1
|
Benedik NS, Proj M, Steinebach C, Sova M, Sosič I. Targeting TAK1: Evolution of inhibitors, challenges, and future directions. Pharmacol Ther 2025; 267:108810. [PMID: 39909209 DOI: 10.1016/j.pharmthera.2025.108810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/07/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
The increasing incidence of inflammatory and malignant diseases signifies the need to develop first-in-class drugs with novel mechanisms of action. In this respect, the transforming growth factor (TGF)-β-activated kinase 1 (TAK1), an essential part of several signaling pathways, is considered relevant and promising. This manuscript provides a brief overview of the signal transduction orchestrated by TAK1 within these pathways, followed by an in-depth and thorough analysis of the chemical matter demonstrated to inhibit this kinase. Special attention is given to the selectivity profiling of inhibitors, as well as to the outcomes of their biological characterization. Because published TAK1 inhibitors differ significantly in their kinome selectivity, active-site binding, and biological activity, we hope that this review will allow a judicial estimation of their quality and usefulness for TAK1-addressing assays. Our thoughts on the perspectives and possible developments of the field are also provided to assist scientists who are involved in the design and development of TAK1-targeting modulators.
Collapse
Affiliation(s)
- Nika Strašek Benedik
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Matic Proj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Christian Steinebach
- Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Matej Sova
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Liu X, Shen X, Wang H, Wang J, Ren Y, Zhang M, Li S, Guo L, Li J, Wang Y. Mollugin prevents CLP-induced sepsis in mice by inhibiting TAK1-NF-κB/MAPKs pathways and activating Keap1-Nrf2 pathway in macrophages. Int Immunopharmacol 2023; 125:111079. [PMID: 38149576 DOI: 10.1016/j.intimp.2023.111079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 12/28/2023]
Abstract
Sepsis is a life-threatening organ dysfunction associated with macrophage overactivation. Targeted therapy against macrophages is considered a promising strategy for sepsis treatment. Mollugin (MLG), a compound extracted from traditional Chinese medicine Rubia cordifolia L., possesses anti-tumor and anti-inflammatory activities. This study aimed to investigate the anti-inflammatory effects and mechanisms of MLG in macrophages and its therapeutic role in CLP-induced sepsis in mice. The results demonstrated that MLG downregulated the inflammatory response induced by LPS or tumor necrosis factor α (TNF-α) in macrophages. Mechanistically, MLG suppressed the phosphorylation of TAK1, the upstream modulator of IKKα/β and MAPKs, thereby inhibiting the pro-inflammatory signaling transduction of NF-κB and MAPKs. Additionally, MLG also activated the Nrf2 antioxidant pathway, reducing intracellular reactive oxygen species. CETSA and molecular docking analyses revealed that MLG could effectively bind to TAK1 and Keap1, which may be involved in the inhibition of TAK1- NF-κB/MAPKs and activation of Nrf2 mediated by MLG. Animal study demonstrated that MLG ameliorated inflammatory injury of lung and liver in CLP-induced sepsis mice probably by reducing the levels of pro-inflammatory cytokines. Therefore, our study suggests that bi-directional roles of MLG in improving sepsis via blocking the TAK1-NF-κB/MAPKs and activating Nrf2 pathways, indicating its potential as a promising candidate drug for sepsis treatment.
Collapse
Affiliation(s)
- Xiaojun Liu
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, China
| | - Xiaofei Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Han Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, China
| | - Jiayi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, China
| | - Yanlin Ren
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, China
| | - Min Zhang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, China
| | - Sixu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, China
| | - Lijuan Guo
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, China
| | - Jingyu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, China
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, China.
| |
Collapse
|
3
|
Oh ES, Ro H, Ryu HW, Song YN, Park JY, Kim N, Kim HY, Oh SM, Lee SY, Kim DY, Kim S, Hong ST, Kim MO, Lee SU. Methyl lucidone inhibits airway inflammatory response by reducing TAK1 activity in human bronchial epithelial NCI-H292 cells. Heliyon 2023; 9:e20154. [PMID: 37809903 PMCID: PMC10559928 DOI: 10.1016/j.heliyon.2023.e20154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/14/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Background Methyl lucidone (ML), a methyl derivative of lucidone, has anti-inflammatory properties. However, the molecular mechanisms that reduce the inflammatory effect of ML in human lung epithelial cells remain unkown. This study aimed to elucidate the molecular mechanisms underlying the anti-inflammatory effect of ML. Methods Four compounds (ML, methyl linderone, kanakugiol, and linderone) from Lindera erythrocarpa Makino were evaluated for their ability to reduce MUC5AC secretion levels in phorbol-12-myristate-13-acetate (PMA)-stimulated NCI-H292 cells using ELISA. The expression and secretion levels of inflammatory response-related proteins were analyzed using quantitative reverse transcription-PCR, ELISA, and western blotting. To determine whether ML directly regulates TGF-β-activated kinase 1 (TAK1), we performed an in vitro kinase assay. Results ML treatment effectively reduced the levels of inflammatory cytokines, including interleukin-1β and TNF-α, increased by stimulation. Furthermore, ML downregulated the pathway cascade of both IκB kinase (IKK)/NF-κB and p38 mitogen-activated protein (MAP) kinase/CREB by inhibiting the upstream kinase TAK1. An in vitro kinase analysis confirmed that ML treatment significantly reduced the kinase activity of TAK1. Conclusion ML pretreatment repressed the PMA-stimulated inflammation reaction by reducing the TAK1-mediated IKK/NF-κB and p38 MAP kinase/CREB signaling. These findings suggest that ML may improve respiratory health and can be used as a dietary supplement or functional food to prevent inflammatory lung diseases.
Collapse
Affiliation(s)
- Eun Sol Oh
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyung Won Ryu
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Yu Na Song
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ji-Yoon Park
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
- Department of Anatomy and Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Namho Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
- Department of Anatomy and Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Hae-Young Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Seon Min Oh
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Su-Yeon Lee
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Doo-Young Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Sooil Kim
- Department of Anatomy and Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Sung-Tae Hong
- Department of Anatomy and Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Mun-Ock Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Su Ui Lee
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
| |
Collapse
|
4
|
Yun HJ, Lee HY. The novel TAK1 inhibitor handelin inhibits NF-κB and AP-1 activity to alleviate elastase-induced emphysema in mice. Life Sci 2023; 319:121388. [PMID: 36640900 DOI: 10.1016/j.lfs.2023.121388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
AIMS Emphysema, one of the two major components of chronic obstructive pulmonary disease (COPD), is driven by aberrant inflammatory responses and associated with irreversible lung parenchymal destruction. As effective therapy for preventing or treating COPD/emphysema is yet unavailable, development of molecular targets and therapeutic agents for COPD/emphysema is required. MAIN METHODS AND KEY FINDINGS We identified handelin-a guaianolide dimer of sesquiterpene lactones- from a chemical library of 431 natural products as it exhibited potent inhibitory effects on lipopolysaccharide (LPS)-induced nitric oxide (NO) and reactive oxygen species (ROS) production, LPS-induced activation of nuclear factor κB (NF-κB), mitogen-activated protein kinase (MAPK)/AP-1, and expression of proinflammatory mediators in macrophage cells. In silico docking and biochemical studies enabled the identification of the ATP-binding pocket of transforming growth factor beta-activated kinase 1 (TAK1), a kinase upstream of NF-κB and MAPK/AP-1 pathways, as a molecular target for handelin. Moreover, oral administration of handelin (10 mg/kg) suppressed elastase-induced development of emphysematous phenotypes, including lung function disturbance, airspace enlargement, and increases in the level of neutrophils and CD8+ T cells in lung tissues, without overt toxicity. Consistent with in vitro results, analyses of lung tissues revealed that treatment with handelin suppressed elastase-induced NF-κB and AP-1 activation in the lungs, followed by downregulation of their targets including interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and matrix metalloproteinase 9 (MMP9). SIGNIFICANCE These findings suggest that handelin, as a TAK1 inhibitor, effectively prevents development of emphysema in an elastase-induced mouse model by inhibiting a proinflammatory mediators mediated by NF-κB and AP-1.
Collapse
Affiliation(s)
- Hye Jeong Yun
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho-Young Lee
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
5
|
Al Subeh ZY, Li T, Ustoyev A, Obike JC, West PM, Khin M, Burdette JE, Pearce CJ, Oberlies NH, Croatt MP. Semisynthesis of Hypothemycin Analogues Targeting the C8-C9 Diol. JOURNAL OF NATURAL PRODUCTS 2022; 85:2018-2025. [PMID: 35834411 PMCID: PMC9677340 DOI: 10.1021/acs.jnatprod.2c00434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Hypothemycin, an epoxide derivative of (5Z)-7-oxozeaenol, was used in the semisynthesis of a series of C8-C9 diol derivatives, with many inhibiting TAK1 at submicromolar concentrations. A step-economical approach was chosen, whereby nonselective reactions functionalized the diol to generate multiple analogues in a single reaction. Using this approach, 35 analogues were synthesized using 12 reactions, providing a wealth of information about the role that the C8-C9 diol plays in TAK1 inhibition and cytotoxicity in ovarian and breast cancer cell lines. Monofunctionalized analogues exhibited strong inhibition of TAK1, showing potential for modification of this section of the molecule to assist with solubility, formulation, and other desirable properties. Most analogues were cytotoxic, and three compounds had similar or slightly increased potency with >100-fold improvement in solubility profiles.
Collapse
Affiliation(s)
- Zeinab Y Al Subeh
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Tian Li
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Abraham Ustoyev
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Jennifer C Obike
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Philip M West
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Manead Khin
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Cedric J Pearce
- Mycosynthetix, Inc., Hillsborough, North Carolina 27278, United States
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Mitchell P Croatt
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
6
|
Veerman JJN, Bruseker YB, Damen E, Heijne EH, van Bruggen W, Hekking KFW, Winkel R, Hupp CD, Keefe AD, Liu J, Thomson HA, Zhang Y, Cuozzo JW, McRiner AJ, Mulvihill MJ, van Rijnsbergen P, Zech B, Renzetti LM, Babiss L, Müller G. Discovery of 2,4-1 H-Imidazole Carboxamides as Potent and Selective TAK1 Inhibitors. ACS Med Chem Lett 2021; 12:555-562. [PMID: 33859795 DOI: 10.1021/acsmedchemlett.0c00547] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/24/2021] [Indexed: 11/28/2022] Open
Abstract
Herein we report the discovery of 2,4-1H-imidazole carboxamides as novel, biochemically potent, and kinome selective inhibitors of transforming growth factor β-activated kinase 1 (TAK1). The target was subjected to a DNA-encoded chemical library (DECL) screen. After hit analysis a cluster of compounds was identified, which was based on a central pyrrole-2,4-1H-dicarboxamide scaffold, showing remarkable kinome selectivity. A scaffold-hop to the corresponding imidazole resulted in increased biochemical potency. Next, X-ray crystallography revealed a distinct binding mode compared to other TAK1 inhibitors. A benzylamide was found in a perpendicular orientation with respect to the core hinge-binding imidazole. Additionally, an unusual amide flip was observed in the kinase hinge region. Using structure-based drug design (SBDD), key substitutions at the pyrrolidine amide and the glycine resulted in a significant increase in biochemical potency.
Collapse
Affiliation(s)
| | - Yorik B. Bruseker
- Mercachem BV, Department of Medicinal Chemistry, Kerkenbos 1013, 6546 BB Nijmegen, The Netherlands
| | - Eddy Damen
- Mercachem BV, Department of Medicinal Chemistry, Kerkenbos 1013, 6546 BB Nijmegen, The Netherlands
| | - Erik H. Heijne
- Mercachem BV, Department of Medicinal Chemistry, Kerkenbos 1013, 6546 BB Nijmegen, The Netherlands
| | - Wendy van Bruggen
- Mercachem BV, Department of Medicinal Chemistry, Kerkenbos 1013, 6546 BB Nijmegen, The Netherlands
| | - Koen F. W. Hekking
- Mercachem BV, Department of Medicinal Chemistry, Kerkenbos 1013, 6546 BB Nijmegen, The Netherlands
| | - Rob Winkel
- Mercachem BV, Department of Medicinal Chemistry, Kerkenbos 1013, 6546 BB Nijmegen, The Netherlands
| | - Christopher D. Hupp
- X-Chem, Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Anthony D. Keefe
- X-Chem, Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Julie Liu
- Civetta Therapeutics, 10 Wilson Road, Cambridge, Massachusetts 02138, United States
| | - Heather A. Thomson
- X-Chem, Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Ying Zhang
- X-Chem, Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - John W. Cuozzo
- X-Chem, Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Andrew J. McRiner
- X-Chem, Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | | | - Peter van Rijnsbergen
- Mercachem BV, Department of Medicinal Chemistry, Kerkenbos 1013, 6546 BB Nijmegen, The Netherlands
| | - Birgit Zech
- AnavoTherapeutics BV, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | | | - Lee Babiss
- Wilmington, North Carolina 28405, United States
| | - Gerhard Müller
- AnavoTherapeutics BV, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| |
Collapse
|
7
|
Hui X, Hu F, Liu J, Li C, Yang Y, Shu S, Liu P, Wang F, Li S. FBXW5 acts as a negative regulator of pathological cardiac hypertrophy by decreasing the TAK1 signaling to pro-hypertrophic members of the MAPK signaling pathway. J Mol Cell Cardiol 2021; 151:31-43. [PMID: 32971071 DOI: 10.1016/j.yjmcc.2020.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/21/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022]
Abstract
Pathological cardiac hypertrophy is a crucial cause of cardiac morbidity and mortality worldwide. However, the molecular mechanisms of this disease remain incompletely understood. As a member of E3 ubiquitin ligases, F-box/WD repeat-containing protein 5 (FBXW5) has been implicated in various pathophysiological processes. However, the role of FBXW5 in pathological cardiac hypertrophy remains largely unknown. In this study, decreased expression of FBXW5 was observed in both neonatal rat cardiomyocytes and mouse hearts with hypertrophic remodeling. Gain- and loss-of-function experiments were performed to study the potential function of FBXW5 in pathological cardiac hypertrophy. The in vitro results showed that FBXW5 had a protective effect against cardiac hypertrophy induced by phenylephrine (PE). FBXW5 knockout mice and mice with AAV9-mediated FBXW5 overexpression were generated. Consistent with the in vitro results, FBXW5 deficiency aggravated cardiac hypertrophy induced by pressure overload. FBXW5 overexpression protected mice from hypertrophic stimuli. Remarkably, FBXW5 ameliorated pathological cardiac hypertrophy by directly interacting with the protein transforming growth factor-beta-activated kinase 1 (TAK1) and blocking the mitogen-activated protein kinase (MAPK) signaling pathway. Furthermore, inhibition of TAK1 prevented the effects of FBXW5 on agonist- or pressure overload-induced cardiac hypertrophy. These findings imply that FBXW5 is an essential negative regulator and may be a potential therapeutic target for pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Xuejun Hui
- Jilin University, Changchun, Jilin, China; Second Hospital of Jilin University, Department of Cardiology the Medical Science Research Center, China
| | - Fengjiao Hu
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jia Liu
- Department of Cardiology, Cang Zhou People's Hospital, Cangzhou, Hebei, China
| | - Changhai Li
- Jilin University, Changchun, Jilin, China; Department of Cardiology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yang Yang
- Jilin University, Changchun, Jilin, China; Department of Cardiology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Shangzhi Shu
- Jilin University, Changchun, Jilin, China; Department of Cardiology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Peipei Liu
- Department of Cardiology, Cang Zhou People's Hospital, Cangzhou, Hebei, China
| | - Fan Wang
- Jilin University, Changchun, Jilin, China; Department of Cardiology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Shuyan Li
- Jilin University, Changchun, Jilin, China; Department of Cardiology, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
8
|
Strong AL, Spreadborough PJ, Pagani CA, Haskins RM, Dey D, Grimm PD, Kaneko K, Marini S, Huber AK, Hwang C, Westover K, Mishina Y, Bradley MJ, Levi B, Davis TA. Small molecule inhibition of non-canonical (TAK1-mediated) BMP signaling results in reduced chondrogenic ossification and heterotopic ossification in a rat model of blast-associated combat-related lower limb trauma. Bone 2020; 139:115517. [PMID: 32622875 PMCID: PMC7945876 DOI: 10.1016/j.bone.2020.115517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
Heterotopic ossification (HO) is defined as ectopic bone formation around joints and in soft tissues following trauma, particularly blast-related extremity injuries, thermal injuries, central nerve injuries, or orthopaedic surgeries, leading to increased pain and diminished quality of life. Current treatment options include pharmacotherapy with non-steroidal anti-inflammatory drugs, radiotherapy, and surgical excision, but these treatments have limited efficacy and have associated complication profiles. In contrast, small molecule inhibitors have been shown to have higher specificity and less systemic cytotoxicity. Previous studies have shown that bone morphogenetic protein (BMP) signaling and downstream non-canonical (SMAD-independent) BMP signaling mediated induction of TGF-β activated kinase-1 (TAK1) contributes to HO. In the current study, small molecule inhibition of TAK1, NG-25, was evaluated for its efficacy in limiting ectopic bone formation following a rat blast-associated lower limb trauma and a murine burn tenotomy injury model. A significant decrease in total HO volume in the rat blast injury model was observed by microCT imaging with no systemic complications following NG-25 therapy. Furthermore, tissue-resident mesenchymal progenitor cells (MPCs) harvested from rats treated with NG-25 demonstrated decreased proliferation, limited osteogenic differentiation capacity, and reduced gene expression of Tac1, Col10a1, Ibsp, Smad3, and Sox2 (P < 0.05). Single cell RNA-sequencing of murine cells harvested from the injury site in a burn tenotomy injury model showed increased expression of these genes in MPCs during stages of chondrogenic differentiation. Additional in vitro cell cultures of murine tissue-resident MPCs and osteochondrogenic progenitors (OCPs) treated with NG-25 demonstrated reduced chondrogenic differentiation by 10.2-fold (P < 0.001) and 133.3-fold (P < 0.001), respectively, as well as associated reduction in chondrogenic gene expression. Induction of HO in Tak1 knockout mice demonstrated a 7.1-fold (P < 0.001) and 2.7-fold reduction (P < 0.001) in chondrogenic differentiation of murine MPCs and OCPs, respectively, with reduced chondrogenic gene expression. Together, our in vivo models and in vitro cell culture studies demonstrate the importance of TAK1 signaling in chondrogenic differentiation and HO formation and suggest that small molecule inhibition of TAK1 is a promising therapy to limit the formation and progression of HO.
Collapse
Affiliation(s)
- Amy L Strong
- Division of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Philip J Spreadborough
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD, United States of America; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America; Academic Department of Military Surgery and Trauma, Royal Centre for Defense Medicine, Birmingham, United Kingdom
| | - Chase A Pagani
- Division of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Ryan M Haskins
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Devaveena Dey
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD, United States of America; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Patrick D Grimm
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD, United States of America; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Keiko Kaneko
- Division of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Simone Marini
- Division of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Amanda K Huber
- Division of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Charles Hwang
- Division of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Kenneth Westover
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States of America
| | - Yuji Mishina
- Department of Biologic and Materials Science and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States of America
| | - Matthew J Bradley
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD, United States of America; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Benjamin Levi
- Division of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, United States of America.
| | - Thomas A Davis
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD, United States of America; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America.
| |
Collapse
|
9
|
Wen J, Han S, Cui M, Wang Y. Long non‑coding RNA MCM3AP‑AS1 drives ovarian cancer progression via the microRNA‑143‑3p/TAK1 axis. Oncol Rep 2020; 44:1375-1384. [PMID: 32945454 PMCID: PMC7448503 DOI: 10.3892/or.2020.7694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/05/2020] [Indexed: 12/11/2022] Open
Abstract
The long non‑coding RNA (lncRNA) MCM3AP antisense 1 (MCM3AP‑AS1) has previously been shown to be a key regulator of multiple types of cancer; however whether it is important in the context of ovarian cancer (OC) is uncertain. The present study determined that MCM3AP‑AS1 expression in samples from patients with OC was significantly increased, and was associated with tumor stage, presence of lymph node metastases and poorer overall survival. The role of this lncRNA was investigated in vitro, and it was observed that knockdown of MCM3AP‑AS1 impaired OC cell proliferation, migration and colony formation. Similarly, it disrupted tumor growth in vivo. The present study further determined that MCM3AP‑AS1 was able to directly interact with microRNA (miRNA or miR)‑143‑3p as a competing endogenous (ce)RNA for this miRNA, thereby regulating the expression of transforming growth factor‑β‑activated kinase 1 (TAK1), a known target of miR‑143‑3p in OC. Consistent with this, inhibition of miR‑143‑3p was sufficient to partially reverse the effects of MCM3AP‑AS1‑knockdown, which inhibited the proliferation, migration and invasion of OC cells. Together, these results indicate that MCM3AP‑AS1 serves as an oncogenic lncRNA in OC by binding to miR‑143‑3p and thereby promoting TAK1 expression, and suggest that this lncRNA may be a possible target for therapy in OC.
Collapse
Affiliation(s)
- Jihong Wen
- Department of Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shumei Han
- Department of Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Man Cui
- Department of Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yanli Wang
- Department of Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
10
|
Totzke J, Scarneo SA, Yang KW, Haystead TAJ. TAK1: a potent tumour necrosis factor inhibitor for the treatment of inflammatory diseases. Open Biol 2020; 10:200099. [PMID: 32873150 PMCID: PMC7536066 DOI: 10.1098/rsob.200099] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aberrant tumour necrosis factor (TNF) signalling is a hallmark of many inflammatory diseases including rheumatoid arthritis (RA), irritable bowel disease and lupus. Maladaptive TNF signalling can lead to hyper active downstream nuclear factor (NF)-κβ signalling in turn amplifying a cell's inflammatory response and exacerbating disease. Within the TNF intracellular inflammatory signalling cascade, transforming growth factor-β-activated kinase 1 (TAK1) has been shown to play a critical role in mediating signal transduction and downstream NF-κβ activation. Owing to its role in TNF inflammatory signalling, TAK1 has become a potential therapeutic target for the treatment of inflammatory diseases such as RA. This review highlights the current development of targeting the TNF-TAK1 signalling axis as a novel therapeutic strategy for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Juliane Totzke
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Scott A Scarneo
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kelly W Yang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Timothy A J Haystead
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
11
|
Watson CJF, Maguire ARR, Rouillard MM, Crozier RWE, Yousef M, Bruton KM, Fajardo VA, MacNeil AJ. TAK1 signaling activity links the mast cell cytokine response and degranulation in allergic inflammation. J Leukoc Biol 2020; 107:649-661. [PMID: 32108376 DOI: 10.1002/jlb.2a0220-401rrr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/23/2022] Open
Abstract
Mast cells drive the inappropriate immune response characteristic of allergic inflammatory disorders via release of pro-inflammatory mediators in response to environmental cues detected by the IgE-FcεRI complex. The role of TGF-β-activated kinase 1 (TAK1), a participant in related signaling in other contexts, remains unknown in allergy. We detect novel activation of TAK1 at Ser412 in response to IgE-mediated activation under SCF-c-kit potentiation in a mast cell-driven response characteristic of allergic inflammation, which is potently blocked by TAK1 inhibitor 5Z-7-oxozeaenol (OZ). We, therefore, interrogated the role of TAK1 in a series of mast cell-mediated responses using IgE-sensitized murine bone marrow-derived mast cells, stimulated with allergen under several TAK1 inhibition strategies. TAK1 inhibition by OZ resulted in significant impairment in the phosphorylation of MAPKs p38, ERK, and JNK; and mediation of the NF-κB pathway via IκBα. Impaired gene expression and near abrogation in release of pro-inflammatory cytokines TNF, IL-6, IL-13, and chemokines CCL1, and CCL2 was detected. Finally, a significant inhibition of mast cell degranulation, accompanied by an impairment in calcium mobilization, was observed in TAK1-inhibited cells. These results suggest that TAK1 acts as a signaling node, not only linking the MAPK and NF-κB pathways in driving the late-phase response, but also initiation of the degranulation mechanism of the mast cell early-phase response following allergen recognition and may warrant consideration in future therapeutic development.
Collapse
Affiliation(s)
- Colton J F Watson
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Aindriu R R Maguire
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Melissa M Rouillard
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Robert W E Crozier
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Michael Yousef
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Kelly M Bruton
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Val A Fajardo
- Department of Kinesiology, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Adam J MacNeil
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| |
Collapse
|
12
|
Molnár T, Mázló A, Tslaf V, Szöllősi AG, Emri G, Koncz G. Current translational potential and underlying molecular mechanisms of necroptosis. Cell Death Dis 2019; 10:860. [PMID: 31719524 PMCID: PMC6851151 DOI: 10.1038/s41419-019-2094-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 12/27/2022]
Abstract
Cell death has a fundamental impact on the evolution of degenerative disorders, autoimmune processes, inflammatory diseases, tumor formation and immune surveillance. Over the past couple of decades extensive studies have uncovered novel cell death pathways, which are independent of apoptosis. Among these is necroptosis, a tightly regulated, inflammatory form of cell death. Necroptosis contribute to the pathogenesis of many diseases and in this review, we will focus exclusively on necroptosis in humans. Necroptosis is considered a backup mechanism of apoptosis, but the in vivo appearance of necroptosis indicates that both caspase-mediated and caspase-independent mechanisms control necroptosis. Necroptosis is regulated on multiple levels, from the transcription, to the stability and posttranslational modifications of the necrosome components, to the availability of molecular interaction partners and the localization of receptor-interacting serine/threonine-protein kinase 1 (RIPK1), receptor-interacting serine/threonine-protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL). Accordingly, we classified the role of more than seventy molecules in necroptotic signaling based on consistent in vitro or in vivo evidence to understand the molecular background of necroptosis and to find opportunities where regulating the intensity and the modality of cell death could be exploited in clinical interventions. Necroptosis specific inhibitors are under development, but >20 drugs, already used in the treatment of various diseases, have the potential to regulate necroptosis. By listing necroptosis-modulated human diseases and cataloging the currently available drug-repertoire to modify necroptosis intensity, we hope to kick-start approaches with immediate translational potential. We also indicate where necroptosis regulating capacity should be considered in the current applications of these drugs.
Collapse
Affiliation(s)
- Tamás Molnár
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Anett Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Vera Tslaf
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
13
|
Acute remote ischemic preconditioning alleviates free radical injury and inflammatory response in cerebral ischemia/reperfusion rats. Exp Ther Med 2019; 18:1953-1960. [PMID: 31410157 PMCID: PMC6676222 DOI: 10.3892/etm.2019.7797] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022] Open
Abstract
Remote ischemic preconditioning (IPreC) is an effective strategy to defend against cerebral ischemia/reperfusion (IR) injury; however, its mechanisms remain to be elucidated. The aim of the present study was to investigate the effect of IPreC on brain tissue following cerebral ischemia, as well as the underlying mechanisms. Adult male Sprague-Dawley rats were treated with IPreC for 72 h prior to the induction of transient cerebral ischemia and reperfusion. The results demonstrated that IPreC reduced the area of cerebral infarction in the IR rats by 2,3,5-triphenyl-tetrazolium chloride staining. In addition, cell apoptosis was markedly suppressed by IPreC with an increased expression of B-cell lymphoma 2 (Bcl-2)/Bcl-2-associatd X protein using Terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling assay and western blot analysis. IR induced a decrease in the level of superoxide dismutase, and IPreC significantly suppressed increased levels of malondialdehyde, lactate dehydrogenase and nitric oxide. The expression of CD11b and CD18 was markedly inhibited by IpreC unsing flow cytometry. Furthermore, IPreC markedly decreased the release of pro-inflammatory factors interleukin (IL)-6 and IL-1β, and enhanced the level of anti-inflammatory factors (IL-10 and IL-1 receptor antagonist) by ELISA assay. Finally, IPreC reduced the levels of transforming growth factor-β-activated kinase 1, phosphorylated-P65/P65, and tumor necrosis factor-α, indicating that the nuclear factor-κB pathway was involved in IPreC-mediated protection against cerebral ischemia. Taken together, the results suggested that IPreC decreased ischemic brain injury through alleviating free radical injury and the inflammatory response in cerebral IR rats.
Collapse
|
14
|
TAK1 suppresses RIPK1-dependent cell death and is associated with disease progression in melanoma. Cell Death Differ 2019; 26:2520-2534. [PMID: 30850732 DOI: 10.1038/s41418-019-0315-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/28/2019] [Accepted: 02/12/2019] [Indexed: 12/23/2022] Open
Abstract
Melanoma cells are highly resistant to conventional genotoxic agents, and BRAFV600/MEK-targeted therapies as well as immunotherapies frequently remain inefficient. Alternative means to treat melanoma, in particular through the induction of programmed cell death modalities such as apoptosis or necroptosis, therefore still need to be explored. Here, we report that melanoma cell lines expressing notable amounts of RIPK1, RIPK3 and MLKL, the key players of necroptosis signal transduction, fail to execute necroptotic cell death. Interestingly, the activity of transforming growth factor β-activated kinase 1 (TAK1) appears to prevent RIPK1 from contributing to cell death induction, since TAK1 inhibition by (5Z)-7-Oxozeaenol, deletion of MAP3K7 or the expression of inactive TAK1 were sufficient to sensitize melanoma cells to RIPK1-dependent cell death in response to TNFα or TRAIL based combination treatments. However, cell death was executed exclusively by apoptosis, even when RIPK3 expression was high. In addition, TAK1 inhibitor (5Z)-7-Oxozeaenol suppressed intrinsic or treatment-induced pro-survival signaling as well as the secretion of cytokines and soluble factors associated with melanoma disease progression. Correspondingly, elevated expression of TAK1 correlates with reduced disease free survival in patients diagnosed with primary melanoma. Overall, our results therefore demonstrate that TAK1 suppresses the susceptibility to RIPK1-dependent cell death and that high expression of TAK1 indicates an increased risk for disease progression in melanoma.
Collapse
|
15
|
Kang SJ, Lee JW, Chung SH, Jang SY, Choi J, Suh KH, Kim YH, Ham YJ, Min KH. Synthesis and anti-tumor activity of imidazopyrazines as TAK1 inhibitors. Eur J Med Chem 2018; 163:660-670. [PMID: 30576901 DOI: 10.1016/j.ejmech.2018.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/15/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
Abstract
Transforming growth factor-β activated kinase-1 (TAK1) is a potential therapeutic target for cancers and inflammatory diseases. We synthesized a series of novel imidazopyrazine derivatives, which were found to exhibit potent inhibitory effect against TAK1. Compound 22a, which possesses a good pharmacokinetic profile, showed excellent in vitro kinase activity and significant in vivo efficacy in mice xenografted with SW620, a KRAS-dependent colon cancer cell line.
Collapse
Affiliation(s)
- Seok Jong Kang
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea; Department of Drug Discovery, Hanmi Research Center, Gyeonggi-do, 18469, Republic of Korea
| | - Jung Wuk Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Shin Hyuck Chung
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sun Young Jang
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea; Department of Drug Discovery, Hanmi Research Center, Gyeonggi-do, 18469, Republic of Korea
| | - Jaeyul Choi
- Department of Drug Discovery, Hanmi Research Center, Gyeonggi-do, 18469, Republic of Korea
| | - Kwee Hyun Suh
- Department of Drug Discovery, Hanmi Research Center, Gyeonggi-do, 18469, Republic of Korea
| | - Young Hoon Kim
- Department of Drug Discovery, Hanmi Research Center, Gyeonggi-do, 18469, Republic of Korea
| | - Young Jin Ham
- Department of Drug Discovery, Hanmi Research Center, Gyeonggi-do, 18469, Republic of Korea
| | - Kyung Hoon Min
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
16
|
Guan S, Lu J, Zhao Y, Woodfield SE, Zhang H, Xu X, Yu Y, Zhao J, Bieerkehazhi S, Liang H, Yang J, Zhang F, Sun S. TAK1 inhibitor 5Z-7-oxozeaenol sensitizes cervical cancer to doxorubicin-induced apoptosis. Oncotarget 2018; 8:33666-33675. [PMID: 28430599 PMCID: PMC5464900 DOI: 10.18632/oncotarget.16895] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/28/2017] [Indexed: 12/20/2022] Open
Abstract
Aberrant activation of nuclear factor-κB (NF-κB) allows cancer cells to escape chemotherapy-induced cell death and acts as one of the major mechanisms of acquired chemoresistance in cervical cancer. TAK1, a crucial mediator that upregulates NF-κB activation in response to cellular genotoxic stress, is required for tumor cell viability and survival. Herein, we examined whether TAK1 inhibition is a potential therapeutic strategy for treating cervical cancer. We found that TAK1 inhibitor 5Z-7-oxozeaenol significantly augmented the cytotoxic effects of Dox in a panel of cervical cancer cell lines. Treatment with 5Z-7-oxozeaenol hindered Dox-induced NF-κB activation and promoted Dox-induced apoptosis in cervical cancer cells. Moreover, 5Z-7-oxozeaenol showed similar effects in both positive and negative human papillomavirus-infected cervical cancer cells. Taken together, our results provide evidence that TAK1 inhibition significantly sensitizes cervical cancer cells to chemotherapy-induced cell death and supports the use of TAK1 inhibitor with current chemotherapies in the clinic for patients with refractory cervical cancer.
Collapse
Affiliation(s)
- Shan Guan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.,Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jiaxiong Lu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yanling Zhao
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah E Woodfield
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Huiyuan Zhang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xin Xu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yang Yu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jing Zhao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Shayahati Bieerkehazhi
- Department of Labour Hygiene and Sanitary Science, College of Public Health, Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Haoqian Liang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.,School of Pharmacy, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jianhua Yang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fuchun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Surong Sun
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| |
Collapse
|
17
|
Malireddi RKS, Gurung P, Mavuluri J, Dasari TK, Klco JM, Chi H, Kanneganti TD. TAK1 restricts spontaneous NLRP3 activation and cell death to control myeloid proliferation. J Exp Med 2018; 215:1023-1034. [PMID: 29500178 PMCID: PMC5881469 DOI: 10.1084/jem.20171922] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/14/2017] [Accepted: 02/05/2018] [Indexed: 12/20/2022] Open
Abstract
The NLRP3 inflammasome protects the host against microbial infections. In this study, Malireddi et al. demonstrate the critical role of TAK1 in restricting RIPK1 signaling to inhibit spontaneous NLRP3 inflammasome activation and cell death, which may be targeted for treatment of myeloid proliferation. The NOD-like receptor (NLR)–P3 inflammasome is a global sensor of infection and stress. Elevated NLRP3 activation levels are associated with human diseases, but the mechanisms controlling NLRP3 inflammasome activation are largely unknown. Here, we show that TGF-β activated kinase-1 (TAK1) is a central regulator of NLRP3 inflammasome activation and spontaneous cell death. Absence of TAK1 in macrophages induced spontaneous activation of the NLRP3 inflammasome without requiring toll-like receptor (TLR) priming and subsequent activating signals, suggesting a distinctive role for TAK1 in maintaining NLRP3 inflammasome homeostasis. Autocrine tumor necrosis factor (TNF) signaling in the absence of TAK1 induced spontaneous RIPK1-dependent NLRP3 inflammasome activation and cell death. We further showed that TAK1 suppressed homeostatic NF-κB and extracellular signal–related kinase (ERK) activation to limit spontaneous TNF production. Moreover, the spontaneous inflammation resulting from TAK1-deficient macrophages drives myeloid proliferation in mice, and was rescued by RIPK1 deficiency. Overall, these studies identify a critical role for TAK1 in maintaining NLRP3 inflammasome quiescence and preserving cellular homeostasis and survival.
Collapse
Affiliation(s)
| | - Prajwal Gurung
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | - Jayadev Mavuluri
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | | | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | | |
Collapse
|
18
|
Interactome analysis of transforming growth factor-β-activated kinase 1 in Helicobacter pylori-infected cells revealed novel regulators tripartite motif 28 and CDC37. Oncotarget 2018; 9:14366-14381. [PMID: 29581850 PMCID: PMC5865676 DOI: 10.18632/oncotarget.24544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 02/10/2018] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor-β (TGFβ)-activated kinase 1 (TAK1) plays a central role in controlling the cellular pro-inflammatory response via the activation of the nuclear factor κB (NF-κB)- and mitogen-activated protein (MAP) kinases-dependent transcriptional programs. Here, we show that depletion of TAK1 and the TAK1-binding proteins TAB1 and TAB2 affects NF-κB, JNK and p38 phosphorylation and suppresses NF-κB activity in AGS cells infected with Helicobacter pylori or stimulated with the cytokines TNF and IL-1β. To increase our understanding of TAK1 regulation and function, we performed mass spectrometry (MS)-based TAK1 interactomics. In addition to the identification of known and novel TAK1 interacting proteins, including TRIM28, CDC37 and STOML2, analysis of the MS data revealed various post-translational modifications within the TAK1/TAB complex. By applying siRNAs, TRIM28 and CDC37 were found to regulate phosphorylations of TAK1, IκB kinases IKKα/IKKβ and MAP kinases, NF-κB transactivation activity and IL-8 expression in the infected epithelial cells.
Collapse
|
19
|
Totzke J, Gurbani D, Raphemot R, Hughes PF, Bodoor K, Carlson DA, Loiselle DR, Bera AK, Eibschutz LS, Perkins MM, Eubanks AL, Campbell PL, Fox DA, Westover KD, Haystead TAJ, Derbyshire ER. Takinib, a Selective TAK1 Inhibitor, Broadens the Therapeutic Efficacy of TNF-α Inhibition for Cancer and Autoimmune Disease. Cell Chem Biol 2017; 24:1029-1039.e7. [PMID: 28820959 DOI: 10.1016/j.chembiol.2017.07.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/22/2017] [Accepted: 07/25/2017] [Indexed: 12/20/2022]
Abstract
Tumor necrosis factor alpha (TNF-α) has both positive and negative roles in human disease. In certain cancers, TNF-α is infused locally to promote tumor regression, but dose-limiting inflammatory effects limit broader utility. In autoimmune disease, anti-TNF-α antibodies control inflammation in most patients, but these benefits are offset during chronic treatment. TAK1 acts as a key mediator between survival and cell death in TNF-α-mediated signaling. Here, we describe Takinib, a potent and selective TAK1 inhibitor that induces apoptosis following TNF-α stimulation in cell models of rheumatoid arthritis and metastatic breast cancer. We demonstrate that Takinib is an inhibitor of autophosphorylated and non-phosphorylated TAK1 that binds within the ATP-binding pocket and inhibits by slowing down the rate-limiting step of TAK1 activation. Overall, Takinib is an attractive starting point for the development of inhibitors that sensitize cells to TNF-α-induced cell death, with general implications for cancer and autoimmune disease treatment.
Collapse
Affiliation(s)
- Juliane Totzke
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Deepak Gurbani
- Departments of Biochemistry and Radiation Oncology, University of Texas, Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rene Raphemot
- Department of Chemistry, Duke University, Durham, NC 27710, USA
| | - Philip F Hughes
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Khaldon Bodoor
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA; Department of Applied Biology, Jordan University of Science and Technology, PO Box 3030, Irbid 22110, Jordan
| | - David A Carlson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - David R Loiselle
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Asim K Bera
- Departments of Biochemistry and Radiation Oncology, University of Texas, Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Liesl S Eibschutz
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | | | - Amber L Eubanks
- Department of Chemistry, Duke University, Durham, NC 27710, USA
| | - Phillip L Campbell
- University of Michigan, Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Ann Arbor, MI 48109, USA
| | - David A Fox
- University of Michigan, Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Ann Arbor, MI 48109, USA
| | - Kenneth D Westover
- Departments of Biochemistry and Radiation Oncology, University of Texas, Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | - Timothy A J Haystead
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA.
| | | |
Collapse
|
20
|
Fechtner S, Fox DA, Ahmed S. Transforming growth factor β activated kinase 1: a potential therapeutic target for rheumatic diseases. Rheumatology (Oxford) 2017; 56:1060-1068. [PMID: 27550296 DOI: 10.1093/rheumatology/kew301] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Indexed: 12/13/2022] Open
Abstract
Pro-inflammatory cytokines such as IL-1β, IL-6 and TNF-α are central regulators of autoinflammatory diseases. While targeting these cytokines has proven to be a successful clinical strategy, the long-term challenges such as drug resistance, lack of efficacy and poor clinical outcomes in some patients are some of the limitations faced by these therapies. This has ignited strategies to reduce inflammation by potentially targeting a variety of molecules, including cell surface receptors, signalling proteins and/or transcription factors to minimize cytokine-induced inflammation and tissue injury. In this regard, transforming growth factor β activated kinase 1 (TAK1) is activated in the inflammatory signal transduction pathways in response to IL-1β, TNF-α or toll-like receptor stimulation. Because of its ideal position upstream of mitogen-activated protein kinases and the IκB kinase complex in signalling cascades, targeting TAK1 may be an attractive strategy for treating diseases characterized by chronic inflammation. Here, we discuss the emerging role of TAK1 in mediating the IL-1β, TNF-α and toll-like receptor mediated inflammatory responses in diseases such as RA, OA, gout and SS. We also review evidence suggesting that TAK1 inhibition may have potential therapeutic value. Finally, we focus on the current status of the development of TAK1 inhibitors and suggest further opportunities for testing TAK1 inhibitors in rheumatic diseases.
Collapse
Affiliation(s)
- Sabrina Fechtner
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA
| | - David A Fox
- Department of Internal Medicine, Division of Rheumatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Salahuddin Ahmed
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA
| |
Collapse
|
21
|
Yang Y, Qiu Y, Tang M, Wu Z, Hu W, Chen C. Expression and function of transforming growth factor‑β‑activated protein kinase 1 in gastric cancer. Mol Med Rep 2017; 16:3103-3110. [PMID: 28714004 PMCID: PMC5548047 DOI: 10.3892/mmr.2017.6998] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 05/02/2017] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to investigate the expression and role of transforming growth factor (TGF) ‑β‑activated protein kinase 1 (TAK1) in human gastric cancer. Immunohistochemistry was performed to investigate the expression of TAK1 in surgical specimens of human gastric cancer tissue and adjacent normal tissue. The association between TAK1 and clinicopathologic factors was analyzed and the association between TAK1 expression and the overall survival rates was evaluated using Kaplan‑Meier curves. In addition, the effect of the TAK1 selective inhibitor 5Z‑7‑oxozeaenol (OZ) on the biological characteristics of MGC803 human gastric cancer cells in vitro were investigated. The role of TAK1 in gastric cancer cell proliferation, apoptosis and invasion were determined by cell proliferation assays, flow cytometry analysis and transwell invasion assays, respectively. The findings of the present study demonstrated that the positive expression rate of TAK1 in gastric cancer and adjacent normal tissues was 70.5 and 25.9%, respectively. Furthermore, TAK1 expression was significantly associated with advanced N stage and pathological stage (P<0.05). Survival analysis of 139 patients with gastric cancer indicated a lower overall survival rate of patients in the TAK1‑positive group compared with the TAK1‑negative group (P<0.05). In addition, treatment with the TAK1 selective inhibitor OZ reduced the proliferation and invasion abilities of MGC803 cells and significantly reduced the expression levels of phosphorylated‑TAK1 (Thr187), nuclear p65, cyclin D1, Bcl‑2 apoptosis regulator and matrix metallopeptidase (MMP)9 (P<0.05). OZ treatment significantly increased the expression levels of cytosolic cytochrome c and cleaved caspase 3 and the apoptosis rate in MGC803 cells (P<0.05). In conclusion, these findings suggest that increased TAK1 expression may be involved in the progression of gastric cancer; therefore, TAK1 may be used as a future therapeutic target for gastric cancer treatment.
Collapse
Affiliation(s)
- Yue Yang
- Department of Surgery, The Third Affiliated Hospital, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210001, P.R. China
| | - Yudong Qiu
- Department of Hepatopancreatobiliary Surgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000, P.R. China
| | - Mubai Tang
- Department of Surgery, The Third Affiliated Hospital, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210001, P.R. China
| | - Zhaoshu Wu
- Department of Surgery, The Third Affiliated Hospital, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210001, P.R. China
| | - Weidong Hu
- Department of General Surgery, Wuxi Xishan People's Hospital, Wuxi, Jiangsu 214011, P.R. China
| | - Chaobo Chen
- Department of General Surgery, Wuxi Xishan People's Hospital, Wuxi, Jiangsu 214011, P.R. China
| |
Collapse
|
22
|
TAK1 inhibition attenuates both inflammation and fibrosis in experimental pneumoconiosis. Cell Discov 2017; 3:17023. [PMID: 28698801 PMCID: PMC5504492 DOI: 10.1038/celldisc.2017.23] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022] Open
Abstract
Pneumoconiosis, caused by inhalation of mineral dusts, is a major occupational disease worldwide. Currently, there are no effective drugs owing to a lack of potential therapeutic targets during either the inflammation or fibrosis molecular events in pneumoconiosis. Here, we performed microarrays to identify aberrantly expressed genes in the above molecular events in vitro and found a hub gene transforming growth factor-β-activated kinase 1 (TAK1), which was highly expressed and activated in pneumoconiosis patients as well as silica-exposed rats with experimental pneumoconiosis. Genetic modulation of TAK1 by CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9, RNA interference and overexpression indicated the important role of TAK1 in both inflammation and fibrosis in experimental pneumoconiosis. To achieve pharmacological TAK1 inhibition, we virtually screened out a natural product resveratrol, which targeted TAK1 at both N161 and A107 residues, and significantly inhibited TAK1 activation to attenuate inflammation and fibrosis in vitro. Consistently, in vivo prevention and intervention studies showed that resveratrol could inhibit pulmonary inflammation and fibrosis in silica-exposed rats.
Collapse
|
23
|
Lerrer S, Liubomirski Y, Bott A, Abnaof K, Oren N, Yousaf A, Körner C, Meshel T, Wiemann S, Ben-Baruch A. Co-Inflammatory Roles of TGFβ1 in the Presence of TNFα Drive a Pro-inflammatory Fate in Mesenchymal Stem Cells. Front Immunol 2017; 8:479. [PMID: 28553282 PMCID: PMC5425596 DOI: 10.3389/fimmu.2017.00479] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/05/2017] [Indexed: 12/19/2022] Open
Abstract
High plasticity is a hallmark of mesenchymal stem cells (MSCs), and as such, their differentiation and activities may be shaped by factors of their microenvironment. Bones, tumors, and cardiomyopathy are examples of niches and conditions that contain MSCs and are enriched with tumor necrosis factor α (TNFα) and transforming growth factor β1 (TGFβ1). These two cytokines are generally considered as having opposing roles in regulating immunity and inflammation (pro- and anti-inflammatory, respectively). Here, we performed global gene expression analysis of human bone marrow-derived MSCs and identified overlap in half of the transcriptional programs that were modified by TNFα and TGFβ1. The two cytokines elevated the mRNA expression of soluble factors, including mRNAs of pro-inflammatory mediators. Accordingly, the typical pro-inflammatory factor TNFα prominently induced the protein expression levels of the pro-inflammatory mediators CCL2, CXCL8 (IL-8), and cyclooxygenase-2 (Cox-2) in MSCs, through the NF-κB/p65 pathway. In parallel, TGFβ1 did not elevate CXCL8 protein levels and induced the protein expression of CCL2 at much lower levels than TNFα; yet, TGFβ1 readily induced Cox-2 and acted predominantly via the Smad3 pathway. Interestingly, combined stimulation of MSCs by TNFα + TGFβ1 led to a cooperative induction of all three inflammatory mediators, indicating that TGFβ1 functioned as a co-inflammatory cytokine in the presence of TNFα. The cooperative activities of TNFα + TGFβ1 that have led to CCL2 and CXCL8 induction were almost exclusively dependent on p65 activation and were not regulated by Smad3 or by the upstream regulator TGFβ-activated kinase 1 (TAK1). In contrast, the TNFα + TGFβ1-induced cooperative elevation in Cox-2 was mostly dependent on Smad3 (demonstrating cooperativity with activated NF-κB) and was partly regulated by TAK1. Studies with MSCs activated by TNFα + TGFβ1 revealed that they release factors that can affect other cells in their microenvironment and induce breast tumor cell elongation, migration, and scattering out of spheroid tumor masses. Thus, our findings demonstrate a TNFα + TGFβ1-driven pro-inflammatory fate in MSCs, identify specific molecular mechanisms involved, and propose that TNFα + TGFβ1-stimulated MSCs influence the tumor niche. These observations suggest key roles for the microenvironment in regulating MSC functions, which in turn may affect different health-related conditions.
Collapse
Affiliation(s)
- Shalom Lerrer
- Faculty of Life Sciences, Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Yulia Liubomirski
- Faculty of Life Sciences, Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Alexander Bott
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Khalid Abnaof
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nino Oren
- Faculty of Life Sciences, Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Afsheen Yousaf
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cindy Körner
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tsipi Meshel
- Faculty of Life Sciences, Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adit Ben-Baruch
- Faculty of Life Sciences, Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
24
|
Miura T, Matsuo A, Muraoka T, Ide M, Morikami K, Kamikawa T, Nishihara M, Kashiwagi H. Identification of a selective inhibitor of transforming growth factor β-activated kinase 1 by biosensor-based screening of focused libraries. Bioorg Med Chem Lett 2016; 27:1031-1036. [PMID: 28109791 DOI: 10.1016/j.bmcl.2016.12.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/20/2016] [Accepted: 12/27/2016] [Indexed: 01/07/2023]
Abstract
Transforming growth factor-β activated kinase 1 (TAK1), a member of the mitogen-activated protein kinase kinase kinase family, plays an essential role in mediating signals from various pro-inflammatory cytokines and therefore may be a good target for developing anti-inflammation agents. Herein, we report our efforts to identify TAK1 inhibitors with a good selectivity profile with which to initiate medicinal chemistry. Instead of resorting to a high-throughput screening campaign, we performed biosensor-based biophysical screening for a limited number of compounds by taking advantage of existing knowledge on kinase inhibitors. Rather than focusing on one specific inhibition mode, we searched for three different types, Type I (ATP-competitive, DFG-in), Type II (DFG-out), and Type III binders (non-ATP competitive) in parallel, and succeeded in identifying candidates in all three categories efficiently and rapidly. Finally, the biosensor-based binding kinetics for the active and inactive forms of TAK1 were measured to prioritize the Type I and Type II inhibitors. The effort resulted in the identification of a new TAK1-selective Type I compound with a thienopyrimidine scaffold that served as a good starting point for medicinal chemistry.
Collapse
Affiliation(s)
- Takaaki Miura
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan.
| | - Atsushi Matsuo
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Terushige Muraoka
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Mitsuaki Ide
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Kenji Morikami
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Takayuki Kamikawa
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Masamichi Nishihara
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Hirotaka Kashiwagi
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| |
Collapse
|
25
|
Huang T, Alvarez AA, Pangeni RP, Horbinski CM, Lu S, Kim SH, James CD, J Raizer J, A Kessler J, Brenann CW, Sulman EP, Finocchiaro G, Tan M, Nishikawa R, Lu X, Nakano I, Hu B, Cheng SY. A regulatory circuit of miR-125b/miR-20b and Wnt signalling controls glioblastoma phenotypes through FZD6-modulated pathways. Nat Commun 2016; 7:12885. [PMID: 27698350 PMCID: PMC5059456 DOI: 10.1038/ncomms12885] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/11/2016] [Indexed: 12/16/2022] Open
Abstract
Molecularly defined subclassification is associated with phenotypic malignancy of glioblastoma (GBM). However, current understanding of the molecular basis of subclass conversion that is often involved in GBM recurrence remain rudimentary at best. Here we report that canonical Wnt signalling that is active in proneural (PN) but inactive in mesenchymal (MES) GBM, along with miR-125b and miR-20b that are expressed at high levels in PN compared with MES GBM, comprise a regulatory circuit involving TCF4-miR-125b/miR-20b-FZD6. FZD6 acts as a negative regulator of this circuit by activating CaMKII–TAK1–NLK signalling, which, in turn, attenuates Wnt pathway activity while promoting STAT3 and NF-κB signalling that are important regulators of the MES-associated phenotype. These findings are confirmed by targeting differentially enriched pathways in PN versus MES GBM that results in inhibition of distinct GBM subtypes. Correlative expressions of the components of this circuit are prognostic relevant for clinical GBM. Our findings provide insights for understanding GBM pathogenesis and for improving treatment of GBM. Glioblastoma (GBM) is classified as proneural (PN), neural, mesenchymal (MES) and classical GBM. Here the authors show that Wnt signalling, miR-125b and miR-20b establish a regulatory circuitry including FZD6 which distinguishes PN from the MES subtype.
Collapse
Affiliation(s)
- Tianzhi Huang
- Department of Neurology, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Angel A Alvarez
- Department of Neurology, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Rajendra P Pangeni
- Department of Neurology, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Craig M Horbinski
- Department of Neurological Surgery, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Songjian Lu
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania 15206, USA
| | - Sung-Hak Kim
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - C David James
- Department of Neurological Surgery, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Jeffery J Raizer
- Department of Neurology, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - John A Kessler
- Department of Neurology, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Cameron W Brenann
- Human Oncology and Pathogenesis Program, Department of Neurosurgery, Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Erik P Sulman
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Gaetano Finocchiaro
- Unit of Molecular Neuro-Oncology, Department of Neuro-Oncology, Fondazione IRCCS Istituto Neurologico, Via Celoria 11, 20133 Milano, Italy
| | - Ming Tan
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama 36604, USA
| | - Ryo Nishikawa
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Saitama, 350-1298, Japan
| | - Xinghua Lu
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania 15206, USA
| | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Bo Hu
- Department of Neurology, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Shi-Yuan Cheng
- Department of Neurology, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
26
|
Discovery of a potent and highly selective transforming growth factor β receptor-associated kinase 1 (TAK1) inhibitor by structure based drug design (SBDD). Bioorg Med Chem 2016; 24:4206-4217. [DOI: 10.1016/j.bmc.2016.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 11/23/2022]
|
27
|
Kim SH, Park JG, Hong YD, Kim E, Baik KS, Yoon DH, Kim S, Lee MN, Rho HS, Shin SS, Cho JY. Src/Syk/IRAK1-targeted anti-inflammatory action of Torreya nucifera butanol fraction in lipopolysaccharide-activated RAW264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2016; 188:167-176. [PMID: 27178629 DOI: 10.1016/j.jep.2016.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 04/28/2016] [Accepted: 05/04/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Seed of Torreya nucifera (L.) Siebold & Zucc is used to treat several diseases in Asia. Reports document that T. nucifera has anti-cancer, anti-inflammatory, anti-oxidative activities. In spite of numerous findings on its pharmacological effects, the understanding of the molecular inhibitory mechanisms of the plant remains to be studied. Therefore, we aimed to explore in vitro anti-inflammatory mechanisms of ethyl acetate fraction (Tn-EE-BF) prepared from the seed of T. nucifera in LPS-stimulated macrophage inflammatory responses. MATERIALS AND METHODS For this purpose, we measured nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS-stimulated macrophages. Additionally, using RT-PCR, luciferase reporter gene assay, immunoblotting analysis, and kinase assay, the levels of inflammatory genes, transcription factors, and inflammatory signal-regulatory proteins were investigated. Finally, the constituent of Tn-EE-BF was identified using HPLC. RESULTS Tn-EE-BF inhibits NO and PGE2 production and also blocks mRNA levels of inducible NO synthase (iNOS), tumor necrosis factor (TNF)-α, and cyclooxygenase (COX)-2 in a dose dependent manner. Tn-EE-BF reduces nuclear levels of the transcriptional factors NF-κB (p65) and AP-1 (c-Jun and FRA-1). Surprisingly, we found that Tn-EE-BF inhibits phosphorylation levels of Src and Syk in the NF-κB pathway, as well as, IRAK1 at the protein level, part of the AP-1 pathway. By kinase assay, we confirmed that Src, Syk, and IRAK1 are suppressed directly. HPLC analysis indicates that arctigenin, amentoflavone, and quercetin may be active components with anti-inflammatory activities. CONCLUSION Tn-EE-BF exhibits anti-inflammatory activities by direct inhibition of Src/Syk/NF-κB and IRAK1/AP-1.
Collapse
Affiliation(s)
- Shi Hyoung Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Gwang Park
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yong Deog Hong
- Longevity Science Research Team, AmorePacific R&D Unit, Yongin 17074, Republic of Korea
| | - Eunji Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kwang-Soo Baik
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Deok Hyo Yoon
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sunggyu Kim
- Research and Business Foundation, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mi-Nam Lee
- Department of Food and Nutrition, School of Foodservice Industry, Chungkang College of Cultural industries, Icheon 17390, Republic of Korea
| | - Ho Sik Rho
- Longevity Science Research Team, AmorePacific R&D Unit, Yongin 17074, Republic of Korea
| | - Song Seok Shin
- Longevity Science Research Team, AmorePacific R&D Unit, Yongin 17074, Republic of Korea.
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
28
|
Barnes PJ. Kinases as Novel Therapeutic Targets in Asthma and Chronic Obstructive Pulmonary Disease. Pharmacol Rev 2016; 68:788-815. [PMID: 27363440 DOI: 10.1124/pr.116.012518] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Multiple kinases play a critical role in orchestrating the chronic inflammation and structural changes in the respiratory tract of patients with asthma and chronic obstructive pulmonary disease (COPD). Kinases activate signaling pathways that lead to contraction of airway smooth muscle and release of inflammatory mediators (such as cytokines, chemokines, growth factors) as well as cell migration, activation, and proliferation. For this reason there has been great interest in the development of kinase inhibitors as anti-inflammatory therapies, particular where corticosteroids are less effective, as in severe asthma and COPD. However, it has proven difficult to develop selective kinase inhibitors that are both effective and safe after oral administration and this has led to a search for inhaled kinase inhibitors, which would reduce systemic exposure. Although many kinases have been implicated in inflammation and remodeling of airway disease, very few classes of drug have reached the stage of clinical studies in these diseases. The most promising drugs are p38 MAP kinases, isoenzyme-selective PI3-kinases, Janus-activated kinases, and Syk-kinases, and inhaled formulations of these drugs are now in development. There has also been interest in developing inhibitors that block more than one kinase, because these drugs may be more effective and with less risk of losing efficacy with time. No kinase inhibitors are yet on the market for the treatment of airway diseases, but as kinase inhibitors are improved from other therapeutic areas there is hope that these drugs may eventually prove useful in treating refractory asthma and COPD.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
29
|
Singh AK, Umar S, Riegsecker S, Chourasia M, Ahmed S. Regulation of Transforming Growth Factor β-Activated Kinase Activation by Epigallocatechin-3-Gallate in Rheumatoid Arthritis Synovial Fibroblasts: Suppression of K(63) -Linked Autoubiquitination of Tumor Necrosis Factor Receptor-Associated Factor 6. Arthritis Rheumatol 2016; 68:347-58. [PMID: 26473505 DOI: 10.1002/art.39447] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 09/17/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Transforming growth factor β-activated kinase 1 (TAK1) is a key MAPKKK family protein in interleukin-1β (IL-1β), tumor necrosis factor (TNF), and Toll-like receptor signaling. This study was undertaken to examine the posttranslational modification of TAK1 and its therapeutic regulation in rheumatoid arthritis (RA). METHODS The effect of TAK1, IL-1 receptor-associated kinase 1 (IRAK-1), and TNF receptor-associated factor 6 (TRAF6) inhibition was evaluated in IL-1β-stimulated human RA synovial fibroblasts (RASFs). Western blotting, immunoprecipitation, and 20S proteasome assay were used to study the ubiquitination process in RASFs. The efficacy of epigallocatechin-3-gallate (EGCG), a potent antiinflammatory molecule, in regulating these processes in RASFs was evaluated. Molecular docking was performed to examine the interaction of EGCG with human TAK1, IRAK-1, and TRAF6. These findings were confirmed using a rat model of adjuvant-induced arthritis (AIA). RESULTS Inhibition of TAK1, but not IRAK-1 or TRAF6, completely abrogated IL-1β-induced IL-6 and IL-8 synthesis in RASFs. EGCG inhibited TAK1 phosphorylation at Thr(184/187) and occupied the C(174) position, an ATP-binding site, to inhibit its kinase activity. EGCG pretreatment also inhibited K(63) -linked autoubiquitination of TRAF6, a posttranslational modification essential for TAK1 autophosphorylation, by forming a stable H bond at the K(124) position on TRAF6. Furthermore, EGCG enhanced proteasome-associated deubiquitinase expression to rescue proteins from proteasomal degradation. Western blot analyses of joint homogenates from rats with AIA showed a significant increase in K(48) -linked polyubiquitination, TAK1 phosphorylation, and TRAF6 expression when compared to naive rats. Administration of EGCG (50 mg/kg/day) for 10 days ameliorated AIA in rats by reducing TAK1 phosphorylation and K(48) -linked polyubiquitination. CONCLUSION Our findings provide a rationale for targeting TAK1 for the treatment of RA with EGCG.
Collapse
Affiliation(s)
- Anil K Singh
- Washington State University College of Pharmacy, Spokane
| | - Sadiq Umar
- Washington State University College of Pharmacy, Spokane
| | - Sharayah Riegsecker
- University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, Ohio
| | - Mukesh Chourasia
- National Institute of Pharmaceutical Education and Research, Hajipur, India
| | | |
Collapse
|