe type II-III and Hartofilakidis B. Sixteen consecutive patients indicated for extra-articular blocking and treated with total hip arthroplasty were enrolled in this series from January 2019 to August 2020. The outcome measures included the surgical indicators such as acetabular coverage, prosthesis position, operational time, medical cost, and short-term follow-up indicators such as complications profile, patient-reported functional scales, overall recovery after surgery, and radiographic bone integration and remodeling. Their medical documentation and follow-up records were carefully reviewed with ethical approval. RESULTS The mean values of postoperative acetabular component inclination and anteversion were 42.3° ± 2.1° and 16.4° ± 1.8°, with an average acetabular coverage of 92.1%. The mean cost reduction for patients treated with this technique compared with those treated with trabecular metal augmentation was 15.3%. The mean time until walking under full-weight bearing decreased by 3.5 weeks compared with patients treated with autologous bone grafting. Within an average observational period of 18 months, the mean improvements in Harris hip score and WOMAC score were 31 and 22 points, respectively, which were identical to those with bone graft and metal augmentation techniques. No complications such as dislocation, acetabular loosening, periprosthetic joint infection, and limb length discrepancy were recorded. No signs of translucent line formation, third-party reaction, and wear-associated osteolysis were identified. CONCLUSION The extra-articular blocking can work simply and effectively to address acetabular bone defect in DDH patients of Crowe II-III and Hartofilakidis B, as evidenced by cost-effectiveness and instant weight-bearing advantages, low failure rate, and early osteointegration and remodeling.
Collapse
Affiliation(s)
- Zhonghua Xu
- Joint Disease & Sport Medicine Center, Department of Orthopedic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ziqiang Li
- Department of Orthopedics, People's Hospital of Linshui, Guang'an, China
| | - Jie Li
- Joint Disease & Sport Medicine Center, Department of Orthopedic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yiling Zhang
- Department of Technology, Longwood Valley MedTech, Beijing, China
| | - Min Wang
- Joint Disease & Sport Medicine Center, Department of Orthopedic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuan Zhang
- Joint Disease & Sport Medicine Center, Department of Orthopedic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
21
|
The Dual Function of RhoGDI2 in Immunity and Cancer. Int J Mol Sci 2023; 24:ijms24044015. [PMID: 36835422 PMCID: PMC9960019 DOI: 10.3390/ijms24044015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
RhoGDI2 is a guanine nucleotide dissociation inhibitor (GDI) specific for the Rho family of small GTPases. It is highly expressed in hematopoietic cells but is also present in a large array of other cell types. RhoGDI2 has been implicated in multiple human cancers and immunity regulation, where it can display a dual role. Despite its involvement in various biological processes, we still do not have a clear understanding of its mechanistic functions. This review sheds a light on the dual opposite role of RhoGDI2 in cancer, highlights its underappreciated role in immunity and proposes ways to explain its intricate regulatory functions.
Collapse
|
22
|
Lai C, Chadban SJ, Loh YW, Kwan TKT, Wang C, Singer J, Niewold P, Ling Z, Spiteri A, Getts D, King NJC, Wu H. Targeting inflammatory monocytes by immune-modifying nanoparticles prevents acute kidney allograft rejection. Kidney Int 2022; 102:1090-1102. [PMID: 35850291 DOI: 10.1016/j.kint.2022.06.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 05/22/2022] [Accepted: 06/17/2022] [Indexed: 12/31/2022]
Abstract
Inflammatory monocytes are a major component of the cellular infiltrate in acutely rejecting human kidney allografts. Since immune-modifying nanoparticles (IMPs) bind to circulating inflammatory monocytes via the specific scavenger receptor MARCO, causing diversion to the spleen and subsequent apoptosis, we investigated the therapeutic potential of negatively charged, 500-nm diameter polystyrene IMPs to prevent kidney allograft rejection. Kidney transplants were performed from BALB/c (H2d) to C57BL/6 (H2b) mice in two groups: controls (allo) and allo mice infused with IMPs. Groups were studied for 14 (acute rejection) or 100 (chronic rejection) days. Allo mice receiving IMPs exhibited superior survival and markedly less acute rejection, with better kidney function, less tubulitis, and diminished inflammatory cell density, cytokine and cytotoxic molecule expression in the allograft and lower titers of donor-specific IgG2c antibody in serum at day 14, as compared to allo mice. Cells isolated from kidneys from allo mice receiving IMPs showed reduced Ly6Chi monocytes, CD11b+ cells and NKT+ cells compared to allo mice. IMPs predominantly bound CD11b+ cells in the bloodstream and CD11b+ and CD11c-B220+ marginal zone B cells in the spleen. In the spleen, IMPs were found predominantly in red pulp, colocalized with MARCO and expression of cleaved caspase-3. At day 100, allo mice receiving IMPs exhibited reduced macrophage M1 responses but were not protected from chronic rejection. IMPs afforded significant protection from acute rejection, inhibiting both innate and adaptive alloimmunity. Thus, our current experimental findings, coupled with our earlier demonstration of IMP-induced protection in kidney ischemia-reperfusion injury, identify IMPs as a potential induction agent in kidney transplantation.
Collapse
Affiliation(s)
- Christina Lai
- Kidney Node Laboratory, the Charles Perkins Centre, University of Sydney, Sydney, Australia; Department of Renal Medicine, Kidney Centre, Royal Prince Alfred Hospital, Sydney, Australia
| | - Steven J Chadban
- Kidney Node Laboratory, the Charles Perkins Centre, University of Sydney, Sydney, Australia; Department of Renal Medicine, Kidney Centre, Royal Prince Alfred Hospital, Sydney, Australia.
| | - Yik Wen Loh
- Kidney Node Laboratory, the Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Tony King-Tak Kwan
- Kidney Node Laboratory, the Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Chuanmin Wang
- Kidney Node Laboratory, the Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Julian Singer
- Kidney Node Laboratory, the Charles Perkins Centre, University of Sydney, Sydney, Australia; Department of Renal Medicine, Kidney Centre, Royal Prince Alfred Hospital, Sydney, Australia
| | - Paula Niewold
- The Discipline of Pathology, the Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Zheng Ling
- The Discipline of Pathology, the Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Alanna Spiteri
- The Discipline of Pathology, the Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Daniel Getts
- The Discipline of Pathology, the Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Nicholas Jonathan Cole King
- The Discipline of Pathology, the Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; The University of Sydney Nano Institute, University of Sydney, Sydney, Australia
| | - Huiling Wu
- Kidney Node Laboratory, the Charles Perkins Centre, University of Sydney, Sydney, Australia; Department of Renal Medicine, Kidney Centre, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
23
|
Seyyed Amir S, Saman T, Heydari M, Valizadeh R. Efficacy of low-level laser therapy in oral mucosal surgical wound healing: a systematic review and meta-analysis. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aim: Wound healing is a complex phenomenon with various biological changes in tissue integrity, low-level laser therapy (LLLT) has acquired several unique components to help into accelerating tissue reconstruction and eventually wound healing. Thus, in the present systematic review and meta-analysis study, the role of LLLT in oral mucosal wound healing following surgical interventions was investigated.
Methods: The study databases, including PubMed, Web of Knowledge, Google Scholar, Scopus, and Cochrane, were searched by two blinded investigators considering eligible studies based on the following keywords: “Wound Healing”, “Oral Mucosal Wound Healing”, “Laser therapy”, “Low-level laser therapy”, “Oral Surgery”, “Photobiomodulation therapy”, among 88 screened, only 12 articles were eligible for the final analysis.
Results: There was a significant difference between control and laser group in all mentioned studies in the case of wound epithelialization in gingiva, with weighted mean difference (MD) of –0.28, [95% confidence interval (CI): –0.37, –0.19, P < 0.001], periodontium 1 day postoperative, with weighted MD of –0.56 (95% CI: –0.84, –0.27, P < 0.001) and 7 days postoperative, with weighted MD of –0.73 (95% CI: –0.97, –0.49, P < 0.001). In the cases of postoperative pain, LLLT has significantly declined pain in comparison with control group with weighted MD of –0.47 (95% CI: –0.69, –0.24, P < 0.001) for 7 days postoperative and –0.55 (95% CI: –0.96, –0.13, P = 0.005) 14 days postoperatively.
Conclusions: LLLT can be used as a promising tool in oral surgeries because of its inevitable capability in accelerating wound healing and reducing intraoperative pain.
Collapse
Affiliation(s)
- Seyyedi Seyyed Amir
- Dental Faculty, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Taram Saman
- Dental Faculty, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Mohammad Heydari
- Department of Epidemiology, Medical Faculty, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Rohollah Valizadeh
- Department of Biostatistics and Epidemiology, School of Medicine, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| |
Collapse
|
24
|
Giant Multinucleated Cells in Aging and Senescence-An Abridgement. BIOLOGY 2022; 11:biology11081121. [PMID: 35892977 PMCID: PMC9332840 DOI: 10.3390/biology11081121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Aging is a progressive decline of an organism over time. In contrast, senescence occurs throughout an organism’s lifespan. It is a cell-cycle arrest preventing the proliferation of damaged cells. Cellular and molecular senescence timing is crucial for the pace of aging and disease development and progression. The accumulation of senescent cells during a lifespan leads to organismal senescence. Senescent multinucleated giant cells are present in many age-related diseases and cancer. Although senescence was assumed to be irreversible, studies now show that senescent multinucleated giant cells overcome senescence in various cancers, becoming the source of highly aggressive mononucleated stem-like cells, which divide and initiate tumor development and progression. Abstract This review introduces the subject of senescence, aging, and the formation of senescent multinucleated giant cells. We define senescence and aging and describe how molecular and cellular senescence leads to organismal senescence. We review the latest information on senescent cells’ cellular and molecular phenotypes. We describe molecular and cellular features of aging and senescence and the role of multinucleated giant cells in aging-related conditions and cancer. We explain how multinucleated giant cells form and their role in aging arteries and gonads. We also describe how multinucleated giant cells and the reversibility of senescence initiate cancer and lead to cancer progression and metastasis. We also describe molecules and pathways regulating aging and senescence in model systems and their applicability to clinical therapies in age-related diseases.
Collapse
|
25
|
Yi Y, Hu WJ, Zhao CR, Xiong MC, Zhang Q, Wu YP, Zeng H, Zeng N. The protective role of FTY720 in promoting survival of allograft fat in mice. Kaohsiung J Med Sci 2022; 38:889-896. [PMID: 35833419 DOI: 10.1002/kjm2.12570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 11/07/2022] Open
Abstract
Fat transplantation is widely used for soft-tissue filling and wound repair. Owing to the biological changes in adipocytes in some metabolic diseases, allograft fat can provide a better source of donor fat than autologous fat. Fingolimod (FTY720) possesses a powerful immunomodulatory function. This study aimed to investigate the protective effect of FTY720 in allogeneic fat transplantation. C57BL/6J mice that received allografts were randomly divided into two groups and treated with saline and FTY720, respectively. Fat graft samples were obtained at 1, 6, and 20 weeks posttransplantation. Graft volumes, graft structure, and immune cells were estimated using histological examination, immunohistochemistry, staining immunofluorescence (IF), and quantitative real-time polymerase chain reaction (qRT-PCR). Inflammatory cytokine mRNA expression in grafts was detected by qRT-PCR. FTY720 treatment significantly enhanced allograft retention, structural integrity, and neovascularization, thereby demonstrating the potential of FTY720 in improving graft survival. Further IF staining showed that FTY720 increased regulatory T cell infiltration and reduced macrophage infiltration to some extent. FTY720 treatment also enhanced the expression of the anti-inflammatory cytokines interleukin (IL)-4 and IL-10 and weakened the expression of the pro-inflammatory cytokines TNF-α and IL-6. Furthermore, FTY720 treatment upregulated the expression of CD31 positive cells. This study demonstrated the potential efficacy of FTY720 in improving the graft survival rate of syngeneic fat allograft models, possibly by suppressing immune rejection and promoting angiogenesis. Therefore, this study offers key insights into the potential application of a drug-assisted strategy to prolong allograft fat survival.
Collapse
Affiliation(s)
- Yi Yi
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei-Jie Hu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chong-Ru Zhao
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming-Chen Xiong
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi-Ping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hong Zeng
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ning Zeng
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
26
|
Zou Y, Chen Z, Zhang X, Yu J, Xu H, Cui J, Li Y, Niu Y, Zhou C, Xia J, Wu J. Targeting PCSK9 Ameliorates Graft Vascular Disease in Mice by Inhibiting NLRP3 Inflammasome Activation in Vascular Smooth Muscle Cells. Front Immunol 2022; 13:894789. [PMID: 35720337 PMCID: PMC9204514 DOI: 10.3389/fimmu.2022.894789] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background Graft vascular disease (GVD), which limits the long-term survival of patients after solid-organ transplantation, is associated with both immune responses and nonimmune factors, including dyslipidemia. Recent studies have shown that inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9), a U.S. Federal Drug Administration-approved treatment for hyperlipidemia, reduces cardiovascular events, regulates inflammatory responses, and enhances the efficacy of immune checkpoint therapy in cancer treatment through a cholesterol-independent mechanism. However, whether targeting PCSK9 is a potential therapeutic strategy for GVD remains unknown. Methods Serum samples and grafts were harvested from male mice undergoing abdominal aortic transplantation. The pathological alterations in the aortic grafts were detected by hematoxylin and eosin staining, Verhoeff’s Van Gieson staining, and Masson staining. Inflammatory cell infiltration and proinflammatory cytokine expression in the aortic grafts were detected by immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. The regulatory effects of PCSK9 on vascular smooth muscle cell (VSMC) migration and proliferation were examined by transwell, EdU, and western blot assays. The effect of Evolocumab, a PCSK9 inhibitor, on GVD in humanized PCSK9 mice was also evaluated. Results PCSK9 was upregulated in the serum, grafts, and liver of mice in the allograft group subjected to abdominal aortic transplantation. Pcsk9 knockout significantly reduced vascular stenosis, the intimal hyperplasia area and collagen deposition. Pcsk9 depletion also inhibited macrophage recruitment and the mRNA expression of proinflammatory cytokines in aortic grafts. Furthermore, Pcsk9 knockout suppressed the migration and proliferation of VSMCs, which was related to the inhibition of NLRP3 inflammasome activation. Meanwhile, Evolocumab significantly ameliorated GVD in humanized PCSK9 mice. Conclusion PCSK9 is upregulated in a mouse model of GVD, and Pcsk9 knockout reduces vascular occlusion, suggesting that PCSK9 may be a promising target for the treatment of GVD.
Collapse
Affiliation(s)
- Yanqiang Zou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jikai Cui
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Abar B, Kwon N, Allen NB, Lau T, Johnson LG, Gall K, Adams SB. Outcomes of Surgical Reconstruction Using Custom 3D-Printed Porous Titanium Implants for Critical-Sized Bone Defects of the Foot and Ankle. Foot Ankle Int 2022; 43:750-761. [PMID: 35209733 PMCID: PMC9177519 DOI: 10.1177/10711007221077113] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Treating critically sized defects (CSDs) of bone remains a significant challenge in foot and ankle surgery. Custom 3D-printed implants are being offered to a small but growing subset of patients as a salvage procedure in lieu of traditional alternates such as structural allografts after the patient has failed prior procedures. The long-term outcomes of 3D-printed implants are still unknown and understudied because of the limited number of cases and short follow-up durations. The purpose of this study was to evaluate the outcomes of patients who received custom 3D-printed implants to treat CSDs of the foot and ankle in an attempt to aid surgeons in selecting appropriate surgical candidates. METHODS This was a retrospective study to assess surgical outcomes of patients who underwent implantation of a custom 3D-printed implant made with medical-grade titanium alloy powder (Ti-6Al-4V) to treat CSDs of the foot and ankle between June 1, 2014, and September 30, 2019. All patients had failed previous nonoperative or operative management before proceeding with treatment with a custom 3D-printed implant. Univariate and multivariate odds ratios (ORs) of a secondary surgery and implant removal were calculated for perioperative variables. RESULTS There were 39 cases of patients who received a custom 3D-printed implant with at least 1 year of follow-up. The mean follow-up time was 27.0 (12-74) months. Thirteen of 39 cases (33.3%) required a secondary surgery and 10 of 39 (25.6%) required removal of the implant because of septic nonunion (6/10) or aseptic nonunion (4/10). The mean time to secondary surgery was 10 months (1-22). Multivariate logistic regression revealed that patients with neuropathy were more likely to require a secondary surgery with an OR of 5.76 (P = .03). CONCLUSION This study demonstrated that 74% of patients who received a custom 3D-printed implant for CSDs did not require as subsequent surgery (minimum of 1-year follow-up). Neuropathy was significantly associated with the need for a secondary surgery. This is the largest series to date demonstrating the efficacy of 3D-printed custom titanium implants. As the number of cases using patient-specific 3D-printed titanium implant increases, larger cohorts of patients should be studied to identify other high-risk groups and possible interventions to improve surgical outcomes. LEVEL OF EVIDENCE Level IV, case series.
Collapse
Affiliation(s)
- Bijan Abar
- Dept. of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC,Dept. of Mechanical Engineering and Materials Science, Duke University, Durham, NC
| | - Nicholas Kwon
- Dept. of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC
| | - Nicholas B. Allen
- Dept. of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC
| | - Trent Lau
- Dept. of Mechanical Engineering and Materials Science, Duke University, Durham, NC
| | - Lindsey G. Johnson
- Dept. of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC
| | - Ken Gall
- Dept. of Mechanical Engineering and Materials Science, Duke University, Durham, NC
| | - Samuel B. Adams
- Dept. of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC
| |
Collapse
|
28
|
Cortvrindt C, Speeckaert R, Delanghe JR, Speeckaert MM. Urinary Epidermal Growth Factor: A Promising "Next Generation" Biomarker in Kidney Disease. Am J Nephrol 2022; 53:372-387. [PMID: 35537382 DOI: 10.1159/000524586] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/06/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND The epidermal growth factor (EGF) is a globular protein that is generated in the kidney, especially in the loop of Henle and the distal convoluted tubule. While EGF is nonexistent or hardly detectable in plasma, it is present in normal people's urine. Until now, risk stratification and chronic kidney disease (CKD) diagnosis have relied on estimated glomerular filtration rate (eGFR) and urine albumin/creatinine ratio (uACR), both of which reflect glomerular function or impairment. Tubular dysfunction, on the other hand, may also be associated with renal failure. SUMMARY Because decreased urine EGF (uEGF) indicates tubular atrophy and interstitial fibrosis, this biomarker, together with eGFR and uACR, may be employed in the general population for risk assessment and diagnosis of CKD. uEGF levels have been shown to correlate with intrarenal EGF mRNA expression and have been found to decrease in a variety of glomerular and non-glomerular kidney disorders. KEY MESSAGE uEGF, uEGF/creatinine, or uEGF/monocyte chemotactic peptide-1 are possible "new generation" biomarkers linked to a variety of kidney diseases that deserve further investigation as a single biomarker or as part of a multi-biomarker panel.
Collapse
Affiliation(s)
| | | | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
- Research Foundation-Flanders (FWO), Brussels, Belgium
| |
Collapse
|
29
|
Yu S, Lu J. Macrophages in transplant rejection. Transpl Immunol 2022; 71:101536. [PMID: 35017096 DOI: 10.1016/j.trim.2022.101536] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 11/17/2022]
Abstract
Transplant rejection is one of the primary factors leading to loss of allograft function, and macrophages are involved in allograft rejection. Macrophages polarize into different phenotypes according to stimulation by different external factors. Different types of macrophages play distinct roles in inflammation, tumors, and autoimmune diseases and are involved in transplant rejection. In this review, we introduce the origin and migration of macrophages, outline the classification of macrophages and their polarization mechanisms, and review the currently understood mechanisms of their involvement in transplant rejection. Finally, we discuss the regulation of macrophage polarization and miRNA expression with respect to transplant rejection, which is important for the development of new anti-rejection therapies.
Collapse
Affiliation(s)
- Shaochen Yu
- Department of Emergency and Critical Care Medicine, Guangdong Second Provincial General Hospital, No. 466, Xingang Middle Road, Haizhu District, Guangzhou, Guangdong 510317, China.
| | - Jian Lu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, Anhui 230022, China.
| |
Collapse
|
30
|
Shi T, Roskin K, Baker BM, Woodle ES, Hildeman D. Advanced Genomics-Based Approaches for Defining Allograft Rejection With Single Cell Resolution. Front Immunol 2021; 12:750754. [PMID: 34721421 PMCID: PMC8551864 DOI: 10.3389/fimmu.2021.750754] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Solid organ transplant recipients require long-term immunosuppression for prevention of rejection. Calcineurin inhibitor (CNI)-based immunosuppressive regimens have remained the primary means for immunosuppression for four decades now, yet little is known about their effects on graft resident and infiltrating immune cell populations. Similarly, the understanding of rejection biology under specific types of immunosuppression remains to be defined. Furthermore, development of innovative, rationally designed targeted therapeutics for mitigating or preventing rejection requires a fundamental understanding of the immunobiology that underlies the rejection process. The established use of microarray technologies in transplantation has provided great insight into gene transcripts associated with allograft rejection but does not characterize rejection on a single cell level. Therefore, the development of novel genomics tools, such as single cell sequencing techniques, combined with powerful bioinformatics approaches, has enabled characterization of immune processes at the single cell level. This can provide profound insights into the rejection process, including identification of resident and infiltrating cell transcriptomes, cell-cell interactions, and T cell receptor α/β repertoires. In this review, we discuss genomic analysis techniques, including microarray, bulk RNAseq (bulkSeq), single-cell RNAseq (scRNAseq), and spatial transcriptomic (ST) techniques, including considerations of their benefits and limitations. Further, other techniques, such as chromatin analysis via assay for transposase-accessible chromatin sequencing (ATACseq), bioinformatic regulatory network analyses, and protein-based approaches are also examined. Application of these tools will play a crucial role in redefining transplant rejection with single cell resolution and likely aid in the development of future immunomodulatory therapies in solid organ transplantation.
Collapse
Affiliation(s)
- Tiffany Shi
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Krishna Roskin
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Brian M Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, United States
| | - E Steve Woodle
- Division of Transplantation, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - David Hildeman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
31
|
Toma AI, Fuller JM, Willett NJ, Goudy SL. Oral wound healing models and emerging regenerative therapies. Transl Res 2021; 236:17-34. [PMID: 34161876 PMCID: PMC8380729 DOI: 10.1016/j.trsl.2021.06.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022]
Abstract
Following injury, the oral mucosa undergoes complex sequences of biological healing processes to restore homeostasis. While general similarities exist, there are marked differences in the genomics and kinetics of wound healing between the oral cavity and cutaneous epithelium. The lack of successful therapy for oral mucosal wounds has influenced clinicians to explore alternative treatments and potential autotherapies to enhance intraoral healing. The present in-depth review discusses current gold standards for oral mucosal wound healing and compares endogenous factors that dictate the quality of tissue remodeling. We conducted a review of the literature on in vivo oral wound healing models and emerging regenerative therapies published during the past twenty years. Studies were evaluated by injury models, therapy interventions, and outcome measures. The success of therapeutic approaches was assessed, and research outcomes were compared based on current hallmarks of oral wound healing. By leveraging therapeutic advancements, particularly within in cell-based biomaterials and immunoregulation, there is great potential for translational therapy in oral tissue regeneration.
Collapse
Affiliation(s)
- Afra I Toma
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, USA.
| | - Julia M Fuller
- Department of Biology, Emory University, Atlanta, GA, USA.
| | - Nick J Willett
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, USA; Department of Orthopedics, Emory University, Atlanta, GA, USA; The Atlanta Veterans Affairs Medical Center, Atlanta, GA, USA.
| | - Steven L Goudy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, USA; Department of Otolaryngology, Emory University, Atlanta, GA, USA; Department of Pediatric Otolaryngology, Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
32
|
Lin CW, Wu PT, Liu KT, Fan YJ, Yu J. An Environmental Friendly Tapioca Starch-Alginate Cultured Scaffold as Biomimetic Muscle Tissue. Polymers (Basel) 2021; 13:polym13172882. [PMID: 34502923 PMCID: PMC8433989 DOI: 10.3390/polym13172882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
Natural porous scaffolds have been studied and developed for decades in biomedical science in order to support cells with a simulated extracellular matrix in natural tissue as an ideal environment. Such three-dimensional scaffolds provide many degrees of freedom to modulate cell activity, such as porosity, pore size, mechanical strength, biodegradability, and biocompatibility. In this study, a porous, three-dimensional material of alginate incorporating tapioca starch was fabricated. A particular freeze-gelation method was applied to homogenously mix starch in the alginate, and the concentration was controllable. This pure natural composite porous scaffold was characterized physically and biologically. The synergistic functions, including biocompatibility, biodegradability, cell adhesion, and cell proliferation, were also investigated. A myogenic differentiation model further verified that the composite porous scaffold provided a suitable environment, supporting the differentiation effect in the myogenic process. The positive results demonstrated that this novel material has the potential to serve as a biomedical or clean meat appliance.
Collapse
Affiliation(s)
- Che-Wei Lin
- School of Biomedical Engineering, Taipei Medical University, Taipei 10675, Taiwan;
| | - Po-Ting Wu
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Kuan-Ting Liu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan;
| | - Yu-Jui Fan
- School of Biomedical Engineering, Taipei Medical University, Taipei 10675, Taiwan;
- Correspondence: (Y.-J.F.); (J.Y.); Tel.: +886-2-6638-2736 (Y.-J.F.); +886-2-3366-9477 (J.Y.)
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan;
- Correspondence: (Y.-J.F.); (J.Y.); Tel.: +886-2-6638-2736 (Y.-J.F.); +886-2-3366-9477 (J.Y.)
| |
Collapse
|
33
|
Integrated Metabolomics and Proteomics Analyses in the Local Milieu of Islet Allografts in Rejection versus Tolerance. Int J Mol Sci 2021; 22:ijms22168754. [PMID: 34445459 PMCID: PMC8395897 DOI: 10.3390/ijms22168754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
An understanding of the immune mechanisms that lead to rejection versus tolerance of allogeneic pancreatic islet grafts is of paramount importance, as it facilitates the development of innovative methods to improve the transplant outcome. Here, we used our established intraocular islet transplant model to gain novel insight into changes in the local metabolome and proteome within the islet allograft’s immediate microenvironment in association with immune-mediated rejection or tolerance. We performed integrated metabolomics and proteomics analyses in aqueous humor samples representative of the graft’s microenvironment under each transplant outcome. The results showed that several free amino acids, small primary amines, and soluble proteins related to the Warburg effect were upregulated or downregulated in association with either outcome. In general, the observed shifts in the local metabolite and protein profiles in association with rejection were consistent with established pro-inflammatory metabolic pathways and those observed in association with tolerance were immune regulatory. Taken together, the current findings further support the potential of metabolic reprogramming of immune cells towards immune regulation through targeted pharmacological and dietary interventions against specific metabolic pathways that promote the Warburg effect to prevent the rejection of transplanted islets and promote their immune tolerance.
Collapse
|
34
|
Kloc M, Uosef A, Kubiak JZ, Ghobrial RM. Role of Macrophages and RhoA Pathway in Atherosclerosis. Int J Mol Sci 2020; 22:ijms22010216. [PMID: 33379334 PMCID: PMC7796231 DOI: 10.3390/ijms22010216] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
The development, progression, or stabilization of the atherosclerotic plaque depends on the pro-inflammatory and anti-inflammatory macrophages. The influx of the macrophages and the regulation of macrophage phenotype, inflammatory or anti-inflammatory, are controlled by the small GTPase RhoA and its downstream effectors. Therefore, macrophages and the components of the RhoA pathway are attractive targets for anti-atherosclerotic therapies, which would inhibit macrophage influx and inflammatory phenotype, maintain an anti-inflammatory environment, and promote tissue remodeling and repair. Here, we discuss the recent findings on the role of macrophages and RhoA pathway in the atherosclerotic plaque formation and resolution and the novel therapeutic approaches.
Collapse
Affiliation(s)
- Malgorzata Kloc
- Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
- M.D. Anderson Cancer Center, Department of Genetics, University of Texas, Houston, TX 77030, USA
- Correspondence:
| | - Ahmed Uosef
- Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Jacek Z. Kubiak
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), 01-001 Warsaw, Poland;
- Cell Cycle Group, Institute of Genetics and Development of Rennes (IGDR), Faculty of Medicine, Univ Rennes, CNRS, UMR 6290, 35000 Rennes, France
| | - Rafik Mark Ghobrial
- Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
35
|
Kloc M, Uosef A, Kubiak JZ, Ghobrial RM. Macrophage Proinflammatory Responses to Microorganisms and Transplanted Organs. Int J Mol Sci 2020; 21:ijms21249669. [PMID: 33352942 PMCID: PMC7766629 DOI: 10.3390/ijms21249669] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Tissue-resident macrophages and those conscripted from the blood/bone marrow are professional phagocytes. They play a role in tissue homeostasis, replacement, and healing, and are the first-line responders to microbial (viral, bacterial, and fungi) infections. Intrinsic ameboid-type motility allows non-resident macrophages to move to the site of inflammation or injury, where, in response to the inflammatory milieu they perform the anti-microbial and/or tissue repair functions. Depending on the need and the signaling from the surrounding tissue and other immune cells, macrophages acquire morphologically and functionally different phenotypes, which allow them to play either pro-inflammatory or anti-inflammatory functions. As such, the macrophages are also the major players in the rejection of the transplanted organs making an excellent target for the novel anti-rejection therapies in clinical transplantation. In this review, we describe some of the less covered aspects of macrophage response to microbial infection and organ transplantation.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
- MD Anderson Cancer Center, Department of Genetics Houston, The University of Texas, Austin, TX 77030, USA
- Correspondence:
| | - Ahmed Uosef
- The Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
| | - Jacek Z. Kubiak
- Laboratory of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), 01-163 Warsaw, Poland;
- Cell Cycle Group, Faculty of Medicine, Institute of Genetics and Development of Rennes (IGDR), University Rennes, UMR 6290, CNRS, 35043 Rennes, France
| | - Rafik M. Ghobrial
- The Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
36
|
Ordikhani F, Pothula V, Sanchez-Tarjuelo R, Jordan S, Ochando J. Macrophages in Organ Transplantation. Front Immunol 2020; 11:582939. [PMID: 33329555 PMCID: PMC7734247 DOI: 10.3389/fimmu.2020.582939] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Current immunosuppressive therapy has led to excellent short-term survival rates in organ transplantation. However, long-term graft survival rates are suboptimal, and a vast number of allografts are gradually lost in the clinic. An increasing number of animal and clinical studies have demonstrated that monocytes and macrophages play a pivotal role in graft rejection, as these mononuclear phagocytic cells recognize alloantigens and trigger an inflammatory cascade that activate the adaptive immune response. Moreover, recent studies suggest that monocytes acquire a feature of memory recall response that is associated with a potent immune response. This form of memory is called “trained immunity,” and it is retained by mechanisms of epigenetic and metabolic changes in innate immune cells after exposure to particular ligands, which have a direct impact in allograft rejection. In this review article, we highlight the role of monocytes and macrophages in organ transplantation and summarize therapeutic approaches to promote tolerance through manipulation of monocytes and macrophages. These strategies may open new therapeutic opportunities to increase long-term transplant survival rates in the clinic.
Collapse
Affiliation(s)
- Farideh Ordikhani
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Venu Pothula
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rodrigo Sanchez-Tarjuelo
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stefan Jordan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jordi Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Immunología de Trasplantes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
37
|
Matsumoto N, Kobayashi A, Yamamoto I, Tanno Y, Koike Y, Miki J, Kimura T, Yamaguchi Y, Yamamoto H, Yokoo T. Kidney Transplant Graftectomy by Severe Mixed-Type Rejection with Acute and Chronic Active Vascular Lesions at Entire Levels of the Renal Vasculature. Nephron Clin Pract 2020; 144 Suppl 1:59-64. [PMID: 33221798 DOI: 10.1159/000512144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/08/2020] [Indexed: 11/19/2022] Open
Abstract
Vascular lesions related to allograft rejection have a big impact on graft survival. As such, investigation of these lesions is important to understand the pathophysiology of rejection and its management. We report a case of kidney transplant graftectomy by severe mixed-type rejection with acute and chronic active vascular lesions caused by non-adherence to immunosuppressive treatment. The patient presented is a 29-year-old male who received a kidney transplantation in July 2011 (ABO compatible) from his father. He then did not come to the hospital for 3 months prior to his admission and also made his own decision to stop his medication regimen. On October 2013, the patient came to the hospital with dyspnea, nausea, and vomiting and had significant renal dysfunction (serum Cr 30.4 mg/dL, BUN 191 mg/dL). A kidney graft biopsy showed cortical necrosis with severe interstitial hemorrhage and thrombotic microangiopathy (TMA). Despite steroid pulse therapy, kidney graft function did not recover, and the patient underwent a subsequent graft resection. The resected kidney graft displayed various vascular lesions from the renal artery to the interlobular arteries and arterioles including endarteritis, TMA, fibrinoid necrosis, and transplant arteriopathy. This case shows the detailed pathological findings of the vascular lesions in the entire artery tree of kidney allograft, and the pathophysiology is discussed.
Collapse
Affiliation(s)
- Naoto Matsumoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Akimitsu Kobayashi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan,
| | - Izumi Yamamoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yudo Tanno
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yusuke Koike
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Jun Miki
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takahiro Kimura
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Hiroyasu Yamamoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
38
|
Chen W, Chen W, Chen S, Uosef A, Ghobrial RM, Kloc M. Fingolimod (FTY720) prevents chronic rejection of rodent cardiac allografts through inhibition of the RhoA pathway. Transpl Immunol 2020; 65:101347. [PMID: 33131698 DOI: 10.1016/j.trim.2020.101347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022]
Abstract
The Fingolimod (FTY720, Gilenya) is clinically approved for the treatment of multiple sclerosis (MS). Its therapeutic effect on MS is based on the ability to bind sphingosine 1-phosphate (S1P) receptors and block the exit of immune cells from the lymphoid organs, thus preventing immune cell-dependent injury to the central nervous system (CNS). We showed recently that, besides the S1P-related activity, the FTY720 also down-regulates RhoA, which is a master regulator of the actin cytoskeleton. Our previous studies showed that FTY720 also down-regulates Rictor, which is a signature molecule of mTORC2 complex, which regulates RhoA and dictates actin cytoskeleton specificity. Because, our previous studies showed that chronic rejection correlates with the upregulation of RhoA and mTORC2 components and that the inhibition of RhoA pathway prevents chronic rejection, here we studied the effect of FTY720 on the chronic rejection of rat and mouse cardiac allografts. We show that FTY720 in conjunction with the inhibitors of early T cell response, (CTA4-Ig in mice and Everolimus in rats) blocks macrophage infiltration into the grafts and prevents chronic rejection of rat and mouse cardiac transplants. This indicates that FTY720 may be repurposed from the MS application to the clinical transplantation as an anti-chronic rejection drug.
Collapse
Affiliation(s)
- Wei Chen
- The Houston Methodist Research Institute, Houston, TX, USA; Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Wenhao Chen
- The Houston Methodist Research Institute, Houston, TX, USA; The Methodist Hospital, Houston, TX, USA
| | - Song Chen
- The Houston Methodist Research Institute, Houston, TX, USA
| | - Ahmed Uosef
- The Houston Methodist Research Institute, Houston, TX, USA; The Methodist Hospital, Houston, TX, USA
| | - Rafik M Ghobrial
- The Houston Methodist Research Institute, Houston, TX, USA; The Methodist Hospital, Houston, TX, USA.
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA; The Methodist Hospital, Houston, TX, USA; The University of Texas, M.D. Anderson Cancer Center, Department of Genetics, Houston, TX, USA.
| |
Collapse
|
39
|
Yu J, Xu H, Cui J, Chen S, Zhang H, Zou Y, Zhao J, Le S, Jiang L, Chen Z, Liu H, Zhang D, Xia J, Wu J. PLK1 Inhibition alleviates transplant-associated obliterative bronchiolitis by suppressing myofibroblast differentiation. Aging (Albany NY) 2020; 12:11636-11652. [PMID: 32541091 PMCID: PMC7343459 DOI: 10.18632/aging.103330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Chronic allograft dysfunction (CAD) resulting from fibrosis is the major limiting factor for long-term survival of lung transplant patients. Myofibroblasts promote fibrosis in multiple organs, including the lungs. In this study, we identified PLK1 as a promoter of myofibroblast differentiation and investigated the mechanism by which its inhibition alleviates transplant-associated obliterative bronchiolitis (OB) during CAD. High-throughput bioinformatic analyses and experiments using the murine heterotopic tracheal transplantation model revealed that PLK1 is upregulated in grafts undergoing CAD as compared with controls, and that inhibiting PLK1 alleviates OB in vivo. Inhibition of PLK1 in vitro reduced expression of the specific myofibroblast differentiation marker α-smooth muscle actin (α-SMA) and decreased phosphorylation of both MEK and ERK. Importantly, we observed a similar phenomenon in human primary fibroblasts. Our results thus highlight PLK1 as a promising therapeutic target for alleviating transplant-associated OB through suppression of TGF-β1-mediated myofibroblast differentiation.
Collapse
Affiliation(s)
- Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Heng Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jikai Cui
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Shanshan Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Hao Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yanqiang Zou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jing Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Sheng Le
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Lang Jiang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Hao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Dan Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
40
|
Uosef A, Vaughn N, Chu X, Elshawwaf M, Abdelshafy AAA, Elsaid KMK, Ghobrial RM, Kloc M. Siponimod (Mayzent) Downregulates RhoA and Cell Surface Expression of the S1P1 and CX3CR1 Receptors in Mouse RAW 264.7 Macrophages. Arch Immunol Ther Exp (Warsz) 2020; 68:19. [PMID: 32488676 DOI: 10.1007/s00005-020-00584-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022]
Abstract
The Siponimod (Mayzent) is a newly developed drug, similar to Fingolimod (FTY720) but with fewer side effects, approved by the Food and Drug Administration for the treatment of multiple sclerosis (MS). The therapeutic effect of siponimod and FTY720 in MS relies on their inhibitory effect on the sphingosine 1-phosphate (S1P) signaling. These drugs bind to the S1P receptors and block the CCL2 chemokine pathway that is responsible for the exit of the immune cells from the lymphoid organs, and circulation, thus preventing immune cell-dependent injury to the nervous system. We recently found that FTY720 beside its effect on the S1P pathway also blocks the RhoA pathway, which is involved in the actin cytoskeleton-related function of macrophages, such as expression/recycling of fractalkine (CX3CL1) receptors (CX3CR1), which direct macrophages to the transplanted organs during the development of the long-term (chronic) rejection. Here we tested the effects of siponimod on the RhoA pathway and the expression of the S1P1 and CX3CR1 receptors in mouse RAW 264.7 macrophages. We found that siponimod downregulates the expression of RhoA protein and decreases the cell surface expression of S1P1 and CX3CR1 receptors. This newly discovered crosstalk between S1P and RhoA/CX3CR1 pathways may help in the development of novel anti-chronic rejection therapies in clinical transplantation.
Collapse
Affiliation(s)
- Ahmed Uosef
- The Houston Methodist Research Institute, Houston, TX, USA.,Department of Surgery, Houston Methodist Hospital, 6550 Fannin St., Houston, TX, 77030, USA
| | - Nicole Vaughn
- The Houston Methodist Research Institute, Houston, TX, USA
| | - Xiufeng Chu
- The Houston Methodist Research Institute, Houston, TX, USA
| | - Mahmoud Elshawwaf
- The Houston Methodist Research Institute, Houston, TX, USA.,Department of Surgery, Houston Methodist Hospital, 6550 Fannin St., Houston, TX, 77030, USA
| | - Ahmed Adel Abbas Abdelshafy
- The Houston Methodist Research Institute, Houston, TX, USA.,Department of Surgery, Houston Methodist Hospital, 6550 Fannin St., Houston, TX, 77030, USA.,Department of General Surgery, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Kamal Mamdoh Kamal Elsaid
- The Houston Methodist Research Institute, Houston, TX, USA.,Department of Surgery, Houston Methodist Hospital, 6550 Fannin St., Houston, TX, 77030, USA.,Department of General Surgery, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Rafik Mark Ghobrial
- The Houston Methodist Research Institute, Houston, TX, USA. .,Department of Surgery, Houston Methodist Hospital, 6550 Fannin St., Houston, TX, 77030, USA.
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA. .,Department of Surgery, Houston Methodist Hospital, 6550 Fannin St., Houston, TX, 77030, USA. .,Department of Genetics, The University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
41
|
Allocco JB, Alegre ML. Exploiting immunometabolism and T cell function for solid organ transplantation. Cell Immunol 2020; 351:104068. [PMID: 32139072 PMCID: PMC7150626 DOI: 10.1016/j.cellimm.2020.104068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/25/2022]
Abstract
Cellular metabolism is central to T cell function and proliferation, with most of the research to date focusing on cancer and autoimmunity. Cellular metabolism is associated with a host of physiological phenomena, from epigenetic changes, to cellular function and fate. For the purpose of this review, we will discuss the metabolism of T cells relating to their differentiation and function. We will cover a variety of metabolic processes, ranging from glycolysis to amino acid metabolism. Understanding how T cell metabolism informs T cell function may be useful to understand alloimmune responses and design novel therapies to improve graft outcome.
Collapse
Affiliation(s)
- Jennifer B Allocco
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, IL 60637, United States
| | - Maria-Luisa Alegre
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, IL 60637, United States.
| |
Collapse
|
42
|
A Review on the Function and Regulation of ARHGDIB/RhoGDI2 Expression Including the Hypothetical Role of ARHGDIB/RhoGDI2 Autoantibodies in Kidney Transplantation. Transplant Direct 2020; 6:e548. [PMID: 32548242 PMCID: PMC7213606 DOI: 10.1097/txd.0000000000000993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022] Open
Abstract
Challenging and still unsolved problems in kidney transplantation are risk stratification and the treatment of humoral rejection. Antibody-mediated rejection is an important cause of early and chronic rejection. The impact of donor-specific HLA antibodies on antibody-mediated rejection–causing graft damage is well known, but the clinical relevance of non-HLA antibodies remains unclear. Recently, in 2 independent studies, a new correlation was found between the presence of non-HLA anti-Rho guanosine diphosphate dissociation inhibitor 2 (ARHGDIB) antibodies and increased graft failure. RhoGDI2, another name for ARHGDIB, is a negative regulator of the Rho guanosine triphosphate (RhoGTP)ases RhoA, Rac1m, and Cdc42, whose main function is regulating the actin network in a variety of cells. RhoGDI2 is mainly expressed intracellularly, and some expression is observed on the cell surface. Currently, there is no mechanism known to explain this correlation. Additionally, the reason why the antibodies are produced is unknown. In this review, we will address these questions, provide an overview of other diseases in which these antibodies are prevalent, and describe the physiological role of RhoGDI2 itself. If the mechanism and impact of RhoGDI2 antibodies in kidney graft failure are known, improved risk stratification can be provided to decrease the rate of donor kidney graft failure.
Collapse
|
43
|
Lo MW, Woodruff TM. Complement: Bridging the innate and adaptive immune systems in sterile inflammation. J Leukoc Biol 2020; 108:339-351. [PMID: 32182389 DOI: 10.1002/jlb.3mir0220-270r] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/07/2020] [Accepted: 02/19/2020] [Indexed: 12/24/2022] Open
Abstract
The complement system is a collection of soluble and membrane-bound proteins that together act as a powerful amplifier of the innate and adaptive immune systems. Although its role in infection is well established, complement is becoming increasingly recognized as a key contributor to sterile inflammation, a chronic inflammatory process often associated with noncommunicable diseases. In this context, damaged tissues release danger signals and trigger complement, which acts on a range of leukocytes to augment and bridge the innate and adaptive immune systems. Given the detrimental effect of chronic inflammation, the complement system is therefore well placed as an anti-inflammatory drug target. In this review, we provide a general outline of the sterile activators, effectors, and targets of the complement system and a series of examples (i.e., hypertension, cancer, allograft transplant rejection, and neuroinflammation) that highlight complement's ability to bridge the 2 arms of the immune system.
Collapse
Affiliation(s)
- Martin W Lo
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
44
|
Wosik J, Suarez-Villagran M, Miller JH, Ghobrial RM, Kloc M. Macrophage phenotype bioengineered by magnetic, genetic, or pharmacologic interference. Immunol Res 2019; 67:1-11. [PMID: 30649660 DOI: 10.1007/s12026-019-9066-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In all eukaryotes, the cell shape depends on the actin filament cytoskeleton, which is regulated by the small GTPase RhoA. It is well known that the cell shape determines cell function and behavior. Inversely, any change in the cell behavior and/or function reverberates at the cell shape. In this review, we describe how mechanical/magnetic, genetic, or pharmacologic interference with the actin cytoskeleton enforces changes in cell shape and function and how such techniques can be used to control the phenotype and functions of immune cells such as macrophages and to develop novel anti-cancer and anti-rejection clinical therapies.
Collapse
Affiliation(s)
- Jarek Wosik
- Electrical and Computer Engineering Department, University of Houston, Houston, TX, 77204, USA. .,Texas Center for Superconductivity, University of Houston, HSC Bldg., Rm. 202, Houston, TX, 77204-5002, USA.
| | - Martha Suarez-Villagran
- Electrical and Computer Engineering Department, University of Houston, Houston, TX, 77204, USA.,Physics Department, University of Houston, Houston, TX, USA
| | - John H Miller
- Electrical and Computer Engineering Department, University of Houston, Houston, TX, 77204, USA.,Physics Department, University of Houston, Houston, TX, USA
| | - Rafik M Ghobrial
- The Houston Methodist Research Institute, Houston, TX, 77030, USA.,Department of Surgery, The Houston Methodist Hospital, 6550 Fannin St., Houston, TX, 77030, USA
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, 77030, USA. .,Department of Surgery, The Houston Methodist Hospital, 6550 Fannin St., Houston, TX, 77030, USA. .,M.D. Anderson Cancer Center, Department of Genetics, The University of Texas, Houston, TX, 77030, USA.
| |
Collapse
|
45
|
Yepes-Calderón M, Sotomayor CG, Kretzler M, Gans ROB, Berger SP, Navis GJ, Ju W, Bakker SJL. Urinary Epidermal Growth Factor/Creatinine Ratio and Graft Failure in Renal Transplant Recipients: A Prospective Cohort Study. J Clin Med 2019; 8:1673. [PMID: 31614925 PMCID: PMC6832301 DOI: 10.3390/jcm8101673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 12/19/2022] Open
Abstract
Graft failure (GF) remains a significant limitation to improve long-term outcomes in renal transplant recipients (RTR). Urinary epidermal growth factor (uEGF) is involved in kidney tissue integrity, with a reduction of its urinary excretion being associated with fibrotic processes and a wide range of renal pathologies. We aimed to investigate whether, in RTR, uEGF is prospectively associated with GF. In this prospective cohort study, RTR with a functioning allograft ≥1-year were recruited and followed-up for three years. uEGF was measured in 24-hours urine samples and normalized by urinary creatinine (Cr). Its association with risk of GF was assessed by Cox-regression analyses and its predictive ability by C-statistic. In 706 patients, uEGF/Cr at enrollment was 6.43 [IQR 4.07-10.77] ng/mg. During follow-up, 41(6%) RTR developed GF. uEGF/Cr was inversely associated with the risk of GF (HR 0.68 [95% CI 0.59-0.78]; P < 0.001), which remained significant after adjustment for immunosuppressive therapy, estimated Glomerular Filtration Rate, and proteinuria. C-statistic of uEGF/Cr for GF was 0.81 (P < 0.001). We concluded that uEGF/Cr is independently and inversely associated with the risk of GF and depicts strong prediction ability for this outcome. Further studies seem warranted to elucidate whether uEGF might be a promising marker for use in clinical practice.
Collapse
Affiliation(s)
- Manuela Yepes-Calderón
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
| | - Camilo G Sotomayor
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
| | - Matthias Kretzler
- Department of Internal Medicine, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Rijk O B Gans
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
| | - Stefan P Berger
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
| | - Gerjan J Navis
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
| | - Wenjun Ju
- Department of Internal Medicine, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
46
|
Kildey K, Francis RS, Hultin S, Harfield M, Giuliani K, Law BMP, Wang X, See EJ, John G, Ungerer J, Wilkinson R, Kassianos AJ, Healy H. Specialized Roles of Human Natural Killer Cell Subsets in Kidney Transplant Rejection. Front Immunol 2019; 10:1877. [PMID: 31440252 PMCID: PMC6693357 DOI: 10.3389/fimmu.2019.01877] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/24/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Human natural killer (NK) cells are key functional players in kidney transplant rejection. However, the respective contributions of the two functionally distinct human NK cell subsets (CD56bright cytokine-producing vs. CD56dim cytotoxic effector) in episodes of allograft rejection remain uncertain, with current immunohistochemical methods unable to differentiate these discrete populations. We report the outcomes of an innovative multi-color flow cytometric-based approach to unequivocally define and evaluate NK cell subsets in human kidney allograft rejection. Methods: We extracted renal lymphocytes from human kidney transplant biopsies. NK cell subsets were identified, enumerated, and phenotyped by multi-color flow cytometry. Dissociation supernatants were harvested and levels of soluble proteins were determined using a multiplex bead-based assay. Results were correlated with the histopathological patterns in biopsies-no rejection, borderline cellular rejection, T cell-mediated rejection (TCMR), and antibody-mediated rejection (AMR). Results: Absolute numbers of only CD56bright NK cells were significantly elevated in TCMR biopsies. In contrast, both CD56bright and CD56dim NK cell numbers were significantly increased in biopsies with histopathological evidence of AMR. Notably, expression of the activation marker CD69 was only significantly elevated on CD56dim NK cells in AMR biopsies compared with no rejection biopsies, indicative of a pathogenic phenotype for this cytotoxic NK cell subset. In line with this, we detected significantly elevated levels of cytotoxic effector molecules (perforin, granzyme A, and granulysin) in the dissociation supernatants of biopsies with a histopathological pattern of AMR. Conclusions: Our results indicate that human NK cell subsets are differentially recruited and activated during distinct types of rejection, suggestive of specialized functional roles.
Collapse
Affiliation(s)
- Katrina Kildey
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | | | - Sebastian Hultin
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Princess Alexandra Hospital, Brisbane, QLD, Australia
| | | | - Kurt Giuliani
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Medical School, University of Queensland, Brisbane, QLD, Australia
| | - Becker M. P. Law
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Xiangju Wang
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Emily J. See
- Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - George John
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Jacobus Ungerer
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
| | - Ray Wilkinson
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Medical School, University of Queensland, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Andrew J. Kassianos
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Medical School, University of Queensland, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Helen Healy
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Medical School, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
47
|
Tong C, Xia J, Xie B, Li M, Du F, Li C, Li Y, Shan Z, Qi Z. Immunogenicity analysis of decellularized cardiac scaffolds after transplantation into rats. Regen Med 2019; 14:447-464. [PMID: 31070505 DOI: 10.2217/rme-2018-0139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: Cardiac extracellular matrix (cECM) scaffolds are promising biomaterials for clinical applications. Our aim is to determine the immunogenicity of decellularized scaffolds from different sources for use as artificial organs during organ transplantation. Materials & methods: We transplanted Lewis rats with syngeneic (Lewis rat cECM), allogeneic (BN rat cECM) or xenogeneic (hamster cECM) decellularized cardiac scaffolds. Acute vascular and cellular rejection was quantified by immunohistochemistry and immune cell infiltration. Results: BN rat and hamster hearts were rejected following transplantation. BN and hamster cECMs had similarly low immunogenicity compared with Lewis rat cECMs and did not lead to increased rejection. Conclusion: We found that scaffolds from all sources did not induce vascular or cellular rejection and exhibited low immunogenicity.
Collapse
Affiliation(s)
- Cailing Tong
- School of Life Science, Xiamen University, Fujian, 361102, China.,Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Junjie Xia
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Baiyi Xie
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Minghui Li
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Feifei Du
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Cheng Li
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Yaguang Li
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| | - Zhonggui Shan
- Department of Cardiac Surgery, The First Affiliated Hospital of Xiamen University, Fujian, 361003, China
| | - Zhongquan Qi
- Organ Transplantation Institute, Medical College, Xiamen University, Fujian, 361102, China.,Key Laboratory of Organ & Tissue Regeneration, Fujian Province, Fujian, 61102, China
| |
Collapse
|
48
|
Turner JE, Rickassel C, Healy H, Kassianos AJ. Natural Killer Cells in Kidney Health and Disease. Front Immunol 2019; 10:587. [PMID: 30972076 PMCID: PMC6443628 DOI: 10.3389/fimmu.2019.00587] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/05/2019] [Indexed: 02/02/2023] Open
Abstract
Natural killer (NK) cells are a specialized population of innate lymphocytes that have a major effector function in local immune responses. While their immunological functions in many inflammatory diseases are well established, comparatively little is still known about their roles in kidney homeostasis and disease. Our understanding of kidney NK cells is rapidly evolving, with murine studies highlighting the functional significance of NK cells in acute and chronic forms of renal disease. Recent progress has been made in translating these murine findings to human kidneys, with indications of NK cell subset-specific roles in disease progression in both native and allograft kidneys. Clearly, a better understanding of the molecular mechanisms driving NK cell activation and importantly, their downstream interactions with intrinsic renal cells and infiltrating immune cells is necessary for the development of targeted therapeutics to halt disease progression. In this review, we discuss the properties and potential functions of kidney NK cells.
Collapse
Affiliation(s)
- Jan-Eric Turner
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Constantin Rickassel
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Helen Healy
- Conjoint Kidney Research Laboratory, Chemical Pathology-Pathology Queensland, Brisbane, QLD, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Andrew J Kassianos
- Conjoint Kidney Research Laboratory, Chemical Pathology-Pathology Queensland, Brisbane, QLD, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| |
Collapse
|
49
|
Chen W, Chen W, Li XC, Ghobrial RM, Kloc M. Coinhibition of mTORC1/mTORC2 and RhoA /ROCK pathways prevents chronic rejection of rat cardiac allografts. TRANSPLANTATION REPORTS 2018. [DOI: 10.1016/j.tpr.2018.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
50
|
Chen W, Chen S, Chen W, Li XC, Ghobrial RM, Kloc M. Screening RhoA/ROCK inhibitors for the ability to prevent chronic rejection of mouse cardiac allografts. Transpl Immunol 2018; 50:15-25. [DOI: 10.1016/j.trim.2018.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022]
|