1
|
Zhang M, Xu B, Li N, Zhang R, Zhang Q, Chen D, Rizvi SFA, Xu K, Shi Y, Yu B, Fang Q. OFP011 Cyclic Peptide as a Multifunctional Agonist for Opioid/Neuropeptide FF Receptors with Improved Blood-Brain Barrier Penetration. ACS Chem Neurosci 2022; 13:3078-3092. [PMID: 36262082 DOI: 10.1021/acschemneuro.2c00442] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mounting evidence indicates that the neuropeptide FF (NPFF) system is involved in the side effects of opioid usage, including antinociceptive tolerance, hyperalgesia, abuse, constipation, and respiratory depression. Our group recently discovered that the multitarget opioid/NPFF receptor agonist DN-9 exhibits peripheral antinociceptive activity. To improve its metabolic stability, antinociceptive potency, and duration, in this study, we designed and synthesized a novel cyclic disulfide analogue of DN-9, OFP011, and examined its bioactivity through in vitro cyclic adenosine monophosphate (cAMP) functional assays and in vivo behavioral experiments. OFP011 exhibited multifunctional agonistic effects at the μ-opioid and the NPFF1 and NPFF2 receptors and partial agonistic effects at the δ- and κ-opioid in vitro, as determined via the cAMP functional assays. Pharmacokinetic and pharmacological experiments revealed improvement in its blood-brain barrier permeability after systemic administration. In addition, subcutaneous OFP011 exhibited potent and long-lasting antinociceptive activity via the central μ- and κ-opioid receptors, as observed in different physiological and pathological pain models. At the highest antinociceptive doses, subcutaneous OFP011 exhibited limited tolerance, gastrointestinal transit, motor coordination, addiction, reward, and respiration depression. Notably, OFP011 exhibited potent oral antinociceptive activities in mouse models of acute, inflammatory, and neuropathic pain. These results suggest that the multifunctional opioid/NPFF receptor agonists with improved blood-brain barrier penetration are a promising strategy for long-term treatment of moderate to severe nociceptive and pathological pain with fewer side effects.
Collapse
Affiliation(s)
- Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China
| | - Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China
| | - Dan Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China
| | - Syed Faheem Askari Rizvi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China
| | - Kangtai Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China
| | - Yonghang Shi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China
| | - Bowen Yu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, P. R. China
| |
Collapse
|
2
|
Smith MT, Kong D, Kuo A, Imam MZ, Williams CM. Analgesic Opioid Ligand Discovery Based on Nonmorphinan Scaffolds Derived from Natural Sources. J Med Chem 2022; 65:1612-1661. [PMID: 34995453 DOI: 10.1021/acs.jmedchem.0c01915] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Strong opioid analgesics, including morphine, are the mainstays for treating moderate to severe acute pain and alleviating chronic cancer pain. However, opioid-related adverse effects, including nausea or vomiting, sedation, respiratory depression, constipation, pruritus (itch), analgesic tolerance, and addiction and abuse liability, are problematic. In addition, the use of opioids to relieve chronic noncancer pain is controversial due to the "opioid crisis" characterized by opioid misuse or abuse and escalating unintentional death rates due to respiratory depression. Hence, considerable research internationally has been aimed at the "Holy Grail" of the opioid analgesic field, namely the discovery of novel and safer opioid analgesics with improved opioid-related adverse effects. In this Perspective, medicinal chemistry strategies are addressed, where structurally diverse nonmorphinan-based opioid ligands derived from natural sources were deployed as lead molecules. The current state of play, clinical or experimental status, and novel opioid ligand discovery approaches are elaborated in the context of retaining analgesia with improved safety and reduced adverse effects, especially addiction liability.
Collapse
|
3
|
Synthesis, Pharmacological Evaluation, and Computational Studies of Cyclic Opioid Peptidomimetics Containing β3-Lysine. Molecules 2021; 27:molecules27010151. [PMID: 35011383 PMCID: PMC8747000 DOI: 10.3390/molecules27010151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 11/17/2022] Open
Abstract
Our formerly described pentapeptide opioid analog Tyr-c[D-Lys-Phe-Phe-Asp]NH2 (designated RP-170), showing high affinity for the mu (MOR) and kappa (KOR) opioid receptors, was much more stable than endomorphine-2 (EM-2) in the rat brain homogenate and displayed remarkable antinociceptive activity after central (intracerebroventricular) and peripheral (intravenous ) administration. In this report, we describe the further modification of this analog, which includes the incorporation of a β3-amino acid, (R)- and (S)-β3-Lys, instead of D-Lys in position 2. The influence of such replacement on the biological properties of the obtained analogs, Tyr-c[(R)-β3-Lys-Phe-Phe-Asp]NH2 (RP-171) and Tyr-c[(S)-β3-Lys-Phe-Phe-Asp]NH2, (RP-172), was investigated in vitro. Receptor radiolabeled displacement and functional calcium mobilization assays were performed to measure binding affinity and receptor activation of the new analogs. The obtained data revealed that only one of the diastereoisomeric peptides, RP-171, was able to selectively bind and activate MOR. Molecular modeling (docking and molecular dynamics (MD) simulations) suggests that both compounds should be accommodated in the MOR binding site. However, in the case of the inactive isomer RP-172, fewer hydrogen bonds, as well as instability of the canonical ionic interaction to Asp147, could explain its very low MOR affinity.
Collapse
|
4
|
Zhang YZ, Wang MM, Wang SY, Wang XF, Yang WJ, Zhao YN, Han FT, Zhang Y, Gu N, Wang CL. Novel Cyclic Endomorphin Analogues with Multiple Modifications and Oligoarginine Vector Exhibit Potent Antinociception with Reduced Opioid-like Side Effects. J Med Chem 2021; 64:16801-16819. [PMID: 34781680 DOI: 10.1021/acs.jmedchem.1c01631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Endomorphins (EMs) are potent pharmaceuticals for the treatment of pain. Herein, we investigated several novel EM analogues with multiple modifications and oligoarginine conjugation. Our results showed that analogues 1-6 behaved as potent μ-opioid agonists and enhanced stability and lipophilicity. Analogues 5 and 6 administered centrally and peripherally induced significant and prolonged antinociceptive effects in acute pain. Both analogues also produced long-acting antiallodynic effects against neuropathic and inflammatory pain. Furthermore, they showed a reduced acute antinociceptive tolerance. Analogue 6 decreased the extent of chronic antinociceptive tolerance, and analogue 5 exhibited no tolerance at the supraspinal level. Particularly, they displayed nontolerance-forming antinociception at the peripheral level. In addition, analogues 5 and 6 exhibited reduced or no opioid-like side effects on gastrointestinal transit, conditioned place preference (CPP), and motor impairment. The present investigation established that multiple modifications and oligoarginine-vector conjugation of EMs would be helpful in developing novel analgesics with fewer side effects.
Collapse
Affiliation(s)
- Yu-Zhe Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Meng-Meng Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Si-Yu Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Xiao-Fang Wang
- Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wen-Jiao Yang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Ya-Nan Zhao
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Feng-Tong Han
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Yao Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Ning Gu
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Chang-Lin Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China.,Stake Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
5
|
Piekielna-Ciesielska J, Wtorek K, Janecka A. Biased Agonism as an Emerging Strategy in the Search for Better Opioid Analgesics. Curr Med Chem 2020; 27:1562-1575. [PMID: 31057099 DOI: 10.2174/0929867326666190506103124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 12/12/2018] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
Abstract
Morphine and related drugs that act through activating opioid receptors are the most effective analgesics for the relief of severe pain. They have been used for decades, despite the range of unwanted side effects that they produce, as no alternative has been found so far. The major goal of opioid research is to understand the mechanism of action of opioid receptor agonists and to improve the therapeutic utility of opioid drugs. In the search for safer and more potent analgesics, analogs with mixed opioid receptor profile gained a lot of interest. However, recently the concept of biased agonism, that highlights the fact that some ligands are able to differentially activate receptor downstream pathways, became a new approach in the design of novel drug candidates for clinical application. In this review, we summarize current knowledge on the development of opioid ligands of peptide and nonpeptide structure, showing how much opioid pharmacology evolved in recent years.
Collapse
Affiliation(s)
| | - Karol Wtorek
- Department of Biomolecular Chemistry, Medical University, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University, Mazowiecka 6/8, 92-215 Lodz, Poland
| |
Collapse
|
6
|
Dumitrascuta M, Bermudez M, Ballet S, Wolber G, Spetea M. Mechanistic Understanding of Peptide Analogues, DALDA, [Dmt 1]DALDA, and KGOP01, Binding to the mu Opioid Receptor. Molecules 2020; 25:E2087. [PMID: 32365707 PMCID: PMC7248707 DOI: 10.3390/molecules25092087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 01/14/2023] Open
Abstract
The mu opioid receptor (MOR) is the primary target for analgesia of endogenous opioid peptides, alkaloids, synthetic small molecules with diverse scaffolds, and peptidomimetics. Peptide-based opioids are viewed as potential analgesics with reduced side effects and have received constant scientific interest over the years. This study focuses on three potent peptide and peptidomimetic MOR agonists, DALDA, [Dmt1]DALDA, and KGOP01, and the prototypical peptide MOR agonist DAMGO. We present the first molecular modeling study and structure-activity relationships aided by in vitro assays and molecular docking of the opioid peptide analogues, in order to gain insight into their mode of binding to the MOR. In vitro binding and functional assays revealed the same rank order with KGOP01 > [Dmt1]DALDA > DAMGO > DALDA for both binding and MOR activation. Using molecular docking at the MOR and three-dimensional interaction pattern analysis, we have rationalized the experimental outcomes and highlighted key amino acid residues responsible for agonist binding to the MOR. The Dmt (2',6'-dimethyl-L-Tyr) moiety of [Dmt1]DALDA and KGOP01 was found to represent the driving force for their high potency and agonist activity at the MOR. These findings contribute to a deeper understanding of MOR function and flexible peptide ligand-MOR interactions, that are of significant relevance for the future design of opioid peptide-based analgesics.
Collapse
Affiliation(s)
- Maria Dumitrascuta
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria;
| | - Marcel Bermudez
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany;
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium;
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany;
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria;
| |
Collapse
|
7
|
Tryptophan-Containing Non-Cationizable Opioid Peptides - a new chemotype with unusual structure and in vivo activity. Future Med Chem 2017; 9:2099-2115. [PMID: 29130348 DOI: 10.4155/fmc-2017-0104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Recently, a new family of opioid peptides containing tryptophan came to the spotlight for the absence of the fundamental protonable tyramine 'message' pharmacophore. Structure-activity relationship investigations led to diverse compounds, characterized by different selectivity profiles and agonist or antagonist effects. Substitution at the indole of Trp clearly impacted peripheral/central antinociceptivity. These peculiarities prompted to gather all the compounds in a new class, and to coin the definition 'Tryptophan-Containing Non-Cationizable Opioid Peptides', in short 'TryCoNCOPs'. Molecular docking analysis suggested that the TryCoNCOPs can still interact with the receptors in an agonist-like fashion. However, most TryCoNCOPs showed significant differences between the in vitro and in vivo activities, suggesting that opioid activity may be elicited also via alternative mechanisms.
Collapse
|
8
|
Wang Y, Zhao X, Gao X, Gan Y, Liu Y, Zhao X, Hu J, Ma X, Wu Y, Ma P, Liang X, Zhang X. Original endomorphin-1 analogues exhibit good analgesic effects with minimal implications for human sperm motility. Bioorg Med Chem Lett 2017; 27:2119-2123. [DOI: 10.1016/j.bmcl.2017.03.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/17/2017] [Accepted: 03/23/2017] [Indexed: 12/18/2022]
|
9
|
Adamska-Bartłomiejczyk A, De Marco R, Gentilucci L, Kluczyk A, Janecka A. Design and characterization of opioid ligands based on cycle-in-macrocycle scaffold. Bioorg Med Chem 2017; 25:2399-2405. [DOI: 10.1016/j.bmc.2017.02.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/20/2017] [Accepted: 02/25/2017] [Indexed: 10/20/2022]
|
10
|
Wan FP, Bai Y, Kou ZZ, Zhang T, Li H, Wang YY, Li YQ. Endomorphin-2 Inhibition of Substance P Signaling within Lamina I of the Spinal Cord Is Impaired in Diabetic Neuropathic Pain Rats. Front Mol Neurosci 2017; 9:167. [PMID: 28119567 PMCID: PMC5223733 DOI: 10.3389/fnmol.2016.00167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/22/2016] [Indexed: 12/15/2022] Open
Abstract
Opiate analgesia in the spinal cord is impaired in diabetic neuropathic pain (DNP), but until now the reason is unknown. We hypothesized that it resulted from a decreased inhibition of substance P (SP) signaling within the dorsal horn of the spinal cord. To investigate this possibility, we evaluated the effects of endomorphin-2 (EM2), an endogenous ligand of the μ-opioid receptor (MOR), on SP release within lamina I of the spinal dorsal horn (SDH) in rats with DNP. We established the DNP rat model and compared the analgesic efficacy of EM2 between inflammation pain and DNP rat models. Behavioral results suggested that the analgesic efficacy of EM2 was compromised in the condition of painful diabetic neuropathy. Then, we measured presynaptic SP release induced by different stimulating modalities via neurokinin-1 receptor (NK1R) internalization. Although there was no significant change in basal and evoked SP release between control and DNP rats, EM2 failed to inhibit SP release by noxious mechanical and thermal stimuli in DNP but not in control and inflammation pain model. We also observed that EM2 decreased the number of FOS-positive neurons within lamina I of the SDH but did not change the amount of FOS/NK1R double-labeled neurons. Finally, we identified a remarkable decrease in MORs within the primary afferent fibers and dorsal root ganglion (DRG) neurons by Western blot (WB) and immunohistochemistry (IHC). Taken together, these data suggest that reduced presynaptic MOR expression might account for the loss of the inhibitory effect of EM2 on SP signaling, which might be one of the neurobiological foundations for decreased opioid efficacy in the treatment of DNP.
Collapse
Affiliation(s)
- Fa-Ping Wan
- Department of Anatomy and Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Yang Bai
- Department of Anatomy and Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Zhen-Zhen Kou
- Department of Anatomy and Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Ting Zhang
- Department of Anatomy and Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Hui Li
- Department of Anatomy and Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Ya-Yun Wang
- Department of Anatomy and Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Yun-Qing Li
- Department of Anatomy and Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an, China; Collaborative Innovation Center for Brain Science, Fudan UniversityShanghai, China
| |
Collapse
|
11
|
Wang Y, Yang J, Liu X, Zhao L, Yang D, Zhou J, Wang D, Mou L, Wang R. Endomorphin-1 analogs containing α-methyl-β-amino acids exhibit potent analgesic activity after peripheral administration. Org Biomol Chem 2017; 15:4951-4955. [DOI: 10.1039/c7ob01115f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
C-Terminal substitution with aromatic β2,3-amino acids can improve the bioactivity and bioavailability of endomorphin-1.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- Department of Pharmacology
- Institute of Biochemistry and Molecular Biology
- School of Basic Medical Sciences
- Lanzhou University
| | - Junxian Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- Department of Pharmacology
- Institute of Biochemistry and Molecular Biology
- School of Basic Medical Sciences
- Lanzhou University
| | - Xin Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- Department of Pharmacology
- Institute of Biochemistry and Molecular Biology
- School of Basic Medical Sciences
- Lanzhou University
| | - Long Zhao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- Department of Pharmacology
- Institute of Biochemistry and Molecular Biology
- School of Basic Medical Sciences
- Lanzhou University
| | - Dongxu Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- Department of Pharmacology
- Institute of Biochemistry and Molecular Biology
- School of Basic Medical Sciences
- Lanzhou University
| | - Jingjing Zhou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- Department of Pharmacology
- Institute of Biochemistry and Molecular Biology
- School of Basic Medical Sciences
- Lanzhou University
| | - Dan Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- Department of Pharmacology
- Institute of Biochemistry and Molecular Biology
- School of Basic Medical Sciences
- Lanzhou University
| | - Lingyun Mou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- Department of Pharmacology
- Institute of Biochemistry and Molecular Biology
- School of Basic Medical Sciences
- Lanzhou University
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- Department of Pharmacology
- Institute of Biochemistry and Molecular Biology
- School of Basic Medical Sciences
- Lanzhou University
| |
Collapse
|
12
|
McCarver SJ, Qiao JX, Carpenter J, Borzilleri RM, Poss MA, Eastgate MD, Miller MM, MacMillan DWC. Decarboxylative Peptide Macrocyclization through Photoredox Catalysis. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608207] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Stefan J. McCarver
- Merck Center for Catalysis at Princeton University Washington Road Princeton NJ 08544 USA
| | - Jennifer X. Qiao
- Bristol-Myers Squibb Route 206 & Province Line Road Princeton NJ 08543 USA
| | - Joseph Carpenter
- Bristol-Myers Squibb Route 206 & Province Line Road Princeton NJ 08543 USA
| | | | - Michael A. Poss
- Bristol-Myers Squibb Route 206 & Province Line Road Princeton NJ 08543 USA
| | - Martin D. Eastgate
- Bristol-Myers Squibb Route 206 & Province Line Road Princeton NJ 08543 USA
| | - Michael M. Miller
- Bristol-Myers Squibb Route 206 & Province Line Road Princeton NJ 08543 USA
| | - David W. C. MacMillan
- Merck Center for Catalysis at Princeton University Washington Road Princeton NJ 08544 USA
| |
Collapse
|
13
|
McCarver SJ, Qiao JX, Carpenter J, Borzilleri RM, Poss MA, Eastgate MD, Miller MM, MacMillan DWC. Decarboxylative Peptide Macrocyclization through Photoredox Catalysis. Angew Chem Int Ed Engl 2016; 56:728-732. [PMID: 27860140 DOI: 10.1002/anie.201608207] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/01/2016] [Indexed: 01/01/2023]
Abstract
A method for the decarboxylative macrocyclization of peptides bearing N-terminal Michael acceptors has been developed. This synthetic method enables the efficient synthesis of cyclic peptides containing γ-amino acids and is tolerant of functionalities present in both natural and non-proteinogenic amino acids. Linear precursors ranging from 3 to 15 amino acids cyclize effectively under this photoredox method. To demonstrate the preparative utility of this method in the context of bioactive molecules, we synthesized COR-005, a somatostatin analogue that is currently in clinical trials.
Collapse
Affiliation(s)
- Stefan J McCarver
- Merck Center for Catalysis at Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Jennifer X Qiao
- Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Joseph Carpenter
- Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Robert M Borzilleri
- Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Michael A Poss
- Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Martin D Eastgate
- Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Michael M Miller
- Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Washington Road, Princeton, NJ, 08544, USA
| |
Collapse
|
14
|
De Marco R, Bedini A, Spampinato S, Cavina L, Pirazzoli E, Gentilucci L. Versatile Picklocks To Access All Opioid Receptors: Tuning the Selectivity and Functional Profile of the Cyclotetrapeptide c[Phe-d-Pro-Phe-Trp] (CJ-15,208). J Med Chem 2016; 59:9255-9261. [DOI: 10.1021/acs.jmedchem.6b00420] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rossella De Marco
- Department
of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Andrea Bedini
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Irnerio
48, 40126 Bologna, Italy
| | - Santi Spampinato
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Irnerio
48, 40126 Bologna, Italy
| | - Lorenzo Cavina
- Department
of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Edoardo Pirazzoli
- Department
of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Luca Gentilucci
- Department
of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
15
|
Gentilucci L, Gallo F, Meloni F, Mastandrea M, Del Secco B, De Marco R. Controlling Cyclopeptide Backbone Conformation with β/α-Hybrid Peptide-Heterocycle Scaffolds. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600448] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Luca Gentilucci
- Department of Chemistry “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Francesca Gallo
- Department of Chemistry “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Fernanda Meloni
- Department of Chemistry “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Marco Mastandrea
- Department of Chemistry “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Benedetta Del Secco
- Department of Chemistry “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Rossella De Marco
- Department of Chemistry “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
16
|
Zadina JE, Nilges MR, Morgenweck J, Zhang X, Hackler L, Fasold MB. Endomorphin analog analgesics with reduced abuse liability, respiratory depression, motor impairment, tolerance, and glial activation relative to morphine. Neuropharmacology 2016; 105:215-227. [PMID: 26748051 DOI: 10.1016/j.neuropharm.2015.12.024] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/18/2015] [Accepted: 12/28/2015] [Indexed: 11/20/2022]
Abstract
Opioids acting at the mu opioid receptor (MOR) are the most effective analgesics, however adverse side effects severely limit their use. Of particular importance, abuse liability results in major medical, societal, and economic problems, respiratory depression is the cause of fatal overdoses, and tolerance complicates treatment and increases the risk of side effects. Motor and cognitive impairment are especially problematic for older adults. Despite the host of negative side effects, opioids such as morphine are commonly used for acute and chronic pain conditions. Separation of analgesia from unwanted effects has long been an unmet goal of opioid research. Novel MOR agonist structures may prove critical for greater success. Here we tested metabolically stable analogs of the endomorphins, endogenous opioids highly selective for the MOR. Compared to morphine, the analogs showed dramatically improved analgesia-to-side-effect ratios. At doses providing equal or greater antinociception than morphine in the rat, the analogs showed reduced a) respiratory depression, b) impairment of motor coordination, c) tolerance and hyperalgesia, d) glial p38/CGRP/P2X7 receptor signaling, and e) reward/abuse potential in both conditioned place preference and self-administration tests. Differential effects on glial activation indicate a mechanism for the relative lack of side effects by the analogs compared to morphine. The results suggest that endomorphin analogs described here could provide gold standard pain relief mediated by selective MOR activation, but with remarkably safer side effect profiles compared to opioids like morphine.
Collapse
Affiliation(s)
- James E Zadina
- SE LA Veterans Affairs Health Care System, Tulane University School of Medicine, New Orleans, LA 70112, USA; Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Neuroscience Program, Tulane University School of Medicine, New Orleans, LA 70112, USA; Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | - Mark R Nilges
- Neuroscience Program, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jenny Morgenweck
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Xing Zhang
- SE LA Veterans Affairs Health Care System, Tulane University School of Medicine, New Orleans, LA 70112, USA; Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Laszlo Hackler
- SE LA Veterans Affairs Health Care System, Tulane University School of Medicine, New Orleans, LA 70112, USA; Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Melita B Fasold
- SE LA Veterans Affairs Health Care System, Tulane University School of Medicine, New Orleans, LA 70112, USA; Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|