1
|
Sfragano PS, Reynoso EC, Rojas-Ruíz NE, Laschi S, Rossi G, Buchinger M, Torres E, Palchetti I. A microfluidic card-based electrochemical assay for the detection of sulfonamide resistance genes. Talanta 2024; 271:125718. [PMID: 38301374 DOI: 10.1016/j.talanta.2024.125718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
Most electroanalytical detection schemes for DNA markers require considerable time and effort from expert personnel to thoroughly follow the analysis and obtain reliable outcomes. This work aims to present an electrochemical assay performed inside a small card-based platform powered by microfluidic manipulation, requiring minimal human intervention and consumables. The assay couples a sample/signal dual amplification and DNA-modified magnetic particles for the detection of DNA amplification products. Particularly, the sul1 and sul4 genes involved in the resistance against sulfonamide antibiotics were analyzed. As recognized by the World Health Organization, antimicrobial resistance threatens global public health by hampering medication efficacy against infections. Consequently, analytical methods for the determination of such genes in environmental and clinical matrices are imperative. Herein, the resistance genes were extracted from E. coli cells and amplified using an enzyme-assisted isothermal amplification at 37 °C. The amplification products were analyzed in an easily-produced, low-cost, card-based set-up implementing a microfluidic system, demanding limited manual work and small sample volumes. The target amplicon was thus captured and isolated using versatile DNA-modified magnetic beads injected into the microchannel and exposed to the various reagents in a continuously controlled microfluidic flow. After the optimization of the efficiency of each phase of the assay, the platform achieved limits of detections of 44.2 pmol L-1 for sul1 and 48.5 pmol L-1 for sul4, and was able to detect down to ≥500-fold diluted amplification products of sul1 extracted from E. coli living cells in around 1 h, thus enabling numerous end-point analyses with a single amplification reaction.
Collapse
Affiliation(s)
| | - Eduardo Canek Reynoso
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy; Posgrado en Ciencias Ambientales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, 72570, Mexico
| | - Norma Elena Rojas-Ruíz
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, 72000, Mexico
| | - Serena Laschi
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy
| | - Giulia Rossi
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy
| | - Martin Buchinger
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy
| | - Eduardo Torres
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, 72570, Mexico.
| | - Ilaria Palchetti
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
2
|
Laschi S, Sfragano PS, Ranaldi F, Palchetti I. Progesterone and β-hCG Determination Using an Electrochemical Combo-Strip for Pregnancy Monitoring. Int J Mol Sci 2023; 24:15381. [PMID: 37895061 PMCID: PMC10607536 DOI: 10.3390/ijms242015381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The development of analytical devices that can allow an easy, rapid and cost-effective measurement of multiple markers, such as progesterone and β-hCG, could have a role in decreasing the burden associated with pregnancy-related complications, such as ectopic pregnancies. Indeed, ectopic pregnancies are a significant contributor to maternal morbidity and mortality in both high-income and low-income countries. In this work, an effective and highly performing electrochemical strip for a combo determination of progesterone and β-hCG was developed. Two immunosensing approaches were optimized for the determination of these two hormones on the same strip. The immunosensors were realized using cost-effective disposable electrode arrays and reagent-saving procedures. Each working electrode of the array was modified with both the IgG anti-β-hCG and anti-progesterone, respectively. By adding the specific reagents, progesterone or β-hCG can then be determined. Fast quantitative detection was achieved, with the analysis duration being around 1 h. Sensitivity and selectivity were assessed with a limit of detection of 1.5 × 10-2 ng/mL and 2.45 IU/L for progesterone and β-hCG, respectively. The proposed electrochemical combo-strip offers great promise for rapid, simple, cost-effective, and on-site analysis of these hormones and, thus, for the development of a point-of-care diagnostic tool for early detection of pregnancy-related complications.
Collapse
Affiliation(s)
- Serena Laschi
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Florence, Italy; (S.L.); (P.S.S.)
| | - Patrick Severin Sfragano
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Florence, Italy; (S.L.); (P.S.S.)
| | - Francesco Ranaldi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy;
- “Nanobiosens” Joint Lab, University of Florence, 50139 Florence, Italy
| | - Ilaria Palchetti
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Florence, Italy; (S.L.); (P.S.S.)
| |
Collapse
|
3
|
A Systematic Study and Potential Limitations of Proton-ELISA Platform for α-Synuclein Antigen Detection. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors10010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To evaluate point-of-care testing (POCT) for the potential early detection of biomarkers of Parkinson’s disease, a systematic investigation of portable and low-cost platforms is performed based on the Proton-enzyme-linked immunosorbent assay (Proton-ELISA) methodology. The detection of the α-synuclein antigen was first presented by biotin-relative linkers, and glucose substrate solution was first performed with a systematic experimental design to optimize the sensing results. All materials in this study are commercially available. Three different experiments with the partitional check were performed to investigate the Proton-ELISA platform, including proton catalyzed efficiency, blocking efficiency, and full Proton-ELISA procedure. The response time was selected as 15 min by the time-dependent curves of a full reaction. The limit of detection of conventional ELISA kits is 0.169 ng/mL, which is much lower than the Proton-ELISA results. The final response of the full Proton-ELISA procedure to pH changes was approximately 0.60 and 0.12 for α-synuclein antigen concentrations of 100 ng/mL and 4 ng/mL, respectively. With the partitional check, pH changes of pure glucose substrate and conjugated oxidase and interference of the nonspecific binding are 1.7 and 0.04, respectively. The lower pH changes far from the partitional check results can be concluded for the properties of glucose oxidase conjugation, including the isoelectric point and binding affinity modification by the testing environment. This preliminary guideline can be used as a lesson learnt to speed up following studies of the evaluation and optimization of other antigen detection. Therefore, Proton-ELISA can be suggested for some special applications with the help of custom-designed conjugation in the environment with less degradation or interference and a proper detection concentration range.
Collapse
|
4
|
Bettazzi F, Orlandini S, Zhang L, Laschi S, Nilsen MM, Krolicka A, Baussant T, Palchetti I. A simple and selective electrochemical magneto-assay for sea lice eDNA detection developed with a Quality by Design approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148111. [PMID: 34119793 DOI: 10.1016/j.scitotenv.2021.148111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Environmental DNA (eDNA) is a novel, non-invasive sampling procedure that allows the obtaining of genetic material directly from environmental samples without any evidence of biological sources. The eDNA methodology can greatly benefit from coupling it to reliable, portable and cost-effective tools able to perform decentralized measurements directly at the site of need and in resource-limited settings. Herein, we report a simple method for the selective analysis of eDNA using a magneto-assay with electrochemical detection. The proposed method involves the polymerase chain-reaction (PCR) amplification of mitochondrial eDNA of parasitic Salmon lice (Lepeophtheirus salmonis), extracted from seawater samples. The eDNA sequence was targeted via sandwich hybridization onto magnetic beads and enzymatic labeling was performed to obtain an electroactive product measured by differential pulse voltammetry. Quality by Design (QbD), a recent concept of science- and risk-oriented quality paradigm, was used for the optimization of the different parameters of the assay. Response surface methodology and Monte Carlo simulations were performed to define the method operable design region. The optimized electrochemical magneto-assay attained a limit of detection of 2.9 amol μL-1 of the short synthetic sea louse DNA analogue (43 bp). In addition, robustness testing using a further experimental design approach was performed for monitoring eDNA amplicons. Seawater samples spiked with individuals of free-swimming L. salmonis copepodite stages and seawater collected from tanks with sea lice-infested fish were analyzed.
Collapse
Affiliation(s)
- Francesca Bettazzi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Fi, Italy
| | - Serena Orlandini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Fi, Italy
| | - Luna Zhang
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Fi, Italy
| | - Serena Laschi
- "Nanobiosens" Join Lab, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy
| | - Mari Mæland Nilsen
- NORCE Norwegian Research Centre AS, Mekjarvik 12, 4072 Randaberg, Norway; Department of Chemistry, Bioscience and Environmental engineering, University of Stavanger, Kristine Bonnevies vei 22, 4021 Stavanger, Norway
| | - Adriana Krolicka
- NORCE Norwegian Research Centre AS, Mekjarvik 12, 4072 Randaberg, Norway
| | - Thierry Baussant
- NORCE Norwegian Research Centre AS, Mekjarvik 12, 4072 Randaberg, Norway
| | - Ilaria Palchetti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Fi, Italy; "Nanobiosens" Join Lab, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| |
Collapse
|
5
|
Sfragano PS, Moro G, Polo F, Palchetti I. The Role of Peptides in the Design of Electrochemical Biosensors for Clinical Diagnostics. BIOSENSORS-BASEL 2021; 11:bios11080246. [PMID: 34436048 PMCID: PMC8391273 DOI: 10.3390/bios11080246] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/10/2021] [Accepted: 07/19/2021] [Indexed: 12/31/2022]
Abstract
Peptides represent a promising class of biorecognition elements that can be coupled to electrochemical transducers. The benefits lie mainly in their stability and selectivity toward a target analyte. Furthermore, they can be synthesized rather easily and modified with specific functional groups, thus making them suitable for the development of novel architectures for biosensing platforms, as well as alternative labelling tools. Peptides have also been proposed as antibiofouling agents. Indeed, biofouling caused by the accumulation of biomolecules on electrode surfaces is one of the major issues and challenges to be addressed in the practical application of electrochemical biosensors. In this review, we summarise trends from the last three years in the design and development of electrochemical biosensors using synthetic peptides. The different roles of peptides in the design of electrochemical biosensors are described. The main procedures of selection and synthesis are discussed. Selected applications in clinical diagnostics are also described.
Collapse
Affiliation(s)
- Patrick Severin Sfragano
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy;
| | - Giulia Moro
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; (G.M.); (F.P.)
| | - Federico Polo
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; (G.M.); (F.P.)
| | - Ilaria Palchetti
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy;
- Correspondence:
| |
Collapse
|
6
|
Dutta N, Lillehoj PB, Estrela P, Dutta G. Electrochemical Biosensors for Cytokine Profiling: Recent Advancements and Possibilities in the Near Future. BIOSENSORS 2021; 11:94. [PMID: 33806879 PMCID: PMC8004910 DOI: 10.3390/bios11030094] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
Cytokines are soluble proteins secreted by immune cells that act as molecular messengers relaying instructions and mediating various functions performed by the cellular counterparts of the immune system, by means of a synchronized cascade of signaling pathways. Aberrant expression of cytokines can be indicative of anomalous behavior of the immunoregulatory system, as seen in various illnesses and conditions, such as cancer, autoimmunity, neurodegeneration and other physiological disorders. Cancer and autoimmune diseases are particularly adept at developing mechanisms to escape and modulate the immune system checkpoints, reflected by an altered cytokine profile. Cytokine profiling can provide valuable information for diagnosing such diseases and monitoring their progression, as well as assessing the efficacy of immunotherapeutic regiments. Toward this goal, there has been immense interest in the development of ultrasensitive quantitative detection techniques for cytokines, which involves technologies from various scientific disciplines, such as immunology, electrochemistry, photometry, nanotechnology and electronics. This review focusses on one aspect of this collective effort: electrochemical biosensors. Among the various types of biosensors available, electrochemical biosensors are one of the most reliable, user-friendly, easy to manufacture, cost-effective and versatile technologies that can yield results within a short period of time, making it extremely promising for routine clinical testing.
Collapse
Affiliation(s)
- Nirmita Dutta
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India;
| | - Peter B. Lillehoj
- Department of Mechanical Engineering, Rice University, Houston, TX 77005, USA;
| | - Pedro Estrela
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Electronic & Electrical Engineering, University of Bath, Bath BA2 7AY, UK
| | - Gorachand Dutta
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India;
| |
Collapse
|
7
|
Bettazzi F, Ingrosso C, Sfragano PS, Pifferi V, Falciola L, Curri ML, Palchetti I. Gold nanoparticles modified graphene platforms for highly sensitive electrochemical detection of vitamin C in infant food and formulae. Food Chem 2020; 344:128692. [PMID: 33349504 DOI: 10.1016/j.foodchem.2020.128692] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/29/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
An easy and reliable method based on a novel electroanalytical nanostructured sensor has been developed to perform quantification of vitamin C in commercial and fortified cow-milk-based formulae and foods for infants and young children. The work is motivated by the need of a reliable analytical tool to be applied in quality control laboratories for the quantitative assessment of vitamin C where its rapid and cost-effective monitoring is essential. The ad hoc designed sensor, based on disposable screen-printed carbon electrodes modified with Au nanoparticles decorated reduced graphene oxide flakes, exhibits a LOD of 0.088 mg L-1. The low cost, easy sample preparation, fast response and high reproducibility (RSD ≈ 8%) of the proposed method highlight its suitability for usage in quality control laboratories for determining vitamin C in real complex food matrices, envisaging the application of the sensing platform in the determination of other compounds relevant in food chemistry and food manufacturing.
Collapse
Affiliation(s)
- Francesca Bettazzi
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Chiara Ingrosso
- CNR-IPCF Istituto per i Processi Chimico-Fisici, Sez. Bari, c/o Dip. Chimica Via Orabona 4, 70126 Bari, Italy; INSTM, Via G. Giusti 9, 50121 Firenze, Italy
| | - Patrick Severin Sfragano
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Valentina Pifferi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Luigi Falciola
- INSTM, Via G. Giusti 9, 50121 Firenze, Italy; Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - M Lucia Curri
- CNR-IPCF Istituto per i Processi Chimico-Fisici, Sez. Bari, c/o Dip. Chimica Via Orabona 4, 70126 Bari, Italy; INSTM, Via G. Giusti 9, 50121 Firenze, Italy; Dipartimento di Chimica, Università degli Studi di Bari, Via Orabona 4, 70126 Bari, Italy
| | - Ilaria Palchetti
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy; INSTM, Via G. Giusti 9, 50121 Firenze, Italy.
| |
Collapse
|
8
|
Sfragano PS, Laschi S, Palchetti I. Sustainable Printed Electrochemical Platforms for Greener Analytics. Front Chem 2020; 8:644. [PMID: 32850659 PMCID: PMC7406795 DOI: 10.3389/fchem.2020.00644] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/22/2020] [Indexed: 01/20/2023] Open
Abstract
The development of miniaturized electrochemical platforms holds considerable importance for the in situ analytical monitoring of clinical, environmental, food, and forensic samples. However, it is crucial to pay attention to the sustainability of materials chosen to fabricate these devices, in order to decrease the amount and the impact of waste coming from their production and use. In the framework of a circular economy and an environmental footprint reduction, the electrochemical sensor production technology must discover the potentiality of innovative approaches based on techniques and materials that can satisfy the needs of environmental-friendly and greener analytics. The aim of this review is to describe some of the printing technologies most used for sensor production, including screen-printing, inkjet-printing, and 3D-printing, and the low-impact materials that are recently proposed for these techniques, such as polylactic acid, cellulose, silk proteins, biochar.
Collapse
Affiliation(s)
| | | | - Ilaria Palchetti
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
9
|
Arya SK, Estrela P. Electrochemical ELISA Protein Biosensing in Undiluted Serum Using a Polypyrrole-Based Platform. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2857. [PMID: 32443483 PMCID: PMC7287672 DOI: 10.3390/s20102857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 01/15/2023]
Abstract
An electrochemical enzyme-linked immunosorbent assay (ELISA) biosensor platform using electrochemically prepared ~11 nm thick carboxylic functionalized popypyrrole film has been developed for bio-analyte measurement in undiluted serum. Carboxyl polypyrrole (PPy-COOH) film using 3-carboxy-pyrrol monomer onto comb-shaped gold electrode microarray (Au) was prepared via cyclic voltammetry (CV). The prepared Au/PPy-COOH was then utilized for electrochemical ELISA platform development by immobilizing analyte-specific antibodies. Tumor necrosis factor-alpha (TNF-α) was selected as a model analyte and detected in undiluted serum. For enhanced performance, the use of a polymeric alkaline phosphatase tag was investigated for the electrochemical ELISA. The developed platform was characterized at each step of fabrication using CV, electrochemical impedance spectroscopy and atomic force microscopy. The bioelectrodes exhibited linearity for TNF-α in the 100 pg/mL-100 ng/mL range when measured in spiked serum, with limit of detection of 78 pg/mL. The sensor showed insignificant signal disturbance from serum proteins and other biologically important proteins. The developed platform was found to be fast and specific and can be applicable for testing and measuring various biologically important protein markers in real samples.
Collapse
Affiliation(s)
- Sunil K. Arya
- Department of Electronic & Electrical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK;
| | - Pedro Estrela
- Department of Electronic & Electrical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK;
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio), University of Bath, Claverton Down, Bath BA2 7AY, UK
| |
Collapse
|
10
|
Pachauri N, Lakshmi GBVS, Sri S, Gupta PK, Solanki PR. Silver molybdate nanoparticles based immunosensor for the non-invasive detection of Interleukin-8 biomarker. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110911. [PMID: 32487373 DOI: 10.1016/j.msec.2020.110911] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/14/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
In this study, we report the silver molybdate nanoparticles (β-Ag2MoO4 NPs) based non-invasive and sensitive electrochemical immunosensor for label-free detection of Interleukin-8 (IL-8) biomarker. The X-ray diffraction and Raman spectroscopy studies confirm the cubic spinel structures of β-Ag2MoO4 NPs. High-resolution transmission electron microscopy study depicted average size of β-Ag2MoO4 NPs as 27.15 nm. The cleaned indium tin oxide coated glass substrates were coated with spin-coated thin films of Ag2MoO4 NPs. These electrodes used for covalently immobilization of antibodies specific to IL-8 (Anti-IL-8) using EDC-NHS chemistry and unbound activated sites blocked by bovine serum albumin. Electrochemical response was obtained in the range of 1 fg mL-1 to 40 ng mL-1 and the sensitivity was found to be 7.03 μA ng-1mL cm-2 with LOD of 90 pg mL-1. Spiked samples prepared by human saliva were tested and found efficient detection with this immunoelectrode.
Collapse
Affiliation(s)
- Namrata Pachauri
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - G B V S Lakshmi
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Smriti Sri
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pramod K Gupta
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pratima R Solanki
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
11
|
Electrochemical immunosensors for the detection of cytokine tumor necrosis factor alpha: A review. Talanta 2020; 211:120758. [PMID: 32070602 DOI: 10.1016/j.talanta.2020.120758] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
In this review, we focus on recent developments in nonlabeled@label-free and labeled@sandwich assay concepts of tumor necrosis factor-alpha (TNF-α) using numerous electrochemical approaches. The fundamental role of such nanostructured materials for the improvement of the analytical response and thus the analytical figures of merit of various TNF-α sensing operations were revealed. Also, this examination focused on recent developments in immuno-electrochemical cytokine TNF-α sensors based on nanostructured materials from 2006 to 2019.
Collapse
|
12
|
Liu J, Mosavati B, Oleinikov AV, Du E. Biosensors for Detection of Human Placental Pathologies: A Review of Emerging Technologies and Current Trends. Transl Res 2019; 213:23-49. [PMID: 31170377 PMCID: PMC6783355 DOI: 10.1016/j.trsl.2019.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
Substantial growth in the biosensor research has enabled novel, sensitive and point-of-care diagnosis of human diseases in the last decade. This paper presents an overview of the research in the field of biosensors that can potentially predict and diagnosis of common placental pathologies. A survey of biomarkers in maternal circulation and their characterization methods is presented, including markers of oxidative stress, angiogenic factors, placental debris, and inflammatory biomarkers that are associated with various pathophysiological processes in the context of pregnancy complications. Novel biosensors enabled by microfluidics technology and nanomaterials is then reviewed. Representative designs of plasmonic and electrochemical biosensors for highly sensitive and multiplexed detection of biomarkers, as well as on-chip sample preparation and sensing for automatic biomarker detection are illustrated. New trends in organ-on-a-chip based placental disease models are highlighted to illustrate the capability of these in vitro disease models in better understanding the complex pathophysiological processes, including mass transfer across the placental barrier, oxidative stress, inflammation, and malaria infection. Biosensor technologies that can be potentially embedded in the placental models for real time, label-free monitoring of these processes and events are suggested. Merger of cell culture in microfluidics and biosensing can provide significant potential for new developments in advanced placental models, and tools for diagnosis, drug screening and efficacy testing.
Collapse
Affiliation(s)
- Jia Liu
- College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida
| | - Babak Mosavati
- College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida
| | - Andrew V Oleinikov
- Charles E. Schmidt College of Medicine, Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida
| | - E Du
- College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida; Charles E. Schmidt College of Science, Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida.
| |
Collapse
|
13
|
Bettazzi F, Palchetti I. Nanotoxicity assessment: A challenging application for cutting edge electroanalytical tools. Anal Chim Acta 2019; 1072:61-74. [DOI: 10.1016/j.aca.2019.04.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/07/2019] [Accepted: 04/16/2019] [Indexed: 12/18/2022]
|
14
|
Development of electrochemical biosensors for tumor marker determination towards cancer diagnosis: Recent progress. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Peng H, Huang Z, Wu W, Liu M, Huang K, Yang Y, Deng H, Xia X, Chen W. Versatile High-Performance Electrochemiluminescence ELISA Platform Based on a Gold Nanocluster Probe. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24812-24819. [PMID: 31241892 DOI: 10.1021/acsami.9b08819] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This report outlines a versatile high-performance electrochemiluminescence (ECL) enzyme-linked immunosorbent assay (ELISA) platform, which combines the merits of high-quantum-yield Au nanocluster (AuNC) probe-based ECL technology, the efficient ECL-resonance energy-transfer (ECL-RET) strategy, and highly sensitive and specific ELISA technology. The ECL detection procedure was performed on a recyclable MnO2/AuNC-modified glassy carbon electrode interface by taking advantage of the ECL-RET between the AuNC probe and MnO2 nanomaterials (NMs) to quench the ECL intensity. The etching of MnO2 NMs by the product of ALP-based ELISA recovers the ECL signal. Notably, the ELISA process and the ECL detection procedure in this system are independent. Thus, the ECL-ELISA system can effectively avoid the influence of complex biological samples, and the ECL efficiency of the AuNC probe can be used readily. As demonstrated on TNF-α, because of the abovementioned characteristics, the ECL-ELISA platform presented an extremely wide dynamic range, with a detection limit of 2 orders lower than ELISA. Moreover, the system was also applicable for ultrahigh sensitive detection of various disease-related proteins and able to detect trace biomarkers in real serum samples. Therefore, this multifunctional ECL assay platform is versatile, facile, ultrasensitive, recyclable, and sufficiently straightforward for trace biomarker detection in complex biological samples. This approach not only enriches the foundational study of ECL devices but also greatly expands the potential application of ECL sensors in biological testing and clinical high-throughput diagnosis.
Collapse
Affiliation(s)
- Huaping Peng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis , Fujian Medical University , Fuzhou 350004 , China
| | - Zhongnan Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis , Fujian Medical University , Fuzhou 350004 , China
| | - Weihua Wu
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis , Fujian Medical University , Fuzhou 350004 , China
| | - Mingkai Liu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials , Jiangsu Normal University , Xuzhou 221116 , China
| | - Kaiyuan Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis , Fujian Medical University , Fuzhou 350004 , China
| | - Yu Yang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis , Fujian Medical University , Fuzhou 350004 , China
| | - Haohua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis , Fujian Medical University , Fuzhou 350004 , China
| | - Xinghua Xia
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis , Fujian Medical University , Fuzhou 350004 , China
| |
Collapse
|
16
|
Chen X, Dong T, Wei X, Yang Z, Matos Pires NM, Ren J, Jiang Z. Electrochemical methods for detection of biomarkers of Chronic Obstructive Pulmonary Disease in serum and saliva. Biosens Bioelectron 2019; 142:111453. [PMID: 31295711 DOI: 10.1016/j.bios.2019.111453] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/07/2019] [Accepted: 06/19/2019] [Indexed: 02/02/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death nowadays, and its underdiagnosis is still a great challenge. More effective diagnosis method is in urgent need since the traditional spirometry has many limitations in the practical application. The electrochemical (EC) detection methods have their unique advantages of high accuracy, short response time and easy integration of the system. In this review, recent works on the EC methods for COPD biomarkers including interleukin 6 (IL-6), interleukin 8 (IL-8) and C-reactive protein (CRP) are summarized. Five types of EC methods are highlighted in this study, as enzyme-labelled immunosensors, nanoparticle-labelled immunosensors, capacitive or impedimetric immunosensors, magnetoimmunosensors, and field effect transistor (FET) immunosensors. To date, EC immunosensors have been exhibiting high analytical performance with a detection limit that can achieve several pg/mL or even lower. The simplicity of EC immunosensors makes them a perfect solution for a future point-of-care device to use in settings for COPD diagnosis and follow-up. Nevertheless, more efforts need to be paid on the simultaneous detection of multiple biomarkers, a demand for the clinical diagnosis, and processes of assay simplification towards achieving one-step detection.
Collapse
Affiliation(s)
- Xuan Chen
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Computer Science and Information Engineering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; Department of Microsystems (IMS), Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603, Kongsberg, Norway
| | - Tao Dong
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Computer Science and Information Engineering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China; Department of Microsystems (IMS), Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603, Kongsberg, Norway.
| | - Xueyong Wei
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Computer Science and Information Engineering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Nuno Miguel Matos Pires
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Computer Science and Information Engineering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Juan Ren
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
17
|
Reynoso EC, Torres E, Bettazzi F, Palchetti I. Trends and Perspectives in Immunosensors for Determination of Currently-Used Pesticides: The Case of Glyphosate, Organophosphates, and Neonicotinoids. BIOSENSORS 2019; 9:E20. [PMID: 30720729 PMCID: PMC6468886 DOI: 10.3390/bios9010020] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 12/16/2022]
Abstract
Pesticides, due to their intensive use and their peculiar chemical features, can persist in the environment and enter the trophic chain, thus representing an environmental risk for the ecosystems and human health. Although there are several robust and reliable standard analytical techniques for their monitoring, the high frequency of contamination caused by pesticides requires methods for massive monitoring campaigns that are capable of rapidly detecting these compounds in many samples of different origin. Immunosensors represent a potential tool for simple, rapid, and sensitive monitoring of pesticides. Antibodies coupled to electrochemical or optical transducers have resulted in effective detection devices. In this review, the new trends in immunosensor development and the application of immunosensors for the detection of pesticides of environmental concern-such as glyphosate, organophosphates, and neonicotinoids-are described.
Collapse
Affiliation(s)
- Eduardo C Reynoso
- Posgrado en Ciencias Ambientales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico.
| | - Eduardo Torres
- Posgrado en Ciencias Ambientales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico.
| | - Francesca Bettazzi
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Fi), Italy.
| | - Ilaria Palchetti
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Fi), Italy.
| |
Collapse
|
18
|
Arya SK, Estrela P. Electrochemical ELISA-based platform for bladder cancer protein biomarker detection in urine. Biosens Bioelectron 2018; 117:620-627. [DOI: 10.1016/j.bios.2018.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 06/20/2018] [Accepted: 07/02/2018] [Indexed: 01/05/2023]
|
19
|
Farzin L, Shamsipur M, Samandari L, Sheibani S. Recent advances in designing nanomaterial based biointerfaces for electrochemical biosensing cardiovascular biomarkers. J Pharm Biomed Anal 2018; 161:344-376. [PMID: 30205301 DOI: 10.1016/j.jpba.2018.08.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023]
Abstract
Early diagnosis of cardiovascular disease (CVD) is critically important for successful treatment and recovery of patients. At present, detection of CVD at early stages of its progression becomes a major issue for world health. The nanoscale electrochemical biosensors exhibit diverse outstanding properties, rendering them extremely suitable for the determination of CVD biomarkers at very low concentrations in biological fluids. The unique advantages offered by electrochemical biosensors in terms of sensitivity and stability imparted by nanostructuring the electrode surface together with high affinity and selectivity of bioreceptors have led to the development of new electrochemical biosensing strategies that have introduced as interesting alternatives to conventional methodologies for clinical diagnostics of CVD. This review provides an updated overview of selected examples during the period 2005-2018 involving electrochemical biosensing approaches and signal amplification strategies based on nanomaterials, which have been applied for determination of CVD biomarkers. The studied CVD biomarkers include AXL receptor tyrosine kinase, apolipoproteins, cholesterol, C-reactive protein (CRP), D-dimer, fibrinogen (Fib), glucose, insulin, interleukins, lipoproteins, myoglobin, N-terminal pro-B-type natriuretic peptide (BNP), tumor necrosis factor alpha (TNF-α) and troponins (Tns) on electrochemical transduction format. Identification of new specific CVD biomarkers, multiplex bioassay for the simultaneous determination of biomarkers, emergence of microfluidic biosensors, real-time analysis of biomarkers and point of care validation with high sensitivity and selectivity are the major challenges for future research.
Collapse
Affiliation(s)
- Leila Farzin
- Radiation Application Research School, Nuclear Science and Technology Research Institute, 11365-3486, Tehran, Iran.
| | - Mojtaba Shamsipur
- Department of Chemistry, Razi University, 67149-67346, Kermanshah, Iran.
| | - Leila Samandari
- Department of Chemistry, Razi University, 67149-67346, Kermanshah, Iran
| | - Shahab Sheibani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, 11365-3486, Tehran, Iran
| |
Collapse
|
20
|
Pham Ba VA, Han YM, Cho Y, Kim T, Lee BY, Kim JS, Hong S. Modified Floating Electrode-Based Sensors for the Quantitative Monitoring of Drug Effects on Cytokine Levels Related with Inflammatory Bowel Diseases. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17100-17106. [PMID: 29701994 DOI: 10.1021/acsami.8b04287] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Modified floating electrode-based sensors were developed to quantitatively monitor the levels of tumor necrosis factor α (TNF-α), a pro-inflammatory cytokine related with inflammatory bowel disease (IBD), and to evaluate the effect of drugs on the cytokine levels. Here, antibodies (anti-TNF-α) were immobilized on the floating electrodes of carbon nanotube devices, enabling selective and real-time detection of TNF-α among various cytokines linked to IBD. This sensor was able to measure the concentrations of TNF-α with a detection limit of 1 pg/L, allowing the quantitative estimation of TNF-α secretion from mouse macrophage Raw 264.7 cells stimulated by lipopolysaccharides (LPS). Notably, this method also allowed us to monitor the anti-inflammatory effect of a drug, lupeol, on the activation of the LPS-induced nuclear factor κB signaling in Raw 264.7 cells. These results indicate that our novel TNF sensor can be a versatile tool for biomedical research and clinical applications such as screening drug effects and monitoring inflammation levels.
Collapse
Affiliation(s)
| | - Yoo Min Han
- Department of Internal Medicine and Healthcare Research Institute , Seoul National University Hospital Healthcare System Gangnam Center , Seoul 06236 , Korea
| | | | - Taewan Kim
- Department of Mechanical Engineering , Korea University , Seoul 02841 , Korea
| | - Byung Yang Lee
- Department of Mechanical Engineering , Korea University , Seoul 02841 , Korea
| | - Joo Sung Kim
- Department of Internal Medicine and Healthcare Research Institute , Seoul National University Hospital Healthcare System Gangnam Center , Seoul 06236 , Korea
- Department of Internal Medicine and Liver Research Institute , Seoul National University College of Medicine , Seoul 03080 , Korea
| | | |
Collapse
|
21
|
Huang W, Whittaker K, Zhang H, Wu J, Zhu SW, Huang RP. Integration of Antibody Array Technology into Drug Discovery and Development. Assay Drug Dev Technol 2018; 16:74-95. [PMID: 29394094 DOI: 10.1089/adt.2017.808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
| | | | | | - Jian Wu
- The Affiliated Third Hospital of Sun Yat-Sen University, Guangzhou, China
| | | | - Ruo-Pan Huang
- Raybiotech, Inc., Guangzhou, China
- RayBiotech, Inc., Norcross, Georgia
- South China Biochip Research Center, Guangzhou, China
| |
Collapse
|
22
|
Recent advances in design of electrochemical affinity biosensors for low level detection of cancer protein biomarkers using nanomaterial-assisted signal enhancement strategies. J Pharm Biomed Anal 2018; 147:185-210. [DOI: 10.1016/j.jpba.2017.07.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 12/12/2022]
|
23
|
Pohanka M. Piezoelectric biosensor for the determination of Tumor Necrosis Factor Alpha. Talanta 2017; 178:970-973. [PMID: 29136925 DOI: 10.1016/j.talanta.2017.10.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/07/2017] [Accepted: 10/20/2017] [Indexed: 10/18/2022]
Abstract
Tumor Necrosis Factor Alpha (TNFα) is an important marker of inflammatory processes in human body. In the current healthcare, determination of TNFα blood or plasma level is done by Enzyme Linked Immuno-Sorbent Assay (ELISA) as a primary choice method. Piezoelectric immunosensors are analytical platform recording affinity interactions on their surface. It is inferred that the immunosensors would be a functional alternative to the ELISA. In this study, antibody against TNFα was immobilized on Quartz Crystal Microbalance (QCM) sensor and the same was made on magnetic particles. Human TNFα was measured in a way of interaction with QCM surface and then the particles were applied. The assay exerted sufficient limit of detection equal to 1.62pg/ml and it also fully correlated with standard ELISA tests. No interference by interleukin 6 or albumin was observed. Long term stability of the immunosensors lasting for at least three months was found. The immunosensors appears to be readily for practical performance and it would be an alternative to the standard ELISA especially when diagnoses made in field, homecare conditions or conditions of small hospitals as an emergency test.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, CZ-500 01 Hradec Kralove, Czech Republic.
| |
Collapse
|
24
|
Hasanzadeh M, Shadjou N, de la Guardia M. Non-invasive diagnosis of oral cancer: The role of electro-analytical methods and nanomaterials. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.04.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Off surface matrix based on-chip electrochemical biosensor platform for protein biomarker detection in undiluted serum. Biosens Bioelectron 2017; 92:542-548. [DOI: 10.1016/j.bios.2016.10.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/18/2016] [Accepted: 10/24/2016] [Indexed: 01/02/2023]
|
26
|
Arya SK, Estrela P. Electrochemical immunosensor for tumor necrosis factor-alpha detection in undiluted serum. Methods 2017; 116:125-131. [DOI: 10.1016/j.ymeth.2016.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/02/2016] [Accepted: 12/03/2016] [Indexed: 12/21/2022] Open
|
27
|
Sánchez-Tirado E, Salvo C, González-Cortés A, Yáñez-Sedeño P, Langa F, Pingarrón JM. Electrochemical immunosensor for simultaneous determination of interleukin-1 beta and tumor necrosis factor alpha in serum and saliva using dual screen printed electrodes modified with functionalized double-walled carbon nanotubes. Anal Chim Acta 2017; 959:66-73. [PMID: 28159106 DOI: 10.1016/j.aca.2016.12.034] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 11/30/2022]
Abstract
Dual screen-printed carbon electrodes modified with 4-carboxyphenyl-functionalized double-walled carbon nanotubes (HOOC-Phe-DWCNTs/SPCEs) have been used as scaffolds for the preparation of electrochemical immunosensors for the simultaneous determination of the cytokines Interleukin-1β (IL-1β) and factor necrosis tumor α (TNF-α). IL-1β. Capture antibodies were immobilized onto HOOC-Phe-DWCNTs/SPCEs in an oriented form making using the commercial polymeric coating Mix&Go™. Sandwich type immunoassays with amperometric signal amplification through the use of poly-HRP-streptavidin conjugates and H2O2 as HRP substrate and hydroquinone as redox mediator were implemented. Upon optimization of the experimental variables affecting the immunosensor performance, the dual immunosensor allows ranges of linearity extending between 0.5 and 100 pg/mL and from 1 to 200 pg/mL for IL-1β and TNF-α, respectively, these ranges being adequate for the determination of the cytokines in clinical samples. The achieved limits of detection were 0.38 pg/mL (IL-1β) and 0.85 pg/mL (TNF-α). In addition, the dual immunosensor exhibits excellent reproducibility of the measurements, storage stability of the anti-IL-Phe-DWCNTs/SPCE and anti-TNF-Phe-DWCNTs/SPCE conjugates, and selectivity as well as negligible cross-talking. The dual immunosensor was applied to the simultaneous determination of IL-1β and TNF-α in human serum spiked at clinically relevant concentration levels and in real saliva samples.
Collapse
Affiliation(s)
- E Sánchez-Tirado
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - C Salvo
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - A González-Cortés
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - P Yáñez-Sedeño
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| | - F Langa
- Instituto de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL), Universidad de Castilla-La Mancha, 45071, Toledo, Spain
| | - J M Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| |
Collapse
|
28
|
Bettazzi F, Marrazza G, Minunni M, Palchetti I, Scarano S. Biosensors and Related Bioanalytical Tools. PAST, PRESENT AND FUTURE CHALLENGES OF BIOSENSORS AND BIOANALYTICAL TOOLS IN ANALYTICAL CHEMISTRY: A TRIBUTE TO PROFESSOR MARCO MASCINI 2017. [DOI: 10.1016/bs.coac.2017.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
29
|
Khoshfetrat SM, Mehrgardi MA. Amplified detection of leukemia cancer cells using an aptamer-conjugated gold-coated magnetic nanoparticles on a nitrogen-doped graphene modified electrode. Bioelectrochemistry 2016; 114:24-32. [PMID: 27992855 DOI: 10.1016/j.bioelechem.2016.12.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 11/28/2016] [Accepted: 12/08/2016] [Indexed: 02/02/2023]
Abstract
The increasing demands for early, accurate and ultrasensitive diagnosis of cancers demonstrate the importance of the development of new amplification strategies or diagnostic technologies. In the present study, an aptamer-based electrochemical biosensor for ultrasensitive and selective detection of leukemia cancer cells has been introduced. The thiolated sgc8c aptamer was immobilized on gold nanoparticles-coated magnetic Fe3O4 nanoparticles (Apt-GMNPs). Ethidium bromide (EB), intercalated into the stem of the aptamer hairpin, provides the read-out signal for the quantification of the leukemia cancer cells. After introduction of the leukemia cancer cells onto the Apt-GMNPs, the hairpin structure of the aptamer is disrupted and the intercalator molecules are released, resulting in a decrease of the electrochemical signal. The immobilization of nitrogen-doped graphene nanosheets on the electrode surface provides an excellent platform for amplifying the read-out signal. Under optimal conditions, the aptasensor exhibits a linear response over a wide dynamic range of leukemia cancer cells from 10 to 1×106cellmL-1. The present protocol provides a highly sensitive, selective, simple, and robust method for early stage detection of leukemia cancer. Furthermore, the fabricated aptasensor was successfully used for the detection of leukemia cancer cells in complex media such as human blood plasma, without any serious interference.
Collapse
Affiliation(s)
| | - Masoud A Mehrgardi
- Department of chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| |
Collapse
|
30
|
Bettazzi F, Martellini T, Shelver WL, Cincinelli A, Lanciotti E, Palchetti I. Development of an Electrochemical Immunoassay for the Detection of Polybrominated Diphenyl Ethers (PBDEs). ELECTROANAL 2016. [DOI: 10.1002/elan.201600127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Francesca Bettazzi
- Dipartimento di Chimica; Università degli Studi di Firenze; Via della Lastruccia 3 50019 Sesto Fiorentino Firenze Italy
| | - Tania Martellini
- Dipartimento di Chimica; Università degli Studi di Firenze; Via della Lastruccia 3 50019 Sesto Fiorentino Firenze Italy
| | - Weilin L. Shelver
- USDA-ARS Biosciences Research Laboratory; 1605 Albrecht Boulevard Fargo ND 58102 USA
| | - Alessandra Cincinelli
- Dipartimento di Chimica; Università degli Studi di Firenze; Via della Lastruccia 3 50019 Sesto Fiorentino Firenze Italy
| | - Eudes Lanciotti
- Dipartimento di Scienze della Salute (DSS); Università degli Studi di Firenze; Viale Morgagni, 48 50134 Firenze Italy
| | - Ilaria Palchetti
- Dipartimento di Chimica; Università degli Studi di Firenze; Via della Lastruccia 3 50019 Sesto Fiorentino Firenze Italy
| |
Collapse
|
31
|
Baydemir G, Bettazzi F, Palchetti I, Voccia D. Strategies for the development of an electrochemical bioassay for TNF-alpha detection by using a non-immunoglobulin bioreceptor. Talanta 2016; 151:141-147. [PMID: 26946021 DOI: 10.1016/j.talanta.2016.01.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
Abstract
TNF-α is an inflammatory cytokine produced by the immune system. Serum TNF-α level is elevated in some pathological states such as septic shock, graft rejection, HIV infection, neurodegenerative diseases, rheumatoid arthritis and cancer. Detecting trace amount of TNF-α is, also, very important for the understanding of tumor biological processes. Detection of this key biomarker is commonly achieved by use of ELISA or cytofluorimetric based methods. In this study the traditional optical detection was replaced by differential pulse voltammetry (DPV) and an affinity molecule, produced by evolutionary approaches, has been tested as capture bioreceptor. This molecule, namely a combinatorial non-immunoglobulin protein (Affibody®) interacts with TNF-α selectively and was here tested in a sandwich assay format. Moreover magnetic beads were used as support for bioreceptor immobilization and screen printed carbon electrodes were used as transducers. TNF-α calibration curve was performed, obtaining the detection limit of 38pg/mL, the quantification range of 76-5000pg/mL and RSD%=7. Preliminary results of serum samples analysis were also reported.
Collapse
Affiliation(s)
- Gozde Baydemir
- Dipartimento di Chimica, Università degli Studi di Firenze, Firenze, Italy; Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara, Turkey
| | - Francesca Bettazzi
- Dipartimento di Chimica, Università degli Studi di Firenze, Firenze, Italy
| | - Ilaria Palchetti
- Dipartimento di Chimica, Università degli Studi di Firenze, Firenze, Italy.
| | - Diego Voccia
- Dipartimento di Chimica, Università degli Studi di Firenze, Firenze, Italy
| |
Collapse
|
32
|
Liu G, Qi M, Hutchinson MR, Yang G, Goldys EM. Recent advances in cytokine detection by immunosensing. Biosens Bioelectron 2016; 79:810-21. [PMID: 26774995 DOI: 10.1016/j.bios.2016.01.020] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/30/2015] [Accepted: 01/07/2016] [Indexed: 01/12/2023]
Abstract
The detection of cytokines in body fluids, cells, tissues and organisms continues to attract considerable attention due to the importance of these key cell signaling molecules in biology and medicine. In this review, we describe recent advances in cytokine detection in the course of ongoing pursuit of new analytical approaches for these trace analytes with specific focus on immunosensing. We discuss recent elegant designs of sensing interface with improved performance with respect to sensitivity, selectivity, stability, simplicity, and the absence of sample matrix effects. Various immunosensing approaches based on multifunctional nanomaterials open novel opportunities for ultrasensitive detection of cytokines in body fluids in vitro and in vivo. Methodologies such as suspension arrays also known as bead assays together with optical fiber-based sensors, on their own or in combination with microfluidic devices will continue to have an important role to address the grand challenge of real-time in vivo multiplex cytokine detection.
Collapse
Affiliation(s)
- Guozhen Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, North Ryde 2109, Australia
| | - Meng Qi
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Mark R Hutchinson
- ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), The University of Adelaide, Adelaide 5005, Australia
| | - Guangfu Yang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Ewa M Goldys
- ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, North Ryde 2109, Australia.
| |
Collapse
|
33
|
A label-free electrochemical affisensor for cancer marker detection: The case of HER2. Bioelectrochemistry 2015; 106:268-75. [DOI: 10.1016/j.bioelechem.2015.07.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 07/29/2015] [Accepted: 07/29/2015] [Indexed: 11/18/2022]
|
34
|
Torrente-Rodríguez RM, Campuzano S, Ruiz-Valdepeñas Montiel V, Gamella M, Pingarrón JM. Electrochemical bioplatforms for the simultaneous determination of interleukin (IL)-8 mRNA and IL-8 protein oral cancer biomarkers in raw saliva. Biosens Bioelectron 2015; 77:543-8. [PMID: 26474095 DOI: 10.1016/j.bios.2015.10.016] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/11/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
The development of electrochemical magnetobiosensors for the simultaneous determination of two biomarkers associated with salivary oral cancer, protein IL-8 and its messenger RNA (IL-8 mRNA) associated, in undiluted human saliva samples is reported in this work. The implemented methodology involves the use of functionalized magnetic beads, specific antibodies against IL-8 protein, a specific hairpin DNA sequence for IL-8 mRNA and amperometric detection at disposable dual screen printed carbon electrodes. This methodology exhibits high sensitivity and selectivity for the target analytes providing detection limits of 0.21 nM for IL-8 mRNA and 72.4 pgmL(-1) (far below the clinical established cut-off of 600 pgmL(-1)) for IL-8 protein in undiluted saliva samples. The dual amperometric magnetobiosensor was applied to the direct determination of both biomarkers in spiked raw saliva samples and to determine the endogenous content of IL-8 protein in saliva samples from 7 healthy individuals. The obtained results were statistically in agreement with those provided by a commercial ELISA kit.
Collapse
Affiliation(s)
- R M Torrente-Rodríguez
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - S Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - V Ruiz-Valdepeñas Montiel
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - M Gamella
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - J M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
35
|
Centi S, Tombelli S, Puntoni M, Domenici C, Franek M, Palchetti I. Detection of biomarkers for inflammatory diseases by an electrochemical immunoassay: The case of neopterin. Talanta 2015; 134:48-53. [DOI: 10.1016/j.talanta.2014.10.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/21/2014] [Accepted: 10/25/2014] [Indexed: 11/25/2022]
|
36
|
Stenken JA, Poschenrieder AJ. Bioanalytical chemistry of cytokines--a review. Anal Chim Acta 2015; 853:95-115. [PMID: 25467452 PMCID: PMC4717841 DOI: 10.1016/j.aca.2014.10.009] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/30/2014] [Accepted: 10/08/2014] [Indexed: 02/06/2023]
Abstract
Cytokines are bioactive proteins produced by many different cells of the immune system. Due to their role in different inflammatory disease states and maintaining homeostasis, there is enormous clinical interest in the quantitation of cytokines. The typical standard methods for quantitation of cytokines are immunoassay-based techniques including enzyme-linked immusorbent assays (ELISA) and bead-based immunoassays read by either standard or modified flow cytometers. A review of recent developments in analytical methods for measurements of cytokine proteins is provided. This review briefly covers cytokine biology and the analysis challenges associated with measurement of these biomarker proteins for understanding both health and disease. New techniques applied to immunoassay-based assays are presented along with the uses of aptamers, electrochemistry, mass spectrometry, optical resonator-based methods. Methods used for elucidating the release of cytokines from single cells as well as in vivo collection methods are described.
Collapse
Affiliation(s)
- Julie A Stenken
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Andreas J Poschenrieder
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meißner-Street 3, D-85748 Garching, Germany
| |
Collapse
|
37
|
Eletxigerra U, Martinez-Perdiguero J, Merino S, Villalonga R, Pingarrón JM, Campuzano S. Amperometric magnetoimmunoassay for the direct detection of tumor necrosis factor alpha biomarker in human serum. Anal Chim Acta 2014; 838:37-44. [PMID: 25064241 DOI: 10.1016/j.aca.2014.05.047] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/22/2014] [Accepted: 05/27/2014] [Indexed: 12/29/2022]
Abstract
An amperometric immunoassay for the determination of tumor necrosis factor alpha (TNFα) protein biomarker in human serum based on the use of magnetic microbeads (MBs) and disposable screen-printed carbon electrodes (SPCEs) has been developed. The specifically modified microbeads were magnetically captured on the working electrode surface and the amperometric responses were measured at -0.20V (vs. Ag pseudo-reference electrode), upon addition of hydroquinone (HQ) as electron transfer mediator and H2O2 as the enzyme substrate. After a thorough optimization of the assay, extremely low limits of detection were achieved: 2.0pg mL(-1) (36fM) and 5.8pg mL(-1) (105fM) for standard solutions and spiked human serum, respectively. The simplicity, robustness and this clinically interesting LOD proved the developed TNFα immunoassay as a good contender for real clinical application.
Collapse
Affiliation(s)
- U Eletxigerra
- Micro-NanoFabrication Unit, IK4-Tekniker, Eibar, Spain; CIC microGUNE, Arrasate-Mondragón, Spain
| | | | - S Merino
- Micro-NanoFabrication Unit, IK4-Tekniker, Eibar, Spain; CIC microGUNE, Arrasate-Mondragón, Spain
| | - R Villalonga
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - J M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - S Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
38
|
Erdem A, Congur G. Voltammetric aptasensor combined with magnetic beads assay developed for detection of human activated protein C. Talanta 2014; 128:428-33. [PMID: 25059182 DOI: 10.1016/j.talanta.2014.04.082] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/25/2014] [Accepted: 04/29/2014] [Indexed: 01/08/2023]
Abstract
A sensitive and selective label free voltammetric aptasensor based on magnetic beads assay was performed for the first time in our study for monitoring of human activated protein C (APC), which is a serine protease (i.e., key enzyme of the protein C pathway). An amino modified DNA aptamer (DNA APT) was covalently immobilized onto the surface of carboxylated magnetic beads (MBs), and then, the specific interaction between DNA APT and its cognate protein, APC, was performed at the surface of MBs. Similarly a biotinylated DNA APT was immobilized onto the surface of streptavidin coated MBs. Before and after interaction process, the oxidation signal of guanine was measured at disposable pencil graphite electrode (PGE) surface in combination with differential pulse voltammetry (DPV) technique and accordingly, the decrease at the guanine signal was evaluated. The biomolecular recognition of APC was successfully achieved with a low detection limit found as 2.35 µg mL(-1) by using MB-COOH based assay. Moreover, the selectivity of this aptasensor assay was tested in the presence of numerous proteins and other biomolecules: protein C (PC), thrombin (THR), bovine serum albumin (BSA), factor Va (FVa) and chromogenic substrate (KS).
Collapse
Affiliation(s)
- Arzum Erdem
- Ege University, Faculty of Pharmacy, Analytical Chemistry Department, Bornova, 35100 Izmir, Turkey; Ege University, Graduate School of Natural and Applied Science, Biotechnology Department, Bornova, 35100 Izmir, Turkey.
| | - Gulsah Congur
- Ege University, Faculty of Pharmacy, Analytical Chemistry Department, Bornova, 35100 Izmir, Turkey; Ege University, Graduate School of Natural and Applied Science, Biotechnology Department, Bornova, 35100 Izmir, Turkey
| |
Collapse
|
39
|
Platinum porous nanoparticles for the detection of cancer biomarkers: what are the advantages over existing techniques? Bioanalysis 2014; 6:903-5. [DOI: 10.4155/bio.14.32] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
40
|
Martinez-Perdiguero J, Retolaza A, Bujanda L, Merino S. Surface plasmon resonance immunoassay for the detection of the TNFα biomarker in human serum. Talanta 2014; 119:492-497. [PMID: 24401446 DOI: 10.1016/j.talanta.2013.11.063] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 11/20/2013] [Accepted: 11/23/2013] [Indexed: 11/15/2022]
Abstract
A simple method for the detection of TNF-alpha protein biomarker in human serum with great sensitivity has been developed using a surface plasmon resonance biosensor. Signal amplification based on a sandwich immunoassay including gold nanoparticles was used. Detection in serum proved to be challenging due to high undesirable non-specific binding to the sensor surface stemming from the matrix nature of the sample. After optimization of the assay parameters and, in the case of serum, of a sample dilution buffer to minimize the non-specific binding, very low limits of detection were achieved: 11.6 pg/mL (211 fM) and 54.4 pg/mL (989 fM) for spiked buffer and human serum respectively. The amplification steps with high affinity biotinylated antibodies and streptavidin-fuctionalized nanoparticles greatly enhanced the signal with the advantage of additional specificity. Due to its simplicity and sensitivity, the immunoassay has proved feasible to be used for detection of low concentration biomarkers in real samples.
Collapse
Affiliation(s)
| | - Aritz Retolaza
- CIC microGUNE, Arrasate-Mondragón, Spain; Micro-NanoFabrication Unit, IK4-Tekniker, Eibar, Spain
| | - Luis Bujanda
- Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universidad del País Vasco UPV/EHU, San Sebastián, Spain
| | - Santos Merino
- CIC microGUNE, Arrasate-Mondragón, Spain; Micro-NanoFabrication Unit, IK4-Tekniker, Eibar, Spain
| |
Collapse
|
41
|
Ren ZQ, Liu TC, Hou JY, Chen MJ, Chen ZH, Lin GF, Wu YS. A rapid and sensitive method based on magnetic beads for the detection of hepatitis B virus surface antigen in human serum. LUMINESCENCE 2013; 29:591-7. [PMID: 24136927 DOI: 10.1002/bio.2587] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 06/17/2013] [Accepted: 08/15/2013] [Indexed: 12/17/2022]
Abstract
Current clinically assays, such as enzyme-linked immunosorbent assay and chemiluminescence immunoassay, for hepatitis B surface antigen (HBsAg) are inferior in terms of either sensitivity and accuracy or rapid and high-throughput analysis. A novel assay based on magnetic beads and time-resolved fluoroimmunoassay was developed for the quantitative determination of HBsAg in human serum. HBsAg was captured using two types of anti-HBsAg monoclonal antibodies (B028, S015) immobilized on to magnetic beads and detected using europium-labeled anti-HBsAg polyclonal detection antibody. Finally, the assay yielded a high sensitivity (0.02 IU/mL) and a wide dynamic range (0.02-700 IU/mL) for HBsAg when performed under optimal conditions. Satisfactory accuracy, recovery and specificity were also demonstrated. The intra- and interassay coefficients of variation were 4.7-8.7% and 3.8-7.5%, respectively. The performance of this assay was further assessed against a well-established commercial chemiluminescence immunoassay kit with 399 clinical serum samples. It was revealed that the test results for the two methods were in good correlation (Y = 1.182X - 0.017, R = 0.989). In the current study, we demonstrated that this novel time-resolved fluoroimmunoassay could be used: as a highly sensitive, automated and high-throughput immunoassay for the diagnosis of acute or chronic hepatitis B virus infection; for the screening of blood or organ donors; and for the surveillance of persons at risk of acquiring or transmitting hepatitis B virus.
Collapse
Affiliation(s)
- Zhi-Qi Ren
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|