1
|
Anghelache M, Voicu G, Anton R, Safciuc F, Boteanu D, Deleanu M, Turtoi M, Simionescu M, Manduteanu I, Calin M. Inflammation resolution-based treatment of atherosclerosis using biomimetic nanocarriers loaded with specialized pro-resolving lipid mediators. Mater Today Bio 2025; 32:101733. [PMID: 40255582 PMCID: PMC12008601 DOI: 10.1016/j.mtbio.2025.101733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/25/2025] [Accepted: 04/04/2025] [Indexed: 04/22/2025] Open
Abstract
Recent studies have shown that chronic inflammation in atherosclerotic (ATH) lesions is due to an inability to resolve the inflammatory response. We evaluated the therapeutic potential of specialized pro-resolving mediators (SPMs) incorporated into biomimetic lipid nanoemulsions covered with macrophage membranes (Bio-LN/SPMs) to enhance their stability, targeting, and bioactivity in resolving atherosclerotic plaque inflammation. We utilized both in vitro and in vivo experimental models to test this hypothesis. In vitro, we found that Bio-LN/SPMs significantly reduced the inflammatory markers VCAM-1, MCP-1 in TNF-α-activated endothelial and smooth muscle cells, and iNOS, and NLRP3 in LPS-activated macrophages. In contrast, free SPMs exhibited a more modest effect. In vivo, the i.v. administration of Bio-LN/SPMs in ApoE-deficient mice with progressive atherosclerotic lesions developed after administration for 4 and 8 weeks of a high-fat diet, reduced plasma triglycerides, improved renal function, and decreased plasma proteins associated with complement activation and inflammation (i.e. C4d, C5b-9, IL-6, and MCP-1) to a greater extent than other treatment groups. Bio-LN/SPMs also affected circulated monocyte subpopulations by increasing the percentage of anti-inflammatory Ly6Clow monocytes and reducing that of pro-inflammatory Ly6Chigh monocytes. Additionally, they promoted the transition of macrophages in atherosclerotic plaques to a reparative M2 phenotype. They decreased the production of TNF-α, IL-1β, and IL-6 cytokines, along with lipid deposits in the aorta of ApoE-deficient mice. These findings demonstrate the improved therapeutic efficacy of Bio-LN/SPMs compared to unincorporated SPMs and standard nanoemulsions (LN/SPMs), emphasizing their potential as a novel approach for treating atherosclerosis and other inflammatory diseases.
Collapse
Affiliation(s)
- Maria Anghelache
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Geanina Voicu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Ruxandra Anton
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Florentina Safciuc
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Delia Boteanu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Mariana Deleanu
- “Liquid and Gas Chromatography” Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Mihaela Turtoi
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Maya Simionescu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Ileana Manduteanu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Manuela Calin
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| |
Collapse
|
2
|
Xiong H, Li L, Luo J, Jiao C, Ye M, Lei Y, Guo X, Zeng S, Huo J, Xiong H, Jiang Y, Leng J. Association of omega-3/6 polyunsaturated fatty acids with three cerebrovascular diseases: A Mendelian randomization study. Medicine (Baltimore) 2025; 104:e42352. [PMID: 40355197 PMCID: PMC12073868 DOI: 10.1097/md.0000000000042352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 04/17/2025] [Indexed: 05/14/2025] Open
Abstract
Nutritional and dietary interventions are important in the prevention of stroke, but many of the factors influencing stroke remain undefined. Although omega-3/6 polyunsaturated fatty acids (PUFAs) have been suggested to be associated with cerebrovascular diseases, studies on this topic are lacking. This study extracted and screened independent single nucleotide polymorphisms of omega-3/6 PUFAs and 3 types of cerebrovascular diseases data from the IEU Open GWAS database. A two-sample Mendelian randomization (MR) was used to examine the association between omega-3/6 PUFAs with subarachnoid hemorrhage (SAH), intracerebral hemorrhage (ICH), and ischemic stroke (IS). The primary analysis method was the inverse variance weighting method, supplemented by the weighted median and MR-Egger methods. Sensitivity and multiplicity were assessed using Cochran Q test, MR-PRESSO, MR-Egger regression, and leave-one-out analysis. This study was conducted in full compliance with the STROBE guidelines throughout. The inverse variance weighting analysis revealed a negative correlation between omega-3 PUFAs and SAH (P = .0078). However, there was no correlation between omega-3 PUFAs and ICH (P = .3930) and IS (P = .2922). Additionally, there was no association between omega-6 PUFAs and SAH (P = .1399), ICH (P = .1399, 0.0660), and IS (P = .8571) using all 3 analytical methods. No heterogeneity or horizontal pleiotropy was observed. The study suggested that omega-3 PUFAs had a significant protective role in SAH. However, omega-3/6 PUFAs were not found to be associated with other types of cerebrovascular diseases.
Collapse
Affiliation(s)
- Haibing Xiong
- Banan Hospital Affiliated to Chongqing Medical University, Chongqing, China
- Department of Neurosurgery, Chengkou County People’s Hospital, Chongqing, China
| | - Letai Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiayu Luo
- School of Nursing, Chongqing Medical University, Chongqing, China
| | - Caiyun Jiao
- School of Paediatrics**** of Chongqing Medical University, Chongqing, China
| | - Meng Ye
- The First Clinical College of Chongqing Medical University, Chongqing, China
| | - Yang Lei
- The First Clinical College of Chongqing Medical University, Chongqing, China
| | - Xin Guo
- Banan Hospital Affiliated to Chongqing Medical University, Chongqing, China
| | - Shi Zeng
- Banan Hospital Affiliated to Chongqing Medical University, Chongqing, China
| | - Jianhong Huo
- Banan Hospital Affiliated to Chongqing Medical University, Chongqing, China
| | - Haofeng Xiong
- Banan Hospital Affiliated to Chongqing Medical University, Chongqing, China
| | - Yingjiu Jiang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiajie Leng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Glogowska E, Jose GP, Dias Araújo AR, Arhatte M, Divita R, Borowczyk C, Barouillet T, Wang B, Brau F, Peyronnet R, Patel A, Mesmin B, Harayama T, Antonny B, Xu A, Yvan-Charvet L, Honoré E. Potentiation of macrophage Piezo1 by atherogenic 7-ketocholesterol. Cell Rep 2025; 44:115542. [PMID: 40215166 DOI: 10.1016/j.celrep.2025.115542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025] Open
Abstract
The mechanosensitive ion channel Piezo1 present in endothelial and smooth muscle cells, as well as in macrophages, is emerging as a novel, important player in the etiology of atherosclerosis. Here, we show that myeloid-specific deficiency of Piezo1 in atherogenic Ldlr-/- mice reduces plaque formation. Moreover, chronic oxLDL, as well as its main oxysterol 7-ketocholesterol (7-KC), promotes Piezo1 opening by pressure stimulation in both mouse macrophages and transfected HEK cells. 7-KC dramatically enhances Piezo1 current amplitude and slows down inactivation and deactivation. This up-modulation involves an increase in Piezo1 expression, as well as a potentiation of mechanical gating that depends on membrane cholesterol depletion and decreased order. By contrast, Piezo1 is inhibited by the athero-protective free docosahexaenoic acid, either without or with 7-KC. Altogether, these findings indicate that macrophage Piezo1 is differentially modulated by pro- and anti-atherogenic lipids, pointing to the role of Piezo1 and its potentiation by oxysterols in atherosclerosis.
Collapse
Affiliation(s)
- Edyta Glogowska
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, 06560 Valbonne, France
| | - Gregor P Jose
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, 06560 Valbonne, France
| | - Ana Rita Dias Araújo
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, 06560 Valbonne, France
| | - Malika Arhatte
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, 06560 Valbonne, France
| | - Raphael Divita
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, 06560 Valbonne, France
| | - Coraline Borowczyk
- Institut National de la Santé et de la Recherche Médicale, Inserm, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | - Thibault Barouillet
- Institut National de la Santé et de la Recherche Médicale, Inserm, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | - Baile Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Frédéric Brau
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, 06560 Valbonne, France
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Amanda Patel
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, 06560 Valbonne, France
| | - Bruno Mesmin
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, 06560 Valbonne, France
| | - Takeshi Harayama
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, 06560 Valbonne, France
| | - Bruno Antonny
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, 06560 Valbonne, France
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale, Inserm, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | - Eric Honoré
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, 06560 Valbonne, France; State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
He S, Yan L, Yuan C, Li W, Wu T, Chen S, Li N, Wu M, Jiang J. The role of cardiomyocyte senescence in cardiovascular diseases: A molecular biology update. Eur J Pharmacol 2024; 983:176961. [PMID: 39209099 DOI: 10.1016/j.ejphar.2024.176961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide, and advanced age is a main contributor to the prevalence of CVD. Cellular senescence is an irreversible state of cell cycle arrest that occurs in old age or after cells encounter various stresses. Senescent cells not only result in the reduction of cellular function, but also produce senescence-associated secretory phenotype (SASP) to affect surrounding cells and tissue microenvironment. There is increasing evidence that the gradual accumulation of senescent cardiomyocytes is causally involved in the decline of cardiovascular system function. To highlight the role of senescent cardiomyocytes in the pathophysiology of age-related CVD, we first introduced that senescent cardiomyoyctes can be identified by structural changes and several senescence-associated biomarkers. We subsequently provided a comprehensive summary of existing knowledge, outlining the compelling evidence on the relationship between senescent cardiomyocytes and age-related CVD phenotypes. In addition, we discussed that the significant therapeutic potential represented by the prevention of accelerated senescent cardiomyocytes, and the current status of some existing geroprotectors in the prevention and treatment of age-related CVD. Together, the review summarized the role of cardiomyocyte senescence in CVD, and explored the molecular knowledge of senescent cardiomyocytes and their potential clinical significance in developing senescent-based therapies, thereby providing important insights into their biology and potential therapeutic exploration.
Collapse
Affiliation(s)
- Shuangyi He
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Li Yan
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Department of Pharmacy, Wuhan Asia General Hospital, Wuhan, 430056, China
| | - Chao Yuan
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Wenxuan Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Tian Wu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Suya Chen
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Niansheng Li
- Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, 410078, China
| | - Meiting Wu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Department of Nephrology, Institute of Nephrology, 2nd Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
| | - Junlin Jiang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, 410078, China.
| |
Collapse
|
5
|
Stern A, H Frishman W. Connections Between Hypertension, Atherosclerosis, Acute Myocardial Infarction, and Risk of Dementia. Cardiol Rev 2024:00045415-990000000-00300. [PMID: 40359316 DOI: 10.1097/crd.0000000000000739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
As the percentage of geriatric patients continues to increase in both the United States and globally, the prevalence of both cardiovascular disease and dementia continues to climb. Both dementia and cardiovascular disease are devastating diseases that impose a significant burden economically, socially, and medically on both a local and systemic level. The most common fatal manifestation of cardiovascular disease is acute myocardial infarction, responsible for death in more than 80% of patients with cardiovascular disease. Prominent risk factors for acute myocardial infarction including hypertension and atherosclerosis have been independently associated with an increased risk for cognitive decline and all-cause dementia and Alzheimer disease, separate from vascular dementia. Acute myocardial infarction itself has also been independently associated with an increased incidence of all-cause dementia and Alzheimer disease. It is based on the connection between acute myocardial infarction, its major risk factors, and the incidence of dementia that it is of importance to define and explore the potential role that therapies for these conditions, as well as acute myocardial infarction itself, may play in mitigating the risk of dementia onset and severity. In this review, we assess current therapeutics that exist for atherosclerosis, hypertension and acute myocardial infarction that have been demonstrated to reduce later risk of dementia, and explore the mechanism that underlies the association between the incidence of acute myocardial infarction and the risk of dementia.
Collapse
Affiliation(s)
- Avi Stern
- From the Department of Medicine, New York Medical College, Valhalla, NY
| | | |
Collapse
|
6
|
Xiao Y, Chen Y, Pietzner A, Elbelt U, Fan Z, Weylandt KH. Circulating Omega-3 Polyunsaturated Fatty Acids Levels in Coronary Heart Disease: Pooled Analysis of 36 Observational Studies. Nutrients 2024; 16:1610. [PMID: 38892543 PMCID: PMC11174367 DOI: 10.3390/nu16111610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Long-chain n-3 polyunsaturated fatty acid (PUFA) supplementation has shown potential benefits in the prevention of coronary heart disease (CHD); however, the impact of omega-3 fatty acid levels on CHD risk remains a subject of debate. Here, we aimed to investigate the association between n-3 PUFA levels and the risk of CHD, with particular reference to the subtypes of n-3 PUFA. METHODS Prospective studies and retrospective case-control studies analyzing n-3 PUFA levels in CHD, published up to 30 July 2022, were selected. A random effects meta-analysis was used for pooled assessment, with relative risks (RRs) expressed as 95% confidence intervals (CIs) and standardized mean differences expressed as weight mean differences (WMDs). Subgroup and meta-regression analyses were conducted to assess the impact of n-3 PUFA exposure interval on the CHD subtype variables of the study. RESULTS We included 20 prospective studies (cohort and nested case-control) and 16 retrospective case-control studies, in which n-3 PUFAs were measured. Higher levels of n-3 PUFAs (ALA, EPA, DPA, DHA, EPA + DHA, total n-3 PUFAs) were associated with a reduced risk of CHD, with RRs (95% CI) of 0.89 (0.81, 0.98), 0.83 (0.72, 0.96); 0.80 (0.67,0.95), 0.75 (0.64, 0.87), 0.83 (0.73, 0.95), and 0.80 (0.70, 0.93), respectively, p < 0.05. CHD patients had significantly lower n-3 PUFA levels compared to healthy controls (p < 0.05). In the subgroup analysis, a significant inverse trend was found for both fatal CHD and non-fatal CHD with n-3 PUFA (EPA + DHA) levels. Also, the link between n-3 PUFA levels in erythrocytes with total CHD was generally stronger than other lipid pools. CONCLUSIONS n-3 PUFAs are significantly related to CHD risk, and these findings support the beneficial effects of n-3 PUFAs on CHD.
Collapse
Affiliation(s)
- Yanan Xiao
- Department of Medicine, Pingxiang People’s Hospital, Gannan Medical University, Pingxiang 337000, China;
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology, Brandenburg Medical School and University of Potsdam, 14467 Potsdam, Germany
| | - Yifang Chen
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology, Brandenburg Medical School and University of Potsdam, 14467 Potsdam, Germany
| | - Anne Pietzner
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology, Brandenburg Medical School and University of Potsdam, 14467 Potsdam, Germany
| | - Ulf Elbelt
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany
- Medical Department, Division of Psychosomatic Medicine, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Zhimin Fan
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing 100029, China
| | - Karsten H. Weylandt
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology, Brandenburg Medical School and University of Potsdam, 14467 Potsdam, Germany
| |
Collapse
|
7
|
Song Y, Wang Q, Jia L. Omega-3 fatty acids and their influence on hypertension and coronary atherosclerosis: Insights from a Mendelian randomization approach. J Clin Hypertens (Greenwich) 2024; 26:382-390. [PMID: 38450969 PMCID: PMC11007784 DOI: 10.1111/jch.14782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 03/08/2024]
Abstract
It has been suggested that Omega-3 fatty acids may improve endothelial thickness and thereby reduce the onset of cardiovascular diseases such as coronary atherosclerosis and hypertension. However, published observational epidemiological studies on the relationship between cardiovascular disease (CVD) and Omega-3 fatty acids remain inconclusive. Here, we performed a two-sample Mendelian randomisation analysis using publicly available GWAS pooled statistics to study a GWAS dataset of 16 380 466 SNPs in 23 363 cases and 195 429 controls (also of European ancestry) to determine genetic susceptibility to hypertension. We performed random-effects Inverse Variance Weighted (IVW) Mendelian Randomization (MR) analyses supplemented by a series of sensitivity assessments to measure the robustness of the findings and to detect any violations of the MR assumptions. During the course of the study, we used IVW, MR-Egger, and weighted median regression to infer that Omega-3 intake has a potentially adverse effect against atherosclerosis, although the trend was not significant (OR = 1.1198; 95%; CI: 0.9641-1.3006, p = .130). Meanwhile, our analyses showed a statistically significant negative association between Omega-3 fatty acid levels and risk of hypertension (OR = 0.9006; 95% CI: 0.8179-0.9917, p = .033). In addition, we explored the causal relationship between atherosclerosis and hypertension and found a significant correlation (OR = 1.3036; 95% CI: 1.0672-1.5923, p = .009). In conclusion, our extensive data investigated by MR suggest that elevated levels of Omega-3 fatty acids may be associated with an decreased risk of hypertension. Although there is no direct link between hypertension and atherosclerosis, the possibility of a subtle association cannot be categorically excluded.
Collapse
Affiliation(s)
- Yuchen Song
- College of Integrated Chinese and Western MedicineLiaoning University of Traditional Chinese MedicineShenyangLiaoningChina
| | - Qun Wang
- Key Laboratory of Ministry of Education for TCM Viscera‐State Theory and ApplicationsMinistry of Education of ChinaLiaoning University of Traditional Chinese MedicineShenyangLiaoningChina
| | - Lianqun Jia
- Key Laboratory of Ministry of Education for TCM Viscera‐State Theory and ApplicationsMinistry of Education of ChinaLiaoning University of Traditional Chinese MedicineShenyangLiaoningChina
| |
Collapse
|
8
|
Liu B, Zhang J, Zhang K, Li M, Jing Y, Gu S, Ding H, Liang Y, Zhou H, Dong C. Inverted U-Shaped Association of Plasma Resolvin D2 With Atherosclerotic Cardiovascular Disease and the Mediation Effects of Serum Cholesterol: A Chinese Community-Based Study. J Am Heart Assoc 2024; 13:e032588. [PMID: 38420767 PMCID: PMC10944022 DOI: 10.1161/jaha.123.032588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Resolvin D2 (RvD2) has been reported to protect against the development of atherosclerosis in animal models. The objective of this study was to examine the prospective association between plasma RvD2 and the risk of atherosclerotic cardiovascular disease (ASCVD) at the population level. METHODS AND RESULTS A cohort of 2633 community-dwelling individuals aged 35-60 years was followed for 8 years in this study. Adjusted hazard ratios and 95% CIs for ASCVD outcomes according to baseline RvD2 levels were calculated using Cox proportional hazards models. Mediation analysis was used to test the indirect effect of serum cholesterol indicators on the association between RvD2 and ASCVD probability. In total, 284 new cases of ASCVD were identified during follow-up. An inverted U-shaped association between natural log (ln)-transformed RvD2 and incident ASCVD was determined, and the threshold value for lnRvD2 was 3.87. Below the threshold, each unit increase in lnRvD2 was associated with a 2.05-fold increased risk of ASCVD (95% CI, 1.13-3.74; P=0.019). Above the threshold, each unit increase in lnRvD2 was associated with a 36% reduced risk of ASCVD (95% CI, 0.51-0.80; P<0.001). In addition, the association between RvD2 and ASCVD probability was partially mediated by high-density lipoprotein cholesterol (15.81%) when lnRvD2 <3.87, but by total cholesterol (30.23%) and low-density lipoprotein cholesterol (30.13%) when lnRvD2 ≥3.87. CONCLUSIONS Both lower and higher RvD2 levels are associated with a reduced risk of ASCVD, forming an inverted U-shaped relationship. Furthermore, this association is partially mediated by total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol.
Collapse
Affiliation(s)
- Bingyue Liu
- Department of Epidemiology and Statistics, School of Public HealthMedical College of Soochow UniversitySoochowChina
| | - Jin Zhang
- Suzhou Industrial Park Centers for Disease Control and PreventionSoochowChina
| | - Kexin Zhang
- Department of Epidemiology and Statistics, School of Public HealthMedical College of Soochow UniversitySoochowChina
| | - Mengyuan Li
- Department of Epidemiology and Statistics, School of Public HealthMedical College of Soochow UniversitySoochowChina
| | - Yang Jing
- Suzhou Industrial Park Centers for Disease Control and PreventionSoochowChina
| | - Shujun Gu
- Suzhou Changshu Centers for Disease Control and PreventionSoochowChina
| | - Hongzhan Ding
- Department of Epidemiology and Statistics, School of Public HealthMedical College of Soochow UniversitySoochowChina
| | - Yanyu Liang
- Department of Epidemiology and Statistics, School of Public HealthMedical College of Soochow UniversitySoochowChina
| | - Hui Zhou
- Suzhou Industrial Park Centers for Disease Control and PreventionSoochowChina
| | - Chen Dong
- Department of Epidemiology and Statistics, School of Public HealthMedical College of Soochow UniversitySoochowChina
| |
Collapse
|
9
|
Ho HY, Chen YH, Lo CJ, Tang HY, Chang SW, Fan CM, Ho YH, Lin G, Chiu CY, Lin CM, Cheng ML. Combined Plasma DHA-Containing Phosphatidylcholine PCaa C38:6 and Tetradecanoyl-Carnitine as an Early Biomarker for Assessing the Mortality Risk among Sarcopenic Patients. Nutrients 2024; 16:611. [PMID: 38474739 DOI: 10.3390/nu16050611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The coming of the hyper-aged society in Taiwan prompts us to investigate the relationship between the metabolic status of sarcopenic patients and their most adverse outcome-death. We studied the association between any plasma metabolites and the risk for mortality among older Taiwanese sarcopenic patients. We applied a targeted metabolomic approach to study the plasma metabolites of adults aged ≥65 years, and identified the metabolic signature predictive of the mortality of sarcopenic patients who died within a 5.5-year follow-up period. Thirty-five sarcopenic patients who died within the follow-up period (Dead cohort) had shown a specific plasma metabolic signature, as compared with 54 patients who were alive (Alive cohort). Only 10 of 116 non-sarcopenic individuals died during the same period. After multivariable adjustment, we found that sex, hypertension, tetradecanoyl-carnitine (C14-carnitine), and docosahexaenoic acid (DHA)-containing phosphatidylcholine diacyl (PCaa) C38:6 and C40:6 were important risk factors for the mortality of sarcopenic patients. Low PCaa C38:6 levels and high C14-carnitine levels correlated with an increased mortality risk; this was even the same for those patients with hypertension (HTN). Our findings suggest that plasma PCaa C38:6 and acylcarnitine C14-carnitine, when combined, can be a better early biomarker for evaluating the mortality risk of sarcopenia patients.
Collapse
Grants
- BMRP819, BMRP564, CMRPD1L0161, CMRPD1L0162, CMRPD1M0351, CMRPD1J0263, CMRPD1M0341 and CLRPG3K0023 Chang Gung Memorial Hospital
- 110-2320-B-182-017-MY3 and 111-2320-B-182-011 National Science and Technology Council (Taiwan region)
- EMRPD1K0441, EMRPD1K0481, and EMRPD1L0421 Ministry of Education (Taiwan region)
- MOST 111-2634-F-182-001 The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE)(Taiwan region) and the National Science and Technology Council (NSTC)(Taiwan region)
- CMRPD1M0352, CMRPD1N0151, CMRPD1M0342, CMRPD1N0071,112-2320-B-182-020-MY3 Chang Gung Memorial Hospital
Collapse
Affiliation(s)
- Hung-Yao Ho
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yuan-Ho Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chi-Jen Lo
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Hsiang-Yu Tang
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Su-Wei Chang
- Department of Artificial Intelligence, College of Intelligent Computing, Chang Gung University, Taoyuan 333, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Chun-Ming Fan
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Yu-Hsuan Ho
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Gigin Lin
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan 333, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan 333, Taiwan
| | - Chih-Yung Chiu
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan 333, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital at Keelung and Chang Gung University, Taoyuan 333, Taiwan
| | - Chih-Ming Lin
- Division of Internal Medicine, Chang Gung Memorial Hospital at Taipei, Taipei 105, Taiwan
- Department of Health Management, Chang Gung Health and Culture Village, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
10
|
Sekimoto T, Koba S, Mori H, Arai T, Hwa Yamamoto M, Mizukami T, Matsukawa N, Sakai R, Yokota Y, Sato S, Tanaka H, Masaki R, Oishi Y, Ogura K, Arai K, Nomura K, Sakai K, Tsujita H, Kondo S, Tsukamoto S, Suzuki H, Shinke T. Association between Eicosapentaenoic Acid to Arachidonic Acid Ratio and Characteristics of Plaque Rupture. J Atheroscler Thromb 2023; 30:1687-1702. [PMID: 36967129 PMCID: PMC10627742 DOI: 10.5551/jat.63806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 03/12/2023] [Indexed: 11/03/2023] Open
Abstract
AIMS Eicosapentaenoic acid (EPA) has shown beneficial effects on coronary plaque stabilization. Based on our previous study, we speculated that EPA might be associated with the development of healed plaques and might limit thrombus size. This study aimed to elucidate the association between EPA and arachidonic acid (AA) ratios and various plaque characteristics in patients with plaque rupture. METHODS A total of 95 patients with acute coronary syndrome (ACS) caused by plaque rupture who did not take lipid-lowering drugs and underwent percutaneous coronary intervention using optical coherence tomography (OCT) were included. Clinical characteristics, lipid profiles, and OCT findings were compared between patients with lower and higher EPA/AA ratios (0.41) according to the levels in the Japanese general population. RESULTS In the high EPA/AA (n=29, 30.5%) and low EPA/AA (n=66, 69.5 %) groups, the high EPA/AA group was significantly older (76.1 vs. 66.1 years, P<0.01) and had lower peak creatine kinase (556 vs. 1651 U/L, P=0.03) than those with low EPA/AA. Similarly, patients with high EPA/AA had higher prevalence of layered and calcified plaque (75.9 vs. 39.4 %, P<0.01; 79.3 vs. 50.0 %, P<0.01, respectively) than low EPA/AA group. Multivariate logistic regression analysis demonstrated that a high EPA/AA ratio was an independent factor in determining the development of layered and calcified plaques. CONCLUSION A high EPA/AA ratio may be associated with the development of layered and calcified plaques in patients with plaque rupture.
Collapse
Affiliation(s)
- Teruo Sekimoto
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- Division of Cardiology, Department of Medicine, Showa University Fujigaoka Hospital, Kanagawa, Japan
| | - Shinji Koba
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- Division of General Medicine, Department of Perioperative Medicine, Showa University School of Dentistry, Tokyo, Japan
| | - Hiroyoshi Mori
- Division of Cardiology, Department of Medicine, Showa University Fujigaoka Hospital, Kanagawa, Japan
| | - Taito Arai
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Myong Hwa Yamamoto
- Clinical Research Institute for Clinical Pharmacology and Therapeutics Showa University, Tokyo, Japan
| | - Takuya Mizukami
- Clinical Research Institute for Clinical Pharmacology and Therapeutics Showa University, Tokyo, Japan
| | - Naoki Matsukawa
- Department of Legal Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Rikuo Sakai
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yuya Yokota
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Shunya Sato
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hideaki Tanaka
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Ryota Masaki
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yosuke Oishi
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Kunihiro Ogura
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Ken Arai
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Kosuke Nomura
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Koshiro Sakai
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hiroaki Tsujita
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Seita Kondo
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Shigeto Tsukamoto
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hiroshi Suzuki
- Division of Cardiology, Department of Medicine, Showa University Fujigaoka Hospital, Kanagawa, Japan
| | - Toshiro Shinke
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Bäck M. Icosapent ethyl in cardiovascular prevention: Resolution of inflammation through the eicosapentaenoic acid - resolvin E1 - ChemR23 axis. Pharmacol Ther 2023:108439. [PMID: 37201735 DOI: 10.1016/j.pharmthera.2023.108439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Cardiovascular outcome trials on omega-3 fatty acids have generated contradictory results but indicate a dose-dependent beneficial effect of eicosapentaenoic acid (EPA). Beneficial cardiovascular effects of EPA may in addition to triglyceride lowering be mediated through alternative mechanisms of action. In this review, the link between EPA and a resolution of atherosclerotic inflammation is addressed. EPA is a substrate for the enzymatic metabolism into the lipid mediator resolvin E1 (RvE1), which activates the receptor ChemR23 to transduce an active resolution of inflammation. This has been shown to dampen the immune response and provide atheroprotective responses in different models. The intermediate EPA metabolite 18-HEPE emerges as a biomarker of EPA metabolism towards proresolving mediators in observational studies. Genetic variations within the EPA-RvE1-ChemR23 axis affecting the response to EPA may open up for precision medicine to identify responders and non-responders to EPA and fish oil supplementation. In conclusion, activation of the EPA-RvE1-ChemR23 axis towards a resolution of inflammation may contribute to beneficial effects in cardiovascular prevention.
Collapse
Affiliation(s)
- Magnus Bäck
- Department of Cardiology, Heart and Vascular Center, Karolinska University Hospital, Stockholm, Sweden; Translational Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Université de Lorraine, Inserm, DCAC, Nancy, France; CHRU Nancy, Vandœuvre-lès-Nancy, France.
| |
Collapse
|
12
|
Metabolic landscape in cardiac aging: insights into molecular biology and therapeutic implications. Signal Transduct Target Ther 2023; 8:114. [PMID: 36918543 PMCID: PMC10015017 DOI: 10.1038/s41392-023-01378-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Cardiac aging is evident by a reduction in function which subsequently contributes to heart failure. The metabolic microenvironment has been identified as a hallmark of malignancy, but recent studies have shed light on its role in cardiovascular diseases (CVDs). Various metabolic pathways in cardiomyocytes and noncardiomyocytes determine cellular senescence in the aging heart. Metabolic alteration is a common process throughout cardiac degeneration. Importantly, the involvement of cellular senescence in cardiac injuries, including heart failure and myocardial ischemia and infarction, has been reported. However, metabolic complexity among human aging hearts hinders the development of strategies that targets metabolic susceptibility. Advances over the past decade have linked cellular senescence and function with their metabolic reprogramming pathway in cardiac aging, including autophagy, oxidative stress, epigenetic modifications, chronic inflammation, and myocyte systolic phenotype regulation. In addition, metabolic status is involved in crucial aspects of myocardial biology, from fibrosis to hypertrophy and chronic inflammation. However, further elucidation of the metabolism involvement in cardiac degeneration is still needed. Thus, deciphering the mechanisms underlying how metabolic reprogramming impacts cardiac aging is thought to contribute to the novel interventions to protect or even restore cardiac function in aging hearts. Here, we summarize emerging concepts about metabolic landscapes of cardiac aging, with specific focuses on why metabolic profile alters during cardiac degeneration and how we could utilize the current knowledge to improve the management of cardiac aging.
Collapse
|
13
|
Rizzo G, Baroni L, Lombardo M. Promising Sources of Plant-Derived Polyunsaturated Fatty Acids: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1683. [PMID: 36767052 PMCID: PMC9914036 DOI: 10.3390/ijerph20031683] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 06/01/2023]
Abstract
(1) Background: Polyunsaturated fatty acids (PUFAs) are known for their ability to protect against numerous metabolic disorders. The consumption of oily fish is the main source of PUFAs in human nutrition and is commonly used for supplement production. However, seafood is an overexploited source that cannot be guaranteed to cover the global demands. Furthermore, it is not consumed by everyone for ecological, economic, ethical, geographical and taste reasons. The growing demand for natural dietary sources of PUFAs suggests that current nutritional sources are insufficient to meet global needs, and less and less will be. Therefore, it is crucial to find sustainable sources that are acceptable to all, meeting the world population's needs. (2) Scope: This review aims to evaluate the recent evidence about alternative plant sources of essential fatty acids, focusing on long-chain omega-3 (n-3) PUFAs. (3) Method: A structured search was performed on the PubMed search engine to select available human data from interventional studies using omega-3 fatty acids of non-animal origin. (4) Results: Several promising sources have emerged from the literature, such as algae, microorganisms, plants rich in stearidonic acid and GM plants. However, the costs, acceptance and adequate formulation deserve further investigation.
Collapse
Affiliation(s)
- Gianluca Rizzo
- Independent Researcher, Via Venezuela 66, 98121 Messina, Italy
| | - Luciana Baroni
- Scientific Society for Vegetarian Nutrition, 30171 Venice, Italy
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, 00166 Rome, Italy
| |
Collapse
|
14
|
Remila L, Guenday-Tuereli N, Houngue U, Belcastro E, Bruckert C, Vandamme T, Tuereli E, Kerth P, Auger C, Schini-Kerth V. Intake of coated EPA:DHA 6:1 nanoparticles improves age-related endothelial dysfunction by restoring the endothelial formation of NO and improving oxidative stress: Role of the local angiotensin system. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
Alves-de-Oliveira DS, Bloise AMNLG, Silva LML, Rocha-Junior RL, Lima-Júnior NC, Menezes LGS, Silva EGS, De Oliveira Y, Wanderley AG, de-Brito-Alves JL, Souza VON, Costa-Silva JH. Maternal consumption of ɷ3 attenuates metabolic disruption elicited by saturated fatty acids-enriched diet in offspring rats. Nutr Metab Cardiovasc Dis 2022; 32:279-289. [PMID: 34893407 DOI: 10.1016/j.numecd.2021.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND AIMS High-fat diet (HFD) intake during gestation and lactation has been associated with an increased risk of developing cardiometabolic disorders in adult offspring. We investigated whether metabolic alterations resulting from the maternal consumption of HFD are prevented by the addition of omega-3 (ɷ3) in the diet. METHODS AND RESULTS Wistar rat dams were fed a control (C: 19% of lipids and ɷ6:ɷ3 = 12), HF (HF: 33% lipids and ɷ6:ɷ3 = 21), or HF enriched with ɷ3 (HFω3: 33% lipids and ɷ6:ɷ3 = 9) diet during gestation and lactation, and their offspring food consumption, murinometric measurements, serum levels of metabolic markers, insulin and pyruvate sensitivity tests were evaluated. The maternal HFD increased body weight at birth, dyslipidemia, and elevated fasting glucose levels in the HF group. The enrichment of ɷ3 in the maternal HFD led to lower birth weight and improved lipid, glycemic, and transaminase biochemical profile of the HFω3 group until the beginning of adulthood. However, at later adulthood of the offspring, there was no improvement in these biochemical parameters. CONCLUSION Our findings show the maternal consumption of high-fat ɷ3-rich diet is able to attenuate or prevent metabolic disruption elicited by HFD in offspring until 90 days old, but not in the long term, as observed at 300 days old of the offspring.
Collapse
Affiliation(s)
- Debora S Alves-de-Oliveira
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco, UFPE, Vitória de Santo Antão, PE, 55608-680, Brazil
| | - Aline M N L G Bloise
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco, UFPE, Vitória de Santo Antão, PE, 55608-680, Brazil
| | - Laura M L Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco, UFPE, Vitória de Santo Antão, PE, 55608-680, Brazil
| | - Reginaldo L Rocha-Junior
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco, UFPE, Vitória de Santo Antão, PE, 55608-680, Brazil
| | - Nelson C Lima-Júnior
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco, UFPE, Vitória de Santo Antão, PE, 55608-680, Brazil
| | - Luiza G S Menezes
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco, UFPE, Vitória de Santo Antão, PE, 55608-680, Brazil
| | - Elionay G S Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco, UFPE, Vitória de Santo Antão, PE, 55608-680, Brazil
| | - Yohanna De Oliveira
- Department of Nutrition, Universidade Federal da Paraíba, UFPB, João Pessoa, PB, 58051-900, Brazil
| | - Almir G Wanderley
- Department of Physiology and Pharmacology, Universidade Federal de Pernambuco, UFPE, Recife, PE, 50760-901, Brazil
| | - José L de-Brito-Alves
- Department of Nutrition, Universidade Federal da Paraíba, UFPB, João Pessoa, PB, 58051-900, Brazil
| | - Viviane O N Souza
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco, UFPE, Vitória de Santo Antão, PE, 55608-680, Brazil
| | - João H Costa-Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco, UFPE, Vitória de Santo Antão, PE, 55608-680, Brazil.
| |
Collapse
|
16
|
Munjral S, Ahluwalia P, Jamthikar AD, Puvvula A, Saba L, Faa G, Singh IM, Chadha PS, Turk M, Johri AM, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Pareek G, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou A, Misra P, Agarwal V, Kitas GD, Kolluri R, Teji J, Al-Maini M, Dhanjil SK, Sockalingam M, Saxena A, Sharma A, Rathore V, Fatemi M, Alizad A, Viswanathan V, Krishnan PK, Omerzu T, Naidu S, Nicolaides A, Suri JS. Nutrition, atherosclerosis, arterial imaging, cardiovascular risk stratification, and manifestations in COVID-19 framework: a narrative review. FRONT BIOSCI-LANDMRK 2021; 26:1312-1339. [PMID: 34856770 DOI: 10.52586/5026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023]
Abstract
Background: Atherosclerosis is the primary cause of the cardiovascular disease (CVD). Several risk factors lead to atherosclerosis, and altered nutrition is one among those. Nutrition has been ignored quite often in the process of CVD risk assessment. Altered nutrition along with carotid ultrasound imaging-driven atherosclerotic plaque features can help in understanding and banishing the problems associated with the late diagnosis of CVD. Artificial intelligence (AI) is another promisingly adopted technology for CVD risk assessment and management. Therefore, we hypothesize that the risk of atherosclerotic CVD can be accurately monitored using carotid ultrasound imaging, predicted using AI-based algorithms, and reduced with the help of proper nutrition. Layout: The review presents a pathophysiological link between nutrition and atherosclerosis by gaining a deep insight into the processes involved at each stage of plaque development. After targeting the causes and finding out results by low-cost, user-friendly, ultrasound-based arterial imaging, it is important to (i) stratify the risks and (ii) monitor them by measuring plaque burden and computing risk score as part of the preventive framework. Artificial intelligence (AI)-based strategies are used to provide efficient CVD risk assessments. Finally, the review presents the role of AI for CVD risk assessment during COVID-19. Conclusions: By studying the mechanism of low-density lipoprotein formation, saturated and trans fat, and other dietary components that lead to plaque formation, we demonstrate the use of CVD risk assessment due to nutrition and atherosclerosis disease formation during normal and COVID times. Further, nutrition if included, as a part of the associated risk factors can benefit from atherosclerotic disease progression and its management using AI-based CVD risk assessment.
Collapse
Affiliation(s)
- Smiksha Munjral
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Superspeciality Hospital, 110058 New Delhi, India
| | - Ankush D Jamthikar
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
- Visvesvaraya National Institute of Technology, 440001 Nagpur, India
| | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
- Annu's Hospitals for Skin and Diabetes, 24002 Nellore, AP, India
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 09125 Cagliari, Italy
| | - Gavino Faa
- Department of Pathology, AOU of Cagliari, 09125 Cagliari, Italy
| | - Inder M Singh
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
| | - Paramjit S Chadha
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27749 Delmenhorst, Germany
| | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, ON K7L, Canada
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, 110001 New Delhi, India
| | | | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, 106 71 Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02906, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, RI 02903, USA
| | - David W Sobel
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02906, USA
| | | | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 106 71 Athens, Greece
| | - George Tsoulfas
- Aristoteleion University of Thessaloniki, 546 30 Thessaloniki, Greece
| | | | - Prasanna Misra
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, 226018 Lucknow, UP, India
| | - Vikas Agarwal
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, 226018 Lucknow, UP, India
| | - George D Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, DY2 8 Dudley, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, M13 9 Manchester, UK
| | | | - Jagjit Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60629, USA
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON M5H, Canada
| | - Surinder K Dhanjil
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
| | | | - Ajit Saxena
- Department of Cardiology, Indraprastha APOLLO Hospitals, 110001 New Delhi, India
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA 95823, USA
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engg., Mayo Clinic College of Medicine and Science, MN 55441, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, MN 55441, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor MVD Research Centre, 600003 Chennai, India
| | - P K Krishnan
- Neurology Department, Fortis Hospital, 562123 Bangalore, India
| | - Tomaz Omerzu
- Department of Neurology, University Medical Centre Maribor, 2000 Maribor, Slovenia
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, 999058 Nicosia, Cyprus
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
| |
Collapse
|
17
|
Essential Fatty Acids as Biomedicines in Cardiac Health. Biomedicines 2021; 9:biomedicines9101466. [PMID: 34680583 PMCID: PMC8533423 DOI: 10.3390/biomedicines9101466] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023] Open
Abstract
The destructive impact of cardiovascular diseases on health, including heart failure, peripheral artery disease, atherosclerosis, stroke, and other cardiac pathological conditions, positions these health conditions as leading causes of increased global mortality rates, thereby impacting the human quality of life. The considerable changes in modern lifestyles, including the increase in food intake and the change in eating habits, will unavoidably lead to an unbalanced consumption of essential fatty acids, with a direct effect on cardiovascular health problems. In the last decade, essential fatty acids have become the main focus of scientific research in medical fields aiming to establish their impact for preventing cardiovascular diseases and the associated risk factors. Specifically, polyunsaturated fatty acids (PUFA), such as omega 3 fatty acids, and monounsaturated fatty acids from various sources are mentioned in the literature as having a cardio-protective role, due to various biological mechanisms that are still to be clarified. This review aims to describe the major biological mechanisms of how diets rich in essential fatty acids, or simply essential fatty acid administration, could have anti-inflammatory, vasodilatory, anti-arrhythmic, antithrombotic, antioxidant, and anti-atherogenic effects. This review describes findings originating from clinical studies in which dietary sources of FAs were tested for their role in mitigating the impact of heart disorders in human health.
Collapse
|
18
|
Fazelian S, Moradi F, Agah S, Hoseini A, Heydari H, Morvaridzadeh M, Omidi A, Pizarro AB, Ghafouri A, Heshmati J. Effect of omega-3 fatty acids supplementation on cardio-metabolic and oxidative stress parameters in patients with chronic kidney disease: a systematic review and meta-analysis. BMC Nephrol 2021; 22:160. [PMID: 33933009 PMCID: PMC8088683 DOI: 10.1186/s12882-021-02351-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/12/2021] [Indexed: 11/23/2022] Open
Abstract
Background Omega-3 fatty acids (FAs) have been suggested as a beneficial supplement in chronic kidney disease (CKD) patients, but the results of randomized clinical trials (RCTs) are controversial. We conducted a systematic review and meta-analysis to evaluate all the RCTs about the impact of omega-3 FAs supplementation on cardiometabolic outcomes and oxidative stress parameters in patients with CKD. Methods We performed a systematic database search in PubMed/MEDLINE, EMBASE, Scopus, Web of Science, and Cochrane Central, up to May 2020. We included all placebo-controlled randomized trials that assessed the effect of omega-3 FAs supplementation on any cardiometabolic outcomes: blood pressure, total cholesterol (TC), low-density lipoprotein (LDL) and high-density lipoprotein (HDL) or triglycerides (TG) and oxidative stress parameters. Data were pooled using DerSimonian–Laird’s random-effects model. Results Finally, thirteen articles met the inclusion criteria for this review omega-3 FAs supplementation significantly decrease TC (SMD: -0.26; 95% CI: − 0.51, − 0.02; I2 = 52.7%), TG (SMD: -0.22; 95% CI: − 0.43, − 0.02; I2 = 36.0%) and Malondialdehyde (MDA) levels (SMD: -0.91; 95% CI: − 1.29, − 0.54; I2 = 00.0%) and also significantly increase superoxide dismutase (SOD) (SMD: 0.58; 95% CI: 0.27, 0.90; I2 = 00.0%) and Glutathione peroxidase (GPx) (SMD: 0.50; 95% CI: 0.14, 0.86; I2 = 00.0%) activities. However our results show that omega-3 FAs supplementation have no significant effects on HDL, LDL and blood pressure. Conclusion This systematic review and meta-analysis supports current evidence for the clinical benefit of omega-3 FAs intake to improve cardiometabolic parameters in CKD patients. However, well-designed RCTs still needed to provide a conclusive picture in this field. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-021-02351-9.
Collapse
Affiliation(s)
- Siavash Fazelian
- Clinical Research Development Unit, Ayatollah Kashani Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Moradi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Akramsadat Hoseini
- Department of Education and Health Promotion,School of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Hafez Heydari
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mojgan Morvaridzadeh
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Farabi Hospital, Faculty of Nutrition Sciences and Food Technology, Postal Code: 6715847141, Isar Square, Kermanshah, Iran
| | - Amirhosein Omidi
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Farabi Hospital, Faculty of Nutrition Sciences and Food Technology, Postal Code: 6715847141, Isar Square, Kermanshah, Iran
| | | | - Atie Ghafouri
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Javad Heshmati
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Farabi Hospital, Faculty of Nutrition Sciences and Food Technology, Postal Code: 6715847141, Isar Square, Kermanshah, Iran.
| |
Collapse
|
19
|
Nguyen MTT, Kim J, Seo N, Lee AH, Kim YK, Jung JA, Li D, To XHM, Huynh KTN, Van Le T, Israr B, Nazir A, Seo JA, Lee D, An HJ, Kim J. Comprehensive analysis of fatty acids in human milk of four Asian countries. J Dairy Sci 2021; 104:6496-6507. [PMID: 33685684 DOI: 10.3168/jds.2020-18184] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 11/18/2020] [Indexed: 01/25/2023]
Abstract
Human milk lipids provide not only energy but also indispensable bioactive components such as essential fatty acids. To establish the recommended daily intake value and guidelines for infant formula, a reference library of fatty acid composition has been generated from 4 Asian countries (South Korea, China, Vietnam, and Pakistan). Regardless of country, palmitic acid (C16:0), linoleic acid (C18:1), and linolenic acid (C18:2) were the 3 most abundant fatty acids in human milk and account for more than 75% of total fatty acids (total FA). However, there were several considerable differences between fatty acids, particularly n-3 and n-6 (omega-3 and omega-6) groups. Chinese mothers' milk had a high concentration of linoleic acid at 24.38 ± 10.02% of total FA, which may be due to maternal diet. Among the 4 countries, Pakistani mothers' milk contained a high amount of saturated fatty acid (56.83 ± 5.96% of total FA), and consequently, polyunsaturated fatty acids, including n-3 and n-6, were significantly lower than in other countries. It is noteworthy that docosahexaenoic acid (DHA) in Pakistani mothers' milk was 44.8 ± 33.3 mg/L, which is only 25 to 30% of the levels in the other 3 countries, suggesting the need for DHA supplementation for infants in Pakistan. Moreover, the ratio of n-6 to n-3 was also remarkably high in Pakistani mothers' milk (15.21 ± 4.96), being 1.4- to 1.7-fold higher than in other countries. The average DHA:ARA ratio in Asian human milk was 1.01 ± 0.79. Korean mothers' milk showed a high DHA:ARA ratio, with a value of 1.30 ± 0.98, but Pakistani mothers' milk had a significantly lower value (0.42 ± 0.12). The fatty acid compositions and anthropometric data of mother (body mass index, age) did not show any correlation. The obtained data might provide information about human milk compositions in the Asian region that could benefit from setting up recommended nutrient intake and infant formula for Asian babies.
Collapse
Affiliation(s)
- My Tuyen T Nguyen
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea; College of Agriculture, Can Tho University, Can Tho, 900000, Vietnam
| | - Jieun Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea
| | - Nari Seo
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - A Hyun Lee
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea
| | - Yong-Ki Kim
- Maeil Asia Human Milk Research Center, Maeil Dairies Co. Ltd., 63 Jinwiseo-ro, Jinwi-myeon, Pyeongtaek, Gyeonggi-do 17706, Korea
| | - Ji A Jung
- Maeil Asia Human Milk Research Center, Maeil Dairies Co. Ltd., 63 Jinwiseo-ro, Jinwi-myeon, Pyeongtaek, Gyeonggi-do 17706, Korea
| | - Dan Li
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Xuan Hong M To
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Khanh Trang N Huynh
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Thanh Van Le
- Faculty of Nursing and Medical Technology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Beenish Israr
- Faculty of Food, Nutrition, and Home Science, University of Agriculture, Faisalabad 38000, Pakistan
| | - Anum Nazir
- Faculty of Food, Nutrition, and Home Science, University of Agriculture, Faisalabad 38000, Pakistan
| | - Jung-A Seo
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Daum Lee
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Jaehan Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
20
|
Golanski J, Szymanska P, Rozalski M. Effects of Omega-3 Polyunsaturated Fatty Acids and Their Metabolites on Haemostasis-Current Perspectives in Cardiovascular Disease. Int J Mol Sci 2021; 22:ijms22052394. [PMID: 33673634 PMCID: PMC7957531 DOI: 10.3390/ijms22052394] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
The beneficial effects of long-chain polyunsaturated omega-3 fatty acids (omega-3 PUFAs) in cardioprotection are widely known and generally accepted. In this literature review, we have focused on the known and postulated mechanisms of action of omega-3 PUFAs and their metabolites on various components of the haemostatic system, in particular on blood platelets and endothelium. We have also made an attempt to provide a comprehensive review of epidemiological studies with particular regard to clinical trials. Notably, the results of these studies are contradictory, and some of them failed to report the beneficial effects of taking or supplementing omega-3 PUFAs in the diet. A potential explanation, in our opinion, could be the need to use higher doses of omega-3 PUFAs and a proper ratio of omega-3 and omega-6 PUFAs. An additional problem which is difficult to solve is the use of a proper neutral placebo for interventional studies. Despite some controversies regarding the beneficial effects of supplementation of omega-3 PUFAs in cardiovascular disease, our review suggests that a promising aspect of future studies and applications is to focus on the anti-thrombotic properties of these compounds. An argument supporting this assumption is the recent use of omega-3 PUFAs as a supporting tool for the treatment of COVID-19 complications.
Collapse
|
21
|
Mitchell JA, Kirkby NS, Ahmetaj-Shala B, Armstrong PC, Crescente M, Ferreira P, Lopes Pires ME, Vaja R, Warner TD. Cyclooxygenases and the cardiovascular system. Pharmacol Ther 2021; 217:107624. [DOI: 10.1016/j.pharmthera.2020.107624] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
|
22
|
Santos HO, Price JC, Bueno AA. Beyond Fish Oil Supplementation: The Effects of Alternative Plant Sources of Omega-3 Polyunsaturated Fatty Acids upon Lipid Indexes and Cardiometabolic Biomarkers-An Overview. Nutrients 2020; 12:E3159. [PMID: 33081119 PMCID: PMC7602731 DOI: 10.3390/nu12103159] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases remain a global challenge, and lipid-associated biomarkers can predict cardiovascular events. Extensive research on cardiovascular benefits of omega-3 polyunsaturated fatty acids (n3-PUFAs) is geared towards fish oil supplementation and fish-rich diets. Nevertheless, vegetarianism and veganism are becoming more popular across all segments of society, due to reasons as varied as personal, ethical and religious values, individual preferences and environment-related principles, amongst others. Due to the essentiality of PUFAs, plant sources of n3-PUFAs warrant further consideration. In this review, we have critically appraised the efficacy of plant-derived n3-PUFAs from foodstuffs and supplements upon lipid profile and selected cardiometabolic markers. Walnuts and flaxseed are the most common plant sources of n3-PUFAs, mainly alpha-linolenic acid (ALA), and feature the strongest scientific rationale for applicability into clinical practice. Furthermore, walnuts and flaxseed are sources of fibre, potassium, magnesium, and non-essential substances, including polyphenols and sterols, which in conjunction are known to ameliorate cardiovascular metabolism. ALA levels in rapeseed and soybean oils are only slight when compared to flaxseed oil. Spirulina and Chlorella, biomasses of cyanobacteria and green algae, are important sources of n3-PUFAs; however, their benefits upon cardiometabolic markers are plausibly driven by their antioxidant potential combined with their n3-PUFA content. In humans, ALA is not sufficiently bioconverted into eicosapentaenoic and docosahexaenoic acids. However, evidence suggests that plant sources of ALA are associated with favourable cardiometabolic status. ALA supplementation, or increased consumption of ALA-rich foodstuffs, combined with reduced omega-6 (n6) PUFAs intake, could improve the n3/n6 ratio and improve cardiometabolic and lipid profile.
Collapse
Affiliation(s)
- Heitor O. Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia 38408-100, Brazil
| | - James C. Price
- College of Health, Life and Environmental Sciences, University of Worcester, Worcester WR2 6AJ, UK; (J.C.P.); (A.A.B.)
| | - Allain A. Bueno
- College of Health, Life and Environmental Sciences, University of Worcester, Worcester WR2 6AJ, UK; (J.C.P.); (A.A.B.)
| |
Collapse
|
23
|
Tułowiecka N, Kotlęga D, Prowans P, Szczuko M. The Role of Resolvins: EPA and DHA Derivatives Can Be Useful in the Prevention and Treatment of Ischemic Stroke. Int J Mol Sci 2020; 21:E7628. [PMID: 33076354 PMCID: PMC7589657 DOI: 10.3390/ijms21207628] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/27/2020] [Accepted: 10/13/2020] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Most ischemic strokes develop as a result of atherosclerosis, in which inflammation plays a key role. The synthesis cascade of proinflammatory mediators participates in the process induced in the vascular endothelium and platelets. Resolvins are anti-inflammatory mediators originating from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which may improve the prognosis related to atherosclerosis by inhibiting the production of proinflammatory cytokines, limiting neutrophil migration, or positively influencing phagocytosis. Although clinical trials with resolvin in humans after stroke have not been realized, they may soon find application. AIM The aim of the study was to review the available literature on the scope of the possibilities of the prevention and treatment of stroke with the use of resolvins, EPA and DHA derivatives. MATERIALS AND METHODS The review features articles published until 31 January 2020. The search for adequate literature was conducted using the keywords: stroke and resolvins. Over 150 articles were found. Studies not written in English, letters to the editor, conference abstracts, and duplicate information were excluded. RESULTS In several studies using the animal model, the supplementation of resolvin D2 decreased brain damage caused by myocardial infarction, and it reversed the neurological dysfunction of the brain. A decrease in the concentration of proinflammatory cytokines, such as TNF-α, Il-6, and Il-1β, was also observed, as well as a decrease in the scope of brain damage. In the context of stroke in animals, the treatment with resolvin D2 (RvD2) (injection) has a better effect than supplementation with DHA. CONCLUSIONS Resolvins are characterised by strong anti-inflammatory properties. Resolvins improve prognosis and decrease the risk of developing cardiovascular disease, consequently lowering the risk of stroke, and may find application in the treatment of stroke.
Collapse
Affiliation(s)
- Nikola Tułowiecka
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland;
| | - Dariusz Kotlęga
- Department of Neurology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland;
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 65-417 Zielona Gora, Poland
| | - Piotr Prowans
- Clinic of Plastic, Endocrine and General Surgery, Pomeranian Medical University in Szczecin, 72-009 Police, Poland;
| | - Małgorzata Szczuko
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland;
| |
Collapse
|
24
|
Feuchtner G, Langer C, Barbieri F, Beyer C, Dichtl W, Friedrich G, Schgoer W, Widmann G, Plank F. The effect of omega-3 fatty acids on coronary atherosclerosis quantified by coronary computed tomography angiography. Clin Nutr 2020; 40:1123-1129. [PMID: 32778459 DOI: 10.1016/j.clnu.2020.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/09/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Data on the effects omega-3 fatty acids on coronary artery disease (CAD) are contradictory. While a recent metanalysis could not show improved cardiovascular outcomes, anti-atherogenic mechanisms are well known. OBJECTIVE Aim was to assess the influence of Omega-3 polyunsaturated long-chain fatty acids (PUFA) supplementation on coronary atherosclerosis quantified by coronary computed tomography angiography (CTA). METHODS 106 patients (59.4y± 10.7; 50% females) with low-to-intermediate risk referred to CTA were included. 53 patients under omega 3-PUFA (docosahexaenoic acid, DHA and eicosapentaenoic acid, EPA) supplementation were retrospectively matched with 53 controls (CR) for age, gender and coronary risk profile (smoking, arterial hypertension, family history, dyslipidemia, c-LDL, Cholesterol, TG, diabetes) (1:1, propensity score) and lifestyle habits (exercise, alcohol consumption and nutrition). CTA analysis included 1) stenosis severity score >70%severe, 50-70% moderate, 25-50%mild, <25% minimal), 2) total plaque burden (segment involvement score (SIS) and mixed non-calcified plaque burden (G-score) and 3) high-risk-plaque features (Napkin-Ring-Sign, low attenuation plaque (LAP), spotty calcification<3 mm, RI>1.1). CT-Density (Hounsfield Units, HU) of plaque was quantified by CTA. RESULTS Prevalence of coronary atherosclerosis (any plaque: 83% vs. 90.6%, p = 0.252), >50% stenosis and stenosis severity score (p = 0.134) were not different between groups. Total and non-calcified plaque burden scores were lower in the omega-3 group (2.7 vs. 3.5, p = 0.08 and 4.5 vs. 7.4, p = 0.027 for SIS and G-score, resp.). Coronary artery calcium score (CACS) was similar (84.7 vs. 87.1AU). High-risk-plaque prevalence was lower in the Omega-3 group (3.8% vs. 32%, p < 0.001); the number of high-risk-plaques (p < 0.001) and Napkin-Ring-Sign prevalence was lower (3.8% vs. 20.9%) (p < 0.001), resp. CT-density (HU) of plaque was higher in the Omega-3 group (131.6 ± 2 vs. 62.1 ± 27, p = 0.02) indicating more fibrous-dense plaque component rather than lipid-rich atheroma. Mean duration of Omega-3 intake was 38.6 ± 52 months (range, 2-240). CONCLUSIONS Omega-3-PUFA supplementation is associated with less coronary atherosclerotic "high-risk" plaque (lipid-rich) and lower total non-calcified plaque burden independent on cardiovascular risk factors. Our study supports direct anti-atherogenic effects of Omega-3-PUFA.
Collapse
Affiliation(s)
| | | | - Fabian Barbieri
- Department of Internal Medicine III- Cardiology, Innsbruck Medical University, Austria
| | - Christoph Beyer
- Department of Radiology, Innsbruck Medical University, Austria
| | - Wolfgang Dichtl
- Department of Internal Medicine III- Cardiology, Innsbruck Medical University, Austria
| | - Guy Friedrich
- Department of Internal Medicine III- Cardiology, Innsbruck Medical University, Austria
| | - Wilfried Schgoer
- Department of Internal Medicine III- Cardiology, Innsbruck Medical University, Austria
| | - Gerlig Widmann
- Department of Radiology, Innsbruck Medical University, Austria
| | - Fabian Plank
- Department of Internal Medicine III- Cardiology, Innsbruck Medical University, Austria
| |
Collapse
|
25
|
Shramko VS, Polonskaya YV, Kashtanova EV, Stakhneva EM, Ragino YI. The Short Overview on the Relevance of Fatty Acids for Human Cardiovascular Disorders. Biomolecules 2020; 10:E1127. [PMID: 32751513 PMCID: PMC7464661 DOI: 10.3390/biom10081127] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/26/2022] Open
Abstract
This review presents existing evidence of the influence of saturated and unsaturated fatty acids on cardiovascular diseases (CVD). Data are discussed regarding the roles of the most relevant fatty acids, such as myristic (C14:0), palmitic (C16:0), stearic (C18:0), palmitoleic (C16:1), oleic (C18:1), linoleic (C18:2), α-linolenic (C18:3, ω-3), γ-linolenic (C18:3, ω-6), arachidonic (C20:4), eicosapentaenoic (C20:5), docosahexaenoic (C22:6), and docosapentaenoic (C22:5) acid. The accumulated knowledge has expanded the understanding of the involvement of fatty acids in metabolic processes, thereby enabling the transition from basic exploratory studies to practical issues of application of these biomolecules to CVD treatment. In the future, these findings are expected to facilitate the interpretation and prognosis of changes in metabolic lipid aberrations in CVD.
Collapse
Affiliation(s)
| | | | | | - Ekaterina M. Stakhneva
- Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Research Institute of Internal and Preventive Medicine, 630089 Novosibirsk, Russia; (V.S.S.); (Y.V.P.); (E.V.K.); (Y.I.R.)
| | | |
Collapse
|
26
|
Jaén RI, Val-Blasco A, Prieto P, Gil-Fernández M, Smani T, López-Sendón JL, Delgado C, Boscá L, Fernández-Velasco M. Innate Immune Receptors, Key Actors in Cardiovascular Diseases. JACC Basic Transl Sci 2020; 5:735-749. [PMID: 32760860 PMCID: PMC7393405 DOI: 10.1016/j.jacbts.2020.03.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death in the industrialized world. Most CVDs are associated with increased inflammation that arises mainly from innate immune system activation related to cardiac damage. Sustained activation of the innate immune system frequently results in maladaptive inflammatory responses that promote cardiovascular dysfunction and remodeling. Much research has focused on determining whether some mediators of the innate immune system are potential targets for CVD therapy. The innate immune system has specific receptors-termed pattern recognition receptors (PRRs)-that not only recognize pathogen-associated molecular patterns, but also sense danger-associated molecular signals. Activation of PRRs triggers the inflammatory response in different physiological systems, including the cardiovascular system. The classic PRRs, toll-like receptors (TLRs), and the more recently discovered nucleotide-binding oligomerization domain-like receptors (NLRs), have been recently proposed as key partners in the progression of several CVDs (e.g., atherosclerosis and heart failure). The present review discusses the key findings related to the involvement of TLRs and NLRs in the progression of several vascular and cardiac diseases, with a focus on whether some NLR subtypes (nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain-containing receptor 3 and nucleotide-binding oligomerization domain-containing protein 1) can be candidates for the development of new therapeutic strategies for several CVDs.
Collapse
Key Words
- AMI, acute myocardial infarction
- CARD, caspase activation and recruitment domain
- CVD, cardiovascular disease
- Ca2+, calcium ion
- DAMPs, danger-associated molecular patterns
- DAP, D-glutamyl-meso-diaminopimelic acid
- ER, endoplasmic reticulum
- HF, heart failure
- I/R, ischemia/reperfusion
- IL, interleukin
- MAPK, mitogen-activated protein kinase
- NF-κB, nuclear factor κ-light-chain-enhancer of activated B cells
- NLR, nucleotide-binding oligomerization domain-like receptors
- NLRP, nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain-containing receptor
- NLRP3
- NOD, Nucleotide-binding oligomerization domain-containing protein
- NOD1
- PAMP, pathogen-associated molecular pattern
- ROS, reactive oxygen species
- SR, sarcoplasmic reticulum
- TLR, toll-like receptor
- cardiovascular disease
- innate immune system
- nucleotide-binding oligomerization domain-like receptors
- toll-like receptors
Collapse
Affiliation(s)
- Rafael I. Jaén
- Biomedical Research Institute “Alberto Sols” CSIC-UAM, Madrid, Spain
- CIBER Cardiovascular (CIBER-CV, ISCIII), Madrid, Spain
| | - Almudena Val-Blasco
- Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Patricia Prieto
- Biomedical Research Institute “Alberto Sols” CSIC-UAM, Madrid, Spain
- CIBER Cardiovascular (CIBER-CV, ISCIII), Madrid, Spain
- Pharmacology, Pharmacognosy and Botany department, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Marta Gil-Fernández
- CIBER Cardiovascular (CIBER-CV, ISCIII), Madrid, Spain
- Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
| | - Tarik Smani
- CIBER Cardiovascular (CIBER-CV, ISCIII), Madrid, Spain
- Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Sevilla, Spain
| | - José Luis López-Sendón
- CIBER Cardiovascular (CIBER-CV, ISCIII), Madrid, Spain
- Servicio de Cardiología, Hospital Universitario La Paz, Madrid, Spain
| | - Carmen Delgado
- Biomedical Research Institute “Alberto Sols” CSIC-UAM, Madrid, Spain
- CIBER Cardiovascular (CIBER-CV, ISCIII), Madrid, Spain
| | - Lisardo Boscá
- Biomedical Research Institute “Alberto Sols” CSIC-UAM, Madrid, Spain
- CIBER Cardiovascular (CIBER-CV, ISCIII), Madrid, Spain
| | - María Fernández-Velasco
- CIBER Cardiovascular (CIBER-CV, ISCIII), Madrid, Spain
- Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
27
|
Zakirov FH, Zhang D, Grechko AV, Wu WK, Poznyak AV, Orekhov AN. Lipid-based gene delivery to macrophage mitochondria for atherosclerosis therapy. Pharmacol Res Perspect 2020; 8:e00584. [PMID: 32237116 PMCID: PMC7111069 DOI: 10.1002/prp2.584] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis with associated cardiovascular diseases remains one of the main causes of disability and death worldwide, requiring development of new solutions for prevention and treatment. Macrophages are the key effectors of a series of events involved in atherogenesis, such as inflammation, plaque formation, and changes in lipid metabolism. Some of these events were shown to be associated with mitochondrial dysfunction and excessive mitochondrial DNA (mtDNA) damage. Moreover, macrophages represent a promising target for novel therapeutic approaches that are based on the expression of various receptors and nanoparticle uptake. Lipid-based gene delivery to mitochondria is considered to be an interesting strategy for mtDNA damage correction. To date, several nanocarriers and their modifications have been developed that demonstrate high transfection efficiency and low cytotoxicity. This review discusses the possibilities of lipid-based gene delivery to macrophage mitochondria for atherosclerosis therapy.
Collapse
Affiliation(s)
- Felix H Zakirov
- I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Dongwei Zhang
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Andrey V Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russian Federation
| | - Wei-Kai Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Anastasia V Poznyak
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Alexander N Orekhov
- Institute of Human Morphology, Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
28
|
Saleh-Ghadimi S, Kheirouri S, Maleki V, Jafari-Vayghan H, Alizadeh M. Endocannabinoid system and cardiometabolic risk factors: A comprehensive systematic review insight into the mechanistic effects of omega-3 fatty acids. Life Sci 2020; 250:117556. [PMID: 32184122 DOI: 10.1016/j.lfs.2020.117556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/26/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
Increased levels of endocannabinoids, 2-arachidonoylglycerol (2-AG) and arachidonoyl ethanolamide (AEA) have a pathophysiological role in the setting of cardiometabolic diseases. This systematic review was carried out to appraise the effect of omega-3 on cardiometabolic risk factors by highlighting the mediating effect of endocannabinoids. SCOPUS, PubMed, Embase, Google Scholar and ProQuest databases were searched until January 2020. All published English-language animal studies and clinical trials that evaluated the effects of omega-3 on cardiometabolic diseases with a focus on endocannabinoids were included. Of 1407 studies, 16 animal studies and three clinical trials were included for analysis. Eleven animal studies and two human studies showed a marked reduction in 2-AG and AEA levels following intake of omega-3 which correlated with decreased adiposity, weight gain and improved glucose homeostasis. Moreover, endocannabinoids were elevated in three studies that replaced omega-3 with omega-6. Omega-3 showed anti-inflammatory properties due to reduced levels of inflammatory cytokines, regulation of T-cells function and increased levels of eicosapentaenoyl ethanolamide, docosahexaenoyl ethanolamide and oxylipins; however, a limited number of studies examined a correlation between inflammatory cytokines and endocannabinoids following omega-3 administration. In conclusion, omega-3 modulates endocannabinoid tone, which subsequently attenuates inflammation and cardiometabolic risk factors. However, further randomized clinical trials are needed before any recommendations are made to target the ECS using omega-3 as an alternative therapy to drugs for cardiometabolic disease improvement.
Collapse
Affiliation(s)
- Sevda Saleh-Ghadimi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Kheirouri
- Department of Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Alizadeh
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
29
|
Zhang L, Han C, Liu M, Yang H, Zhang F, Liu B, Meng X. The formation, stability of DHA/EPA nanoemulsion prepared by emulsion phase inversion method and its application in apple juice. Food Res Int 2020; 133:109132. [PMID: 32466914 DOI: 10.1016/j.foodres.2020.109132] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023]
Abstract
This study prepared edible docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) nanoemulsion using EPI (emulsion phase inversion) method. The method for preparing DHA and EPA nanoemulsions is safe, convenient, low in energy consumption and can be used for food production. Factors affecting particle size and stability during preparation were investigated. Based on the optimal particle size combination, stability studies including particle size and residual rates of DHA and EPA at different temperature, pH and metal ions. The results showed that the nanoemulsion had good stability at low temperature storage, near neutral pH and in the absence of transition metal ions such as Fe3+, Cu2+, Al3+. The experiment initially studied the effect of nanoemulsion on apple juice beverage on the basic properties of juice itself. It was feasible in practical application of edible nanoemulsion.
Collapse
Affiliation(s)
- Lin Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chenlu Han
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Min Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Han Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Fang Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Bingjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Xianghong Meng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| |
Collapse
|
30
|
Florentin M, Kostapanos MS, Anagnostis P, Liamis G. Recent developments in pharmacotherapy for hypertriglyceridemia: what's the current state of the art? Expert Opin Pharmacother 2020; 21:107-120. [PMID: 31738617 DOI: 10.1080/14656566.2019.1691523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022]
Abstract
Introduction: Hypertriglyceridemia is associated with both the development of cardiovascular disease (CVD) when mild-to-moderate and high risk of pancreatitis when more severe. The residual CVD risk after low-density lipoprotein cholesterol (LDL-C) lowering is, in part, attributed to high triglyceride (TG) levels. Therefore, there appears to be a need for effective TG-lowering agents.Areas covered: This review presents the most recent advances in hypertriglyceridemia treatment; specifically, it discusses the results of clinical trials and critically comments on apolipoprotein C-III inhibitors, angiopoietin-like 3 inhibitors, alipogene tiparvovec, pradigastat, pemafibrate and novel formulations of omega-3 fatty acids.Expert opinion: In the era of extreme lowering of LDL-C levels with several agents, there seems to be space for novel therapeutic options to combat parameters responsible for residual CVD risk, among which are elevated TGs. Furthermore, a significant number of individuals have very high TG levels and encounter the risk of acute pancreatitis. The most recently developed TG-lowering drugs appear to have a role in both conditions; the choice is mainly based on baseline TG levels. Dyslipidemia guidelines are likely to change in the near future to include some of these agents. Of course, long-term data regarding their safety and efficacy in terms of CVD outcomes and pancreatitis are warranted.
Collapse
Affiliation(s)
- Matilda Florentin
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Michael S Kostapanos
- Lipid clinic, Department of General Medicine, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Panagiotis Anagnostis
- Unit of reproductive endocrinology, 1st Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Liamis
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
31
|
The resolution of inflammation through omega-3 fatty acids in atherosclerosis, intimal hyperplasia, and vascular calcification. Semin Immunopathol 2019; 41:757-766. [PMID: 31696250 PMCID: PMC6881483 DOI: 10.1007/s00281-019-00767-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/14/2019] [Indexed: 12/31/2022]
Abstract
Omega-3 fatty acids serve as the substrate for the formation of a group of lipid mediators that mediate the resolution of inflammation. The cardiovascular inflammatory response in atherosclerosis and vascular injury is characterized by a failure in the resolution of inflammation, resulting in a chronic inflammatory response. The proresolving lipid mediator resolvin E1 (RvE1) is formed by enzymatic conversion of the omega-3 fatty acid eicosapentaenoic acid (EPA), and signals resolution of inflammation through its receptor ChemR23. Importantly, the resolution of cardiovascular inflammation is an active, multifactorial process that involves modulation of the immune response, direct actions on the vascular wall, as well as close interactions between macrophages and vascular smooth muscle cells. Promoting anti-atherogenic signalling through the stimulation of endogenous resolution of inflammation pathways may provide a novel therapeutic strategy in cardiovascular prevention.
Collapse
|
32
|
Bäck M, Hansson GK. Omega-3 fatty acids, cardiovascular risk, and the resolution of inflammation. FASEB J 2019; 33:1536-1539. [PMID: 30703872 DOI: 10.1096/fj.201802445r] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although a high marine food intake is considered cardioprotective, randomized trials of ω-3 fatty acids initially generated conflicting results in terms of the role of ω-3 supplementation in cardiovascular prevention. This work demonstrates the results of the 3 most recent clinical trials with ω-3 fatty acids are put into the context of possible mechanisms mediating their beneficial cardiovascular effects. In particular, the randomized Reduction of Cardiovascular Events with EPA Intervention Trial (REDUCE-IT) showed that icosapent ethyl, which is the ethyl ester form of the ω-3 fatty acid eicosapentaenoic acid (EPA), induced a significant reduction of cardiovascular events. Importantly, EPA serves as a substrate for the formation of the specialized proresolving mediator resolvin E1 (RvE1), which stimulates the resolution of inflammation. RvE1 reduces atherosclerosis and intimal hyperplasia by means of its specific receptor ERV1/ChemR23. The decreased levels of proinflammatory and proatherosclerotic leukotrienes by ω-3 fatty acids may further contribute to a beneficial inflammatory balance. Consequently, the Rv/leukotriene ratio is emerging as a marker of nonresolving vascular inflammation. Recent experimental studies have shown that anti-inflammatory and proresolving effects of lipid mediators derived from ω-3 fatty acids inhibit atherosclerosis independently of cholesterol and triglyceride levels. The results of the 3 most recent clinical trials of ω-3 fatty acid supplementation indicate an importance of the type and dose of ω-3 supplementation and highlight the need for risk stratification in the patient selection for ω-3 supplementation for either primary or secondary prevention of cardiovascular disease.-Bäck, M., Hansson, G. K. Omega-3 fatty acids, cardiovascular risk, and the resolution of inflammation.
Collapse
Affiliation(s)
- Magnus Bäck
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; and.,Division of Coronary and Valvular Heart Disease, Theme Heart and Vessels, Karolinska University Hospital, Stockholm, Sweden
| | - Göran K Hansson
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; and
| |
Collapse
|
33
|
Rashid Dar R, Ali A, Ahmad SF, Kumar Singh S, Patra MK, Panigrahi M, Kumar H, Krishnaswamy N. Immunomodulatory effect of curcumin on lipopolysaccharide- and/or flagellin-induced production of prostaglandin E2 and relative expression of proinflammatory cytokines in the primary bubaline endometrial stromal cells. Reprod Domest Anim 2019; 54:917-923. [PMID: 30972855 DOI: 10.1111/rda.13435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/21/2019] [Indexed: 01/08/2023]
Abstract
Developing alternate therapies for bovine endometritis is important in the context of drug residues in the milk and emergence of antimicrobial resistant bacteria. In this regard, we studied the immunomodulatory effect of curcumin 30 µM, on lipopolysaccharide- (LPS) and/or flagellin (100 ng/ml each)-induced prostaglandin E2 (PGE2 ) and proinflammatory cytokines (PIC) using primary bubaline endometrial stromal cells. After 24 hr treatment, the supernatant was assayed for PGE2 while cells were used for relative quantification of cytokines like IL-1β, IL-6, IL-8 and TNF α transcripts using a control group as calibrator. LPS was found to possess potent stimulatory effect on PGE2 production, whereas the flagellin was not as potent as LPS in stimulating the PGE2 production either per se or in combination with LPS. LPS markedly up-regulated the transcripts of IL-8 and IL-6 as compared to IL-1β and TNF α in the bubaline endometrial stromal cells. Except for IL-8, flagellin did not up-regulate other PICs. There was no additive effect between LPS and flagellin on the up-regulation of inflammatory cytokines. Curcumin inhibited the LPS-induced up-regulation of PIC with strong down-regulation of IL-8. The inhibitory effects of curcumin on the inflammatory mediators suggest a potential in the treatment of bovine endometritis.
Collapse
Affiliation(s)
- Rouf Rashid Dar
- Division of Animal Reproduction, Indian Veterinary Research Institute, Bareilly, India
| | - Ajaz Ali
- Division of Animal Reproduction, Indian Veterinary Research Institute, Bareilly, India
| | - Sheikh Firdous Ahmad
- Division of Animal Genetics and Breeding, Indian Veterinary Research Institute, Bareilly, India
| | - Sanjay Kumar Singh
- Division of Animal Reproduction, Indian Veterinary Research Institute, Bareilly, India
| | - Manas Kumar Patra
- Livestock Production and Management Section, Indian Veterinary Research Institute, Bareilly, India
| | - Manjit Panigrahi
- Division of Animal Genetics and Breeding, Indian Veterinary Research Institute, Bareilly, India
| | - Harendra Kumar
- Division of Animal Reproduction, Indian Veterinary Research Institute, Bareilly, India
| | | |
Collapse
|
34
|
Changes in the blood fatty-acid profile associated with oxidative-antioxidant disturbances in coronary atherosclerosis. J Med Biochem 2019; 39:46-53. [PMID: 32549777 DOI: 10.2478/jomb-2019-0010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 02/24/2019] [Indexed: 02/08/2023] Open
Abstract
Background The objective of this work was to study the profile of fatty acids and to search for associations of fatty acids with oxidative-antioxidant parameters and an oxidative-inflammatory biomarker (lipoprotein-associated phospholipase A2) in men with coronary atherosclerosis and coronary heart disease. Methods Analysis of 20 fatty acids was performed in 60 men with angiographically confirmed coronary atherosclerosis and coronary heart disease and in a control group of men without coronary heart disease. Serum fatty-acid content was evaluated by high-performance gas-liquid chromatography. The blood levels of oxidative stress, total antioxidative defence, and lipoprotein-associated phospholipase 2 were analyzed. Results In the group of men with coronary atherosclerosis the levels of myristic and palmitic fatty acids were higher by 59% and 22%, respectively. An increase in the weight percentage of monounsaturated fatty acids was noted, such as palmitoleic, oleic, and octadecenic. Significantly lower levels of polyunsaturated fatty acids, such as linolic, eicosadienoic, eicosatrienoic, arachidonic, eicosapentaenoic, glinolenic, docosapentaenoic, and docosahexaenoic were detected in the group with coronary atherosclerosis. The lipoprotein-associated phospholipase A2 level was higher by 48%. Oxidative stress was higher by 17%, and the total antioxidant defence in serum was lower by 45%. We found correlations between fatty acids and oxidative-antioxidative alterations. The relative risk of vulnerable atherosclerotic plaques correlated with increased levels of palmitic, stearic, oleic, and linolic fatty acids. Conclusions Significant alterations in the profile of fatty acids are associated with oxidative-antioxidative alterations and are accompanied by an increase in free-radical formation, which can probably serve as a risk factor of atherosclerosis.
Collapse
|
35
|
Carracedo M, Artiach G, Witasp A, Clària J, Carlström M, Laguna-Fernandez A, Stenvinkel P, Bäck M. The G-protein coupled receptor ChemR23 determines smooth muscle cell phenotypic switching to enhance high phosphate-induced vascular calcification. Cardiovasc Res 2018; 115:1557-1566. [DOI: 10.1093/cvr/cvy316] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/12/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022] Open
Abstract
Abstract
Aims
Vascular calcification, a marker of increased cardiovascular risk, is an active process orchestrated by smooth muscle cells. Observational studies indicate that omega-3 fatty acids protect against vascular calcification, but the mechanisms are unknown. The G-protein coupled receptor ChemR23 transduces the resolution of inflammation induced by the omega-3-derived lipid mediator resolvin E1. ChemR23 also contributes to osteoblastic differentiation of stem cells and bone formation, but its role in vascular calcification is unknown. The aim of this study was to establish the role of ChemR23 in smooth muscle cell fate and calcification
Methods and results
Gene expression analysis in epigastric arteries derived from patients with chronic kidney disease and vascular calcification revealed that ChemR23 mRNA levels predicted a synthetic smooth muscle cell phenotype. Genetic deletion of ChemR23 in mice prevented smooth muscle cell de-differentiation. ChemR23-deficient smooth muscle cells maintained a non-synthetic phenotype and exhibited resistance to phosphate-induced calcification. Moreover, ChemR23-deficient mice were protected against vitamin D3-induced vascular calcification. Resolvin E1 inhibited smooth muscle cell calcification through ChemR23. Introduction of the Caenorhabditis elegans Fat1 transgene, leading to an endogenous omega-3 fatty acid synthesis and hence increased substrate for resolvin E1 formation, significantly diminished the differences in phosphate-induced calcification between ChemR23+/+ and ChemR23−/− mice.
Conclusion
This study identifies ChemR23 as a previously unrecognized determinant of synthetic and osteoblastic smooth muscle cell phenotype, favouring phosphate-induced vascular calcification. This effect may be of particular importance in the absence of ChemR23 ligands, such as resolvin E1, which acts as a calcification inhibitor under hyperphosphatic conditions.
Collapse
Affiliation(s)
- Miguel Carracedo
- Translational Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gonzalo Artiach
- Translational Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Witasp
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Joan Clària
- Department of Biochemistry and Molecular Genetics, Hospital Clínic-IDIBAPS, Barcelona, Spain
- Department of Biomedical Sciences, University of Barcelona, Barcelona, Spain
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Bäck
- Translational Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Division of Valvular and Coronary Disease, Theme Heart and Vessels, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
36
|
Pizzini A, Lunger L, Sonnweber T, Weiss G, Tancevski I. The Role of Omega-3 Fatty Acids in the Setting of Coronary Artery Disease and COPD: A Review. Nutrients 2018; 10:nu10121864. [PMID: 30513804 PMCID: PMC6316059 DOI: 10.3390/nu10121864] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/09/2018] [Accepted: 11/22/2018] [Indexed: 12/30/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a growing healthcare concern and will represent the third leading cause of death worldwide within the next decade. COPD is the result of a complex interaction between environmental factors, especially cigarette smoking, air pollution, and genetic preconditions, which result in persistent inflammation of the airways. There is growing evidence that the chronic inflammatory state, measurable by increased levels of circulating cytokines, chemokines, and acute phase proteins, may not be confined to the lungs. Cardiovascular disease (CVD) and especially coronary artery disease (CAD) are common comorbidities of COPD, and low-grade systemic inflammation plays a decisive role in its pathogenesis. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert multiple functions in humans and are crucially involved in limiting and resolving inflammatory processes. n-3 PUFAs have been intensively studied for their ability to improve morbidity and mortality in patients with CVD and CAD. This review aims to summarize the current knowledge on the effects of n-3 PUFA on inflammation and its impact on CAD in COPD from a clinical perspective.
Collapse
Affiliation(s)
- Alex Pizzini
- Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Lukas Lunger
- Department of Urology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| | - Thomas Sonnweber
- Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Guenter Weiss
- Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Ivan Tancevski
- Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
37
|
Nutrients in Fish and Possible Associations with Cardiovascular Disease Risk Factors in Metabolic Syndrome. Nutrients 2018; 10:nu10070952. [PMID: 30041496 PMCID: PMC6073188 DOI: 10.3390/nu10070952] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/10/2018] [Accepted: 07/19/2018] [Indexed: 01/15/2023] Open
Abstract
Non-communicable diseases (NSDs) are responsible for two-thirds of all deaths globally, whereas cardiovascular disease (CVD) alone counts for nearly half of them. To reduce the impact of CVD, targeting modifiable risk factors comprised in metabolic syndrome (e.g., waist circumference, lipid profile, blood pressure, and blood glucose) is of great importance. Beneficial effects of fish consumption on CVD has been revealed over the past decades, and some studies suggest that fish consumption may have a protective role in preventing metabolic syndrome. Fish contains a variety of nutrients that may contribute to health benefits. This review examines current recommendations for fish intake as a source of various nutrients (proteins, n-3 fatty acids, vitamin D, iodine, selenium, and taurine), and their effects on metabolic syndrome and the CVD risk factors. Fatty fish is recommended due to its high levels of n-3 fatty acids, however lean fish also contains nutrients that may be beneficial in the prevention of CVD.
Collapse
|
38
|
Ibitoye OB, Aliyu NO, Ajiboye TO. Tiger nut oil-based diet improves the lipid profile and antioxidant status of male Wistar rats. J Food Biochem 2018. [DOI: 10.1111/jfbc.12587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- O. B. Ibitoye
- Department of Biological Sciences; Al-Hikmah University; Ilorin Nigeria
| | - N. O. Aliyu
- Antioxidants, Redox Biology and Toxicology Research Group, Department of Medical Biochemistry, College of Health Sciences; Nile University of Nigeria; FCT Nigeria
| | - T. O. Ajiboye
- Antioxidants, Redox Biology and Toxicology Research Group, Department of Medical Biochemistry, College of Health Sciences; Nile University of Nigeria; FCT Nigeria
| |
Collapse
|
39
|
Serhan CN, Levy BD. Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. J Clin Invest 2018; 128:2657-2669. [PMID: 29757195 DOI: 10.1172/jci97943] [Citation(s) in RCA: 916] [Impact Index Per Article: 130.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Countless times each day, the acute inflammatory response protects us from invading microbes, injuries, and insults from within, as in surgery-induced tissue injury. These challenges go unnoticed because they are self-limited and naturally resolve without progressing to chronic inflammation. Peripheral blood markers of inflammation are present in many common diseases, including inflammatory bowel disease, cardiovascular disease, neurodegenerative disease, and cancer. While acute inflammation is protective, excessive swarming of neutrophils amplifies collateral tissue damage and inflammation. Hence, understanding the mechanisms that control the resolution of acute inflammation provides insight into preventing and treating inflammatory diseases in multiple organs. This Review focuses on the resolution phase of inflammation with identification of specialized pro-resolving mediators (SPMs) that involve three separate biosynthetic and potent mediator families, which are defined using the first quantitative resolution indices to score this vital process. These are the resolvins, protectins, and maresins: bioactive metabolomes that each stimulate self-limited innate responses, enhance innate microbial killing and clearance, and are organ-protective. We briefly address biosynthesis of SPMs and their activation of endogenous resolution programs as terrain for new therapeutic approaches that are not, by definition, immunosuppressive, but rather new immunoresolvent therapies.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, and
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Kudinov VA, Zakharova TS, Torkhovskaya TI, Ipatova OM, Archakov AI. [Pharmacological targets for dislipidemies correction. Opportunities and prospects of therapeutic usage]. BIOMEDITSINSKAIA KHIMIIA 2018; 64:66-83. [PMID: 29460837 DOI: 10.18097/pbmc20186401066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Literature data on influence of existing and new groups of drug preparations for dyslipidemias correction are systemized, and molecular mechanisms of their effects are reviewed. The results of experimental and clinical investigations aimed at revealing of new pharmacological targets of dyslipidemias correction were analyzed. The approaches for activation of high density lipoproteins functionality are described. The implementation of alternative preparations with new alternative mechanisms of action may be suggested to improve the effectiveness of traditional treatment in the future.
Collapse
Affiliation(s)
- V A Kudinov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | - O M Ipatova
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|