1
|
Wang X, Liu X, Li C, Li J, Qiu M, Wang Y, Han W. Effects of molecular weights on the bioactivity of hyaluronic acid: A review. Carbohydr Res 2025; 552:109472. [PMID: 40186950 DOI: 10.1016/j.carres.2025.109472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
Hyaluronic acid (HA), the only non-sulfated glycosaminoglycan (GAG), is essential for maintaining the extracellular matrix's structural and functional integrity. Its bioactivity is determined by interactions between HA fragments of different molecular weights and specific receptors, which influence downstream signaling pathways. This review systematic summarizes the correlation between HA molecular weight dynamic changes and bioactivities focusing on imbalance of HA degradation and metabolism due to various pathological processes. Outline the core transduction mechanisms of HA receptors and signaling pathways, and innovatively hypothesize that discrepancies in cellular distribution with HA-molecular weights dependent lead to the activation of different signaling pathways from the perspective of molecular weight affecting cellular distribution. Finally, it addresses challenges in studying HA's biofunctions and provides new perspectives for future research.
Collapse
Affiliation(s)
- Xiaoyun Wang
- College of Life Science and Health, University of Health and Rehabilitation Sciences, Qingdao, 266113, China; Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266024, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaojun Liu
- College of Life Science and Health, University of Health and Rehabilitation Sciences, Qingdao, 266113, China; Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266024, China
| | - Chao Li
- College of Life Science and Health, University of Health and Rehabilitation Sciences, Qingdao, 266113, China; Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266024, China
| | - Jiangtao Li
- College of Life Science and Health, University of Health and Rehabilitation Sciences, Qingdao, 266113, China
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Yongliang Wang
- College of Life Science and Health, University of Health and Rehabilitation Sciences, Qingdao, 266113, China; Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266024, China.
| | - Wenwei Han
- College of Life Science and Health, University of Health and Rehabilitation Sciences, Qingdao, 266113, China; Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266024, China.
| |
Collapse
|
2
|
Chen W, Ye Q, Zhang M, Xie R, Xu C. Lubrication for Osteoarthritis: From Single-Function to Multifunctional Lubricants. Int J Mol Sci 2025; 26:1856. [PMID: 40076486 PMCID: PMC11900089 DOI: 10.3390/ijms26051856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease that progressively destroys articular cartilage, leading to increased joint friction and severe pain. Therefore, OA can be treated by restoring the lubricating properties of cartilage. In this study, recent advances in lubricants for the treatment of OA are reviewed for both single-function and multifunctional lubricants. Single-function lubricants mainly include glycosaminoglycans, lubricin, and phospholipids, whereas multifunctional lubricants are composed of lubricating and anti-inflammatory bifunctional hydrogels, stem cell-loaded lubricating hydrogels, and drug-loaded lubricating nanoparticles. This review emphasizes the importance of restoring joint lubrication capacity for the treatment of OA and explores the structural features, lubrication properties, and role of these lubricants in modulating intracellular inflammatory responses and metabolism. Current challenges and future research directions in this field are also discussed, with the aim of providing a scientific basis and new ideas for the clinical treatment of OA.
Collapse
Affiliation(s)
- Wen Chen
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, China;
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China; (Q.Y.); (M.Z.)
| | - Qianwen Ye
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China; (Q.Y.); (M.Z.)
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Mingshuo Zhang
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China; (Q.Y.); (M.Z.)
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Renjian Xie
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China; (Q.Y.); (M.Z.)
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China
| | - Chunming Xu
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
3
|
Terlinden A, Jacquet S, Manivong S, Cullier A, Cassé F, Legendre F, Garcia AA, Roullin G, Moldovan F, Sirois P, Banquy X, Galéra P, Audigié F, Demoor M, Bertoni L. Double-blinded, randomized tolerance study of a biologically enhanced Nanogel with endothelin-1 and bradykinin receptor antagonist peptides via intra-articular injection for osteoarthritis treatment in horses. BMC Vet Res 2024; 20:547. [PMID: 39633332 PMCID: PMC11616385 DOI: 10.1186/s12917-024-04352-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Osteoarthritis is a leading cause of pain and retirement in athletic horses. Hydro-expansive functionalized nanogels, acting as Drug Delivery Systems, constitute one of the current therapeutic prospects. These nanogels have the potential to combine mechanical benefits through polymers with the biological effect of prolonged release of bioactive molecules. The purpose of this double-blinded randomized tolerance study versus negative control was to evaluate the response of healthy joints to a single injection of the expected efficient dose (further referred to as the trial dose) and overdose of nanogels composed of chitosan and hyaluronic acid and featuring a type A endothelin receptor antagonist and a type B1 bradykinin receptor antagonist. The metacarpophalangeal joints of 8 healthy horses were randomly injected with 2.4 mL of functionalized nanogels and 2.4 mL of saline as control on the contralateral limb. Injections were repeated twice at one-week intervals, followed by injection of a triple dose of nanogel on week four. Clinical, ultrasonographic and synovial fluid cellular and biochemical follow-ups were performed up to three months following the first injection. RESULTS No change in general clinical parameters, lameness or sensitivity to passive flexion of the fetlocks was noted. Mild to moderate synovitis was noted on the day following injection in the treated group, with a significant difference (p < 0.05) compared to the control group. It spontaneously resolved on day 3 following the injections and did not increase with repeated injections. Similar effects were noted after injection of the triple dose but lasted for a week. Synovial fluid markers of inflammation also showed a transient significant increase in the treated group one week after each injection, but no differences were detected at the end of the study. CONCLUSIONS Injections of the expected therapeutic dose of functionalized nanogel in healthy joints induced a mild transient inflammatory response in the joint. Three injections of the trial dose at one-week intervals and injection of thrice the trial dose induce a mildly greater inflammation without harmful effects on joints. Functionalized nanogels are well tolerated prospects for the treatment of osteoarthritis in horses. Their beneficial effects on arthritic joints have yet to be evaluated to determine their therapeutic potential.
Collapse
Affiliation(s)
- Antoinette Terlinden
- CIRALE, USC 957, BPLC, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Sandrine Jacquet
- CIRALE, USC 957, BPLC, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Seng Manivong
- Research Center Azrieli, CHU Sainte Justine, Montréal, QC, H3T 1C5, Canada
- Faculty of Dentistry, Université de Montréal, Montréal, QC, H3T 1J4, Canada
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Aurélie Cullier
- Université de Caen Normandie, BIOTARGEN UR 7450, Normandie Univ, 14000, Caen, France
| | - Frédéric Cassé
- Université de Caen Normandie, BIOTARGEN UR 7450, Normandie Univ, 14000, Caen, France
| | - Florence Legendre
- Université de Caen Normandie, BIOTARGEN UR 7450, Normandie Univ, 14000, Caen, France
| | - Araceli Ac Garcia
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, H3T 1J4, Canada
- TransMedTech Institute (NanoBio Technology Platform), Montréal, QC, H3T 1J4, Canada
| | - Gaëlle Roullin
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Florina Moldovan
- Research Center Azrieli, CHU Sainte Justine, Montréal, QC, H3T 1C5, Canada
- Faculty of Dentistry, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Pierre Sirois
- Department of Microbiology and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, G1V 4G2, Canada
| | - Xavier Banquy
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Philippe Galéra
- Université de Caen Normandie, BIOTARGEN UR 7450, Normandie Univ, 14000, Caen, France
| | - Fabrice Audigié
- CIRALE, USC 957, BPLC, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Magali Demoor
- Université de Caen Normandie, BIOTARGEN UR 7450, Normandie Univ, 14000, Caen, France.
| | - Lélia Bertoni
- CIRALE, USC 957, BPLC, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| |
Collapse
|
4
|
Hagag UI, Halfaya FM, Al-Muzafar HM, Al-Jameel SS, Amin KA, Abou El-Kheir W, Mahdi EA, Hassan GANR, Ahmed OM. Impacts of mesenchymal stem cells and hyaluronic acid on inflammatory indicators and antioxidant defense in experimental ankle osteoarthritis. World J Orthop 2024; 15:1056-1074. [PMID: 39600854 PMCID: PMC11586742 DOI: 10.5312/wjo.v15.i11.1056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/13/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND No effective treatment guarantees full recovery from osteoarthritis (OA), and few therapies have disadvantages. AIM To determine if bone marrow mesenchymal stem cells (BMMSCs) and hyaluronic acid (HA) treat ankle OA in Wistar rats. METHODS BMMSCs were characterized using flow cytometry with detection of surface markers [cluster of differentiation 90 (CD90), CD105, CD34, and CD45]. Fifty male Wistar rats were divided into five groups of 10 rats each: Group I, saline into the right tibiotarsal joint for 2 days; Group II, monosodium iodate (MIA) into the same joint; Groups III, MIA + BMMSCs; Group IV, MIA + HA; and Group V, MIA + BMMSCs + HA. BMMSCs (1 × 106 cells/rat), HA (75 µg/rat), and BMMSCs (1 × 106 cells/rat) alongside HA (75 µg/rat) were injected intra-articularly into the tibiotarsal joint of the right hind leg at the end of weeks 2, 3, and 4 after the MIA injection. RESULTS The elevated right hind leg circumference values in the paw and arthritis clinical score of osteoarthritic rats were significantly ameliorated at weeks 4, 5, and 6. Lipid peroxide significantly increased in the serum of osteoarthritic rats, whereas reduced serum glutathione and glutathione transferase levels were decreased. BMMSCs and HA significantly improved OA. The significantly elevated ankle matrix metalloproteinase 13 (MMP-13) mRNA and transforming growth factor beta 1 (TGF-β1) protein expression, and tumor necrosis factor alpha (TNF-α) and interleukin-17 (IL-17) serum levels in osteoarthritic rats were significantly downregulated by BMMSCs and HA. The effects of BMMSCs and HA on serum TNF-α and IL-17 were more potent than their combination. The lowered serum IL-4 levels in osteoarthritic rats were significantly upregulated by BMMSCs and HA. Additionally, BMMSCs and HA caused a steady decrease in joint injury and cartilage degradation. CONCLUSION BMMSCs and/or HA have anti-arthritic effects mediated by antioxidant and anti-inflammatory effects on MIA-induced OA. MMP-13 and TGF-β1 expression improves BMMSCs and/or HA effects on OA in Wistar rats.
Collapse
Affiliation(s)
| | - Fatma Mohamed Halfaya
- Department of Surgery, Anesthesiology and Radiology, Beni-Suef University, Beni Suef 62111, Egypt
| | - Hessah Mohammed Al-Muzafar
- Department of Chemistry, College of Science, Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Suhailah Saud Al-Jameel
- Department of Chemistry, College of Science, Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Kamal Adel Amin
- Department of Chemistry, Biochemistry, College of Science, Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Wael Abou El-Kheir
- Department of Immunology, Military Medical Academy, Cairo 11511, Al Qāhirah, Egypt
| | - Emad A Mahdi
- Department of Pathology, Beni-Suef University, Beni Suef 62111, Egypt
| | - Gamal Abdel-Nasser Ragab Hassan
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef 62521, Egypt
| | - Osama Mohamed Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| |
Collapse
|
5
|
Riley JW, Chance LM, Barshick MR, Johnson SE. Administration of sodium hyaluronate to adult horses prior to and immediately after exercise does not alter the range of motion in either the tarsus or metacarpophalangeal joints. Transl Anim Sci 2024; 8:txae153. [PMID: 39554613 PMCID: PMC11568345 DOI: 10.1093/tas/txae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/01/2024] [Indexed: 11/19/2024] Open
Abstract
Hyaluronic acid (HA), a glycosaminoglycan found in joint synovial fluid, is administered to horses as an anti-inflammatory with lubrication properties. This experiment examined the effects of HA administered before and shortly after an exercise test on metacarpophalangeal (MCP; fetlock) and tibiotarsal (hock) joint range of motion (ROM). Horses were injected intravenously (IV) with placebo (4 mL, saline) or HA (4 mL, 40 mg) 24 h before performing a standardized exercise test (SET) on a high-speed treadmill and again at 6-h post-SET. Passive fetlock flexion was measured at 4 and 24 h post-SET. Hock flexion and extension were measured at 24 h post-SET by videography and kinematic evaluation at the trot. Parameters of the SET were sufficient to cause peak lactate values of 6.6 ± 0.15 mM and a maximum heart rate of 203.6 ± 4.8 bpm. A minor gain (P = 0.08) in fetlock flexion prior to SET was observed in HA horses that were not retained at either 4 or 24 h post-SET. Hock flexion in both limbs was greater (P < 0.05) at 24 h post-SET, independent of treatment. Horses receiving HA exhibited reduced (P = 0.04) right hock extension. No differences in either right or left hock ROM were observed between control and HA-treated horses. From these results, it is concluded that IV HA injections surrounding an exercise stressor offer no substantive gains in either fetlock or hock ROM.
Collapse
Affiliation(s)
- Julia W Riley
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Lara M Chance
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | | | - Sally E Johnson
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
6
|
Banigo AT, Nauta L, Zoetebier B, Karperien M. Coaxial Bioprinting of Enzymatically Crosslinkable Hyaluronic Acid-Tyramine Bioinks for Tissue Regeneration. Polymers (Basel) 2024; 16:2470. [PMID: 39274103 PMCID: PMC11398246 DOI: 10.3390/polym16172470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Three-dimensional (3D) bioprinting has emerged as an important technique for fabricating tissue constructs with precise structural and compositional control. However, developing suitable bioinks with biocompatible crosslinking mechanisms remains a significant challenge. This study investigates extrusion-based bioprinting (EBB) using uniaxial or coaxial nozzles with enzymatic crosslinking (EC) to produce 3D tissue constructs in vitro. Initially, low-molecular-weight dextran-tyramine and hyaluronic acid-tyramine (LMW Dex-TA/HA-TA) bioink prepolymers were evaluated. Enzymatically pre-crosslinking these prepolymers, achieved by the addition of horseradish peroxidase and hydrogen peroxide, produced viscous polymer solutions. However, this approach resulted in inconsistent bioprinting outcomes (uniaxial) due to inhomogeneous crosslinking, leading to irreproducible properties and suboptimal shear recovery behavior of the hydrogel inks. To address these challenges, we explored a one-step coaxial bioprinting system consisting of enzymatically crosslinkable high-molecular-weight hyaluronic acid-tyramine conjugates (HMW HA-TA) mixed with horseradish peroxidase (HRP) in the inner core and a mixture of Pluronic F127 and hydrogen peroxide in the outer shell. This configuration resulted in nearly instantaneous gelation by diffusion of the hydrogen peroxide into the core. Stable hydrogel fibers with desirable properties, including appropriate swelling ratios and controlled degradation rates, were obtained. The optimized bioink and printing parameters included 1.3% w/v HMW HA-TA and 5.5 U/mL HRP (bioink, inner core), and 27.5% w/v Pluronic F127 and 0.1% H2O2 (sacrificial ink, outer shell). Additionally, optimal pressures for the inner core and outer shell were 45 and 80 kPa, combined with a printing speed of 300 mm/min and a bed temperature of 30 °C. The extruded HMW HA-TA core filaments, containing bovine primary chondrocytes (BPCs) or 3T3 fibroblasts (3T3 Fs), exhibited good cell viabilities and were successfully cultured for up to seven days. This study serves as a proof-of-concept for the one-step generation of core filaments using a rapidly gelling bioink with an enzymatic crosslinking mechanism, and a coaxial bioprinter nozzle system. The results demonstrate significant potential for developing designed, printed, and organized 3D tissue fiber constructs.
Collapse
Affiliation(s)
- Alma Tamunonengiofori Banigo
- Department of Developmental BioEngineering, Faculty of Science and Technology, TechMed Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Laura Nauta
- Department of Developmental BioEngineering, Faculty of Science and Technology, TechMed Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Bram Zoetebier
- Department of Developmental BioEngineering, Faculty of Science and Technology, TechMed Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, Faculty of Science and Technology, TechMed Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| |
Collapse
|
7
|
de Carvalho JRG, Del Puppo D, Littiere TDO, de Sales NAA, Silva ACY, Ribeiro G, de Almeida FN, Alves BG, Gatto IRH, Ramos GV, Ferraz GDC. Functional infrared thermography imaging can be used to assess the effectiveness of Maxicam Gel ® in pre-emptively treating transient synovitis and lameness in horses. Front Vet Sci 2024; 11:1399815. [PMID: 38919154 PMCID: PMC11197459 DOI: 10.3389/fvets.2024.1399815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction Diagnosing and treating lameness in horses is essential to improving their welfare. In equine orthopedic practice, infrared thermography (IRT) can indirectly detect soreness. Non-steroidal anti-inflammatory drugs can treat painful and inflammatory processes in horses. Using IRT, the efficacy of meloxicam (Maxicam Gel®) was evaluated in pre-treating transient synovitis in horses induced by a middle carpal joint injection of lipopolysaccharides (LPS) from E. coli 055:B5 at a dose of 10 endotoxin units. Methods In a cross-over design, six healthy horses were randomly assigned to receive either 0.6 mg/kg of oral Maxicam Gel® (MAXVO) or a mock administration (control group, C) following a two-week washout period. IRT of the middle carpal joint, visual lameness assessment and joint circumference were recorded over time. Clinical and hematological evaluations were performed. Synovial fluid aspirates were analyzed for total nucleated cell count, total protein, and prostaglandin E2. A mixed effects analysis of variance was performed for repeated measures over time, followed by Tukey's test. A multinomial logistic regression was conducted to determine whether there is a relationship between a thermography temperature change and the lameness score. Results There were no changes in joint circumference. The MAXVO group showed a lower rectal temperature 4 h after synovitis induction. The C group presented an increase in neutrophils and a decrease in total hemoglobin and hematocrit 8 h after induction. No changes were observed in the synovial fluid between groups. The horses that received meloxicam did not show clinically significant lameness at any time, while the C group showed an increase in lameness 2, 4, and 8 h after synovitis induction. Discussion IRT indicated that the skin surface temperature of the middle carpal joint was lower in horses who received meloxicam, suggesting a reduction in the inflammatory process induced by LPS. It was observed that the maximum temperature peaks in the dorsopalmar and lateropalmar positions can be utilized to predict the severity of lameness, particularly when the temperature rises above 34°C. Horses pre-treated with meloxicam showed either reduced or no indication of mild to moderate pain and presented a lowehr thermographic temperature, which indicates the effectiveness of Maxicam Gel® as an anti-inflammatory.
Collapse
Affiliation(s)
- Júlia Ribeiro Garcia de Carvalho
- Laboratory of Equine Exercise Physiology and Pharmacology (LAFEQ), Department of Animal Morphology and Physiology, School of Agricultural and Veterinary Sciences, São Paulo State University, FCAV/UNESP, São Paulo, Brazil
| | - Debora Del Puppo
- Research and Development Department, Ourofino Animal Health Company, São Paulo, Brazil
| | - Thayssa de Oliveira Littiere
- Laboratory of Equine Exercise Physiology and Pharmacology (LAFEQ), Department of Animal Morphology and Physiology, School of Agricultural and Veterinary Sciences, São Paulo State University, FCAV/UNESP, São Paulo, Brazil
| | - Nathali Adrielli Agassi de Sales
- Laboratory of Equine Exercise Physiology and Pharmacology (LAFEQ), Department of Animal Morphology and Physiology, School of Agricultural and Veterinary Sciences, São Paulo State University, FCAV/UNESP, São Paulo, Brazil
| | - Ana Carolina Yamamoto Silva
- Laboratory of Equine Exercise Physiology and Pharmacology (LAFEQ), Department of Animal Morphology and Physiology, School of Agricultural and Veterinary Sciences, São Paulo State University, FCAV/UNESP, São Paulo, Brazil
| | - Gesiane Ribeiro
- Veterinary and Animal Research Centre (CECAV), Faculty of Veterinary Medicine, Lusófona University - Lisbon University Centre, Lisbon, Portugal
| | | | - Bruna Gomes Alves
- Research and Development Department, Ourofino Animal Health Company, São Paulo, Brazil
| | | | - Gabriel Vieira Ramos
- Equine Sports Medicine Laboratory, Department of Veterinary Medicine and Surgery, School of Agricultural and Veterinary Sciences, São Paulo State University, FCAV/UNESP, São Paulo, Brazil
| | - Guilherme de Camargo Ferraz
- Laboratory of Equine Exercise Physiology and Pharmacology (LAFEQ), Department of Animal Morphology and Physiology, School of Agricultural and Veterinary Sciences, São Paulo State University, FCAV/UNESP, São Paulo, Brazil
| |
Collapse
|
8
|
Chapman JH, Ghosh D, Attari S, Ude CC, Laurencin CT. Animal Models of Osteoarthritis: Updated Models and Outcome Measures 2016-2023. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2024; 10:127-146. [PMID: 38983776 PMCID: PMC11233113 DOI: 10.1007/s40883-023-00309-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2024]
Abstract
Purpose Osteoarthritis (OA) is a global musculoskeletal disorder that affects primarily the knee and hip joints without any FDA-approved disease-modifying therapies. Animal models are essential research tools in developing therapies for OA; many animal studies have provided data for the initiation of human clinical trials. Despite this, there is still a need for strategies to recapitulate the human experience using animal models to better develop treatments and understand pathogenesis. Since our last review on animal models of osteoarthritis in 2016, there have been exciting updates in OA research and models. The main purpose of this review is to update the latest animal models and key features of studies in OA research. Method We used our existing classification method and screened articles in PubMed and bibliographic search for animal OA models between 2016 and 2023. Relevant and high-cited articles were chosen for inclusion in this narrative review. Results Recent studies were analyzed and classified. We also identified ex vivo models as an area of ongoing research. Each animal model offers its own benefit in the study of OA and there are a full range of outcome measures that can be assessed. Despite the vast number of models, each has its drawbacks that have limited translating approved therapies for human use. Conclusion Depending on the outcome measures and objective of the study, researchers should pick the best model for their work. There have been several exciting studies since 2016 that have taken advantage of regenerative engineering techniques to develop therapies and better understand OA. Lay Summary Osteoarthritis (OA) is a chronic debilitating disease without any cure that affects mostly the knee and hip joints and often results in surgical joint replacement. Cartilage protects the joint from mechanical forces and degrades with age or in response to injury. The many contributing causes of OA are still being investigated, and animals are used for preclinical research and to test potential new treatments. A single consensus OA animal model for preclinical studies is non-existent. In this article, we review the many animal models for OA and provide a much-needed update on studies and model development since 2016.
Collapse
Affiliation(s)
- James H. Chapman
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA
- Department of Orthopedic Surgery, UConn Health, Farmington, CT 06030, USA
| | - Debolina Ghosh
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA
- Department of Orthopedic Surgery, UConn Health, Farmington, CT 06030, USA
| | - Seyyedmorteza Attari
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA
- Department of Orthopedic Surgery, UConn Health, Farmington, CT 06030, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Chinedu C. Ude
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA
- Department of Orthopedic Surgery, UConn Health, Farmington, CT 06030, USA
| | - Cato T. Laurencin
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA
- Department of Orthopedic Surgery, UConn Health, Farmington, CT 06030, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Chemical and Bimolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
9
|
Pereira MF, Ribeiro G, Gonzales A, Arantes JA, Dória RG. Effects of intra-articular administration of hyaluronic acid or platelet-rich plasma as a complementary treatment to arthroscopy in horses with osteochondritis dissecans. Vet Anim Sci 2024; 23:100330. [PMID: 38259325 PMCID: PMC10801337 DOI: 10.1016/j.vas.2023.100330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
Although arthroscopy is the treatment of choice for horses with osteochondritis dissecans (OCD), it is not yet known whether intra-articular therapies in the postoperative period can bring any benefit to the recovery of these animals. This study evaluated the effects of the intra-articular application of platelet-rich plasma (PRP), hyaluronic acid (HA) or lactated Ringer's solution (LR) in horses with OCD undergoing arthroscopy. Eighteen male and female Brazilian Sport horses aged between 2 and 6 years were evaluated. All animals presented OCD fragments in the middle crest of the tibia. Ten days after surgery, animals were randomly distributed into three groups and received intra-articular application of PRP (n = 6), HA (n = 6), or LR (control group, n = 6). Clinical, radiographic, ultrasound and synovial fluid evaluations were performed on the day of surgery and after 10, 30 and 60 days. An increase in the thickness of the joint capsule was observed 30 days after surgery in the three groups evaluated. In the control group, there was significant improvement in the flexion test 30 and 60 days after surgery, and in the PRP group, there was worsening of this parameter in the same evaluations. In the control group, there was a reduction in the degree of synovial effusion, and in the PRP and HA groups, there was increased effusion. There was a significant increase in the number of leukocytes in the HA group. Intra-articular use of PRP or HA ten days after arthroscopy did not promote positive effects on the recovery of horses with OCD.
Collapse
Affiliation(s)
- Marcos F. Pereira
- Batatais Equine Veterinary Hospital, Rodovia Altino Arantes, 5500, Batatais, São Paulo 14300-000, Brazil
| | - Gesiane Ribeiro
- Faculty of Veterinary Medicine, Lusófona University of Humanities and Technology (FMV/ULHT), Campo Grande 376, Lisboa 1749-024, Portugal
| | - Alessandra Gonzales
- Batatais Equine Veterinary Hospital, Rodovia Altino Arantes, 5500, Batatais, São Paulo 14300-000, Brazil
| | - Julia A. Arantes
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Rua Duque de Caxias Norte, 225, Jardim Elite, 13.635-900, Pirassununga, São Paulo, Brazil
| | - Renata G.S. Dória
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Rua Duque de Caxias Norte, 225, Jardim Elite, 13.635-900, Pirassununga, São Paulo, Brazil
| |
Collapse
|
10
|
Petersen CA, Sise CV, Dewing JX, Yun J, Zimmerman BK, Guo XE, Hung CT, Ateshian GA. Immature bovine cartilage wear is due to fatigue failure from repetitive compressive forces and not reciprocating frictional forces. Osteoarthritis Cartilage 2023; 31:1594-1601. [PMID: 37633593 PMCID: PMC10841040 DOI: 10.1016/j.joca.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/28/2023]
Abstract
OBJECTIVE Wear of articular cartilage is not well understood. We hypothesize that cartilage wears due to fatigue failure in repetitive compression instead of reciprocating friction. DESIGN This study compares reciprocating sliding of immature bovine articular cartilage against glass in two testing configurations: (1) a stationary contact area configuration (SCA), which results in static compression, interstitial fluid depressurization, and increasing friction coefficient during reciprocating sliding, and (2) a migrating contact area configuration (MCA), which maintains pressurization and low friction while producing repetitive compressive loading in addition to reciprocating sliding. Contact pressure, sliding duration, and sliding distance were controlled to be similar between test groups. RESULTS SCA tests exhibited an average friction coefficient of μ=0.084±0.032, while MCA tests exhibited a lower average friction coefficient of μ=0.020±0.008 (p<10-4). Despite the lower friction, MCA cartilage samples exhibited clear surface damage with a significantly greater average surface deviation from a fitted plane after wear testing (Rq=0.125±0.095 mm) than cartilage samples slid in a SCA configuration (Rq=0.044±0.017 mm, p=0.002), which showed minimal signs of wear. Polarized light microscopy confirmed that delamination damage occurred between the superficial and middle zones of the articular cartilage in MCA samples. CONCLUSIONS The greatest wear was observed in the group with lowest friction coefficient, subjected to cyclical instead of static compression, implying that friction is not the primary driver of cartilage wear. Delamination between superficial and middle zones implies the main mode of wear is fatigue failure under cyclical compression, not fatigue or abrasion due to reciprocating frictional sliding.
Collapse
Affiliation(s)
- C A Petersen
- Department of Mechanical Engineering, Columbia University, New York, NY, United States
| | - C V Sise
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - J X Dewing
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - J Yun
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - B K Zimmerman
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - X E Guo
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - C T Hung
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - G A Ateshian
- Department of Mechanical Engineering, Columbia University, New York, NY, United States; Department of Biomedical Engineering, Columbia University, New York, NY, United States.
| |
Collapse
|
11
|
Varela L, van de Lest CHA, Boere J, Libregts SFWM, Lozano-Andrés E, van Weeren PR, Wauben MHM. Acute joint inflammation induces a sharp increase in the number of synovial fluid EVs and modifies their phospholipid profile. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159367. [PMID: 37473834 DOI: 10.1016/j.bbalip.2023.159367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Inflammation is the hallmark of most joint disorders. However, the precise regulation of induction, perpetuation, and resolution of joint inflammation is not entirely understood. Since extracellular vesicles (EVs) are critical for intercellular communication, we aim to unveil their role in these processes. Here, we investigated the EVs' dynamics and phospholipidome profile from synovial fluid (SF) of healthy equine joints and from horses with lipopolysaccharide (LPS)-induced synovitis. LPS injection triggered a sharp increase of SF-EVs at 5-8 h post-injection, which started to decline at 24 h post-injection. Importantly, we identified significant changes in the lipid profile of SF-EVs after synovitis induction. Compared to healthy joint-derived SF-EVs (0 h), SF-EVs collected at 5, 24, and 48 h post-LPS injection were strongly increased in hexosylceramides. At the same time, phosphatidylserine, phosphatidylcholine, and sphingomyelin were decreased in SF-EVs at 5 h and 24 h post-LPS injection. Based on the lipid changes during acute inflammation, we composed specific lipid profiles associated with healthy and inflammatory state-derived SF-EVs. The sharp increase in SF-EVs during acute synovitis and the correlation of specific lipids with either healthy or inflamed states-derived SF-EVs are findings of potential interest for unveiling the role of SF-EVs in joint inflammation, as well as for the identification of EV-biomarkers of joint inflammation.
Collapse
Affiliation(s)
- Laura Varela
- Division Equine Sciences, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Chris H A van de Lest
- Division Equine Sciences, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Janneke Boere
- Division Equine Sciences, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Department of Orthopaedics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Sten F W M Libregts
- Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Estefanía Lozano-Andrés
- Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Division of Infectious Diseases & Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - P René van Weeren
- Division Equine Sciences, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Marca H M Wauben
- Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
12
|
Gregg SR, Barshick MR, Johnson SE. Intravenous Injection of Sodium Hyaluronate Diminishes Basal Inflammatory Gene Expression in Equine Skeletal Muscle. Animals (Basel) 2023; 13:3030. [PMID: 37835636 PMCID: PMC10571686 DOI: 10.3390/ani13193030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/08/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Following strenuous exercise, skeletal muscle experiences an acute inflammatory state that initiates the repair process. Systemic hyaluronic acid (HA) is injected to horses routinely as a joint anti-inflammatory. To gain insight into the effects of HA on skeletal muscle, adult Thoroughbred geldings (n = 6) were injected with a commercial HA product weekly for 3 weeks prior to performing a submaximal exercise test. Gluteal muscle (GM) biopsies were obtained before and 1 h after exercise for gene expression analysis and HA localization. The results from RNA sequencing demonstrate differences in gene expression between non-injected controls (CON; n = 6) and HA horses. Prior to exercise, HA horses contained fewer (p < 0.05) transcripts associated with leukocyte activity and cytokine production than CON. The performance of exercise resulted in the upregulation (p < 0.05) of several cytokine genes and their signaling intermediates, indicating that HA does not suppress the normal inflammatory response to exercise. The transcript abundance for marker genes of neutrophils (NCF2) and macrophages (CD163) was greater (p < 0.05) post-exercise and was unaffected by HA injection. The anti-inflammatory effects of HA on muscle are indirect as no differences (p > 0.05) in the relative amount of the macromolecule was observed between the CON and HA fiber extracellular matrix (ECM). However, exercise tended (p = 0.10) to cause an increase in ECM size suggestive of muscle damage and remodeling. The finding was supported by the increased (p < 0.05) expression of CTGF, TGFβ1, MMP9, TIMP4 and Col4A1. Collectively, the results validate HA as an anti-inflammatory aid that does not disrupt the normal post-exercise muscle repair process.
Collapse
Affiliation(s)
| | | | - Sally E. Johnson
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA; (S.R.G.); (M.R.B.)
| |
Collapse
|
13
|
Michelacci YM, Baccarin RYA, Rodrigues NNP. Chondrocyte Homeostasis and Differentiation: Transcriptional Control and Signaling in Healthy and Osteoarthritic Conditions. Life (Basel) 2023; 13:1460. [PMID: 37511835 PMCID: PMC10381434 DOI: 10.3390/life13071460] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Chondrocytes are the main cell type in articular cartilage. They are embedded in an avascular, abundant, and specialized extracellular matrix (ECM). Chondrocytes are responsible for the synthesis and turnover of the ECM, in which the major macromolecular components are collagen, proteoglycans, and non-collagen proteins. The crosstalk between chondrocytes and the ECM plays several relevant roles in the regulation of cell phenotype. Chondrocytes live in an avascular environment in healthy cartilage with a low oxygen supply. Although chondrocytes are adapted to anaerobic conditions, many of their metabolic functions are oxygen-dependent, and most cartilage oxygen is supplied by the synovial fluid. This review focuses on the transcription control and signaling responsible for chondrocyte differentiation, homeostasis, senescence, and cell death and the changes that occur in osteoarthritis. The effects of chondroitin sulfate and other molecules as anti-inflammatory agents are also approached and analyzed.
Collapse
Affiliation(s)
- Yara M Michelacci
- Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brazil
| | - Raquel Y A Baccarin
- Faculdade de Medicina Veterinária e Zootecnia, Universidade São Paulo, São Paulo 05508-270, SP, Brazil
| | - Nubia N P Rodrigues
- Faculdade de Medicina Veterinária e Zootecnia, Universidade São Paulo, São Paulo 05508-270, SP, Brazil
| |
Collapse
|
14
|
Counts of hyaluronic acid-containing extracellular vesicles decrease in naturally occurring equine osteoarthritis. Sci Rep 2022; 12:17550. [PMID: 36266410 PMCID: PMC9585069 DOI: 10.1038/s41598-022-21398-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/27/2022] [Indexed: 01/13/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease with inadequately understood pathogenesis leading to pain and functional limitations. Extracellular vesicles (EVs) released by synovial joint cells can induce both pro- and anti-OA effects. Hyaluronic acid (HA) lubricates the surfaces of articular cartilage and is one of the bioactive molecules transported by EVs. In humans, altered EV counts and composition can be observed in OA synovial fluid (SF), while EV research is in early stages in the horse-a well-recognized OA model. The aim was to characterize SF EVs and their HA cargo in 19 horses. SF was collected after euthanasia from control, OA, and contralateral metacarpophalangeal joints. The SF HA concentrations and size distribution were determined with a sandwich-type enzyme-linked sorbent assay and size-exclusion chromatography. Ultracentrifugation followed by nanoparticle tracking analysis (NTA) were utilized to quantify small EVs, while confocal laser scanning microscopy (CLSM) and image analysis characterized larger EVs. The number and size distribution of small EVs measured by NTA were unaffected by OA, but these results may be limited by the lack of hyaluronidase pre-treatment of the samples. When visualized by CLSM, the number and proportion of larger HA-containing EVs (HA-EVs) decreased in OA SF (generalized linear model, count: p = 0.024, %: p = 0.028). There was an inverse association between the OA grade and total EV count, HA-EV count, and HA-EV % (rs = - 0.264 to - 0.327, p = 0.012-0.045). The total HA concentrations were also lower in OA (generalized linear model, p = 0.002). To conclude, the present study discovered a potential SF biomarker (HA-EVs) for naturally occurring equine OA. The roles of HA-EVs in the pathogenesis of OA and their potential as a joint disease biomarker and therapeutic target warrant future studies.
Collapse
|
15
|
Baccarin RYA, Seidel SRT, Michelacci YM, Tokawa PKA, Oliveira TM. Osteoarthritis: a common disease that should be avoided in the athletic horse's life. Anim Front 2022; 12:25-36. [PMID: 35711506 PMCID: PMC9197312 DOI: 10.1093/af/vfac026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Raquel Yvonne Arantes Baccarin
- Department of Internal Medicine, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Sarah Raphaela Torquato Seidel
- Department of Internal Medicine, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Yara Maria Michelacci
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Paula Keiko Anadão Tokawa
- Department of Internal Medicine, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Tiago Marcelo Oliveira
- Department of Internal Medicine, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Agreste FR, Moreira JJ, Fülber J, Bogossian PM, Chaible LM, Silva LCLC, Michelacci YM, Baccarin RYA. Arthroscopic evaluation of the synovial membrane and its relationship with histological changes and biomarkers in equine joint disease. Res Vet Sci 2021; 140:212-220. [PMID: 34534902 DOI: 10.1016/j.rvsc.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 08/22/2021] [Accepted: 09/06/2021] [Indexed: 01/15/2023]
Abstract
The synovial membrane (SM) presents itself with distinctive characteristics during arthroscopic procedures in cases of osteoarthritis (OA) as well as osteochondritis dissecans (OCD) in horses. Most of the arthroscopic findings of the SM are limited to a description of a nonspecific inflammation state. In the present study, the macroscopic and histological aspects of the SM in OA and OCD horses were compared to those of healthy horses. The expression of interleukin (IL) in SM was also investigated. Besides, the concentrations of ILs and keratan sulfate (KS) in the synovial fluid (SF), and the molecular weights of the SF hyaluronic acid (HA) were also determined and correlated to the macroscopic and histological aspects of SM. This study included 10 healthy horses (control group), 12 horses with OA, and 12 with OCD. Macroscopic scores of the SM were higher in the OA group in comparison to the control and OCD groups. However, histological scores between OA and OCD were not different, and both were higher than the control group. Only in the OA group, there was a correlation between macroscopic and histological aspects of the SM, especially between volume and quantity of villi with perivascular inflammatory cells and synovial proliferation. The OA group has shown decreased expression of IL-10 in the SM, lower IL-10 and KS, and higher IL-1β and IL-6 in the SF in comparison to the control and OCD groups. There was a significant negative correlation between the macroscopic aspect of the SM and the molecular weights AH in the OA group. There was no correlation between the macroscopic aspect of the SM and all dosages in the OA and OCD group. In the OA joints, the evaluation of the shape of the SM during arthroscopy promotes a better indicator for joint inflammatory or tissue repair processes, while in the osteochondritic joints, investigation of the histological aspects are recommended to rule out an incipient OA development process. Both are helpful and should be considered to guide the postoperative treatment.
Collapse
Affiliation(s)
- F R Agreste
- Department of Internal Medicine, University of São Paulo, School of Veterinary Medicine and Animal Science, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, 05508270 São Paulo, Brazil
| | - J J Moreira
- Department of Internal Medicine, University of São Paulo, School of Veterinary Medicine and Animal Science, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, 05508270 São Paulo, Brazil
| | - J Fülber
- Department of Internal Medicine, University of São Paulo, School of Veterinary Medicine and Animal Science, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, 05508270 São Paulo, Brazil
| | - P M Bogossian
- Department of Internal Medicine, University of São Paulo, School of Veterinary Medicine and Animal Science, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, 05508270 São Paulo, Brazil
| | - L M Chaible
- Department of Pathology, University of São Paulo, School of Veterinary Medicine and Animal Science, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, 05508270 São Paulo, Brazil
| | - L C L C Silva
- Department of Surgery, University of São Paulo, School of Veterinary Medicine and Animal Science, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, 05508270 São Paulo, Brazil
| | - Y M Michelacci
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio, 100, Vila Clementino, 04044020 São Paulo, Brazil
| | - R Y A Baccarin
- Department of Internal Medicine, University of São Paulo, School of Veterinary Medicine and Animal Science, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, 05508270 São Paulo, Brazil.
| |
Collapse
|
17
|
Watkins A, Fasanello D, Stefanovski D, Schurer S, Caracappa K, D'Agostino A, Costello E, Freer H, Rollins A, Read C, Su J, Colville M, Paszek M, Wagner B, Reesink H. Investigation of synovial fluid lubricants and inflammatory cytokines in the horse: a comparison of recombinant equine interleukin 1 beta-induced synovitis and joint lavage models. BMC Vet Res 2021; 17:189. [PMID: 33980227 PMCID: PMC8117281 DOI: 10.1186/s12917-021-02873-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/30/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Lameness is a debilitating condition in equine athletes that leads to more performance limitation and loss of use than any other medical condition. There are a limited number of non-terminal experimental models that can be used to study early inflammatory and synovial fluid biophysical changes that occur in the equine joint. Here, we compare the well-established carpal IL-1β-induced synovitis model to a tarsal intra-articular lavage model, focusing on serial changes in synovial fluid inflammatory cytokines/chemokines and the synovial fluid lubricating molecules lubricin/proteoglycan 4 and hyaluronic acid. The objectives of this study were to evaluate clinical signs; synovial membrane and synovial fluid inflammation; and synovial fluid lubricants and biophysical properties in response to carpal IL-1β synovitis and tarsal intra-articular lavage. RESULTS Hyaluronic acid (HA) concentrations, especially high molecular weight HA, and synovial fluid viscosity decreased after both synovitis and lavage interventions. Synovial fluid lubricin concentrations increased 17-20-fold for both synovitis and lavage models, with similar changes in both affected and contralateral joints, suggesting that repeated arthrocentesis alone resulted in elevated synovial fluid lubricin concentrations. Synovitis resulted in a more severe inflammatory response based on clinical signs (temperature, heart rate, respiratory rate, lameness and joint effusion) and clinicopathological and biochemical parameters (white blood cell count, total protein, prostaglandin E2, sulfated glycosaminoglycans, tumor necrosis factor-α and CC chemokine ligands - 2, - 3, - 5 and - 11) as compared to lavage. CONCLUSIONS Synovial fluid lubricin increased in response to IL-1β synovitis and joint lavage but also as a result of repeated arthrocentesis. Frequent repeated arthrocentesis is associated with inflammatory changes, including increased sulfated glycosaminoglycan concentrations and decreased hyaluronic acid concentrations. Synovitis results in more significant inflammatory changes than joint lavage. Our data suggests that synovial fluid lubricin, TNF-α, CCL2, CCL3, CCL5, CCL11 and sGAG may be useful biomarkers for synovitis and post-lavage joint inflammation. Caution should be exercised when performing repeated arthrocentesis clinically or in experimental studies due to the inflammatory response and loss of HA and synovial fluid viscosity.
Collapse
Affiliation(s)
- Amanda Watkins
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Diana Fasanello
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Darko Stefanovski
- Department of Biostatistics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sydney Schurer
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Katherine Caracappa
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Albert D'Agostino
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Emily Costello
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Heather Freer
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Alicia Rollins
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Claire Read
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jin Su
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Marshall Colville
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Matthew Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Heidi Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
18
|
Alves JC, Dos Santos AMMP, Jorge P, Lavrador CFTVB, Carreira LM. Effect of a single intra-articular high molecular weight hyaluronan in a naturally occurring canine osteoarthritis model: a randomized controlled trial. J Orthop Surg Res 2021; 16:290. [PMID: 33941219 PMCID: PMC8091761 DOI: 10.1186/s13018-021-02423-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a complex joint disease and chronic pain source, affecting a patient's quality of life and posing a financial burden. As the dog is considered a nearly ideal species for translation research of human OA and the most used model for research, exploring spontaneous dog OA under the One Health/One Medicine concept can improve both humans and dogs' health and well-being. METHODS In a clinical treatment experiment, forty (N=40) joints were selected and randomly assigned to a control group (CG), which received 0.9% NaCl or a treatment (HG), which received Hylan G-F 20. Evaluations were performed on treatment day (T0), 8, 15, 30, 90, and 180 days post-treatment. They consisted of four different Clinical Metrology Instruments (CMI), evaluation of weight distribution, joint range of motion, thigh girth, radiographic and digital thermography imaging, synovial fluid interleukin-1 (IL-1), and C-reactive protein concentrations. Results were compared with repeated measures ANOVA, with a Huynh-Feldt correction, Paired samples T-test, or Wilcoxon signed-ranks test, with p<0.05. RESULTS Patients had a mean age of 6.5±2.4 years and a bodyweight of 26.6±5.2kg, and joints graded as mild (n=28, 70%), moderate (n=6, 15%), and severe OA (n=6, 15%). No differences were found between groups at T0. Symmetry index and deviation showed significant improvements in HG from 30 days (p<0.01) up to 180 days (p=0.01). Several CMI scores, particularly pain scores, improved from 90 to 180 days. Radiographic signs progressed in both groups. In both groups, increasing body weight and age corresponded to worse clinical presentation. IA hyaluronan administration produced increased lameness in six cases, which resolved spontaneously. CONCLUSIONS This study characterizes the response to treatment with Hylan G-F 20, which can produce significant functional and pain level improvements in patients with OA, even those with factors related to worse response to treatment.
Collapse
Affiliation(s)
- J C Alves
- Divisão de Medicina Veterinária, Guarda Nacional Republicana (GNR), Rua Presidente Arriaga, 9, 1200-771, Lisbon, Portugal.
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, p. 94, 7006-554, Évora, Portugal.
| | | | - Patrícia Jorge
- Divisão de Medicina Veterinária, Guarda Nacional Republicana (GNR), Rua Presidente Arriaga, 9, 1200-771, Lisbon, Portugal
| | - Catarina Falcão Trigoso Vieira Branco Lavrador
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, p. 94, 7006-554, Évora, Portugal
| | - L Miguel Carreira
- Faculty of Veterinary Medicine, University of Lisbon (FMV/ULisboa), Lisbon, Portugal
- Interdisciplinary Centre for Research in Animal Health (CIISA), University of Lisbon (FMV/ULisboa), Lisbon, Portugal
- Anjos of Assis Veterinary Medicine Centre (CMVAA), Barreiro, Portugal
| |
Collapse
|
19
|
Serra Aguado CI, Ramos-Plá JJ, Soler C, Segarra S, Moratalla V, Redondo JI. Effects of Oral Hyaluronic Acid Administration in Dogs Following Tibial Tuberosity Advancement Surgery for Cranial Cruciate Ligament Injury. Animals (Basel) 2021; 11:1264. [PMID: 33925642 PMCID: PMC8146498 DOI: 10.3390/ani11051264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 11/19/2022] Open
Abstract
Hyaluronic acid (HA) intraarticular injection is used in the management of osteoarthritis in veterinary medicine. However, HA oral administration is less common given the scarce currently available scientific evidence. This study was aimed at evaluating the effects of oral HA administration on synovial fluid concentrations of several selected biomarkers in dogs with cranial cruciate ligament (CCL) injury operated on using the tibial tuberosity advancement (TTA) technique. Fifty-five dogs were included in this prospective, randomized, double-blind, clinical study; they were randomly assigned to receive either a placebo (group A; n = 25) or HA (group B; n = 30) orally for 10 weeks. Synovial fluid samples were obtained before surgery, and at 10 weeks postoperatively to measure concentrations of HA, haptoglobin, nitric oxide, and paraoxonase-1. After 10 weeks, group HA showed a significant increase in HA concentration (p = 0.0016) and a significant decrease in PON-1 concentration (p = 0.011) compared to baseline. In conclusion, post-op oral HA administration in canine patients with CCL injury leads to improvements in osteoarthritis biomarkers, namely higher synovial fluid HA concentrations and reduced synovial fluid paraoxonase-1 concentrations. These findings support the bioavailability of orally-administered HA and its usefulness in improving biomarkers of osteoarthritis.
Collapse
Affiliation(s)
- Claudio Iván Serra Aguado
- Hospital Veterinario UCV, Departamento de Medicina y Cirugía, Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, 46018 Valencia, Spain;
| | - Juan José Ramos-Plá
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain;
| | - Carme Soler
- Hospital Veterinario UCV, Departamento de Medicina y Cirugía, Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, 46018 Valencia, Spain;
| | - Sergi Segarra
- R&D Bioiberica S.A.U., 08950 Esplugues de Llobregat, Spain;
| | | | - José Ignacio Redondo
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain;
| |
Collapse
|
20
|
Kearney CM, Korthagen NM, Plomp SGM, Labberté MC, de Grauw JC, van Weeren PR, Brama PAJ. Treatment effects of intra-articular triamcinolone acetonide in an equine model of recurrent joint inflammation. Equine Vet J 2020; 53:1277-1286. [PMID: 33280164 DOI: 10.1111/evj.13396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/17/2020] [Accepted: 11/19/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND Intra-articular triamcinolone acetonide is a widely used treatment for joint inflammation despite limited scientific evidence of its efficacy. OBJECTIVES To investigate if intra-articular triamcinolone acetonide has sustained anti-inflammatory effects using an equine model of repeated joint inflammation. STUDY DESIGN Randomised controlled experimental study. METHOD For three consecutive cycles 2 weeks apart, inflammation was induced in both middle carpal joints of eight horses by injecting 0.25 ng lipopolysaccharide (LPS). After the first LPS injection only, treatment with 12 mg triamcinolone acetonide (TA) followed in one randomly assigned joint, while the contralateral joint was treated with sterile saline (control). Clinical parameters (composite welfare scores, joint effusion, joint circumference) were recorded and synovial fluid samples were analysed for various biomarkers (total protein, WBCC; PGE2 ; CCL2; TNFα; MMP; GAGs; C2C; CPII) at fixed timepoints (post injection hours 0, 8, 24, 72 and 168). The effects of time and treatment on clinical and synovial fluid parameters and the presence of time-treatment interactions were tested using a linear mixed model for repeated measures with horse as a random effect, and time and treatment as fixed effects. RESULTS The TA treated joints showed significantly higher peak synovial GAG concentrations (Difference in means 283.1875 µg/mL, 95% CI 179.8, 386.6, P < 0.000), and PGE2 levels (Difference in means 77.8025 pg/mL, 95% CI 21.2, 134.4, P < 0.007) after the first inflammation induction. Significantly lower TP levels were seen with TA treatment after the second induction (Difference in means -7.5 g/L, 95% CI -14.8, -0.20, P < 0.04) . Significantly lower WBCC levels were noted with TA treatment after the first (Difference in means -23.7125 × 109 cells/L, 95% CI -46.7, -0.7, P < 0.04) and second (Difference in means -35.95 × 109 cells/L, 95% CI -59.0, -12.9, P < 0.002) inflammation inductions. Significantly lower general MMP activity was also seen with TA treatment after the second inflammation inductions (Difference in means -51.65 RFU/s, 95% CI -92.4, -10.9, P < 0.01). MAIN LIMITATIONS This experimental study cannot fully reflect natural joint disease. CONCLUSIONS In this model, intra-articular TA seems to have some anti-inflammatory activity (demonstrated by reductions in TP, WBCC and general MMP activity) up to 2 weeks post treatment but not at 4 weeks. This anti-inflammatory effect appeared to outlast a shorter-lived, potentially detrimental effect illustrated by increased synovial GAG and PGE2 levels after the first induction.
Collapse
Affiliation(s)
- Clodagh M Kearney
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Nicoline M Korthagen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Saskia G M Plomp
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Margot C Labberté
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Janny C de Grauw
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - P R van Weeren
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Pieter A J Brama
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
21
|
D-Lactate Increases Cytokine Production in Bovine Fibroblast-Like Synoviocytes via MCT1 Uptake and the MAPK, PI3K/Akt, and NFκB Pathways. Animals (Basel) 2020; 10:ani10112105. [PMID: 33202791 PMCID: PMC7698040 DOI: 10.3390/ani10112105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
Acute ruminal acidosis (ARA) is caused by the excessive intake of highly fermentable carbohydrates, followed by the massive production of D-lactate and the appearance of neutrophilic aseptic polysynovitis. Bovines with ARA develop different lesions, such as ruminitis, polioencephalomalacia (calves), liver abscess and lameness. Lameness in cattle with ARA is closely associated with the presence of laminitis and polysynovitis. However, despite decades of research in bovine lameness as consequence of ruminal acidosis, the aetiology and pathogenesis remain unclear. Fibroblast-like synoviocytes (FLSs) are components of synovial tissue, and under pathological conditions, FLSs increase cytokine production, aggravating inflammatory responses. We hypothesized that D-lactate could induce cytokine production in bovine FLSs. Analysis by qRT-PCR and ELISA revealed that D-lactate, but not L-lactate, increased the expression of IL-6 and IL-8 in a monocarboxylate transporter-1-dependent manner. In addition, we observed that the inhibition of the p38, ERK1/2, PI3K/Akt, and NF-κB pathways reduced the production of IL-8 and IL-6. In conclusion, our results suggest that D-lactate induces an inflammatory response; this study contributes to the literature by revealing a potential key role of D-lactate in the polysynovitis of cattle with ARA.
Collapse
|
22
|
Heimfarth L, Serafini MR, Martins-Filho PR, Quintans JDSS, Quintans-Júnior LJ. Drug repurposing and cytokine management in response to COVID-19: A review. Int Immunopharmacol 2020; 88:106947. [PMID: 32919216 PMCID: PMC7457938 DOI: 10.1016/j.intimp.2020.106947] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19), the infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an aggressive disease that attacks the respiratory tract and has a higher fatality rate than seasonal influenza. The COVID-19 pandemic is a global health crisis, and no specific therapy or drug has been formally recommended for use against SARS-CoV-2 infection. In this context, it is a rational strategy to investigate the repurposing of existing drugs to use in the treatment of COVID-19 patients. In the meantime, the medical community is trialing several therapies that target various antiviral and immunomodulating mechanisms to use against the infection. There is no doubt that antiviral and supportive treatments are important in the treatment of COVID-19 patients, but anti-inflammatory therapy also plays a pivotal role in the management COVID-19 patients due to its ability to prevent further injury and organ damage or failure. In this review, we identified drugs that could modulate cytokines levels and play a part in the management of COVID-19. Several drugs that possess an anti-inflammatory profile in others illnesses have been studied in respect of their potential utility in the treatment of the hyperinflammation induced by SAR-COV-2 infection. We highlight a number of antivirals, anti-rheumatic, anti-inflammatory, antineoplastic and antiparasitic drugs that have been found to mitigate cytokine production and consequently attenuate the "cytokine storm" induced by SARS-CoV-2. Reduced hyperinflammation can attenuate multiple organ failure, and even reduce the mortality associated with severe COVID-19. In this context, despite their current unproven clinical efficacy in relation to the current pandemic, the repurposing of drugs with anti-inflammatory activity to use in the treatment of COVID-19 has become a topic of great interest.
Collapse
Affiliation(s)
- Luana Heimfarth
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), São Cristóvão, SE 49100-000 Brazil; Graduate Program of Health Sciences (PPGCS), São Cristóvão, SE 49100-000 Brazil.
| | - Mairim Russo Serafini
- Graduate Program of Pharmaceutical Sciences (PPGCF). Federal University of Sergipe (UFS), São Cristóvão, SE 49100-000 Brazil
| | | | - Jullyana de Souza Siqueira Quintans
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), São Cristóvão, SE 49100-000 Brazil; Graduate Program of Health Sciences (PPGCS), São Cristóvão, SE 49100-000 Brazil
| | - Lucindo José Quintans-Júnior
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), São Cristóvão, SE 49100-000 Brazil; Graduate Program of Health Sciences (PPGCS), São Cristóvão, SE 49100-000 Brazil; Graduate Program of Pharmaceutical Sciences (PPGCF). Federal University of Sergipe (UFS), São Cristóvão, SE 49100-000 Brazil
| |
Collapse
|
23
|
Chakrabarti S, Ai M, Henson FM, Smith ESJ. Peripheral mechanisms of arthritic pain: A proposal to leverage large animals for in vitro studies. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2020; 8:100051. [PMID: 32817908 PMCID: PMC7426561 DOI: 10.1016/j.ynpai.2020.100051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 04/14/2023]
Abstract
Pain arising from musculoskeletal disorders such as arthritis is one of the leading causes of disability. Whereas the past 20-years has seen an increase in targeted therapies for rheumatoid arthritis (RA), other arthritis conditions, especially osteoarthritis, remain poorly treated. Although modulation of central pain pathways occurs in chronic arthritis, multiple lines of evidence indicate that peripherally driven pain is important in arthritic pain. To understand the peripheral mechanisms of arthritic pain, various in vitro and in vivo models have been developed, largely in rodents. Although rodent models provide numerous advantages for studying arthritis pathogenesis and treatment, the anatomy and biomechanics of rodent joints differ considerably to those of humans. By contrast, the anatomy and biomechanics of joints in larger animals, such as dogs, show greater similarity to human joints and thus studying them can provide novel insight for arthritis research. The purpose of this article is firstly to review models of arthritis and behavioral outcomes commonly used in large animals. Secondly, we review the existing in vitro models and assays used to study arthritic pain, primarily in rodents, and discuss the potential for adopting these strategies, as well as likely limitations, in large animals. We believe that exploring peripheral mechanisms of arthritic pain in vitro in large animals has the potential to reduce the veterinary burden of arthritis in commonly afflicted species like dogs, as well as to improve translatability of pain research into the clinic.
Collapse
Affiliation(s)
- Sampurna Chakrabarti
- Department of Neuroscience, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
- Department of Pharmacology, University of Cambridge, UK
| | - Minji Ai
- Department of Veterinary Medicine, University of Cambridge, UK
| | | | | |
Collapse
|
24
|
Addition of High Molecular Weight Hyaluronic Acid to Fibroblast-Like Stromal Cells Modulates Endogenous Hyaluronic Acid Metabolism and Enhances Proteolytic Processing and Secretion of Versican. Cells 2020; 9:cells9071681. [PMID: 32668663 PMCID: PMC7407811 DOI: 10.3390/cells9071681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
We have examined the effect of exogenous linear chain high molecular weight hyaluronic acid (HMW HA) on endogenously synthesized hyaluronic acid (HA) and associated binding proteins in primary cultures of fibroblast-like stromal cells that were obtained by collagenase digestion of the murine peripatellar fat pad. The cultures were expanded in DMEM that was supplemented with fetal bovine serum and basic fibroblast growth factor (bFGF) then exposed to macrophage-colony-stimulating factor (MCSF) to induce macrophage properties, before activation of inflammatory pathways using E. coli lipopolysaccharide (LPS). Under all culture conditions, a significant amount of endogenously synthesized HA localized in LAMP1-positive lysosomal vesicles. However, this intracellular pool was depleted after the addition of exogenous HMW HA and was accompanied by enhanced proteolytic processing and secretion of de novo synthesized versican, much of which was associated with endosomal compartments. No changes were detected in synthesis, secretion, or proteolytic processing of aggrecan or lubricin (PRG4). The addition of HMW HA also modulated a range of LPS-affected genes in the TLR signaling and phagocytosis pathways, as well as endogenous HA metabolism genes, such as Has1, Hyal1, Hyal2, and Tmem2. However, there was no evidence for association of endogenous or exogenous HMW HA with cell surface CD44, TLR2 or TLR4 protein, suggesting that its physiochemical effects on pericelluar pH and/or ionic strength might be the primary modulators of signal transduction and vesicular trafficking by this cell type. We discuss the implications of these findings in terms of a potential in vivo effect of therapeutically applied HMW HA on the modification of osteoarthritis-related joint pathologies, such as pro-inflammatory and degradative responses of multipotent mesenchymal cells residing in the synovial membrane, the underlying adipose tissue, and the articular cartilage surface.
Collapse
|
25
|
Sotelo EDP, Vendruscolo CP, Fülber J, Seidel SRT, Jaramillo FM, Agreste FR, da Silva LCLC, Baccarin RYA. Effects of Joint Lavage with Dimethylsulfoxide on LPS-Induced Synovitis in Horses-Clinical and Laboratorial Aspects. Vet Sci 2020; 7:vetsci7020057. [PMID: 32365982 PMCID: PMC7356314 DOI: 10.3390/vetsci7020057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 11/16/2022] Open
Abstract
Several studies in human and equine medicine have produced controversial results regarding the role of dimethylsulfoxide (DMSO) as a therapeutic agent. This study aimed to evaluate the effect of joint lavage with different DMSO concentrations on biomarkers of synovial fluid inflammation and cartilage degradation in joints with lipopolysaccharide (LPS)-induced synovitis. Twenty-six tibiotarsal joints of 13 horses were randomly distributed into four groups (lactated Ringer's solution; 5% DMSO in lactated Ringer's; 10% DMSO in lactated Ringer's; and sham). All animals were evaluated for the presence of lameness, and synovial fluid analyses were performed at 0 h, 1 h, 8 h, 24 h, and 48 h (T0, T1, T8, T24, and T48, respectively). The white blood cell counts (WBC), total protein (TP), urea, prostaglandin E2 (PGE2), interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor-α (TNF-α), hyaluronic acid (HA), and chondroitin sulfate (CS) concentrations were measured. The WBC counts and PGE2, IL-1β, IL-6, and TP concentrations increased in all groups at T8 compared to baseline values (p<0.05). At T48, only the 5% DMSO and 10% DMSO groups showed a significant decrease in WBC counts (p<0.05). Furthermore, the 10% DMSO group had lower concentrations of PGE2 and IL-1β at T48 than at T8 (p<0.05) and presented lower IL-6 levels than the5% DMSO and lactated Ringer's groups at T24. All groups showed an increase in CS concentration after LPS-induced synovitis. Joint lavage with 10% DMSO in lactated Ringer´s has anti-inflammatory but not chondroprotective effects.
Collapse
Affiliation(s)
- Eric Danilo Pauls Sotelo
- Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil; (C.P.V.); (J.F.); (S.R.T.S.); (F.M.J.); (F.R.A.)
- Correspondence: (E.D.P.S.); (R.Y.A.B.); Tel.: +55-11-3091-1323 (R.Y.A.B.)
| | - Cynthia Prado Vendruscolo
- Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil; (C.P.V.); (J.F.); (S.R.T.S.); (F.M.J.); (F.R.A.)
| | - Joice Fülber
- Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil; (C.P.V.); (J.F.); (S.R.T.S.); (F.M.J.); (F.R.A.)
| | - Sarah Raphaela Torquato Seidel
- Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil; (C.P.V.); (J.F.); (S.R.T.S.); (F.M.J.); (F.R.A.)
| | - Fernando Mosquera Jaramillo
- Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil; (C.P.V.); (J.F.); (S.R.T.S.); (F.M.J.); (F.R.A.)
| | - Fernanda Rodrigues Agreste
- Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil; (C.P.V.); (J.F.); (S.R.T.S.); (F.M.J.); (F.R.A.)
| | | | - Raquel Yvonne Arantes Baccarin
- Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil; (C.P.V.); (J.F.); (S.R.T.S.); (F.M.J.); (F.R.A.)
- Correspondence: (E.D.P.S.); (R.Y.A.B.); Tel.: +55-11-3091-1323 (R.Y.A.B.)
| |
Collapse
|