1
|
Alkan KK, Satilmis F, Sonmez G, Deniz YE, Culha MH, Ciftci MF, Yesilkaya OF, Alkan H. Putrescine supplementation improves the developmental competence of in vitro produced bovine embryos. Theriogenology 2025; 231:133-143. [PMID: 39447374 DOI: 10.1016/j.theriogenology.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
The aim of this study was to investigate the effect of putrescine, anti-apoptotic, antioxidant, and a cell proliferation stimulant, on embryo development and quality by supplementing it to in vitro culture medium. In this study, oocytes were obtained from the ovaries of Holstein cattle. Following maturation and fertilization, the presumptive zygotes were randomly assigned to two groups. The first group (Putrescine, n = 435) was supplemented with putrescine at a concentration of 0.5 mM to in vitro culture. The second group (n = 407) was maintained under standard culture conditions without any supplementations to the medium. Following the determination of the developmental stages of the embryos, only those in the blastocyst stage were subjected to differential staining and the cell numbers of the embryos were determined. Moreover, the TUNEL assay was employed to ascertain the extent of cell death and the apoptotic index in the embryos. Additionally, the levels of ROS were determined in the embryos. Furthermore, gene expression analyses were conducted on blastocyst-stage embryos to ascertain the potential of putrescine supplementation in embryo development along specific pathways. Following in vitro culture, the blastocyst formation rate was 44.37 % in the putrescine group and 32.97 % in the control group (P < 0.05). The counts of ICM (60.60 ± 15.79 vs 50.73 ± 16.74), TE (117.70 ± 23.67 vs 94.0 ± 22.46), and TCC (178.30 ± 26.15 vs 144.73 ± 26.86) were found to be statistically higher in blastocysts developing after putrescine supplementation compared to the control group. Furthermore, the number of apoptotic cells (7.69 ± 2.17 vs 9.96 ± 3.99) and the apoptotic index (5.07 % vs 8.01 %) were found to be lower in the putrescine group in comparison to the control group. Nevertheless, it was established that the ROS level in the control group was approximately two-fold higher than in the putrescine group (P < 0.05). The findings also revealed that putrescine up-regulated the gene expression of SOD, GPX4, CAT, BCL2, NANOG and GATA3 while simultaneously down-regulating the BAX expression level. In conclusion, the supplementation of putrescine to the culture medium during in vitro bovine embryo production was found to contribute to the improvement of embryo quality and early embryonic development.
Collapse
Affiliation(s)
- Kubra Karakas Alkan
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye.
| | - Fatma Satilmis
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye
| | - Gonca Sonmez
- Department of Genetics, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye
| | - Yunus Emre Deniz
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye
| | - Muhammed Hudai Culha
- Department of Genetics, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye
| | - Muhammed Furkan Ciftci
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye
| | - Omer Faruk Yesilkaya
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye
| | - Hasan Alkan
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye
| |
Collapse
|
2
|
Li W, Liu Y, Zhou G, Li Z, Wang Z, Wang L, Ma X, Wang X. Comparison of Umbilical Cord Mesenchymal Stem Cells and Fibroblasts as Donor Nuclei for Handmade Cloning in Sheep Using a Single-Cell Transcriptome. Animals (Basel) 2024; 14:589. [PMID: 38396557 PMCID: PMC10886412 DOI: 10.3390/ani14040589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Oocytes are efficient at reprogramming terminally differentiated cells to a totipotent state. Nuclear transfer techniques can exploit this property to produce cloned animals. However, the overall efficiency is low. The use of umbilical cord mesenchymal stem cells (UC-MSCs) as donor nuclei may increase blastocyst rates, but the exact reasons for this remain unexplored. A single-cell transcriptomic approach was used to map the transcriptome profiles of eight-cell embryos that were in vitro-fertilized and handmade-cloned using umbilical cord mesenchymal stem cells and fibroblasts as nuclear donors. Differences were examined at the chromatin level, the level of differentially expressed genes, the level of histone modifications and the level of DNA methylation. This research provides critical information regarding the use of UC-MSCs as a preferred donor nucleus for nuclear transfer techniques. It also offers unique insights into the mechanism of cellular reprogramming.
Collapse
Affiliation(s)
- Weijian Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yalan Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Guizhen Zhou
- College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Zhuo Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Zhen Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Li Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xiuling Ma
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xuguang Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
3
|
Himaki T, Hano K. Effects of alpha lipoic acid treatment during in vitro maturation on the development of porcine somatic cell nuclear transfer embryos. Anim Sci J 2023; 94:e13889. [PMID: 38031165 DOI: 10.1111/asj.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/08/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
Oxidative stress influences the embryo production efficiency in vitro. We investigated the effects of alpha lipoic acid (ALA) treatment during the in vitro maturation (IVM) period on the porcine somatic cell nuclear transfer (SCNT) embryo production. After IVM, maturation rates of the 12.5- and 25-μM ALA-treated groups were not significantly different from those of the 0-μM ALA-treated group. Compared to those in the 0-μM ALA-treated group, the reactive oxygen species and glutathione levels were significantly decreased and increased, respectively, in the cytoplasm of matured oocytes in the 12.5-50-μM ALA-treated groups. Apoptosis rate in cumulus cells after IVM was significantly lower in the 12.5-50-μM ALA-treated groups than in the 0-μM ALA-treated group. Blastocyst formation rate was significantly higher in parthenogenetic oocytes treated with 12.5-μM ALA than in the 0-, 25-, and 50-μM ALA-treated groups. Similarly, in SCNT embryos, the 12.5-μM ALA-treated group showed a significantly higher blastocyst formation rate than the 0-μM ALA-treated group. Apoptosis rate in SCNT blastocysts was significantly decreased by 12.5-μM ALA treatment. The results showed that treatment with 12.5-μM ALA during IVM improves porcine SCNT embryo development and partial quality.
Collapse
Affiliation(s)
- Takehiro Himaki
- Department of Agricultural and Environmental Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Kazuki Hano
- Department of Agricultural and Environmental Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
4
|
Ho KT, Balboula AZ, Homma K, Takanari J, Bai H, Kawahara M, Thi Kim Nguyen K, Takahashi M. Synergistic effect of standardized extract of Asparagus officinalis stem and heat shock on progesterone synthesis with lipid droplets and mitochondrial function in bovine granulosa cells. J Steroid Biochem Mol Biol 2023; 225:106181. [PMID: 36150639 DOI: 10.1016/j.jsbmb.2022.106181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/07/2022] [Accepted: 09/18/2022] [Indexed: 02/01/2023]
Abstract
Progesterone (P4) is a well-known steroid hormone that plays a key role in oocyte growth and the maintenance of pregnancy in mammals, including cattle. Heat stress (HS) has an adverse effect on P4 synthesis through an imbalance in the cellular redox status. We have recently revealed that a standardized extract of Asparagus officinalis stem (EAS) increases P4 through non-HS induction of heat shock protein 70 (HSP70) and a synergistic increase of HSP70 by enhancing the intracellular redox balance, which was adversely affected by HS in bovine granulosa cells (GCs). Bovine GCs collected from bovine ovarian follicles were cultured at 38.5 °C and 41 °C for 12 h with or without 5 mg/mL EAS. After treatment, cells and culture suppernatant were collected for the analysis. Enzyme-linked immunosorbent assay (ELISA) was performed to detect in P4 levels. Quantitative reverse-transcription polymerase chain reaction (RT-qPCR) was used to detect expression of steroidogenesis related genes. Fluorescence staining was used to detect mitochondrial activity and lipid droplet. P4 level was increased by EAS treatment in association with increase in steroidogenic acute regulatory protein (STAR), 3β-hydroxysteroid dehydrogenase (3β-HSD), mitochondrial membrane activity and lipid droplet both under non-HS and HS conditions. Notably, synergistic effect of EAS with HS co-treatment was observed to show a greater increase in P4 synthesis when comparison with EAS treatment under non-HS condition. Furthermore, inhibition of HSP70 significantly reduced EAS-induced P4 synthesis, mitochondrial activity and synthesis of lipid droplets. These results suggest that P4 synthesis by EAS is mediated by the steroidogenesis pathway via HSP70-regulated activation of STAR and 3β-HSD, together with improved mitochondrial activity and lipid metabolism in bovine GCs. Moreover, effect of EAS has a synergistic effect of with HSP70-regulated steroidogenesis pathway.
Collapse
Affiliation(s)
- Khoi Thieu Ho
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan; College of Agriculture, Can Tho University, Can Tho City, Viet Nam
| | | | - Kohei Homma
- AMINO UP Co. Ltd., Sapporo, Hokkaido 004-0839, Japan
| | - Jun Takanari
- AMINO UP Co. Ltd., Sapporo, Hokkaido 004-0839, Japan
| | - Hanako Bai
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Manabu Kawahara
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | | | - Masashi Takahashi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan.
| |
Collapse
|
5
|
Yao Y, Yang A, Li G, Wu H, Deng S, Yang H, Ma W, Lv D, Fu Y, Ji P, Tan X, Zhao W, Lian Z, Zhang L, Liu G. Melatonin promotes the development of sheep transgenic cloned embryos by protecting donor and recipient cells. Cell Cycle 2022; 21:1360-1375. [PMID: 35311450 PMCID: PMC9345622 DOI: 10.1080/15384101.2022.2051122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The yield efficiency of transgenic animal generation is relatively low[1]. To improve its efficiency has become a priority task for researchers[2]. Melatonin (N-acetyl-5-methoxytryptamine, MT) is a potent-free radical scavenger and antioxidant to protect mitochondria, lipids, protein and DNA from oxidative stress[3]. In this study, we observed that improving the quality of both donor and recipient cells by giving physiological concentration (10-7 M) of MT significantly increase the sheep transgenic embryo development in the in vitro condition. MT promotes the donor cell viability, proliferation, efficiency of monoclonal formation and the electrotransferring efficiency of fetal fibroblast cells (FFCs). The mechanistic exploration indicates that MT has the capacity for the synchronization of cell division cycle, reduction of cellular oxidative stress, apoptosis, and the increase of mitochondrial number and function. All of these render MT's ability to increase the efficiency of animal transgenic processes such as somatic cell nuclear transfer (SCNT) and electroporation. The outcomes are the increased cleavage rate and blastocyst rate of the transgenic sheep embryos after MT treatment. These beneficial effects of MT on transgenic embryo development are worth to be tested in the in vivo condition in the future.
Collapse
Affiliation(s)
- Yujun Yao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ailing Yang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guangdong Li
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shoulong Deng
- Cas Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Hai Yang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenkui Ma
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dongying Lv
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yao Fu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Pengyun Ji
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | | | - Zhengxing Lian
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- CONTACT Zhengxing Lian National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lu Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Lu Zhang National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guoshi Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Guoshi Liu National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Gao W, Yu T, Li G, Shu W, Jin Y, Zhang M, Yu X. Antioxidant Activity and Anti-Apoptotic Effect of the Small Molecule Procyanidin B1 in Early Mouse Embryonic Development Produced by Somatic Cell Nuclear Transfer. Molecules 2021; 26:molecules26206150. [PMID: 34684730 PMCID: PMC8540974 DOI: 10.3390/molecules26206150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 12/22/2022] Open
Abstract
As an antioxidant, procyanidin B1(PB1) can improve the development of somatic cell nuclear transfer (SCNT) embryos; PB1 reduces the level of oxidative stress (OS) during the in vitro development of SCNT embryos by decreasing the level of reactive oxygen species (ROS) and increasing the level of glutathione (GSH) and mitochondrial membrane potential (MMP). Metabolite hydrogen peroxide (H2O2) produces OS. Catalase (CAT) can degrade hydrogen peroxide so that it produces less toxic water (H2O) and oxygen (O2) in order to reduce the harm caused by H2O2. Therefore, we tested the CAT level in the in vitro development of SCNT embryos; it was found that PB1 can increase the expression of CAT, indicating that PB1 can offset the harm caused by oxidative stress by increasing the level of CAT. Moreover, if H2O2 accumulates excessively, it produces radical-(HO-) through Fe2+/3+ and damage to DNA. The damage caused to the DNA is mainly repaired by the protein encoded by the DNA damage repair gene. Therefore, we tested the expression of the DNA damage repair gene, OGG1. It was found that PB1 can increase the expression of OGG1 and increase the expression of protein. Through the above test, we proved that PB1 can improve the repairability of DNA damage. DNA damage can lead to cell apoptosis; therefore, we also tested the level of apoptosis of blastocysts, and we found that PB1 reduced the level of apoptosis. In summary, our results show that PB1 reduces the accumulation of H2O2 by decreasing the level of OS during the in vitro development of SCNT embryos and improves the repairability of DNA damage to reduce cell apoptosis. Our results have important significance for the improvement of the development of SCNT embryos in vitro and provide important reference significance for diseases that can be treated using SCNT technology.
Collapse
Affiliation(s)
- Wei Gao
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun 130062, China; (W.G.); (Y.J.); (M.Z.)
- Group of Non-Human Primates of Reproductive and Stem Cell, Kunming Institute of Zoology, CAS, Kunming 650203, China; (T.Y.); (G.L.); (W.S.)
| | - Tingting Yu
- Group of Non-Human Primates of Reproductive and Stem Cell, Kunming Institute of Zoology, CAS, Kunming 650203, China; (T.Y.); (G.L.); (W.S.)
| | - Guomeng Li
- Group of Non-Human Primates of Reproductive and Stem Cell, Kunming Institute of Zoology, CAS, Kunming 650203, China; (T.Y.); (G.L.); (W.S.)
| | - Wei Shu
- Group of Non-Human Primates of Reproductive and Stem Cell, Kunming Institute of Zoology, CAS, Kunming 650203, China; (T.Y.); (G.L.); (W.S.)
| | - Yongxun Jin
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun 130062, China; (W.G.); (Y.J.); (M.Z.)
| | - Mingjun Zhang
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun 130062, China; (W.G.); (Y.J.); (M.Z.)
| | - Xianfeng Yu
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun 130062, China; (W.G.); (Y.J.); (M.Z.)
- Correspondence: ; Tel.: +86-431-8783-6536
| |
Collapse
|
7
|
Lee AR, Park JH, Shim SH, Hong K, La H, Park KS, Lee DR. Genome stabilization by RAD51-stimulatory compound 1 enhances efficiency of somatic cell nuclear transfer-mediated reprogramming and full-term development of cloned mouse embryos. Cell Prolif 2021; 54:e13059. [PMID: 34021643 PMCID: PMC8249786 DOI: 10.1111/cpr.13059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES The genetic instability and DNA damage arise during transcription factor-mediated reprogramming of somatic cells, and its efficiency may be reduced due to abnormal chromatin remodelling. The efficiency in somatic cell nuclear transfer (SCNT)-mediated reprogramming is also very low, and it is caused by development arrest of most reconstituted embryos. MATERIALS AND METHODS Whether the repair of genetic instability or double-strand breaks (DSBs) during SCNT reprogramming may play an important role in embryonic development, we observed and analysed the effect of Rad 51, a key modulator of DNA damage response (DDR) in SCNT-derived embryos. RESULTS Here, we observed that the activity of Rad 51 is lower in SCNT eggs than in conventional IVF and found a significantly lower level of DSBs in SCNT embryos during reprogramming. To address this difference, supplementation with RS-1, an activator of Rad51, during the activation of SCNT embryos can increase RAD51 expression and DSB foci and thereby increased the efficiency of SCNT reprogramming. Through subsequent single-cell RNA-seq analysis, we observed the reactivation of a large number of genes that were not expressed in SCNT-2-cell embryos by the upregulation of DDR, which may be related to overcoming the developmental block. Additionally, there may be an independent pathway involving histone demethylase that can reduce reprograming-resistance regions. CONCLUSIONS This technology can contribute to the production of comparable cell sources for regenerative medicine.
Collapse
Affiliation(s)
- Ah Reum Lee
- Department of Biomedical Science, CHA University, Seongnam, Gyunggi-do, Korea.,CHA Advanced Research Institute, CHA University, Seongnam, Gyunggi-do, Korea
| | - Ji-Hoon Park
- Department of Biomedical Science, CHA University, Seongnam, Gyunggi-do, Korea
| | - Sung Han Shim
- Department of Biomedical Science, CHA University, Seongnam, Gyunggi-do, Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biology, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Hyeonwoo La
- Department of Stem Cell and Regenerative Biology, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, CHA University, Seongnam, Gyunggi-do, Korea
| | - Dong Ryul Lee
- Department of Biomedical Science, CHA University, Seongnam, Gyunggi-do, Korea.,CHA Advanced Research Institute, CHA University, Seongnam, Gyunggi-do, Korea
| |
Collapse
|
8
|
Park HB, Park YR, Kim MJ, Jung BD, Park CK, Cheong HT. Endoplasmic Reticulum (ER) Stress Inhibitor or Antioxidant Treatments during Micromanipulation Can Inhibit Both ER and Oxidative Stresses in Porcine SCNT Embryos. Dev Reprod 2020; 24:31-41. [PMID: 32411916 PMCID: PMC7201064 DOI: 10.12717/dr.2020.24.1.31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/17/2020] [Accepted: 02/01/2020] [Indexed: 12/21/2022]
Abstract
We investigated the effects of endoplasmic reticulum (ER) stress inhibitor and
antioxidant treatments during the micromanipulation of somatic cell nuclear
transfer (SCNT) on in vitro development of SCNT embryos.
Tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor and vitamin C (Vit.
C), an antioxidant, were treated by alone or in combination, then, the level of
X-box binding protein 1 (Xbp1) splicing and the expressions of
ER stress-associated genes, oxidative stress-related genes, and apoptotic genes
were confirmed in the 1-cell and blastocyst stages. In the 1-cell stage, the
levels of Xbp1 splicing were significantly decreased in TUDCA
and Vit. C treatment groups compared to the control
(p<0.05). In addition, the expression levels of most ER
stress-associated genes and oxidative stress-related genes were significantly
lower in all treatment groups than the control (p<0.05),
and the transcript levels of apoptotic genes were also significantly lower in
all treatment groups than the control (p<0.05). In the
blastocyst stage, decreased expression of ER stress-, oxidative stress-, and
apoptosis-related genes were observed only in some treatments. However, the
blastocyst formation rates in TUDCA and Vit. C treatment groups (24.8%
and 22.0%, respectively) and mean blastocyst cell number in all treatment
groups (59.7±4.3 to 63.5±3.3) were significantly higher
(p<0.05) than those of control. The results showed
that the TUDCA or Vit. C treatment during micromanipulation inhibited both ER
and oxidative stresses in the early stage of SCNT embryos, thereby reducing cell
damage and promoting in vitro development.
Collapse
Affiliation(s)
- Hye-Bin Park
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Yeo-Reum Park
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Mi-Jeong Kim
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Bae-Dong Jung
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Choon-Keun Park
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Hee-Tae Cheong
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
9
|
Qu P, Shen C, Du Y, Qin H, Luo S, Fu S, Dong Y, Guo S, Hu F, Xue Y, Liu E. Melatonin Protects Rabbit Somatic Cell Nuclear Transfer (SCNT) Embryos from Electrofusion Damage. Sci Rep 2020; 10:2186. [PMID: 32042116 PMCID: PMC7010831 DOI: 10.1038/s41598-020-59161-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/21/2020] [Indexed: 12/22/2022] Open
Abstract
The study's objectives were to examine the effects of electrofusion on rabbit somatic cell nuclear transfer (SCNT) embryos, and to test melatonin as a protective agent against electrofusion damage to SCNT embryos. The levels of reactive oxygen species (ROS), the epigenetic state (H3K9me3), and the content of endoplasmic reticulum (ER) stress-associated transcripts (IRE-1 and CHOP) were measured. Melatonin was added during the preimplantation development period. The total blastocyst cell numbers were counted, and the fragmentation rate and apoptotic index were determined and used to assess embryonic development. Electrofusion increased (1) ROS levels at the 1-, 2-, 4-, and 8-cell stages; (2) H3K9me3 levels at the 2-, 4-, and 8-cell stage; and (3) the expression of IRE-1 and CHOP at the 8-cell, 16-cell, morula, and blastocyst stages. The treatment of SCNT embryos with melatonin significantly reduced the level of ROS and H3K9me3, and the expression levels of IRE-1 and CHOP. This treatment also significantly reduced the fragmentation rate and apoptotic index of blastocysts and increased their total cell number. In conclusion, the electrofusion of rabbit SCNT embryos induced oxidative stress, disturbed the epigenetic state, and caused ER stress, while melatonin reduced this damage. Our findings are of signal importance for improving the efficiency of SCNT and for optimizing the application of electrical stimulation in other biomedical areas.
Collapse
Affiliation(s)
- Pengxiang Qu
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, China
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Centre, Xi'an, Shaanxi, 710061, China
| | - Chong Shen
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, China
| | - Yue Du
- Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Hongyu Qin
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, China
| | - Shiwei Luo
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, China
| | - Sixin Fu
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, China
| | - Yue Dong
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, China
| | - Shuaiqingying Guo
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, China
| | - Fang Hu
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, China
| | - Ying Xue
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, China
| | - Enqi Liu
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, China.
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Centre, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
10
|
Park YR, Park HB, Kim MJ, Jung BD, Lee S, Park CK, Cheong HT. Effects of Endoplasmic Reticulum Stress Inhibitor Treatment during the Micromanipulation of Somatic Cell Nuclear Transfer in Porcine Oocytes. Dev Reprod 2019; 23:43-54. [PMID: 31049471 PMCID: PMC6487319 DOI: 10.12717/dr.2019.23.1.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/26/2019] [Accepted: 03/09/2019] [Indexed: 12/31/2022]
Abstract
We examined the effects of endoplasmic reticulum (ER) stress inhibitor treatment
during the micromanipulation of porcine somatic cell nuclear transfer (SCNT) on
the in vitro development of SCNT embryos. ER stress inhibitors
such as salubrinal (200 nM) and tauroursodeoxycholic acid (TUDCA; 100 μM)
were added to the micromanipulation medium and holding medium. The expression of
X-box binding protein 1 (Xbp1), ER-stress-associated genes, and
apoptotic genes in SCNT embryos was confirmed at the one-cell and blastocyst
stages. Levels of Xbp1 splicing and expression of
ER-stress-associated genes in SCNT embryos at the one-cell stage decreased
significantly with TUDCA treatment (p<0.05). The
expression of ER-stress-associated genes also decreased slightly with the
addition of both salubrinal and TUDCA (Sal+TUD). The expression levels of
caspase-3 and Bcl2-associated Xprotein
(Bax) mRNA were also significantly lower in the TUDCA and
Sal+TUD treatments (p<0.05). At the blastocyst stage,
there were no differences in levels of Xbp1 splicing, and transcription of
ER-stress-associated genes and apoptosis genes between control and treatment
groups. However, the blastocyst formation rate (20.2%) and mean blastocyst cell
number (63.0±7.2) were significantly higher
(p<0.05) for embryos in the TUDCA treatment compared
with those for control (12.6% and 41.7±3.1, respectively). These results
indicate that the addition of ER-stress inhibitors, especially TUDCA, during
micromanipulation can inhibit cellular damage and enhance in
vitro development of SCNT embryos by reducing stress levels in the
ER.
Collapse
Affiliation(s)
- Yeo-Reum Park
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Hye-Bin Park
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Mi-Jeong Kim
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Bae-Dong Jung
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Seunghyung Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Choon-Keun Park
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Hee-Tae Cheong
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
11
|
Park HB, Kim MJ, Jung BD, Lee S, Park CK, Yang BK, Cheong HT. Effect of Endoplasmic Reticulum (ER) Stress Inhibitor Treatment during Parthenogenetic Activation on the Apoptosis and In Vitro Development of Parthenogenetic Porcine Embryos. Dev Reprod 2018; 22:235-244. [PMID: 30324160 PMCID: PMC6182227 DOI: 10.12717/dr.2018.22.3.235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/07/2018] [Accepted: 08/31/2018] [Indexed: 11/17/2022]
Abstract
We investigate the effect of endoplasmic reticulum (ER) stress inhibitor
treatment during parthenogenetic activation of oocytes on the ER stress
generation, apoptosis, and in vitro development of
parthenogenetic porcine embryos. Porcine in vitro matured
oocytes were activated by 1) electric stimulus (E) or 2) E+10 μM
Ca-ionophore (A23187) treatment (EC). Oocytes were then treated by ER stress
inhibitors such as salubrinal (200 nM) and tauroursodeoxychloic acid (TUDCA, 100
μM) for 3 h prior to in vitro culture. Parthenogenetic
embryos were sampled to analyze ER stress and apoptosis at the 1-cell and
blastocyst stages. The x-box binding protein 1 (Xbp1) mRNA and ER
stress-associated genes were analyzed by RT-PCR or RT-qPCR. Apoptotic gene
expression was analyzed by RT-PCR. At the 1-cell stage, although no difference
was observed in Xbp1 splicing among treatments, BiP transcription level in the E
group was significantly reduced by salubrinal treatment, and GRP94 and ATF4
transcription levels in EC group were significantly reduced by all treatments
(p<0.05) compared to control. In the EC group, both
apoptotic genes were reduced by ER stress inhibitor treatments compared to
control (p<0.05) except Caspase-3 gene by TUDCA
treatment. These results suggest that the treatment of ER stress inhibitor
during parthenogenetic activation can reduce ER stress, and thereby reduce
apoptosis and promote in vitro development of porcine
parthenogenetic embryos.
Collapse
Affiliation(s)
- Hye-Bin Park
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Mi-Jeong Kim
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Bae-Dong Jung
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Seunghyung Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Choon-Keun Park
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Boo-Keun Yang
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Hee-Tae Cheong
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
12
|
Lee HY, Bae HK, Jung BD, Lee S, Park CK, Yang BK, Cheong HT. Analysis of Endoplasmic Reticulum (ER) Stress Induced during Somatic Cell Nuclear Transfer (SCNT) Process in Porcine SCNT Embryos. Dev Reprod 2018; 22:73-83. [PMID: 29707686 PMCID: PMC5915769 DOI: 10.12717/dr.2018.22.1.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/11/2018] [Accepted: 03/24/2018] [Indexed: 11/25/2022]
Abstract
This study investigates the endoplasmic reticulum (ER) stress and subsequent
apoptosis in duced during somatic cell nuclear transfer (SCNT) process of
porcine SCNT embryos. Porcine SCNT and in vitro fertilization
(IVF) embryos were sampled at 3 h and 20 h after SCNT or IVF and at the
blastocyst stage for mRNA extraction. The x-box binding protein 1 (Xbp1) mRNA
and the expressions of ER stress-associated genes were confirmed by RT-PCR or
RT-qPCR. Apoptotic gene expression was analyzed by RT-PCR. Before commencing
SCNT, somatic cells treated with tunicamycin (TM), an ER stress inducer,
confirmed the splicing of Xbp1 mRNA and increased expressions of ER
stress-associated genes. In all the embryonic stages, the SCNT embryos, when
compared with the IVF embryos, showed slightly increased expression of spliced
Xbp1 (Xbp1s) mRNA and significantly increased expression of ER stress-associated
genes (p<0.05). In all stages, apoptotic gene expression
was slightly higher in the SCNT embryos, but not significantly different from
that of the IVF embryos except for the Bax/Bcl2L1 ratio in the 1-cell stage
(p<0.05). The result of this study indicates that
excessive ER stress can be induced by the SCNT process, which induce apoptosis
of SCNT embryos.
Collapse
Affiliation(s)
- Hwa-Yeon Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Hyo-Kyung Bae
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Bae-Dong Jung
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Seunghyung Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Choon-Keun Park
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Boo-Keun Yang
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Hee-Tae Cheong
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
13
|
Rolland L, Courbiere B, Tassistro V, Sansoni A, Orsière T, Liu W, Di Giorgio C, Perrin J. Comet assay on thawed embryos: An optimized technique to evaluate DNA damage in mouse embryos. Toxicol In Vitro 2017; 44:266-272. [PMID: 28712879 DOI: 10.1016/j.tiv.2017.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/07/2017] [Accepted: 07/12/2017] [Indexed: 10/19/2022]
Abstract
Our objective was to optimize the CA technique on mammal embryos. MATERIALS AND METHODS 1000 frozen 2-cell embryos from B6CBA mice were used. Based on a literature review, and after checking post-thaw embryo viability, the main outcome measures included: 1) comparison of the embryo recovery rate between 2 CA protocols (2 agarose layers and 3 agarose layers); 2) comparison of DNA damage by the CA on embryos with (ZP+) and without (ZP-) zona pellucida; and 3) comparison of DNA damage in embryos exposed to 2 genotoxic agents (H2O2 and simulated sunlight irradiation (SSI)). DNA damage was quantified by the % tail DNA. RESULTS 1) The recovery rate was 3,3% (n=5/150) with the 2 agarose layers protocol and 71,3% (n=266/371) with the 3 agarose layers protocol. 2) DNA damage did not differ statistically significantly between ZP- and ZP+ embryos (12.60±2.53% Tail DNA vs 11.04±1.50 (p=0.583) for the control group and 49.23±4.16 vs 41.13±4.31 (p=0.182) for the H2O2 group); 3) H2O2 and SSI induced a statistically significant increase in DNA damage compared with the control group (41.13±4.31% Tail DNA, 36.33±3.02 and 11.04±1.50 (p<0.0001)). The CA on mammal embryos was optimized by using thawed embryos, by avoiding ZP removal and by the adjunction of a third agarose layer.
Collapse
Affiliation(s)
- L Rolland
- Department of Gynecology, Obstetrics and Reproductive Medicine, AP-HM La Conception, Pôle femmes parents enfants, 147 bd Baille, 13005 Marseille, France; Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille Univ, CNRS, IRD, Univ Avignon, Marseille, France
| | - B Courbiere
- Department of Gynecology, Obstetrics and Reproductive Medicine, AP-HM La Conception, Pôle femmes parents enfants, 147 bd Baille, 13005 Marseille, France; Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille Univ, CNRS, IRD, Univ Avignon, Marseille, France.
| | - V Tassistro
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille Univ, CNRS, IRD, Univ Avignon, Marseille, France.
| | - A Sansoni
- Centre d'Immunophénomique - CIPHE, PHENOMIN, INSERM US012, CNRS UMS3367, UM2 Aix-Marseille Université Marseille, France.
| | - T Orsière
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille Univ, CNRS, IRD, Univ Avignon, Marseille, France.
| | - W Liu
- CNRS, Aix Marseille Univ, IRD, CEREGE UM34, UMR 7330, 13545 Aix en Provence, France.
| | - C Di Giorgio
- Laboratoire de mutagagénèse environnementale, Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Marseille, France.
| | - J Perrin
- Department of Gynecology, Obstetrics and Reproductive Medicine, AP-HM La Conception, Pôle femmes parents enfants, 147 bd Baille, 13005 Marseille, France; Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille Univ, CNRS, IRD, Univ Avignon, Marseille, France; CECOS, Laboratory of Reproductive Biology, Department of Gynecology, Obstetric and Reproductive Medicine, Pôle femmes parents enfants, AP-HM La Conception, 147 bd Baille, 13005 Marseille, France.
| |
Collapse
|
14
|
Park HJ, Min SH, Choi H, Park J, Kim SU, Lee S, Lee SR, Kong IK, Chang KT, Koo DB, Lee DS. Mitochondria-targeted DsRed2 protein expression during the early stage of bovine somatic cell nuclear transfer embryo development. In Vitro Cell Dev Biol Anim 2016; 52:812-22. [PMID: 27287919 DOI: 10.1007/s11626-016-0053-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/02/2016] [Indexed: 01/20/2023]
Abstract
Somatic cell nuclear transfer (SCNT) has been widely used as an efficient tool in biomedical research for the generation of transgenic animals from somatic cells with genetic modifications. Although remarkable advances in SCNT techniques have been reported in a variety of mammals, the cloning efficiency in domestic animals is still low due to the developmental defects of SCNT embryos. In particular, recent evidence has revealed that mitochondrial dysfunction is detected during the early development of SCNT embryos. However, there have been relatively few or no studies regarding the development of a system for evaluating mitochondrial behavior or dynamics. For the first time, in mitochondria of bovine SCNT embryos, we developed a method for the visualization of mitochondria and expression of fluorescence proteins. To express red fluorescence in mitochondria of cloned embryos, bovine ear skin fibroblasts, nuclear donor, were stably transfected with a vector carrying mitochondria-targeting DsRed2 gene tagged with V5 epitope (mito-DsRed2-V5 tag) using lentivirus-mediated gene transfer because of its ability to integrate in the cell genome and the potential for long-term transgene expression in the transduced cells and their dividing cells. From western blotting analysis of V5 tag protein using mitochondrial fraction and confocal microscopy of red fluorescence using SCNT embryos, we found that the mitochondrial expression of the mito-DsRed2 protein was detected until the blastocyst stage. In addition, according to image analysis, it may be suggested possible use of the system for visualization of mitochondrial localization and evaluation of mitochondrial behaviors or dynamics in early development of bovine SCNT embryos.
Collapse
Affiliation(s)
- Hyo-Jin Park
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sung-Hun Min
- Center of Reproductive Medicine, Good Moonhwa Hospital, Busan, 48735, Republic of Korea
- Department of Biotechnology, Daegu University, Gyeongsan, 38453, Republic of Korea
| | - Hoonsung Choi
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju, 55365, Korea
| | - Junghyung Park
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sun-Uk Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Seunghoon Lee
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju, 55365, Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Il-Keun Kong
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Kyu-Tae Chang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Deog-Bon Koo
- Department of Biotechnology, Daegu University, Gyeongsan, 38453, Republic of Korea.
| | - Dong-Seok Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
15
|
Singh P, Chowdhuri DK. Environmental Presence of Hexavalent but Not Trivalent Chromium Causes Neurotoxicity in Exposed Drosophila melanogaster. Mol Neurobiol 2016; 54:3368-3387. [DOI: 10.1007/s12035-016-9909-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/03/2016] [Indexed: 02/06/2023]
|
16
|
Garcia SM, Marinho LSR, Lunardelli PA, Seneda MM, Meirelles FV. Developmental block and programmed cell death in Bos indicus embryos: effects of protein supplementation source and developmental kinetics. PLoS One 2015; 10:e0119463. [PMID: 25760989 PMCID: PMC4356560 DOI: 10.1371/journal.pone.0119463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/21/2015] [Indexed: 11/18/2022] Open
Abstract
The aims of this study were to determine if the protein source of the medium influences zebu embryo development and if developmental kinetics, developmental block and programmed cell death are related. The culture medium was supplemented with either fetal calf serum or bovine serum albumin. The embryos were classified as Fast (n = 1,235) or Slow (n = 485) based on the time required to reach the fourth cell cycle (48 h and 90 h post insemination - hpi -, respectively). The Slow group was further separated into two groups: those presenting exactly 4 cells at 48 hpi (Slow/4 cells) and those that reached the fourth cell cycle at 90 hpi (Slow). Blastocyst quality, DNA fragmentation, mitochondrial membrane potential and signs of apoptosis or necrosis were evaluated. The Slow group had higher incidence of developmental block than the Fast group. The embryos supplemented with fetal calf serum had lower quality. DNA fragmentation and mitochondrial membrane potential were absent in embryos at 48 hpi but present at 90 hpi. Early signs of apoptosis were more frequent in the Slow and Slow/4 cell groups than in the Fast group. We concluded that fetal calf serum reduces blastocyst development and quality, but the mechanism appears to be independent of DNA fragmentation. The apoptotic cells detected at 48 hpi reveal a possible mechanism of programmed cell death activation prior to genome activation. The apoptotic cells observed in the slow-developing embryos suggested a relationship between programmed cell death and embryonic developmental kinetics in zebu in vitro-produced embryos.
Collapse
Affiliation(s)
- Sheila Merlo Garcia
- São Paulo University (USP), Faculdade de Zootecnia e Engenharia de Alimentos, Pirassununga, SP, Brazil
| | | | - Paula Alvares Lunardelli
- State University of Londrina (UEL), Laboratório de Reprodução Animal, DCV, CCA, Londrina, PR, Brazil
| | - Marcelo Marcondes Seneda
- State University of Londrina (UEL), Laboratório de Reprodução Animal, DCV, CCA, Londrina, PR, Brazil
- * E-mail:
| | - Flávio Vieira Meirelles
- São Paulo University (USP), Faculdade de Zootecnia e Engenharia de Alimentos, Pirassununga, SP, Brazil
| |
Collapse
|