1
|
Arcinas AJ, Larson EJ, Buchhalter EP, Dunn ZD, Wang H, Singh AN, Barrientos RC, Ukaegbu O, Mukherjee M, Appiah-Amponsah E, Regalado EL. Two-dimensional size exclusion reversed-phase liquid chromatography for quantitative analysis of L1 proteins in complex vaccine matrices. J Chromatogr A 2025; 1748:465851. [PMID: 40086145 DOI: 10.1016/j.chroma.2025.465851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
The quantitation of the major capsid protein L1 is an important metric during the pharmaceutical manufacturing of human papilloma virus (HPV) vaccines, as they are critical components of virus like particles (VLPs) that form the core of the drug product. During the production of VLPs, the L1 protein is present in multiple states, including monomer, multimer, fully formed VLPs and aggregate species, whose expression levels provides an important read-out of upstream productivity and downstream purification efficiency through the measurement of step yields. However, quantitation of total L1 protein is challenging not only due to its presence in multiple states, but also due to the matrix complexity and purification stage of the samples, which spans complex cell lysate to cleaner post purification material. Current analytical methods typically implemented for L1 quantitation includes direct UV measurement (such as SoloVPE), which is robust and easily deployed, but best suited to analysis of purified samples. Automated capillary electrophoresis techniques such as Simple Western are well established but dependent on reproducible binding to accessible L1 epitopes and potentially susceptible to antibody lot to lot reproducibility which may pose an operational risk. Mass spectrometry-based techniques provide excellent sensitivity and characterization advantages but are challenging to deploy in a manufacturing setting. Additionally, conventional one-dimensional liquid chromatography separation of L1 from host cell protein or cellular components is ineffective particularly in high-complexity lysate samples and intermediates prior to chromatographic purification steps. Herein, we present a sample preparation strategy and analytical method that is capable of total L1 quantitation regardless of its multimeric state and is compatible with sample matrices ranging from crude lysate to purified samples, without the use of complicated and serotype-specific reagents. We employ reduction and heat-denaturation during sample preparation to simplify the multimeric states of L1 to its monomer form and utilize two-dimension liquid chromatography (2D-LC) with first dimension (1D) size exclusion and peak heart-cutting to second dimension (2D) reversed-phase separation modes coupled to diode array and fluorescence detectors. In addition, a reliable method for total L1 quantitation in multiple process intermediate steps (upstream and downstream) is demonstrated with evaluation of analytical figures of merit including limit of quantitation, linearity, and repeatability.
Collapse
Affiliation(s)
- Arthur J Arcinas
- Analytical Research and Development, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19446, USA.
| | - Eli J Larson
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ 07065, USA
| | - Eric P Buchhalter
- Analytical Research and Development, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19446, USA
| | - Zachary D Dunn
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ 07065, USA
| | - Heather Wang
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ 07065, USA
| | - Andrew N Singh
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ 07065, USA
| | - Rodell C Barrientos
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ 07065, USA
| | - Ophelia Ukaegbu
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ 07065, USA
| | - Malini Mukherjee
- Analytical Research and Development, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19446, USA
| | - Emmanuel Appiah-Amponsah
- Analytical Research and Development, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19446, USA
| | - Erik L Regalado
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ 07065, USA
| |
Collapse
|
2
|
Petrovsky N. Clinical development of SpikoGen®, an Advax-CpG55.2 adjuvanted recombinant spike protein vaccine. Hum Vaccin Immunother 2024; 20:2363016. [PMID: 38839044 PMCID: PMC11155708 DOI: 10.1080/21645515.2024.2363016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Recombinant protein vaccines represent a well-established, reliable and safe approach for pandemic vaccination. SpikoGen® is a recombinant spike protein trimer manufactured in insect cells and formulated with Advax-CpG55.2 adjuvant. In murine, hamster, ferret and non-human primate studies, SpikoGen® consistently provided protection against a range of SARS-CoV-2 variants. A pivotal Phase 3 placebo-controlled efficacy trial involving 16,876 participants confirmed the ability of SpikoGen® to prevent infection and severe disease caused by the virulent Delta strain. SpikoGen® subsequently received a marketing authorization from the Iranian FDA in early October 2021 for prevention of COVID-19 in adults. Following a successful pediatric study, its approval was extended to children 5 years and older. Eight million doses of SpikoGen® have been delivered, and a next-generation booster version is currently in development. This highlights the benefits of adjuvanted protein-based approaches which should not overlook when vaccine platforms are being selected for future pandemics.
Collapse
Affiliation(s)
- Nikolai Petrovsky
- Research Department, Australian Respiratory and Sleep Medicine Institute Ltd, Adelaide, Australia
- Research Department, Vaxine Pty Ltd, Warradale, Australia
| |
Collapse
|
3
|
Gerold MN, Toth E, Blair RH, Gao RY, Nadkarni DV, Barua S, Woods J, Rowlen KL, Dawson ED. Analytical Performance of a Multiplexed Microarray Assay for Rapid Identification and Quantification of a Multivalent mRNA Vaccine. Vaccines (Basel) 2024; 12:1144. [PMID: 39460311 PMCID: PMC11511549 DOI: 10.3390/vaccines12101144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
mRNA vaccines were highly effective in response to the COVID-19 pandemic, making them an attractive platform to address cancers and other infectious diseases. Many new mRNA vaccines in development are multivalent, which represents a difficulty for the standard assays commonly used to characterize the critical quality attributes of monovalent formulations. Here, we present a multiplexed analytical tool with nucleic acid microarray technology using the VaxArray platform that measures the identity and quantity of mono- and multivalent mixtures of naked mRNA and mRNA encapsulated in lipid nanoparticle formulations in under 2 h without any additional preparation steps, such as extraction or RT-PCR. Using a quadrivalent mixture of encapsulated mRNA constructs that encode for four unique proteins in a vaccine formulation, the VaxArray mRNA assay was demonstrated to be highly specific for each mRNA with sensitivity < 1 µg/mL. The quantification of individual mRNAs within the lipid nanoparticle mixture resulted in a precision of ≤10% RSD and an accuracy of 100 ± 9%.
Collapse
Affiliation(s)
- Megan N. Gerold
- InDevR Inc., 6035 Longbow Dr, Suite 102, Boulder, CO 80301, USA
| | - Evan Toth
- InDevR Inc., 6035 Longbow Dr, Suite 102, Boulder, CO 80301, USA
| | | | - Rachel Y. Gao
- InDevR Inc., 6035 Longbow Dr, Suite 102, Boulder, CO 80301, USA
| | - Durgesh V. Nadkarni
- BioTherapeutics Pharmaceutical Sciences, Bioprocess Research & Development, Pfizer, Inc., 875 Chesterfield Parkway West, Chesterfield, MO 63017, USA
| | - Sutapa Barua
- BioTherapeutics Pharmaceutical Sciences, Pharmaceutical Research & Development, Pfizer Inc., One Burtt Road, Andover, MA 01810, USA
| | - Joshua Woods
- BioTherapeutics Pharmaceutical Sciences, Analytical Research & Development, Pfizer, Inc., 875 Chesterfield Parkway West, Chesterfield, MO 63017, USA
| | - Kathy L. Rowlen
- InDevR Inc., 6035 Longbow Dr, Suite 102, Boulder, CO 80301, USA
| | - Erica D. Dawson
- InDevR Inc., 6035 Longbow Dr, Suite 102, Boulder, CO 80301, USA
| |
Collapse
|
4
|
Olawade DB, Teke J, Fapohunda O, Weerasinghe K, Usman SO, Ige AO, Clement David-Olawade A. Leveraging artificial intelligence in vaccine development: A narrative review. J Microbiol Methods 2024; 224:106998. [PMID: 39019262 DOI: 10.1016/j.mimet.2024.106998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Vaccine development stands as a cornerstone of public health efforts, pivotal in curbing infectious diseases and reducing global morbidity and mortality. However, traditional vaccine development methods are often time-consuming, costly, and inefficient. The advent of artificial intelligence (AI) has ushered in a new era in vaccine design, offering unprecedented opportunities to expedite the process. This narrative review explores the role of AI in vaccine development, focusing on antigen selection, epitope prediction, adjuvant identification, and optimization strategies. AI algorithms, including machine learning and deep learning, leverage genomic data, protein structures, and immune system interactions to predict antigenic epitopes, assess immunogenicity, and prioritize antigens for experimentation. Furthermore, AI-driven approaches facilitate the rational design of immunogens and the identification of novel adjuvant candidates with optimal safety and efficacy profiles. Challenges such as data heterogeneity, model interpretability, and regulatory considerations must be addressed to realize the full potential of AI in vaccine development. Integrating emerging technologies, such as single-cell omics and synthetic biology, promises to enhance vaccine design precision and scalability. This review underscores the transformative impact of AI on vaccine development and highlights the need for interdisciplinary collaborations and regulatory harmonization to accelerate the delivery of safe and effective vaccines against infectious diseases.
Collapse
Affiliation(s)
- David B Olawade
- Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London, United Kingdom; Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham ME7 5NY, United Kingdom.
| | - Jennifer Teke
- Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham ME7 5NY, United Kingdom; Faculty of Medicine, Health and Social Care, Canterbury Christ Church University, United Kingdom
| | | | - Kusal Weerasinghe
- Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham ME7 5NY, United Kingdom
| | - Sunday O Usman
- Department of Systems and Industrial Engineering, University of Arizona, USA
| | - Abimbola O Ige
- Department of Chemistry, Faculty of Science, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
5
|
Petrovsky N. Post-Hoc Analysis of Potential Correlates of Protection of a Recombinant SARS-CoV-2 Spike Protein Extracellular Domain Vaccine Formulated with Advax-CpG55.2-Adjuvant. Int J Mol Sci 2024; 25:9459. [PMID: 39273405 PMCID: PMC11395249 DOI: 10.3390/ijms25179459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
SpikoGen® vaccine is a subunit COVID-19 vaccine composed of an insect cell expressed recombinant spike protein extracellular domain formulated with Advax-CpG55.2™ adjuvant. A randomized double-blind, placebo-controlled Phase II clinical trial was conducted in 400 adult subjects who were randomized 3:1 to receive two intramuscular doses three weeks apart of either SpikoGen® vaccine 25 μg or saline placebo, as previously reported. This study reports a post hoc analysis of the trial data to explore potential immune correlates of SpikoGen® vaccine protection. A range of humoral markers collected pre- and post-vaccination, including spike- and RBD-binding IgG and IgA, surrogate (sVNT), and conventional (cVNT) virus neutralization tests were compared between participants who remained infection-free or got infected over three months of follow-up. From 2 weeks after the second vaccine dose, 21 participants were diagnosed with SARS-CoV-2 infection, 13 (4.2%) in the SpikoGen® group and 8 (9%) in the placebo group. Those in the vaccinated group who experienced breakthrough infections had significantly lower sVNT titers (GMT 5.75 μg/mL, 95% CI; 3.72-8.91) two weeks after the second dose (day 35) than those who did not get infected (GMT 21.06 μg/mL, 95% CI; 16.57-26.76). Conversely, those who did not develop SARS-CoV-2 infection during follow-up had significantly higher baseline sVNT, cVNT, spike-binding IgG and IgA, and RBD-binding IgG, consistent with a past SARS-CoV-2 infection. SpikoGen® further reduced the risk of re-infection (OR 0.29) in baseline seropositive (previously infected) as well as baseline seronegative participants. This indicates that while SpikoGen vaccine is protective in seronegative individuals, those with hybrid immunity have the most robust protection.
Collapse
Affiliation(s)
- Nikolai Petrovsky
- Vaxine Pty Ltd., Warradale, Adelaide 5046, Australia
- Australian Respiratory and Sleep Medicine Institute, Adelaide 5042, Australia
| |
Collapse
|
6
|
Hussain A, Wang M, Yu D, Zhang J, Naseer QA, Ullah A, Milon Essola J, Zhang X. Medical and molecular biophysical techniques as substantial tools in the era of mRNA-based vaccine technology. Biomater Sci 2024; 12:4117-4135. [PMID: 39016519 DOI: 10.1039/d4bm00561a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The COVID-19 pandemic prompted the advancement of vaccine technology using mRNA delivery into the host cells. Consequently, mRNA-based vaccines have emerged as a practical approach against SARS-CoV-2 owing to their inherent properties, such as cost-effectiveness, rapid manufacturing, and preservation. These features are vital, especially in resource-constrained regions. Nevertheless, the design of mRNA-based vaccines is intricately intertwined with the refinement of biophysical technologies, thereby establishing their high potential. The preparation of mRNA-based vaccines involves a sequence of phases combining medical and molecular biophysical technologies. Furthermore, their efficiency depends on the capability to optimize their positive attributes, thus paving the way for their subsequent preclinical and clinical evaluations. Using biophysical techniques, the characterization of nucleic acids extends from their initial formulation to their cellular internalization abilities and encapsulation in biomolecule complexes, such as lipid nanoparticles (LNPs), for designing mRNA-based LNPs. Furthermore, nanoparticles are subjected to a series of careful screening steps to assess their physical and chemical characteristics before achieving an optimum formulation suitable for preclinical and clinical studies. This review provides a comprehensive understanding of the fundamental role of biophysical techniques in the complex development of mRNA-based vaccines and their role in the recent success during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Abid Hussain
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| | - Maoye Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| | - Dan Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| | - Jiahui Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| | - Qais Ahmad Naseer
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Aftab Ullah
- School of Medicine, Huaqiao University, No. 269 Chenghua North Rd., Quanzhou, Fujian 362021, China.
| | - Julien Milon Essola
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
7
|
Skerritt JH, Tucek-Szabo C, Sutton B, Nolan T. The Platform Technology Approach to mRNA Product Development and Regulation. Vaccines (Basel) 2024; 12:528. [PMID: 38793779 PMCID: PMC11126020 DOI: 10.3390/vaccines12050528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
mRNA-lipid nanoparticle (LNP) medicinal products can be considered a platform technology because the development process is similar for different diseases and conditions, with similar noncoding mRNA sequences and lipid nanoparticles and essentially unchanged manufacturing and analytical methods often utilised for different products. It is critical not to lose the momentum built using the platform approach during the development, regulatory approval and rollout of vaccines for SARS-CoV-2 and its variants. This review proposes a set of modifications to existing regulatory requirements for mRNA products, based on a platform perspective for quality, manufacturing, preclinical, and clinical data. For the first time, we address development and potential regulatory requirements when the mRNA sequences and LNP composition vary in different products as well. In addition, we propose considerations for self-amplifying mRNA, individualised oncology mRNA products, and mRNA therapeutics. Providing a predictable development pathway for academic and commercial groups so that they can know in detail what product characterisation and data are required to develop a dossier for regulatory submission has many potential benefits. These include: reduced development and regulatory costs; faster consumer/patient access and more agile development of products in the face of pandemics; and for rare diseases where alternatives may not exist or to increase survival and the quality of life in cancer patients. Therefore, achieving consensus around platform approaches is both urgent and important. This approach with mRNA can be a template for similar platform frameworks for other therapeutics and vaccines to enable more efficient development and regulatory review.
Collapse
Affiliation(s)
- John H. Skerritt
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia;
| | | | - Brett Sutton
- CSIRO Health and Biosecurity, Research Way, Clayton, VIC 3168, Australia;
| | - Terry Nolan
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia;
- Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, VIC 3000, Australia
| |
Collapse
|
8
|
Hutanu A, Ferreiro ML, van Haasteren J, Höcker O, Montealegre C, Mäser M, Keresztfalvi A, Monti J, Schwarz MA. Electrophoretic characterization of LNP/AAV-encapsulated nucleic acids: Strengths and weaknesses. Electrophoresis 2023; 44:1595-1606. [PMID: 37625008 DOI: 10.1002/elps.202300127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023]
Abstract
The use of nucleic acids (NAs) has revolutionized medical approaches and ushered in a new era of combating various diseases. Accordingly, there is an increasing demand for accurate identification, localization, quantification, and characterization of NAs encapsulated in nonviral or viral vectors. The vast spectrum of molecular dimensions and intra- and intermolecular interactions presents a formidable obstacle for NA analytical development. Typically, the comprehensive analysis of encapsulated NAs, free NAs, and their spatial distribution poses a challenge that is seldom tackled in its complete complexity. The identification of appropriate physicochemical methodologies for large nonencapsulated or encapsulated NAs is particularly intricate and necessitates an evaluation of the analytical outcomes and their appropriateness in addressing critical quality attributes. In this work, we examine the analytics of non-encapsulated or encapsulated large NAs (>500 nucleotides) utilizing capillary electrophoresis (CE) and liquid chromatography (LC) methodologies such as free zone CE, gel CE, affinity CE, and ion pair high-performance liquid chromatography (HPLC). These methodologies create a complete picture of the NA's critical quality attributes, including quantity, identity, purity, and content ratio.
Collapse
Affiliation(s)
- Andrei Hutanu
- Pharma Technical Development, Cell and Gene Therapy Unit, F. Hoffmann-La Roche AG, Basel, Switzerland
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Miriam López Ferreiro
- Pharma Technical Development, Cell and Gene Therapy Unit, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Joost van Haasteren
- Pharma Technical Development, Cell and Gene Therapy Unit, F. Hoffmann-La Roche AG, Basel, Switzerland
| | | | | | | | | | | | - Maria Anna Schwarz
- Department of Chemistry, University of Basel, Basel, Switzerland
- Solvias AG, Kaiseraugst, Switzerland
| |
Collapse
|
9
|
Perrotta C, Fenizia C, Carnovale C, Pozzi M, Trabattoni D, Cervia D, Clementi E. Updated Considerations for the Immunopharmacological Aspects of the "Talented mRNA Vaccines". Vaccines (Basel) 2023; 11:1481. [PMID: 37766157 PMCID: PMC10534931 DOI: 10.3390/vaccines11091481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Messenger RNA (mRNA) vaccines belong to a new class of medications, RNA therapeutics, including both coding and non-coding RNAs. The use of mRNA as a therapy is based on the biological role of mRNA itself, namely its translation into a functional protein. The goal of mRNA vaccines is to produce a specific antigen in cells to elicit an immune response that might be prophylactic or therapeutic. The potential of mRNA as vaccine has been envisaged for years but its efficacy has been clearly demonstrated with the approval of COVID-19 vaccines in 2021. Since then, mRNA vaccines have been in the pipeline for diseases that are still untreatable. There are many advantages of mRNA vaccines over traditional vaccines, including easy and cost-effective production, high safety, and high-level antigen expression. However, the nature of mRNA itself and some technical issues pose challenges associated with the vaccines' development and use. Here we review the immunological and pharmacological features of mRNA vaccines by discussing their pharmacokinetics, mechanisms of action, and safety, with a particular attention on the advantages and challenges related to their administration. Furthermore, we present an overview of the areas of application and the clinical trials that utilize a mRNA vaccine as a treatment.
Collapse
Affiliation(s)
- Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (C.C.); (D.T.)
| | - Claudio Fenizia
- Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, 20122 Milano, Italy;
| | - Carla Carnovale
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (C.C.); (D.T.)
| | - Marco Pozzi
- Scientific Institute IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy;
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (C.C.); (D.T.)
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, 01100 Viterbo, Italy;
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (C.C.); (D.T.)
- Scientific Institute IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy;
| |
Collapse
|
10
|
Hutanu A, Signori C, Moritz B, Gregoritza M, Rohde A, Schwarz MA. Using Peptide Nucleic Acid Hybridization Probes for Qualitative and Quantitative Analysis of Nucleic Acid Therapeutics by Capillary Electrophoresis. Anal Chem 2023; 95:4914-4922. [PMID: 36888566 PMCID: PMC10034743 DOI: 10.1021/acs.analchem.2c04813] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The space of advanced therapeutic modalities is currently evolving in rapid pace necessitating continuous improvement of analytical quality control methods. In order to evaluate the identity of nucleic acid species in gene therapy products, we propose a capillary electrophoresis-based gel free hybridization assay in which fluorescently labeled peptide nucleic acids (PNAs) are applied as affinity probes. PNAs are engineered organic polymers that share the base pairing properties with DNA and RNA but have an uncharged peptide backbone. In the present study, we conduct various proof-of-concept studies to identify the potential of PNA probes for advanced analytical characterization of novel therapeutic modalities like oligonucleotides, plasmids, mRNA, and DNA released by recombinant adeno-associated virus. For single-stranded nucleic acids up to 1000 nucleotides, the method is an excellent choice that proved to be highly specific by detecting DNA traces in complex samples, while having a limit of quantification in the picomolar range when multiple probes are used. For double-stranded samples, only fragments that are similar in size to the probe could be quantified. This limitation can be circumvented when target DNA is digested and multiple probes are used opening an alternative to quantitative PCR.
Collapse
Affiliation(s)
- Andrei Hutanu
- Analytical Development and Quality Control, Pharma Technical Development Europe, F. Hoffmann-La Roche AG, Basel 4070, Switzerland
- University of Basel, Basel 4056, Switzerland
| | - Chiara Signori
- Analytical Development and Quality Control, Pharma Technical Development Europe, F. Hoffmann-La Roche AG, Basel 4070, Switzerland
| | - Bernd Moritz
- Analytical Development and Quality Control, Pharma Technical Development Europe, F. Hoffmann-La Roche AG, Basel 4070, Switzerland
| | - Manuel Gregoritza
- Analytical Development and Quality Control, Pharma Technical Development Europe, F. Hoffmann-La Roche AG, Basel 4070, Switzerland
| | - Adelheid Rohde
- Analytical Development and Quality Control, Pharma Technical Development Europe, F. Hoffmann-La Roche AG, Basel 4070, Switzerland
| | - Maria A Schwarz
- University of Basel, Basel 4056, Switzerland
- Solvias AG, Kaiseraugst 4303, Switzerland
| |
Collapse
|
11
|
Evaluating the efficacy and safety of SpikoGen®, an Advax-CpG55.2-adjuvanted severe acute respiratory syndrome coronavirus 2 spike protein vaccine: a phase 3 randomized placebo-controlled trial. Clin Microbiol Infect 2023; 29:215-220. [PMID: 36096430 PMCID: PMC9463077 DOI: 10.1016/j.cmi.2022.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES We sought to investigate the efficacy and safety of SpikoGen®, a subunit coronavirus disease 2019 (COVID-19) vaccine composed of a recombinant severe acute respiratory syndrome coronavirus 2 spike protein with Advax-CpG55.2™ adjuvant. METHODS This randomized, placebo-controlled, double-blind, phase 3 trial was conducted on 16 876 participants randomized (3:1) to receive two intramuscular doses of SpikoGen® or a saline placebo 21 days apart. The primary outcome was to assess the efficacy of SpikoGen® in preventing symptomatic COVID-19. Secondary outcomes included safety assessments and evaluation of SpikoGen® vaccine's efficacy in preventing severe COVID-19. The study aimed for 147 COVID-19 symptomatic cases. RESULTS Overall, 12 657 and 4219 participants were randomized to the SpikoGen® and placebo group and followed for a median of 55 days (interquartile range, 48-60 days) and 51 days (interquartile range, 46-58 days) after 14 days of the second dose, respectively. In the final per-protocol analysis, the number of COVID-19 cases was 247 of 9998 (2.4%) in the SpikoGen® group and 119 of 3069 (3.8%) in the placebo group. This equated to a vaccine efficacy of 43.99% (95% CI, 30.3-55.0%). The efficacy was calculated to be 44.22% (95% CI, 31.13-54.82%) among all participants who received both doses. From 2 weeks after the second dose, 5 of 9998 (0.05%) participants in the SpikoGen® group and 6 of 3069 (0.19%) participants in the placebo group developed severe COVID-19, equating to a vaccine efficacy against severe disease of 77.51% (95% CI, 26.3-93.1%). The SpikoGen® vaccine was well tolerated. DISCUSSION A 2-dose regimen of SpikoGen® reduced the rate of COVID-19 and severe disease in the wave of the Delta variant.
Collapse
|
12
|
Gao RY, Riley CM, Toth E, Blair RH, Gerold MN, McCormick C, Taylor AW, Hu T, Rowlen KL, Dawson ED. Rapid Identity and Quantity CQA Test for Multivalent mRNA Drug Product Formulations. Vaccines (Basel) 2022; 10:vaccines10101704. [PMID: 36298569 PMCID: PMC9612012 DOI: 10.3390/vaccines10101704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 01/09/2023] Open
Abstract
The COVID-19 pandemic highlighted mRNA as a promising platform for vaccines and therapeutics. Many of the analytical tools used to characterize the critical quality attributes of mRNA are inherently singleplex and are not necessarily optimal from a labor and cost perspective. Here, we demonstrate the feasibility of a multiplexed platform (VaxArray) for efficient identity verification and concentration determination for both monovalent and multivalent mRNA formulations. A model system comprising mRNA constructs for influenza hemagglutinin and neuraminidase was used to characterize the analytical performance metrics for a VaxArray mRNA assay. The assay presented herein had a time to result of less than 2 h, required no PCR-based amplification nor extraction of mRNA from lipid nanoparticles, and exhibited high construct specificity that enabled application to the bivalent mixture. The sensitivity for influenza hemagglutinin and neuraminidase mRNA was sub-µg/mL, which is vaccine-relevant, and the average accuracy (%recovery of a check standard) and precision were 104 ± 2% and 9 ± 2%, respectively.
Collapse
|
13
|
Kaur A, Baldwin J, Brar D, Salunke DB, Petrovsky N. Toll-like receptor (TLR) agonists as a driving force behind next-generation vaccine adjuvants and cancer therapeutics. Curr Opin Chem Biol 2022; 70:102172. [PMID: 35785601 DOI: 10.1016/j.cbpa.2022.102172] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 01/06/2023]
Abstract
Until recently, the development of new human adjuvants was held back by a poor understanding of their mechanisms of action. The field was revolutionized by the discovery of the toll-like receptors (TLRs), innate immune receptors that directly or indirectly are responsible for detecting pathogen-associated molecular patterns (PAMPs) and respond to them by activating innate and adaptive immune pathways. Hundreds of ligands targeting various TLRs have since been identified and characterized as vaccine adjuvants. This work has important implications not only for the development of vaccines against infectious diseases but also for immuno-therapies against cancer, allergy, Alzheimer's disease, drug addiction and other diseases. Each TLR has its own specific tissue localization and downstream gene signalling pathways, providing researchers the opportunity to precisely tailor adjuvants with specific immune effects. TLR agonists can be combined with other TLR or alternative adjuvants to create combination adjuvants with synergistic or modulatory effects. This review provides an introduction to the various classes of TLR adjuvants and their respective signalling pathways. It provides an overview of recent advancements in the TLR field in the past 2-3 years and discusses criteria for selecting specific TLR adjuvants based on considerations, such as disease mechanisms and correlates of protection, TLR immune biasing capabilities, route of administration, antigen compatibility, new vaccine technology platforms, and age- and species-specific effects.
Collapse
Affiliation(s)
- Arshpreet Kaur
- Department of Chemistry and Centre for Advanced Studies, Panjab University, Chandigarh, India; National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, India
| | | | - Deshkanwar Brar
- Department of Chemistry and Centre for Advanced Studies, Panjab University, Chandigarh, India; National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, India
| | - Deepak B Salunke
- Department of Chemistry and Centre for Advanced Studies, Panjab University, Chandigarh, India; National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, India
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Bedford Park, Adelaide 5042, Australia; College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia.
| |
Collapse
|
14
|
Li L, Honda-Okubo Y, Baldwin J, Bowen R, Bielefeldt-Ohmann H, Petrovsky N. Covax-19/Spikogen® vaccine based on recombinant spike protein extracellular domain with Advax-CpG55.2 adjuvant provides single dose protection against SARS-CoV-2 infection in hamsters. Vaccine 2022; 40:3182-3192. [PMID: 35465982 PMCID: PMC9013662 DOI: 10.1016/j.vaccine.2022.04.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/03/2022] [Accepted: 04/11/2022] [Indexed: 01/28/2023]
Abstract
COVID-19 presents an ongoing global health crisis. Protein-based COVID-19 vaccines that are well-tolerated, safe, highly-protective and convenient to manufacture remain of major interest. We therefore sought to compare the immunogenicity and protective efficacy of a number of recombinant SARS-CoV-2 spike protein candidates expressed in insect cells. By comparison to a full length (FL) spike protein detergent-extracted nanoparticle antigen, the soluble secreted spike protein extracellular domain (ECD) generated higher protein yields per liter of culture and when formulated with either Alum-CpG55.2 or Advax-CpG55.2 combination adjuvants elicited robust antigen-specific humoral and cellular immunity in mice. In hamsters, the spike ECD when formulated with either adjuvant induced high serum neutralizing antibody titers even after a single dose. When challenged with the homologous SARS-CoV-2 virus, hamsters immunized with the adjuvanted spike ECD exhibited reduced viral load in day 1-3 oropharyngeal swabs and day 3 nasal turbinate tissue and had no recoverable infectious virus in day 3 lung tissue. The reduction in lung viral load correlated with less weight loss and lower lung pathology scores. The formulations of spike ECD with Alum-CpG55.2 or Advax-CpG55.2 were protective even after just a single dose, although the 2-dose regimen performed better overall and required only half the total amount of antigen. Pre-challenge serum neutralizing antibody levels showed a strong correlation with lung protection, with a weaker correlation seen with nasal or oropharyngeal protection. This suggests that serum neutralizing antibody levels may correlate more closely with systemic, rather than mucosal, protection. The spike protein ECD with Advax-CpG55.2 formulation (Covax-19® vaccine) was selected for human clinical development.
Collapse
Affiliation(s)
- Lei Li
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, Australia; College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | - Yoshikazu Honda-Okubo
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, Australia; College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | | | - Richard Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Helle Bielefeldt-Ohmann
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, Qld 4072, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, Australia; College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia.
| |
Collapse
|
15
|
Biophysical Characterization of Viral and Lipid-Based Vectors for Vaccines and Therapeutics with Light Scattering and Calorimetric Techniques. Vaccines (Basel) 2021; 10:vaccines10010049. [PMID: 35062710 PMCID: PMC8780473 DOI: 10.3390/vaccines10010049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 01/01/2023] Open
Abstract
Novel vaccine platforms for delivery of nucleic acids based on viral and non-viral vectors, such as recombinant adeno associated viruses (rAAV) and lipid-based nanoparticles (LNPs), hold great promise. However, they pose significant manufacturing and analytical challenges due to their intrinsic structural complexity. During product development and process control, their design, characterization, and quality control require the combination of fit-for-purpose complementary analytical tools. Moreover, an in-depth methodological expertise and holistic approach to data analysis are required for robust measurements and to enable an adequate interpretation of experimental findings. Here the combination of complementary label-free biophysical techniques, including dynamic light scattering (DLS), multiangle-DLS (MADLS), Electrophoretic Light Scattering (ELS), nanoparticle tracking analysis (NTA), multiple detection SEC and differential scanning calorimetry (DSC), have been successfully used for the characterization of physical and chemical attributes of rAAV and LNPs encapsulating mRNA. Methods' performance, applicability, dynamic range of detection and method optimization are discussed for the measurements of multiple critical physical-chemical quality attributes, including particle size distribution, aggregation propensity, polydispersity, particle concentration, particle structural properties and nucleic acid payload.
Collapse
|
16
|
Special Focus Issue - COVID-19: bioanalytical considerations, contributions and lessons - part 2. Bioanalysis 2021; 13:1779-1780. [PMID: 34806409 DOI: 10.4155/bio-2021-0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|