1
|
Vosoughi P, Naghib SM, Kangarshahi BM, Mozafari MR. A review of RNA nanoparticles for drug/gene/protein delivery in advanced therapies: Current state and future prospects. Int J Biol Macromol 2025; 295:139532. [PMID: 39765293 DOI: 10.1016/j.ijbiomac.2025.139532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Nanotechnology involves the utilization of materials with exceptional properties at the nanoscale. Over the past few years, nanotechnologies have demonstrated significant potential in improving human health, particularly in medical treatments. The self-assembly characteristic of RNA is a highly effective method for designing and constructing nanostructures using a combination of biological, chemical, and physical techniques from different fields. There is great potential for the application of RNA nanotechnology in therapeutics. This review explores various nano-based drug delivery systems and their unique features through the impressive progress of the RNA field and their significant therapeutic promises due to their unique performance in the COVID-19 pandemic. However, a significant hurdle in fully harnessing the power of RNA drugs lies in effectively delivering RNA to precise organs and tissues, a critical factor for achieving therapeutic effectiveness, minimizing side effects, and optimizing treatment outcomes. There have been many efforts to pursue targeting, but the clinical translation of RNA drugs has been hindered by the lack of clear guidelines and shared understanding. A comprehensive understanding of various principles is essential to develop vaccines using nucleic acids and nanomedicine successfully. These include mechanisms of immune responses, functions of nucleic acids, nanotechnology, and vaccinations. Regarding this matter, the aim of this review is to revisit the fundamental principles of the immune system's function, vaccination, nanotechnology, and drug delivery in relation to the creation and manufacturing of vaccines utilizing nanotechnology and nucleic acids. RNA drugs have demonstrated significant potential in treating a wide range of diseases in both clinical and preclinical research. One of the reasons is their capacity to regulate gene expression and manage protein production efficiently. Different methods, like modifying chemicals, connecting ligands, and utilizing nanotechnology, have been essential in enabling the effective use of RNA-based treatments in medical environments. The article reviews stimuli-responsive nanotechnologies for RNA delivery and their potential in RNA medicines. It emphasizes the notable benefits of these technologies in improving the effectiveness of RNA and targeting specific cells and organs. This review offers a comprehensive analysis of different RNA drugs and how they work to produce therapeutic benefits. Recent progress in using RNA-based drugs, especially mRNA treatments, has shown that targeted delivery methods work well in medical treatments.
Collapse
Affiliation(s)
- Pegah Vosoughi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| | - Babak Mikaeeli Kangarshahi
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
2
|
Giordano A, Provenza AC, Reverchon G, Baldino L, Reverchon E. Lipid-Based Nanocarriers: Bridging Diagnosis and Cancer Therapy. Pharmaceutics 2024; 16:1158. [PMID: 39339195 PMCID: PMC11434863 DOI: 10.3390/pharmaceutics16091158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Theranostics is a growing field that matches diagnostics and therapeutics. In this approach, drugs and techniques are uniquely coupled to diagnose and treat medical conditions synergically or sequentially. By integrating diagnostic and treatment functions in a single platform, the aim of theranostics is to improve precision medicine by tailoring treatments based on real-time information. In this context, lipid-based nanocarriers have attracted great scientific attention due to their biodegradability, biocompatibility, and targeting capabilities. The present review highlights the latest research advances in the field of lipid-based nanocarriers for cancer theranostics, exploring several ways of improving in vivo performance and addressing associated challenges. These nanocarriers have significant potential to create new perspectives in the field of nanomedicine and offer promise for a significant step towards more personalized and precise medicine, reducing side effects and improving clinical outcomes for patients. This review also presents the actual barriers to and the possible challenges in the use of nanoparticles in the theranostic field, such as regulatory hurdles, high costs, and technological integration. Addressing these issues through a multidisciplinary and collaborative approach among institutions could be essential for advancing lipid nanocarriers in the theranostic field. Such collaborations can leverage diverse expertise and resources, fostering innovation and overcoming the complex challenges associated with clinical translation. This approach will be crucial for realizing the full potential of lipid-based nanocarriers in precision medicine.
Collapse
Affiliation(s)
- Alessandra Giordano
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.G.); (A.C.P.); (E.R.)
| | - Anna Chiara Provenza
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.G.); (A.C.P.); (E.R.)
| | - Giorgio Reverchon
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli, 1, 40136 Bologna, Italy;
| | - Lucia Baldino
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.G.); (A.C.P.); (E.R.)
| | - Ernesto Reverchon
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.G.); (A.C.P.); (E.R.)
| |
Collapse
|
3
|
Ghosh Majumdar A, Pany B, Parua SS, Mukherjee D, Panda A, Mohanty M, Das B, Si S, Mohanty PS. Stimuli-Responsive Nanogel/Microgel Hybrids as Targeted Drug Delivery Systems: A Comprehensive Review. BIONANOSCIENCE 2024; 14:3496-3521. [DOI: 10.1007/s12668-024-01577-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 01/06/2025]
|
4
|
Golfinopoulou R, Hatziagapiou K, Mavrikou S, Kintzios S. Unveiling Colorectal Cancer Biomarkers: Harnessing Biosensor Technology for Volatile Organic Compound Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:4712. [PMID: 39066110 PMCID: PMC11281049 DOI: 10.3390/s24144712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Conventional screening options for colorectal cancer (CRC) detection are mainly direct visualization and invasive methods including colonoscopy and flexible sigmoidoscopy, which must be performed in a clinical setting and may be linked to adverse effects for some patients. Non-invasive CRC diagnostic tests such as computed tomography colonography and stool tests are either too costly or less reliable than invasive ones. On the other hand, volatile organic compounds (VOCs) are potentially ideal non-invasive biomarkers for CRC detection and monitoring. The present review is a comprehensive presentation of the current state-of-the-art VOC-based CRC diagnostics, with a specific focus on recent advancements in biosensor design and application. Among them, breath-based chromatography pattern analysis and sampling techniques are overviewed, along with nanoparticle-based optical and electrochemical biosensor approaches. Limitations of the currently available technologies are also discussed with an outlook for improvement in combination with big data analytics and advanced instrumentation, as well as expanding the scope and specificity of CRC-related volatile biomarkers.
Collapse
Affiliation(s)
- Rebecca Golfinopoulou
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, EU-CONEXUS European University, 11855 Athens, Greece;
| | - Kyriaki Hatziagapiou
- First Department of Pediatrics, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, Thivon 1, 11527 Athens, Greece;
| | - Sophie Mavrikou
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, EU-CONEXUS European University, 11855 Athens, Greece;
- CeBTec, 40 Vatatzi, 11472 Athens, Greece
| | - Spyridon Kintzios
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, EU-CONEXUS European University, 11855 Athens, Greece;
- CeBTec, 40 Vatatzi, 11472 Athens, Greece
| |
Collapse
|
5
|
Petrovic S, Bita B, Barbinta-Patrascu ME. Nanoformulations in Pharmaceutical and Biomedical Applications: Green Perspectives. Int J Mol Sci 2024; 25:5842. [PMID: 38892030 PMCID: PMC11172476 DOI: 10.3390/ijms25115842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
This study provides a brief discussion of the major nanopharmaceuticals formulations as well as the impact of nanotechnology on the future of pharmaceuticals. Effective and eco-friendly strategies of biofabrication are also highlighted. Modern approaches to designing pharmaceutical nanoformulations (e.g., 3D printing, Phyto-Nanotechnology, Biomimetics/Bioinspiration, etc.) are outlined. This paper discusses the need to use natural resources for the "green" design of new nanoformulations with therapeutic efficiency. Nanopharmaceuticals research is still in its early stages, and the preparation of nanomaterials must be carefully considered. Therefore, safety and long-term effects of pharmaceutical nanoformulations must not be overlooked. The testing of nanopharmaceuticals represents an essential point in their further applications. Vegetal scaffolds obtained by decellularizing plant leaves represent a valuable, bioinspired model for nanopharmaceutical testing that avoids using animals. Nanoformulations are critical in various fields, especially in pharmacy, medicine, agriculture, and material science, due to their unique properties and advantages over conventional formulations that allows improved solubility, bioavailability, targeted drug delivery, controlled release, and reduced toxicity. Nanopharmaceuticals have transitioned from experimental stages to being a vital component of clinical practice, significantly improving outcomes in medical fields for cancer treatment, infectious diseases, neurological disorders, personalized medicine, and advanced diagnostics. Here are the key points highlighting their importance. The significant challenges, opportunities, and future directions are mentioned in the final section.
Collapse
Affiliation(s)
- Sanja Petrovic
- Department of Chemical Technologies, Faculty of Technology, University of Nis, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia;
| | - Bogdan Bita
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| | - Marcela-Elisabeta Barbinta-Patrascu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| |
Collapse
|
6
|
Gu Y, Reinhard BM. Membrane fluidity properties of lipid-coated polylactic acid nanoparticles. NANOSCALE 2024; 16:8533-8545. [PMID: 38595322 PMCID: PMC11064779 DOI: 10.1039/d3nr06464f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/31/2024] [Indexed: 04/11/2024]
Abstract
Lipid coating is considered a versatile strategy to equip nanoparticles (NPs) with a biomimetic surface coating, but the membrane properties of these nanoassemblies remain in many cases insufficiently understood. In this work, we apply C-Laurdan generalized polarization (GP) measurements to probe the temperature-dependent polarity of hybrid membranes consisting of a lipid monolayer adsorbed onto a polylactic acid (PLA) polymer core as function of lipid composition and compare the behavior of the lipid coated NPs (LNPs) with that of liposomes assembled from identical lipid mixtures. The LNPs were generated by nanoprecipitation of the polymer in aqueous solutions containing two types of lipid mixtures: (i) cholesterol, dipalmitoylphosphatidylcholine (DPPC), and the ganglioside GM3, as well as (ii) dioleoylphosphatidylcholine (DOPC), DPPC and GM3. LNPs were found to exhibit more distinct and narrower phase transitions than corresponding liposomes and to retain detectable phase transitions even for cholesterol or DOPC concentrations that yielded no detectable transitions in liposomes. These findings together with higher GP values in the case of the LNPs for temperatures above the phase transition temperature indicate a stabilization of the membrane through the polymer core. LNP binding studies to GM3-recognizing cells indicate that differences in the membrane fluidity affect binding avidity in the investigated model system.
Collapse
Affiliation(s)
- Yuanqing Gu
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215, USA.
| | - Björn M Reinhard
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
7
|
Żebrowska J, Mucha P, Prusinowski M, Krefft D, Żylicz-Stachula A, Deptuła M, Skoniecka A, Tymińska A, Zawrzykraj M, Zieliński J, Pikuła M, Skowron PM. Development of hybrid biomicroparticles: cellulose exposing functionalized fusion proteins. Microb Cell Fact 2024; 23:81. [PMID: 38481305 PMCID: PMC10938831 DOI: 10.1186/s12934-024-02344-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/20/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND One of the leading current trends in technology is the miniaturization of devices to the microscale and nanoscale. The highly advanced approaches are based on biological systems, subjected to bioengineering using chemical, enzymatic and recombinant methods. Here we have utilised the biological affinity towards cellulose of the cellulose binding domain (CBD) fused with recombinant proteins. RESULTS Here we focused on fusions with 'artificial', concatemeric proteins with preprogrammed functions, constructed using DNA FACE™ technology. Such CBD fusions can be efficiently attached to micro-/nanocellulose to form functional, hybrid bionanoparticles. Microcellulose (MCC) particles were generated by a novel approach to enzymatic hydrolysis using Aspergillus sp. cellulase. The interaction between the constructs components - MCC, CBD and fused concatemeric proteins - was evaluated. Obtaining of hybrid biomicroparticles of a natural cellulose biocarrier with proteins with therapeutic properties, fused with CBD, was confirmed. Further, biological tests on the hybrid bioMCC particles confirmed the lack of their cytotoxicity on 46BR.1 N fibroblasts and human adipose derived stem cells (ASCs). The XTT analysis showed a slight inhibition of the proliferation of 46BR.1 N fibroblasts and ACSs cells stimulated with the hybrid biomicroparticles. However, in both cases no changes in the morphology of the examined cells after incubation with the hybrid biomicroparticles' MCC were detected. CONCLUSIONS Microcellulose display with recombinant proteins involves utilizing cellulose, a natural polymer found in plants, as a platform for presenting or displaying proteins. This approach harnesses the structural properties of cellulose to express or exhibit various recombinant proteins on its surface. It offers a novel method for protein expression, presentation, or immobilization, enabling various applications in biotechnology, biomedicine, and other fields. Microcellulose shows promise in biomedical fields for wound healing materials, drug delivery systems, tissue engineering scaffolds, and as a component in bio-sensors due to its biocompatibility and structural properties.
Collapse
Affiliation(s)
- Joanna Żebrowska
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, 80-308, Poland.
- BioVentures Institute Ltd, Poznan, 60-141, Poland.
| | - Piotr Mucha
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Gdansk, 80-308, Poland
| | - Maciej Prusinowski
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, 80-308, Poland
| | - Daria Krefft
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, 80-308, Poland
- BioVentures Institute Ltd, Poznan, 60-141, Poland
| | - Agnieszka Żylicz-Stachula
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, 80-308, Poland
- BioVentures Institute Ltd, Poznan, 60-141, Poland
| | - Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Faculty of Medicine, Medical University of Gdansk, Gdansk, 80-211, Poland
| | - Aneta Skoniecka
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Faculty of Medicine, Medical University of Gdansk, Gdansk, 80-211, Poland
| | - Agata Tymińska
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Faculty of Medicine, Medical University of Gdansk, Gdansk, 80-211, Poland
| | - Małgorzata Zawrzykraj
- Division of Clinical Anatomy, Faculty of Medicine, Medical University of Gdansk, Gdansk, 80-211, Poland
| | - Jacek Zieliński
- Department of Oncologic Surgery, Faculty of Medicine, Medical University of Gdansk, Gdansk, 80-211, Poland
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Faculty of Medicine, Medical University of Gdansk, Gdansk, 80-211, Poland
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, 80-308, Poland
- BioVentures Institute Ltd, Poznan, 60-141, Poland
| |
Collapse
|
8
|
Calderón-Colón X, Egan R. Lipid-Based Nanoparticles for RNA Delivery. Methods Mol Biol 2024; 2822:411-416. [PMID: 38907931 DOI: 10.1007/978-1-0716-3918-4_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Various nanoparticle-based delivery systems have been developed for the encapsulation and protection of active cargoes. Lipid nanoparticles represent one of the most widely used nanoparticle-based delivery systems for in vitro and in vivo applications, especially for the delivery of ribonucleic acid (RNA). In this chapter, a simple bulk mixing method for the encapsulation of RNA is described along with characterization techniques for measuring encapsulation efficiency and nanoparticle physicochemical properties.
Collapse
Affiliation(s)
- Xiomara Calderón-Colón
- Asymmetric Operations Sector, Applied Biological Sciences, The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA.
| | - Richard Egan
- Asymmetric Operations Sector, Applied Biological Sciences, The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| |
Collapse
|
9
|
Beniwal SS, Lamo P, Kaushik A, Lorenzo-Villegas DL, Liu Y, MohanaSundaram A. Current Status and Emerging Trends in Colorectal Cancer Screening and Diagnostics. BIOSENSORS 2023; 13:926. [PMID: 37887119 PMCID: PMC10605407 DOI: 10.3390/bios13100926] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023]
Abstract
Colorectal cancer (CRC) is a prevalent and potentially fatal disease categorized based on its high incidences and mortality rates, which raised the need for effective diagnostic strategies for the early detection and management of CRC. While there are several conventional cancer diagnostics available, they have certain limitations that hinder their effectiveness. Significant research efforts are currently being dedicated to elucidating novel methodologies that aim at comprehending the intricate molecular mechanism that underlies CRC. Recently, microfluidic diagnostics have emerged as a pivotal solution, offering non-invasive approaches to real-time monitoring of disease progression and treatment response. Microfluidic devices enable the integration of multiple sample preparation steps into a single platform, which speeds up processing and improves sensitivity. Such advancements in diagnostic technologies hold immense promise for revolutionizing the field of CRC diagnosis and enabling efficient detection and monitoring strategies. This article elucidates several of the latest developments in microfluidic technology for CRC diagnostics. In addition to the advancements in microfluidic technology for CRC diagnostics, the integration of artificial intelligence (AI) holds great promise for further enhancing diagnostic capabilities. Advancements in microfluidic systems and AI-driven approaches can revolutionize colorectal cancer diagnostics, offering accurate, efficient, and personalized strategies to improve patient outcomes and transform cancer management.
Collapse
Affiliation(s)
| | - Paula Lamo
- Escuela Superior de Ingeniería y Tecnología, Universidad Internacional de La Rioja, 26006 Logroño, Spain
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA
| | | | - Yuguang Liu
- Departments of Physiology and Biomedical Engineering, Immunology and Surgery, Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
10
|
Khoo SC, Goh MS, Alias A, Luang-In V, Chin KW, Ling Michelle TH, Sonne C, Ma NL. Application of antimicrobial, potential hazard and mitigation plans. ENVIRONMENTAL RESEARCH 2022; 215:114218. [PMID: 36049514 PMCID: PMC9422339 DOI: 10.1016/j.envres.2022.114218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/06/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
The tremendous rise in the consumption of antimicrobial products had aroused global concerns, especially in the midst of pandemic COVID-19. Antimicrobial resistance has been accelerated by widespread usage of antimicrobial products in response to the COVID-19 pandemic. Furthermore, the widespread use of antimicrobial products releases biohazardous substances into the environment, endangering the ecology and ecosystem. Therefore, several strategies or measurements are needed to tackle this problem. In this review, types of antimicrobial available, emerging nanotechnology in antimicrobial production and their advanced application have been discussed. The problem of antimicrobial resistance (AMR) due to antibiotic-resistant bacteria (ARB)and antimicrobial resistance genes (AMG) had become the biggest threat to public health. To deal with this problem, an in-depth discussion of the challenges faced in antimicrobial mitigations and potential alternatives was reviewed.
Collapse
Affiliation(s)
- Shing Ching Khoo
- Henan Province Engineering Research Centre for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; BIOSES Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Meng Shien Goh
- Henan Province Engineering Research Centre for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; BIOSES Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Amirah Alias
- Eco-Innovation Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Vijitra Luang-In
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham, 44150, Thailand
| | - Kah Wei Chin
- BIOSES Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Tiong Hui Ling Michelle
- BIOSES Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Christian Sonne
- Henan Province Engineering Research Centre for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark.
| | - Nyuk Ling Ma
- Henan Province Engineering Research Centre for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; BIOSES Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
11
|
Yang Z, Lou C, Wang X, Wang C, Shi Z, Niu N. Preparation, characterization, and in-vitro cytotoxicity of nanoliposomes loaded with anti-tubercular drugs and TGF-β1 siRNA for improving spinal tuberculosis therapy. BMC Infect Dis 2022; 22:824. [PMID: 36348467 PMCID: PMC9644586 DOI: 10.1186/s12879-022-07791-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Background Tuberculosis (TB) represents a bacterial infection affecting many individuals each year and potentially leading to death. Overexpression of transforming growth factor (TGF)-β1 has a primary immunomodulatory function in human tuberculosis. This work aimed to develop nanoliposomes to facilitate the delivery of anti-tubercular products to THP-1-derived human macrophages as Mycobacterium host cells and to evaluate drug efficiencies as well as the effects of a TGF-β1-specific short interfering RNA (siRNA) delivery system employing nanoliposomes.
Methods In the current study, siTGF-β1 nanoliposomes loaded with the anti-TB drugs HRZ (isoniazid, rifampicin, and pyrazinamide) were prepared and characterized in vitro, determining the size, zeta potential, morphology, drug encapsulation efficiency (EE), cytotoxicity, and gene silencing efficiency of TGF-β1 siRNA.
Results HRZ/siTGF-β1 nanoliposomes appeared as smooth spheres showing the size and positive zeta potential of 168.135 ± 0.5444 nm and + 4.03 ± 1.32 mV, respectively. Drug EEs were 90%, 88%, and 37% for INH, RIF, and PZA, respectively. Meanwhile, the nanoliposomes were weakly cytotoxic towards human macrophages as assessed by the MTT assay. Nanoliposomal siTGF-β1 could significantly downregulate TGF-β1 in THP-1-derived human macrophages in vitro. Conclusion These findings suggested that HRZ-loaded nanoliposomes with siTGF-β1 have the potential for improving spinal tuberculosis chemotherapy via nano-encapsulation of anti-TB drugs.
Collapse
|
12
|
Kanvinde S, Kulkarni T, Deodhar S, Bhattacharya D, Dasgupta A. Non-Viral Vectors for Delivery of Nucleic Acid Therapies for Cancer. BIOTECH 2022; 11:biotech11010006. [PMID: 35822814 PMCID: PMC9245904 DOI: 10.3390/biotech11010006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 01/12/2023] Open
Abstract
The research and development of non-viral gene therapy has been extensive over the past decade and has received a big push thanks to the recent successful approval of non-viral nucleic acid therapy products. Despite these developments, nucleic acid therapy applications in cancer have been limited. One of the main causes of this has been the imbalance in development of delivery vectors as compared with sophisticated nucleic acid payloads, such as siRNA, mRNA, etc. This paper reviews non-viral vectors that can be used to deliver nucleic acids for cancer treatment. It discusses various types of vectors and highlights their current applications. Additionally, it discusses a perspective on the current regulatory landscape to facilitate the commercial translation of gene therapy.
Collapse
Affiliation(s)
- Shrey Kanvinde
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (T.K.); (D.B.)
- Correspondence:
| | - Tanmay Kulkarni
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (T.K.); (D.B.)
| | - Suyash Deodhar
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Deep Bhattacharya
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (T.K.); (D.B.)
| | - Aneesha Dasgupta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA;
| |
Collapse
|
13
|
Sidhu AK, Verma N, Kaushal P. Role of Biogenic Capping Agents in the Synthesis of Metallic Nanoparticles and Evaluation of Their Therapeutic Potential. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2021.801620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The biomedical properties of nanoparticles have been the area of focus for contemporary science; however, there are issues concerning their long-term toxicities. Recent trends in nanoparticle fabrication and surface manipulation, the use of distinctive biogenic capping agents, have allowed the preparation of nontoxic, surface-functionalized, and monodispersed nanoparticles for medical applications. These capping agents act as stabilizers or binding molecules that prevent agglomeration and steric hindrance, alter the biological activity and surface chemistry, and stabilize the interaction of nanoparticles within the preparation medium. Explicit features of nanoparticles are majorly ascribed to the capping present on their surface. The present review article is an attempt to compile distinctive biological capping agents deployed in the synthesis of metal nanoparticles along with the medical applications of these capped nanoparticles. First, this innovative review highlights the various biogenic capping agents, including biomolecules and biological extracts of plants and microorganisms. Next, the therapeutic applications of capped nanoparticles and the effect of biomolecules on the efficiency of the nanoparticles have been expounded. Finally, challenges and future directions on the use of biological capping agents have been concluded. The goal of the present review article is to provide a comprehensive report to researchers who are looking for alternative biological capping agents for the green synthesis of important metallic nanoparticles.
Collapse
|
14
|
Díez-Villares S, Pellico J, Gómez-Lado N, Grijalvo S, Alijas S, Eritja R, Herranz F, Aguiar P, de la Fuente M. Biodistribution of 68/67Ga-Radiolabeled Sphingolipid Nanoemulsions by PET and SPECT Imaging. Int J Nanomedicine 2021; 16:5923-5935. [PMID: 34475757 PMCID: PMC8405882 DOI: 10.2147/ijn.s316767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/02/2021] [Indexed: 01/15/2023] Open
Abstract
Background and Purpose Non-invasive imaging methodologies, especially nuclear imaging techniques, have undergone an extraordinary development over the last years. Interest in the development of innovative tracers has prompted the emergence of new nanomaterials with a focus on nuclear imaging and therapeutical applications. Among others, organic nanoparticles are of the highest interest due to their translational potential related to their biocompatibility and biodegradability. Our group has developed a promising new type of biocompatible nanomaterials, sphingomyelin nanoemulsions (SNs). The aim of this study is to explore the potential of SNs for nuclear imaging applications. Methods Ready-to-label SNs were prepared by a one-step method using lipid derivative chelators and characterized in terms of their physicochemical properties. Stability was assessed under storage and after incubation with human serum. Chelator-functionalized SNs were radiolabeled with 67Ga and 68Ga, and the radiochemical yield (RCY), radiochemical purity (RCP) and radiochemical stability (RCS) were determined. Finally, the biodistribution of 67/68Ga-SNs was evaluated in vivo and ex vivo. Results Here, we describe a simple and mild one-step method for fast and efficient radiolabeling of SNs with 68Ga and 67Ga radioisotopes. In vivo experiments showed that 67/68Ga-SNs can efficiently and indistinctly be followed up by PET and SPECT. Additionally, we proved that the biodistribution of the 67/68Ga-SNs can be conveniently modulated by modifying the surface properties of different hydrophilic polymers, and therefore the formulation can be further adapted to the specific requirements of different biomedical applications. Conclusion This work supports 67/68Ga-SNs as a novel probe for nuclear imaging with tunable biodistribution and with great potential for the future development of nanotheranostics.
Collapse
Affiliation(s)
- Sandra Díez-Villares
- Nano-Oncology and Translational Therapeutics group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, Santiago de Compostela, 15706, Spain.,Biomedical Research Networking Center on Oncology (CIBERONC), Madrid, 28029, Spain.,University of Santiago de Compostela (USC), Santiago de Compostela, 15782, Spain
| | - Juan Pellico
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK.,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, 28029, Spain
| | - Noemí Gómez-Lado
- Nuclear Medicine Department and Molecular Imaging Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, Santiago de Compostela, 15706, Spain
| | - Santiago Grijalvo
- Institute for Advanced Chemistry of Catalonia (IQAC), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, E-08034, Spain.,Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| | - Sandra Alijas
- Nano-Oncology and Translational Therapeutics group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, Santiago de Compostela, 15706, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, E-08034, Spain.,Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| | - Fernando Herranz
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, 28029, Spain.,NanoMedMol Group, Instituto de Química Medica (IQM),Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28006, Spain
| | - Pablo Aguiar
- Nuclear Medicine Department and Molecular Imaging Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, Santiago de Compostela, 15706, Spain
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, Santiago de Compostela, 15706, Spain.,Biomedical Research Networking Center on Oncology (CIBERONC), Madrid, 28029, Spain
| |
Collapse
|
15
|
Kundu P, Singh D, Singh A, Sahoo SK. Cancer Nanotheranostics: A Nanomedicinal Approach for Cancer Therapy and Diagnosis. Anticancer Agents Med Chem 2021; 20:1288-1299. [PMID: 31429694 DOI: 10.2174/1871520619666190820145930] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/27/2022]
Abstract
The panorama of cancer treatment has taken a considerable leap over the last decade with the advancement in the upcoming novel therapies combined with modern diagnostics. Nanotheranostics is an emerging science that holds tremendous potential as a contrivance by integrating therapy and imaging in a single probe for cancer diagnosis and treatment thus offering the advantage like tumor-specific drug delivery and at the same time reduced side effects to normal tissues. The recent surge in nanomedicine research has also paved the way for multimodal theranostic nanoprobe towards personalized therapy through interaction with a specific biological system. This review presents an overview of the nano theranostics approach in cancer management and a series of different nanomaterials used in theranostics and the possible challenges with future directions.
Collapse
Affiliation(s)
- Paromita Kundu
- Laboratory of Nanomedicine, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Deepika Singh
- Laboratory of Nanomedicine, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Abhalaxmi Singh
- Laboratory of Nanomedicine, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Sanjeeb K Sahoo
- Laboratory of Nanomedicine, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, India
| |
Collapse
|
16
|
Miyasato DL, Mohamed AW, Zavaleta C. A path toward the clinical translation of nano-based imaging contrast agents. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1721. [PMID: 33938151 DOI: 10.1002/wnan.1721] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022]
Abstract
Recently, nanoparticles have evolved ubiquitously in therapeutic applications to treat a range of diseases. Despite their regular use as therapeutic agents in the clinic, we have yet to see much progress in their clinical translation as diagnostic imaging agents. Several clinical and preclinical studies support their use as imaging contrast agents, but their use in the clinical setting has been limited to off-label imaging procedures (i.e., Feraheme). Since diagnostic imaging has been historically used as an exploratory tool to rule out disease or to screen patients for various cancers, nanoparticle toxicity remains a concern, especially when introducing exogenous contrast agents into a potentially healthy patient population, perhaps rationalizing why several nano-based therapeutic agents have been clinically translated before nano-based imaging agents. Another potential hindrance toward their clinical translation could be their market potential, as most therapeutic drugs have higher earning potential than small-molecule imaging contrast agents. With these considerations in mind, perhaps a clinical path forward for nano-based imaging contrast agents is to help guide/manage therapy. Several studies have demonstrated the ability of nanoparticles to produce more accurate imaging preoperatively, intraoperatively, and postoperatively. These applications illustrate a more reliable method of cancer detection and treatment that can prevent incomplete tumor resection and incorrect assessment of tumor progression following treatment. The aim of this review is to highlight the research that supports the use of nanoparticles in biomedical imaging applications and offer a new perspective to illustrate how nano-based imaging agents have the potential to better inform therapeutic decisions. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Dominie L Miyasato
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA.,Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| | - Ahmed W Mohamed
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA.,Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA.,Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
17
|
Oravczová V, Garaiová Z, Hianik T. Nanoparticles and Nanomotors Modified by Nucleic Acids Aptamers for Targeted Drug Delivery. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Wu J, Liao S, Hu Q, Wu S, Qiu S, Cheng G, Li X, Lu W. Effects of Liposomal Simvastatin Nanoparticles on Vascular Endothelial Function and Arterial Smooth Muscle Cell Apoptosis in Rats with Arteriosclerotic Occlusive Disease of Lower Limb via P38 Mitogen-Activated Protein Kinase Nuclear Factor Kappa-B Pathway. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:1169-1175. [PMID: 33183458 DOI: 10.1166/jnn.2021.18632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This article prepared a simvastatin-NLCs for the treatment of arteriosclerotic occlusive disease of lower limbs. Taking the size distribution, polydispersity coefficient, encapsulation efficiency and drug loading of simvastatin-NLCs as evaluation indicators, various prescription factors of simvastatin- NLCs were investigated. The in vitro release behavior and stability of simvastatin-NLCs were also investigated. A hyperlipidemia rat model was established using high-fat diets. SD rats fed ordinary diet were set as normal control groups. 20 rats, 20 in the simvastatin group and 20 in the simvastatin nanocarrier group. After 5 weeks of drug intervention, the rats were sacrificed and the aorta was taken to determine the smooth muscle cell apoptosis rate. Studies have shown that simvastatin nanocarriers can more effectively reduce blood lipids in hyperlipidemia rats, increase the rate of smooth muscle cell apoptosis in hyperlipidemia rats, and delay the onset of atherosclerosis.
Collapse
Affiliation(s)
- Jiawen Wu
- Department of Vascular Surgery, Quzhou People's Hospital, Quzhou City, 324000, Zhejiang Province, China
| | - Sheng Liao
- Department of Vascular Surgery, Quzhou People's Hospital, Quzhou City, 324000, Zhejiang Province, China
| | - Qiang Hu
- Department of Vascular Surgery, Quzhou People's Hospital, Quzhou City, 324000, Zhejiang Province, China
| | - Senyan Wu
- Department of Vascular Surgery, Quzhou People's Hospital, Quzhou City, 324000, Zhejiang Province, China
| | - Shuiwei Qiu
- Department of Cardio-Thoracic Surgery, Quzhou People's Hospital, Quzhou City, 324000, Zhejiang Province, China
| | - Guobing Cheng
- Department of Vascular Surgery, Quzhou People's Hospital, Quzhou City, 324000, Zhejiang Province, China
| | - Xiaoyang Li
- Department of Vascular Surgery, Quzhou People's Hospital, Quzhou City, 324000, Zhejiang Province, China
| | - Wei Lu
- Department of Vascular Surgery, Quzhou People's Hospital, Quzhou City, 324000, Zhejiang Province, China
| |
Collapse
|
19
|
Das S, Tiwari M, Mondal D, Sahoo BR, Tiwari DK. Growing tool-kit of photosensitizers for clinical and non-clinical applications. J Mater Chem B 2020; 8:10897-10940. [PMID: 33165483 DOI: 10.1039/d0tb02085k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photosensitizers are photosensitive molecules utilized in clinical and non-clinical applications by taking advantage of light-mediated reactive oxygen generation, which triggers local and systemic cellular toxicity. Photosensitizers are used for diverse biological applications such as spatio-temporal inactivation of a protein in a living system by chromophore-assisted light inactivation, localized cell photoablation, photodynamic and immuno-photodynamic therapy, and correlative light-electron microscopy imaging. Substantial efforts have been made to develop several genetically encoded, chemically synthesized, and nanotechnologically driven photosensitizers for successful implementation in redox biology applications. Genetically encoded photosensitizers (GEPS) or reactive oxygen species (ROS) generating proteins have the advantage of using them in the living system since they can be manipulated by genetic engineering with a variety of target-specific genes for the precise spatio-temporal control of ROS generation. The GEPS variety is limited but is expanding with a variety of newly emerging GEPS proteins. Apart from GEPS, a large variety of chemically- and nanotechnologically-empowered photosensitizers have been developed with a major focus on photodynamic therapy-based cancer treatment alone or in combination with pre-existing treatment methods. Recently, immuno-photodynamic therapy has emerged as an effective cancer treatment method using smartly designed photosensitizers to initiate and engage the patient's immune system so as to empower the photosensitizing effect. In this review, we have discussed various types of photosensitizers, their clinical and non-clinical applications, and implementation toward intelligent efficacy, ROS efficiency, and target specificity in biological systems.
Collapse
Affiliation(s)
- Suman Das
- Department of Biotechnology, Faculty of Life Sciences and Environment, Goa University, Taleigao Plateau, Goa 403206, India.
| | | | | | | | | |
Collapse
|
20
|
Al Mamun A, Akter A, Hossain S, Sarker T, Safa SA, Mustafa QG, Muhammad SA, Munir F. Role of NLRP3 inflammasome in liver disease. J Dig Dis 2020; 21:430-436. [PMID: 32585073 DOI: 10.1111/1751-2980.12918] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 05/17/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
Inflammasomes have become an important natural sensor of host immunity, and can protect various organs against pathogenic infections, metabolic syndromes, cellular stress and cancer metastasis. Inflammasomes are intracellular multi-protein complexes found in both parenchymal and non-parenchymal cells, stimulating the initiation of caspase-1 and interleukin (IL)-1β and IL-18 in response to cell danger signals. Inflammasomes induce cell death mechanisms. The potential role of NOD-like receptor protein 3 (NLRP3) inflammasome in alcoholic and non-alcoholic steatohepatitis, hepatitis, nanoparticle-induced liver injury and other liver diseases has recently attracted widespread attention from clinicians and researchers. In this review we summarize the role played by the NLRP3 inflammasome in molecular and pathophysiological mechanisms in the pathogenesis and progression of liver disease. This article aims to establish that targeting the NLRP3 inflammasome and other inflammasome components may make a significant therapeutic approach to the treatment of liver disease.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Afroza Akter
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Sukria Hossain
- Department of Pharmacy, North South University, Dhaka, Bangladesh
| | - Tamanna Sarker
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | | | - Quazi G Mustafa
- School of International Studies, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Syed A Muhammad
- Institute of Molecular Biology and Biotechnology, Bahaudin Zakariya University, Multan, Pakistan
| | - Fahad Munir
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
21
|
Zheng Y, Li Z, Chen H, Gao Y. Nanoparticle-based drug delivery systems for controllable photodynamic cancer therapy. Eur J Pharm Sci 2020; 144:105213. [PMID: 31926941 DOI: 10.1016/j.ejps.2020.105213] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 01/10/2023]
Abstract
Compared with the traditional treatment, photodynamic therapy (PDT) in the treatment of malignant tumors has the advantages of less damage to normal tissues, quick therapeutic effect, and ability to repeat treatments to the same site. However, most of the traditional photosensitizers (PSs) have severe skin photosensitization, poor tumor targeting, and low therapeutic effect in hypoxic tumor environment, which limit the application of PDT. Nanoparticle-based drug delivery systems can improve the targeting of PSs and release drugs with controllable photoactivity at predetermined locations, so as to achieve desired therapeutic effects with minimal side-effects. The present review summarizes the current nanoparticle platforms for PDT, and offers the description of different strategies including tumor-targeted delivery, controlled-release of PSs and the triggered photoactivity to achieve controllable PDT by nanoparticle-based drug delivery systems. The challenges and prospects for further development of intelligent PSs for PDT are also discussed.
Collapse
Affiliation(s)
- Yilin Zheng
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China
| | - Ziying Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China
| | - Haijun Chen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China.
| |
Collapse
|
22
|
Luchini A, Vitiello G. Understanding the Nano-bio Interfaces: Lipid-Coatings for Inorganic Nanoparticles as Promising Strategy for Biomedical Applications. Front Chem 2019; 7:343. [PMID: 31165058 PMCID: PMC6534186 DOI: 10.3389/fchem.2019.00343] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/25/2019] [Indexed: 12/26/2022] Open
Abstract
Inorganic nanoparticles (NPs) exhibit relevant physical properties for application in biomedicine and specifically for both the diagnosis and therapy (i.e. theranostic) of severe pathologies, such as cancer. The inorganic NP core is often not stable in aqueous suspension and can induce cytotoxic effects. For this reason, over the years, several coating strategies were suggested to improve the NP stability in aqueous solutions as well as the NP biocompatibility. Among the various components which can be used for NP coatings, lipids, and in particular phospholipids emerged as versatile molecular building blocks for the production of NP coatings suitable for biomedical application. The recent synthetic efforts in NP lipid coatings allows today to introduce on the NP surface a large variety of lipid molecules eventually in mixture with amphiphilic or hydrophobic drugs or active molecules for cell targeting. In this review, the most relevant examples of NP lipid-coatings are presented and grouped in two main categories: supported lipid bilayers (SLB) and hybrid lipid bilayers (HLB). The discussed scientific cases take into account the most commonly used inorganic NP for biomedical applications in cancer therapy and diagnosis.
Collapse
Affiliation(s)
| | - Giuseppe Vitiello
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
- CSGI, Center for Colloids and Surface Science, Sesto Fiorentino, Italy
| |
Collapse
|