1
|
Li XY, Qiu CM, Yang FY, Li XC, Fang YQ, Yang YJ. Protective effects of Prussian blue nanozyme against sepsis-induced acute lung injury by activating HO-1. Eur J Pharmacol 2024; 968:176354. [PMID: 38316248 DOI: 10.1016/j.ejphar.2024.176354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
Sepsis is a life-threatening condition involving dysfunctional organ responses stemming from dysregulated host immune reactions to various infections. The lungs are most prone to failure during sepsis, resulting in acute lung injury (ALI). ALI is associated with oxidative stress and inflammation, and current therapeutic strategies are limited. To develop a more specific treatment, this study aimed to synthesise Prussian blue nanozyme (PBzyme), which can reduce oxidative stress and inflammation, to alleviate ALI. PBzyme with good biosafety was synthesised using a modified hydrothermal method. PBzyme was revealed to be an activator of haem oxygenase-1 (HO-1), improving survival rate and ameliorating lung injury in mice. Zinc protoporphyrin, an inhibitor of HO-1, inhibited the prophylactic therapeutic efficacy of PBzyme on ALI, and affected the nuclear factor-κB signaling pathway and activity of HO-1. This study demonstrates that PBzyme can alleviate oxidative stress and inflammation through HO-1 and has a prophylactic therapeutic effect on ALI. This provides a new strategy and direction for the clinical treatment of sepsis-induced ALI.
Collapse
Affiliation(s)
- Xing-Yue Li
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, P.R. China; Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, P.R. China
| | - Chen-Ming Qiu
- Department of Burn and Plastic Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan, P.R. China
| | - Feng-Yuan Yang
- Department of Nephrology, General Hospital of Western Theater Command, Chengdu, Sichuan, P.R. China
| | - Xiu-Chuan Li
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, P.R. China
| | - Yu-Qiang Fang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Yong-Jian Yang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, P.R. China; Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, P.R. China.
| |
Collapse
|
2
|
Linnemann C, Sahin F, Chen Y, Falldorf K, Ronniger M, Histing T, Nussler AK, Ehnert S. NET Formation Was Reduced via Exposure to Extremely Low-Frequency Pulsed Electromagnetic Fields. Int J Mol Sci 2023; 24:14629. [PMID: 37834077 PMCID: PMC10572227 DOI: 10.3390/ijms241914629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Fracture-healing is a highly complex and timely orchestrated process. Non-healing fractures are still a major clinical problem and treatment remains difficult. A 16 Hz extremely low-frequency pulsed electromagnetic field (ELF-PEMF) was identified as non-invasive adjunct therapy supporting bone-healing by inducing reactive oxygen species (ROS) and Ca2+-influx. However, ROS and Ca2+-influx may stimulate neutrophils, the first cells arriving at the wounded site, to excessively form neutrophil extracellular traps (NETs), which negatively affects the healing process. Thus, this study aimed to evaluate the effect of this 16 Hz ELF-PEMF on NET formation. Neutrophils were isolated from healthy volunteers and exposed to different NET-stimuli and the 16 Hz ELF-PEMF. NETs were quantified using Sytox Green Assay and immunofluorescence, Ca2+-influx and ROS with fluorescence probes. In contrast to mesenchymal cells, ELF-PEMF exposure did not induce ROS and Ca2+-influx in neutrophils. ELF-PEMF exposure did not result in basal or enhanced PMA-induced NET formation but did reduce the amount of DNA released. Similarly, NET formation induced by LPS and H2O2 was reduced through exposure to ELF-PEMF. As ELF-PEMF exposure did not induce NET release or negatively affect neutrophils, the ELF-PEMF exposure can be started immediately after fracture treatment.
Collapse
Affiliation(s)
- Caren Linnemann
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tübingen, Eberhard Karls Universität Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (C.L.); (A.K.N.)
| | - Filiz Sahin
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tübingen, Eberhard Karls Universität Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (C.L.); (A.K.N.)
| | - Yangmengfan Chen
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tübingen, Eberhard Karls Universität Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (C.L.); (A.K.N.)
| | - Karsten Falldorf
- Sachtleben GmbH, Haus Spectrum am UKE, Martinistraße 64, 20251 Hamburg, Germany
| | - Michael Ronniger
- Sachtleben GmbH, Haus Spectrum am UKE, Martinistraße 64, 20251 Hamburg, Germany
| | - Tina Histing
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tübingen, Eberhard Karls Universität Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (C.L.); (A.K.N.)
| | - Andreas K. Nussler
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tübingen, Eberhard Karls Universität Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (C.L.); (A.K.N.)
| | - Sabrina Ehnert
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tübingen, Eberhard Karls Universität Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (C.L.); (A.K.N.)
| |
Collapse
|
3
|
Tarudji AW, Miller HA, Curtis ET, Porter CL, Madsen GL, Kievit FM. Sex-based differences of antioxidant enzyme nanoparticle effects following traumatic brain injury. J Control Release 2023; 355:149-159. [PMID: 36720285 PMCID: PMC10006352 DOI: 10.1016/j.jconrel.2023.01.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/06/2023] [Accepted: 01/25/2023] [Indexed: 02/02/2023]
Abstract
Following traumatic brain injury (TBI), reactive oxygen species (ROS) are released in excess, causing oxidative stress, carbonyl stress, and cell death, which induce the additional release of ROS. The limited accumulation and retention of small molecule antioxidants commonly used in clinical trials likely limit the target engagement and therapeutic effect in reducing secondary injury. Small molecule drugs also need to be administered every several hours to maintain bioavailability in the brain. Therefore, there is a need for a burst and sustained release system with high accumulation and retention in the injured brain. Here, we utilized Pro-NP™ with a size of 200 nm, which was designed to have a burst and sustained release of encapsulated antioxidants, Cu/Zn superoxide dismutase (SOD1) and catalase (CAT), to scavenge ROS for >24 h post-injection. Here, we utilized a controlled cortical impact (CCI) mouse model of TBI and found the accumulation of Pro-NP™ in the brain lesion was highest when injected immediately after injury, with a reduction in the accumulation with delayed administration of 1 h or more post-injury. Pro-NP™ treatment with 9000 U/kg SOD1 and 9800 U/kg CAT gave the highest reduction in ROS in both male and female mice. We found that Pro-NP™ treatment was effective in reducing carbonyl stress and necrosis at 1 d post-injury in the contralateral hemisphere in male mice, which showed a similar trend to untreated female mice. Although we found that male and female mice similarly benefit from Pro-NP™ treatment in reducing ROS levels 4 h post-injury, Pro-NP™ treatment did not significantly affect markers of post-traumatic oxidative stress in female CCI mice as compared to male CCI mice. These findings of protection by Pro-NP™ in male mice did not extend to 7 d post-injury, which suggests subsequent treatments with Pro-NP™ may be needed to afford protection into the chronic phase of injury. Overall, these different treatment effects of Pro-NP™ between male and female mice suggest important sex-based differences in response to antioxidant nanoparticle delivery and that there may exist a maximal benefit from local antioxidant activity in injured brain.
Collapse
Affiliation(s)
- Aria W Tarudji
- Department of Biological Systems Engineering, University of Nebraska - Lincoln, 262 Morrison Center, Lincoln, NE 68583, USA
| | - Hunter A Miller
- Department of Biological Systems Engineering, University of Nebraska - Lincoln, 262 Morrison Center, Lincoln, NE 68583, USA; ProTransit Nanotherapy, 16514L St., Omaha, NE 68135, USA
| | - Evan T Curtis
- Department of Biological Systems Engineering, University of Nebraska - Lincoln, 262 Morrison Center, Lincoln, NE 68583, USA
| | | | - Gary L Madsen
- ProTransit Nanotherapy, 16514L St., Omaha, NE 68135, USA
| | - Forrest M Kievit
- Department of Biological Systems Engineering, University of Nebraska - Lincoln, 262 Morrison Center, Lincoln, NE 68583, USA.
| |
Collapse
|
4
|
Zadory M, Lopez E, Babity S, Gravel SP, Brambilla D. Current knowledge on the tissue distribution of mRNA nanocarriers for therapeutic protein expression. Biomater Sci 2022; 10:6077-6115. [PMID: 36097955 DOI: 10.1039/d2bm00859a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exogenously delivered mRNA-based drugs are emerging as a new class of therapeutics with the potential to treat several diseases. Over the last decade, advancements in the design of non-viral delivery tools have enabled mRNA to be evaluated for several therapeutic purposes including protein replacement therapies, gene editing, and vaccines. However, in vivo delivery of mRNA to targeted organs and cells remains a critical challenge. Evaluation of the biodistribution of mRNA vehicles is of utmost importance for the development of effective pharmaceutical candidates. In this review, we discuss the recent advances in the design of nanoparticles loaded with mRNA and extrapolate the key factors influencing their biodistribution following administration. Finally, we highlight the latest developments in the preclinical and clinical translation of mRNA therapeutics for protein supplementation therapy.
Collapse
Affiliation(s)
- Matthias Zadory
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, Canada, H3T 1J4.
| | - Elliot Lopez
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, Canada, H3T 1J4.
| | - Samuel Babity
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, Canada, H3T 1J4.
| | - Simon-Pierre Gravel
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, Canada, H3T 1J4.
| | - Davide Brambilla
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, Canada, H3T 1J4.
| |
Collapse
|
5
|
Zhang Z, Dalan R, Hu Z, Wang JW, Chew NW, Poh KK, Tan RS, Soong TW, Dai Y, Ye L, Chen X. Reactive Oxygen Species Scavenging Nanomedicine for the Treatment of Ischemic Heart Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202169. [PMID: 35470476 DOI: 10.1002/adma.202202169] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Ischemic heart disease (IHD) is the leading cause of disability and mortality worldwide. Reactive oxygen species (ROS) have been shown to play key roles in the progression of diabetes, hypertension, and hypercholesterolemia, which are independent risk factors that lead to atherosclerosis and the development of IHD. Engineered biomaterial-based nanomedicines are under extensive investigation and exploration, serving as smart and multifunctional nanocarriers for synergistic therapeutic effect. Capitalizing on cell/molecule-targeting drug delivery, nanomedicines present enhanced specificity and safety with favorable pharmacokinetics and pharmacodynamics. Herein, the roles of ROS in both IHD and its risk factors are discussed, highlighting cardiovascular medications that have antioxidant properties, and summarizing the advantages, properties, and recent achievements of nanomedicines that have ROS scavenging capacity for the treatment of diabetes, hypertension, hypercholesterolemia, atherosclerosis, ischemia/reperfusion, and myocardial infarction. Finally, the current challenges of nanomedicines for ROS-scavenging treatment of IHD and possible future directions are discussed from a clinical perspective.
Collapse
Affiliation(s)
- Zhan Zhang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 408433, Singapore
| | - Zhenyu Hu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Jiong-Wei Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Diagnostic Radiology and Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Nicholas Ws Chew
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, 119074, Singapore
| | - Kian-Keong Poh
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, 119074, Singapore
| | - Ru-San Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore, 119609, Singapore
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macao, Taipa, Macau SAR, 999078, China
| | - Lei Ye
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology and Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Chemical and Biomolecular Engineering and Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
6
|
Wound Repair and Extremely Low Frequency-Electromagnetic Field: Insight from In Vitro Study and Potential Clinical Application. Int J Mol Sci 2021; 22:ijms22095037. [PMID: 34068809 PMCID: PMC8126245 DOI: 10.3390/ijms22095037] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Wound healing is a complex, staged process. It involves extensive communication between the different cellular constituents of various compartments of the skin and its extracellular matrix (ECM). Different signaling pathways are determined by a mutual influence on each other, resulting in a dynamic and complex crosstalk. It consists of various dynamic processes including a series of overlapping phases: hemostasis, inflammation response, new tissue formation, and tissue remodeling. Interruption or deregulation of one or more of these phases may lead to non-healing (chronic) wounds. The most important factor among local and systemic exogenous factors leading to a chronic wound is infection with a biofilm presence. In the last few years, an increasing number of reports have evaluated the effects of extremely low frequency (ELF) electromagnetic fields (EMFs) on tissue repair. Each experimental result comes from a single element of this complex process. An interaction between ELF-EMFs and healing has shown to effectively modulate inflammation, protease matrix rearrangement, neo-angiogenesis, senescence, stem-cell proliferation, and epithelialization. These effects are strictly related to the time of exposure, waveform, frequency, and amplitude. In this review, we focus on the effect of ELF-EMFs on different wound healing phases.
Collapse
|
7
|
Ji C, Pan Y, Xu S, Yu C, Ji J, Chen M, Hu F. Propolis ameliorates restenosis in hypercholesterolemia rabbits with carotid balloon injury by inhibiting lipid accumulation, oxidative stress, and TLR4/NF-κB pathway. J Food Biochem 2021; 45:e13577. [PMID: 33729587 DOI: 10.1111/jfbc.13577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022]
Abstract
Neointima formation and atherosclerosis are the main complications after the endovascular intervention and vascular surgery, and there are no effective drugs. Propolis is a kind of resin substance produced by honeybees and has numerous health-beneficial effects. In this study, we evaluated the effects of propolis (125 and 250 mg·kg-1 ·day-1 , 6 weeks) on carotid restenosis in hypercholesterolemia rabbits. Propolis significantly ameliorated the degree of carotid restenosis, inhibited neointima hyperplasia, reduced serum lipids profile, and enhanced the anti-oxidative activities in hypercholesterolemia rabbits. Furthermore, propolis reduced the plasma levels of C-reactive protein, interleukin-6, and tumor necrosis factor-α (TNF-α), and inhibited the expression of CD68, TLR4, NF-κB p65, MMP-9, and TNF-α in the carotid arteries. The results indicate that propolis has a protective effect on carotid restenosis in rabbits, which is associated with regulating blood lipids, inhibiting oxidative stress and inflammation, and its anti-inflammatory activity may be related to inhibit TLR4-mediated NF-κB signaling pathway. PRACTICAL APPLICATIONS: Restenosis is a primary challenge in angioplasty and atherosclerotic treatment. Hyperlipidemia can induce inflammation and accelerate the formation of restenosis. Recently, natural products have been widely used to prevent intimal hyperplasia of common cardiovascular diseases. Propolis is currently a popular functional food, but the role of propolis on carotid restenosis after angioplasty and its underlying mechanism remains unclear. This study showed that propolis inhibits the effect of carotid restenosis in hypercholesterolemia rabbits. The results of this study may provide a basis for propolis to prevent and treat vascular restenosis.
Collapse
Affiliation(s)
- Chao Ji
- Huai'an Bee Products Engineering Research Center, Huai'an, China
| | - Yongming Pan
- Comparative Medical Research Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Songtao Xu
- Comparative Medical Research Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chen Yu
- Comparative Medical Research Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jian Ji
- Huai'an Bee Products Engineering Research Center, Huai'an, China
| | - Minli Chen
- Comparative Medical Research Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Parhiz H, Shuvaev VV, Pardi N, Khoshnejad M, Kiseleva RY, Brenner JS, Uhler T, Tuyishime S, Mui BL, Tam YK, Madden TD, Hope MJ, Weissman D, Muzykantov VR. PECAM-1 directed re-targeting of exogenous mRNA providing two orders of magnitude enhancement of vascular delivery and expression in lungs independent of apolipoprotein E-mediated uptake. J Control Release 2018; 291:106-115. [PMID: 30336167 PMCID: PMC6477695 DOI: 10.1016/j.jconrel.2018.10.015] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 12/13/2022]
Abstract
Systemic administration of lipid nanoparticle (LNP)-encapsulated messenger RNA (mRNA) leads predominantly to hepatic uptake and expression. Here, we conjugated nucleoside-modified mRNA-LNPs with antibodies (Abs) specific to vascular cell adhesion molecule, PECAM-1. Systemic (intravenous) administration of Ab/LNP-mRNAs resulted in profound inhibition of hepatic uptake concomitantly with ~200-fold and 25-fold elevation of mRNA delivery and protein expression in the lungs compared to non-targeted counterparts. Unlike hepatic delivery of LNP-mRNA, Ab/LNP-mRNA is independent of apolipoprotein E. Vascular re-targeting of mRNA represents a promising, powerful, and unique approach for novel experimental and clinical interventions in organs of interest other than liver.
Collapse
Affiliation(s)
- Hamideh Parhiz
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Vladimir V Shuvaev
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Makan Khoshnejad
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Raisa Yu Kiseleva
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob S Brenner
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Uhler
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven Tuyishime
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC V6T 1Z3, Canada
| | | | | | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Vladimir R Muzykantov
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Oxidative stress in chronic lung disease: From mitochondrial dysfunction to dysregulated redox signaling. Mol Aspects Med 2018; 63:59-69. [PMID: 30098327 DOI: 10.1016/j.mam.2018.08.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022]
Abstract
The lung is a delicate organ with a large surface area that is continuously exposed to the external environment, and is therefore highly vulnerable to exogenous sources of oxidative stress. In addition, each of its approximately 40 cell types can also generate reactive oxygen species (ROS), as byproducts of cellular metabolism and in a more regulated manner by NOX enzymes with functions in host defense, immune regulation, and cell proliferation or differentiation. To effectively regulate the biological actions of exogenous and endogenous ROS, various enzymatic and non-enzymatic antioxidant defense systems are present in all lung cell types to provide adequate protection against their injurious effects and to allow for appropriate ROS-mediated biological signaling. Acute and chronic lung diseases are commonly thought to be associated with increased oxidative stress, evidenced by altered cellular or extracellular redox status, increased irreversible oxidative modifications in proteins or DNA, mitochondrial dysfunction, and altered expression or activity of NOX enzymes and antioxidant enzyme systems. However, supplementation strategies with generic antioxidants have been minimally successful in prevention or treatment of lung disease, most likely due to their inability to distinguish between harmful and beneficial actions of ROS. Recent studies have attempted to identify specific redox-based mechanisms that may mediate chronic lung disease, such as allergic asthma or pulmonary fibrosis, which provide opportunities for selective redox-based therapeutic strategies that may be useful in treatment of these diseases.
Collapse
|
10
|
Ross CL, Pettenati MJ, Procita J, Cathey L, George SK, Almeida-Porada G. Evaluation of Cytotoxic and Genotoxic Effects of Extremely Low-frequency Electromagnetic Field on Mesenchymal Stromal Cells. Glob Adv Health Med 2018; 7:2164956118777472. [PMID: 29796339 PMCID: PMC5960853 DOI: 10.1177/2164956118777472] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/29/2018] [Accepted: 04/05/2018] [Indexed: 01/01/2023] Open
Abstract
Background Interest in the use of extremely low-frequency (ELF) electromagnetic field (EMF) for the treatment of pain and inflammation is increasing due to the ability of this promising therapy to compete with pharmaceuticals without the adverse effects caused by drugs. However, there continues to be concerns regarding cytotoxic and genotoxic effects that may occur as a result of exposure to EMF. Objective To investigate this concern, we tested the effect of our known therapeutic 5 Hz, 0.4 milliTesla (mT) EMF on a human mesenchymal stromal cell (hMSC) line to determine whether ELF-EMF exposure would cause cytotoxic or genotoxic effects. Methods Treated samples along with controls were exposed to 5 Hz, 0.4 mT ELF-EMF for 20 min/day, 3×/week for 2 weeks and then assayed for cell viability, proliferation rates, and chromosome breaks. Results Cytogenetic analysis of the viability and proliferation rates along with analysis of morphological genome stability showed no cytotoxicity, and no chromosome breaks per karyotype analysis—therefore no genotoxicity. Conclusion Exposure to an ELF-EMF of 5 Hz, 0.4 mT for 20 min/day, 3×/week for 2 weeks does not cause cytotoxic or genotoxic effects in hMSCs.
Collapse
Affiliation(s)
- Christina L Ross
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Wake Forest Center for Integrative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Mark J Pettenati
- Department of Genetics, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - Joseph Procita
- Department of Genetics, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - Lisa Cathey
- Department of Genetics, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - Sunil K George
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Graca Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
11
|
Dong X, Niu Y, Ding Y, Wang Y, Zhao J, Leng W, Qin L. Formulation and Drug Loading Features of Nano-Erythrocytes. NANOSCALE RESEARCH LETTERS 2017; 12:202. [PMID: 28314369 PMCID: PMC5355415 DOI: 10.1186/s11671-017-1980-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/06/2017] [Indexed: 06/06/2023]
Abstract
Nano erythrocyte ghosts have recently been used as drug carriers of water-soluble APIs due to inherit biological characteristics of good compatibility, low toxicity, and small side-effect. In this study, we developed a novel drug delivery system based on nano erythrocyte ghosts (STS-Nano-RBCs) to transport Sodium Tanshinone IIA sulfonate (STS) for intravenous use in rat. STS-Nano-RBCs were prepared by hypotonic lysis and by extrusion methods, and its biological properties were investigated compared with STS injection. The results revealed that STS-Nano-RBCs have narrow particle size distribution, good drug loading efficiency, and good stability within 21 days. Compared with STS injection, STS-Nano-RBCs extended the drug release time in vitro and in vivo with better repairing effect on oxidative stress-impaired endothelial cells. These results suggest that the nano erythrocyte ghosts system could be used to deliver STS.
Collapse
Affiliation(s)
- Xiaoting Dong
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, No. 280 Waihuandong Road, Guangzhou, 510006, China
| | - Yawei Niu
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, No. 280 Waihuandong Road, Guangzhou, 510006, China
| | - Yi Ding
- Guangzhou Institute for Drug Control, 23 Xizeng Road, Guangzhou, 510160, China
| | - Yuemin Wang
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, No. 280 Waihuandong Road, Guangzhou, 510006, China
| | - Jialan Zhao
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, No. 280 Waihuandong Road, Guangzhou, 510006, China
| | - Wei Leng
- Jacobson Pharma Group, 7 Dai Shun Street, Tai Po District, NT, Hong Kong
| | - Linghao Qin
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, No. 280 Waihuandong Road, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Goitre L, DiStefano PV, Moglia A, Nobiletti N, Baldini E, Trabalzini L, Keubel J, Trapani E, Shuvaev VV, Muzykantov VR, Sarelius IH, Retta SF, Glading AJ. Up-regulation of NADPH oxidase-mediated redox signaling contributes to the loss of barrier function in KRIT1 deficient endothelium. Sci Rep 2017; 7:8296. [PMID: 28811547 PMCID: PMC5558000 DOI: 10.1038/s41598-017-08373-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/07/2017] [Indexed: 01/13/2023] Open
Abstract
The intracellular scaffold KRIT1/CCM1 is an established regulator of vascular barrier function. Loss of KRIT1 leads to decreased microvessel barrier function and to the development of the vascular disorder Cerebral Cavernous Malformation (CCM). However, how loss of KRIT1 causes the subsequent deficit in barrier function remains undefined. Previous studies have shown that loss of KRIT1 increases the production of reactive oxygen species (ROS) and exacerbates vascular permeability triggered by several inflammatory stimuli, but not TNF−α. We now show that endothelial ROS production directly contributes to the loss of barrier function in KRIT1 deficient animals and cells, as targeted antioxidant enzymes reversed the increase in permeability in KRIT1 heterozygous mice as shown by intravital microscopy. Rescue of the redox state restored responsiveness to TNF-α in KRIT1 deficient arterioles, but not venules. In vitro, KRIT1 depletion increased endothelial ROS production via NADPH oxidase signaling, up-regulated Nox4 expression, and promoted NF-κB dependent promoter activity. Recombinant yeast avenanthramide I, an antioxidant and inhibitor of NF-κB signaling, rescued barrier function in KRIT1 deficient cells. However, KRIT1 depletion blunted ROS production in response to TNF-α. Together, our data indicate that ROS signaling is critical for the loss of barrier function following genetic deletion of KRIT1.
Collapse
Affiliation(s)
- Luca Goitre
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Peter V DiStefano
- Department of Pharmacology and Physiology, University of Rochester, New York, USA
| | - Andrea Moglia
- Department of Agriculture, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, Torino, Italy
| | - Nicholas Nobiletti
- Department of Pharmacology and Physiology, University of Rochester, New York, USA
| | - Eva Baldini
- Department of Pharmacology and Physiology, University of Rochester, New York, USA.,Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Lorenza Trabalzini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Julie Keubel
- Department of Pharmacology and Physiology, University of Rochester, New York, USA
| | - Eliana Trapani
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Vladimir V Shuvaev
- Department of Pharmacology, University of Pennsylvania, Pennsylvania, USA
| | | | - Ingrid H Sarelius
- Department of Pharmacology and Physiology, University of Rochester, New York, USA
| | | | - Angela J Glading
- Department of Pharmacology and Physiology, University of Rochester, New York, USA.
| |
Collapse
|
13
|
Daiber A, Steven S, Weber A, Shuvaev VV, Muzykantov VR, Laher I, Li H, Lamas S, Münzel T. Targeting vascular (endothelial) dysfunction. Br J Pharmacol 2017; 174:1591-1619. [PMID: 27187006 PMCID: PMC5446575 DOI: 10.1111/bph.13517] [Citation(s) in RCA: 341] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/28/2016] [Accepted: 05/09/2016] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases are major contributors to global deaths and disability-adjusted life years, with hypertension a significant risk factor for all causes of death. The endothelium that lines the inner wall of the vasculature regulates essential haemostatic functions, such as vascular tone, circulation of blood cells, inflammation and platelet activity. Endothelial dysfunction is an early predictor of atherosclerosis and future cardiovascular events. We review the prognostic value of obtaining measurements of endothelial function, the clinical techniques for its determination, the mechanisms leading to endothelial dysfunction and the therapeutic treatment of endothelial dysfunction. Since vascular oxidative stress and inflammation are major determinants of endothelial function, we have also addressed current antioxidant and anti-inflammatory therapies. In the light of recent data that dispute the prognostic value of endothelial function in healthy human cohorts, we also discuss alternative diagnostic parameters such as vascular stiffness index and intima/media thickness ratio. We also suggest that assessing vascular function, including that of smooth muscle and even perivascular adipose tissue, may be an appropriate parameter for clinical investigations. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- Andreas Daiber
- Center of CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
- German Center for Cardiovascular Research (DZHK)Partner Site Rhine‐MainMainzGermany
| | - Sebastian Steven
- Center of CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
- Center of Thrombosis and HemostasisMedical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Alina Weber
- Center of CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Vladimir V. Shuvaev
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Vladimir R. Muzykantov
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Ismail Laher
- Department of Pharmacology and Therapeutics, Faculty of MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Huige Li
- German Center for Cardiovascular Research (DZHK)Partner Site Rhine‐MainMainzGermany
- Department of PharmacologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Santiago Lamas
- Department of Cell Biology and ImmunologyCentro de Biología Molecular "Severo Ochoa" (CSIC‐UAM)MadridSpain
| | - Thomas Münzel
- Center of CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
- German Center for Cardiovascular Research (DZHK)Partner Site Rhine‐MainMainzGermany
| |
Collapse
|
14
|
Sun X, Mathew B, Sammani S, Jacobson JR, Garcia JGN. Simvastatin-induced sphingosine 1-phosphate receptor 1 expression is KLF2-dependent in human lung endothelial cells. Pulm Circ 2017; 7:117-125. [PMID: 28680571 PMCID: PMC5448536 DOI: 10.1177/2045893217701162] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/03/2017] [Indexed: 11/18/2022] Open
Abstract
We have demonstrated that simvastatin and sphingosine 1−phosphate (S1P) both attenuate increased vascular permeability in preclinical models of acute respiratory distress syndrome. However, the underlying mechanisms remain unclear. As Krüppel-like factor 2 (KLF2) serves as a critical regulator for cellular stress response in endothelial cells (EC), we hypothesized that simvastatin enhances endothelial barrier function via increasing expression of the barrier-promoting S1P receptor, S1PR1, via a KLF2-dependent mechanism. S1PR1 luciferase reporter promoter activity in human lung artery EC (HPAEC) was tested after simvastatin (5 μM), and S1PR1 and KLF2 protein expression detected by immunoblotting. In vivo, transcription and expression of S1PR1 and KLF2 in mice lungs were detected by microarray profiling and immunoblotting after exposure to simvastatin (10 mg/kg). Endothelial barrier function was measured by trans-endothelial electrical resistance with the S1PR1 agonist FTY720-(S)-phosphonate. Both S1PR1 and KLF2 gene expression (mRNA, protein) were significantly increased by simvastatin in vitro and in vivo. S1PR1 promoter activity was significantly increased by simvastatin (P < 0.05), which was significantly attenuated by KLF2 silencing (siRNA). Simvastatin induced KLF2 recruitment to the S1PR1 promoter, and consequently, significantly augmented the effects of the S1PR1 agonist on EC barrier enhancement (P < 0.05), which was significantly attenuated by KLF2 silencing (P < 0.05). These results suggest that simvastatin upregulates S1PR1 transcription and expression via the transcription factor KLF2, and consequently augments the effects of S1PR1 agonists on preserving vascular barrier integrity. These results may lead to novel combinatorial therapeutic strategies for lung inflammatory syndromes.
Collapse
Affiliation(s)
- Xiaoguang Sun
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Biji Mathew
- Division of Pulmonary, Critical Care, Sleep & Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Jeffrey R Jacobson
- Division of Pulmonary, Critical Care, Sleep & Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Joe G N Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| |
Collapse
|
15
|
Du R, Wang JL, Wang YL. Role of RhoA/MERK1/ERK1/2/iNOS signaling in ocular ischemic syndrome. Graefes Arch Clin Exp Ophthalmol 2016; 254:2217-2226. [DOI: 10.1007/s00417-016-3456-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/18/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022] Open
|
16
|
Sakai S, Nomura K, Mochizuki K, Taya M. Anchoring PEG-oleate to cell membranes stimulates reactive oxygen species production. Colloids Surf B Biointerfaces 2016; 147:336-342. [PMID: 27544656 DOI: 10.1016/j.colsurfb.2016.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/27/2016] [Accepted: 08/11/2016] [Indexed: 11/16/2022]
Abstract
Polyethylene glycol (PEG) derivatives possessing oleyl and reactive groups for conjugating functional substrates, such as proteins and quantum dots, are useful materials for cell-surface engineering and cell immobilization onto substrates. The reagent is known as a biocompatible anchor for cell membranes (BAM). Here, BAM-anchoring on cell membranes is reported to stimulate reactive oxygen species (ROS) production in those cells. Significant increases in ROS production and release to the surrounding environment were detected in mouse fibroblast cell line 10T1/2 when soaked in a solution containing BAM conjugated with 1/10mol/mol bovine serum albumin at 1.5μM-protein. ROS production stimulation was confirmed to be independent of the protein crosslinked with BAM and of cell type. Similar stimulation was detected for BAMs conjugated with ovalbumin and casein, in human hepatoma cell line HepG2, and human umbilical vein endothelial cells. Considering the effects of ROS on a variety of cellular processes, these results demonstrated the necessity for focusing attention on the effects of generated and released ROS on the behaviors of cells in the studies applying BAM to cells.
Collapse
Affiliation(s)
- Shinji Sakai
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-Cho, Toyonaka, Osaka 560-8531, Japan.
| | - Koujiro Nomura
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-Cho, Toyonaka, Osaka 560-8531, Japan
| | - Kei Mochizuki
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-Cho, Toyonaka, Osaka 560-8531, Japan
| | - Masahito Taya
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-Cho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
17
|
Beyer AM, Freed JK, Durand MJ, Riedel M, Ait-Aissa K, Green P, Hockenberry JC, Morgan RG, Donato AJ, Peleg R, Gasparri M, Rokkas CK, Santos JH, Priel E, Gutterman DD. Critical Role for Telomerase in the Mechanism of Flow-Mediated Dilation in the Human Microcirculation. Circ Res 2015; 118:856-66. [PMID: 26699654 PMCID: PMC4772813 DOI: 10.1161/circresaha.115.307918] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/21/2015] [Indexed: 02/02/2023]
Abstract
RATIONALE Telomerase is a nuclear regulator of telomere elongation with recent reports suggesting a role in regulation of mitochondrial reactive oxygen species. Flow-mediated dilation in patients with cardiovascular disease is dependent on the formation of reactive oxygen species. OBJECTIVE We examined the hypothesis that telomerase activity modulates microvascular flow-mediated dilation, and loss of telomerase activity contributes to the change of mediator from nitric oxide to mitochondrial hydrogen peroxide in patients with coronary artery disease (CAD). METHODS AND RESULTS Human coronary and adipose arterioles were isolated for videomicroscopy. Flow-mediated dilation was measured in vessels pretreated with the telomerase inhibitor BIBR-1532 or vehicle. Statistical differences between groups were determined using a 2-way analysis of variance repeated measure (n≥4; P<0.05). L-NAME (N(ω)-nitro-L-arginine methyl ester; nitric oxide synthase inhibitor) abolished flow-mediated dilation in arterioles from subjects without CAD, whereas polyethylene glycol-catalase (PEG-catalase; hydrogen peroxide scavenger) had no effect. After exposure to BIBR-1532, arterioles from non-CAD subjects maintained the magnitude of dilation but changed the mediator from nitric oxide to mitochondrial hydrogen peroxide (% max diameter at 100 cm H2O: vehicle 74.6±4.1, L-NAME 37.0±2.0*, PEG-catalase 82.1±2.8; BIBR-1532 69.9±4.0, L-NAME 84.7±2.2, PEG-catalase 36.5±6.9*). Conversely, treatment of microvessels from CAD patients with the telomerase activator AGS 499 converted the PEG-catalase-inhibitable dilation to one mediated by nitric oxide (% max diameter at 100 cm H2O: adipose, AGS 499 78.5±3.9; L-NAME 10.9±17.5*; PEG-catalase 79.2±4.9). Endothelial-independent dilation was not altered with either treatment. CONCLUSIONS We have identified a novel role for telomerase in re-establishing a physiological mechanism of vasodilation in arterioles from subjects with CAD. These findings suggest a new target for reducing the oxidative milieu in the microvasculature of patients with CAD.
Collapse
Affiliation(s)
- Andreas M Beyer
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.).
| | - Julie K Freed
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - Matthew J Durand
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - Michael Riedel
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - Karima Ait-Aissa
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - Paula Green
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - Joseph C Hockenberry
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - R Garret Morgan
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - Anthony J Donato
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - Refael Peleg
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - Mario Gasparri
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - Chris K Rokkas
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - Janine H Santos
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - Esther Priel
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - David D Gutterman
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| |
Collapse
|
18
|
Sharifpanah F, De Silva S, Bekhite MM, Hurtado-Oliveros J, Preissner KT, Wartenberg M, Sauer H. Stimulation of vasculogenesis and leukopoiesis of embryonic stem cells by extracellular transfer RNA and ribosomal RNA. Free Radic Biol Med 2015; 89:1203-17. [PMID: 26524400 DOI: 10.1016/j.freeradbiomed.2015.10.423] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Cell injury releases nucleic acids supporting inflammation and stem cell activation. Here, the impact of extracellular ribonucleic acid, especially transfer RNA (ex-tRNA), on vasculogenesis and leukopoiesis of mouse embryonic stem (ES) cells was investigated. APPROACH AND RESULTS ex-tRNA, whole cell RNA and ribosomal RNA (ex-rRNA) but not DNA increased CD31-positive vascular structures in embryoid bodies. Ex-tRNA and ex-rRNA increased numbers of VEGFR2(+), CD31(+) and VE-cadherin(+) vascular cells as well as CD18(+), CD45(+) and CD68(+) cells, indicating leukocyte/macrophage differentiation. This was paralleled by mRNA and protein expression of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor-165 (VEGF165) and neuropilin 1 (NRP1), phosphorylation of phosphatidyl inositol 3-kinase (PI3K) and VEGF receptor 2 (VEGFR2) as well as mRNA expression of α-smooth muscle actin (α-SMA). ex-tRNA was taken up by endosomes, increased expression of the pro-angiogenic semaphorin B4 receptor plexin B1 as well as the ephrin-type B receptor 4 (EphB4) and ephrinB2 ligand and enhanced cell migration, which was inhibited by the VEGFR2 antagonist SU5614 and the PI3K inhibitor LY294002. This likewise abolished the effects of ex-tRNA on vasculogenesis and leukopoiesis of ES cells. Ex-tRNA increased NOX1, NOX2, NOX4 and DUOX2 mRNA and boosted the generation of superoxide and hydrogen peroxide which was inhibited by radical scavengers, the NADPH oxidase inhibitors apocynin, VAS2870, ML171, and plumbagin as well as shRNA silencing of NOX1 and NOX4. CONCLUSIONS Our findings indicate that ex-tRNA treatment induces vasculogenesis and leukopoiesis of ES cells via superoxide/hydrogen peroxide generated by NADPH oxidase and activation of VEGFR2 and PI3K.
Collapse
Affiliation(s)
- Fatemeh Sharifpanah
- Department of Physiology, Medical School, Justus Liebig University, Giessen, Germany
| | - Sepali De Silva
- Department of Physiology, Medical School, Justus Liebig University, Giessen, Germany
| | - Mohamed M Bekhite
- Clinic of Internal Medicine I, Cardiology Division, Friedrich Schiller University, Jena, Germany; Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | | | - Klaus T Preissner
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Maria Wartenberg
- Clinic of Internal Medicine I, Cardiology Division, Friedrich Schiller University, Jena, Germany
| | - Heinrich Sauer
- Department of Physiology, Medical School, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
19
|
Shuvaev VV, Brenner JS, Muzykantov VR. Targeted endothelial nanomedicine for common acute pathological conditions. J Control Release 2015; 219:576-595. [PMID: 26435455 DOI: 10.1016/j.jconrel.2015.09.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/16/2022]
Abstract
Endothelium, a thin monolayer of specialized cells lining the lumen of blood vessels is the key regulatory interface between blood and tissues. Endothelial abnormalities are implicated in many diseases, including common acute conditions with high morbidity and mortality lacking therapy, in part because drugs and drug carriers have no natural endothelial affinity. Precise endothelial drug delivery may improve management of these conditions. Using ligands of molecules exposed to the bloodstream on the endothelial surface enables design of diverse targeted endothelial nanomedicine agents. Target molecules and binding epitopes must be accessible to drug carriers, carriers must be free of harmful effects, and targeting should provide desirable sub-cellular addressing of the drug cargo. The roster of current candidate target molecules for endothelial nanomedicine includes peptidases and other enzymes, cell adhesion molecules and integrins, localized in different domains of the endothelial plasmalemma and differentially distributed throughout the vasculature. Endowing carriers with an affinity to specific endothelial epitopes enables an unprecedented level of precision of control of drug delivery: binding to selected endothelial cell phenotypes, cellular addressing and duration of therapeutic effects. Features of nanocarrier design such as choice of epitope and ligand control delivery and effect of targeted endothelial nanomedicine agents. Pathological factors modulate endothelial targeting and uptake of nanocarriers. Selection of optimal binding sites and design features of nanocarriers are key controllable factors that can be iteratively engineered based on their performance from in vitro to pre-clinical in vivo experimental models. Targeted endothelial nanomedicine agents provide antioxidant, anti-inflammatory and other therapeutic effects unattainable by non-targeted counterparts in animal models of common acute severe human disease conditions. The results of animal studies provide the basis for the challenging translation endothelial nanomedicine into the clinical domain.
Collapse
Affiliation(s)
- Vladimir V Shuvaev
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
20
|
Akhtar S, Al-Zaid B, El-Hashim AZ, Chandrasekhar B, Attur S, Yousif MHM, Benter IF. Cationic Polyamidoamine Dendrimers as Modulators of EGFR Signaling In Vitro and In Vivo. PLoS One 2015; 10:e0132215. [PMID: 26167903 PMCID: PMC4500564 DOI: 10.1371/journal.pone.0132215] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/11/2015] [Indexed: 11/18/2022] Open
Abstract
Cationic polyamidoamine (PAMAM) dendrimers are branch-like spherical polymers being investigated for a variety of applications in nanomedicine including nucleic acid drug delivery. Emerging evidence suggests they exhibit intrinsic biological and toxicological effects but little is known of their interactions with signal transduction pathways. We previously showed that the activated (fragmented) generation (G) 6 PAMAM dendrimer, Superfect (SF), stimulated epidermal growth factor receptor (EGFR) tyrosine kinase signaling-an important signaling cascade that regulates cell growth, survival and apoptosis- in cultured human embryonic kidney (HEK 293) cells. Here, we firstly studied the in vitro effects of Polyfect (PF), a non-activated (intact) G6 PAMAM dendrimer, on EGFR tyrosine kinase signaling via extracellular-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) in cultured HEK 293 cells and then compared the in vivo effects of a single administration (10mg/kg i.p) of PF or SF on EGFR signaling in the kidneys of normal and diabetic male Wistar rats. Polyfect exhibited a dose- and time-dependent inhibition of EGFR, ERK1/2 and p38 MAPK phosphorylation in HEK-293 cells similar to AG1478, a selective EGFR inhibitor. Administration of dendrimers to non-diabetic or diabetic animals for 24h showed that PF inhibited whereas SF stimulated EGFR phosphorylation in the kidneys of both sets of animals. PF-mediated inhibition of EGFR phosphorylation as well as SF or PF-mediated apoptosis in HEK 293 cells could be significantly reversed by co-treatment with antioxidants such as tempol implying that both these effects involved an oxidative stress-dependent mechanism. These results show for the first time that SF and PF PAMAM dendrimers can differentially modulate the important EGFR signal transduction pathway in vivo and may represent a novel class of EGFR modulators. These findings could have important clinical implications for the use of PAMAM dendrimers in nanomedicine.
Collapse
Affiliation(s)
- Saghir Akhtar
- Department of Pharmacology and Toxicology, Faculty of Medicine Kuwait University, Safat 13110, Jabriya, Kuwait
- * E-mail:
| | - Bashayer Al-Zaid
- Department of Pharmacology and Toxicology, Faculty of Medicine Kuwait University, Safat 13110, Jabriya, Kuwait
| | - Ahmed Z. El-Hashim
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Jabriya, Kuwait
| | - Bindu Chandrasekhar
- Department of Pharmacology and Toxicology, Faculty of Medicine Kuwait University, Safat 13110, Jabriya, Kuwait
| | - Sreeja Attur
- Department of Pharmacology and Toxicology, Faculty of Medicine Kuwait University, Safat 13110, Jabriya, Kuwait
| | - Mariam H. M. Yousif
- Department of Pharmacology and Toxicology, Faculty of Medicine Kuwait University, Safat 13110, Jabriya, Kuwait
| | - Ibrahim F. Benter
- Department of Pharmacology and Toxicology, Faculty of Medicine Kuwait University, Safat 13110, Jabriya, Kuwait
- Faculty of Medicine, Eastern Mediterranean University, Famagusta, North Cyprus
| |
Collapse
|
21
|
Castro JP, Ocampo YC, Franco LA. In vivo and in vitro anti-inflammatory activity of Cryptostegia grandiflora Roxb. ex R. Br. leaves. Biol Res 2015; 47:32. [PMID: 25204016 PMCID: PMC4117969 DOI: 10.1186/0717-6287-47-32] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Despite Cryptostegia grandiflora Roxb. ex R. Br. (Apocynaceae) leaves are widely used in folk Caribbean Colombian medicine for their anti-inflammatory effects, there are no studies that support this traditional use. Therefore, this work aimed to evaluate the effect of the total extract and primary fractions obtained from Cryptostegia grandiflora leaves, using in vivo and in vitro models of inflammation, and further get new insights on the mechanisms involved in this activity. Results Ethanolic extract of Cryptostegia grandiflora leaves, and its corresponding ether and dichloromethane fractions, significantly reduced inflammation and myeloperoxidase activity (MPO) in ear tissue of mice treated with 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Histological analysis revealed a reduction of edema and leukocyte infiltration. Complementarily, we demonstrated that extract and fractions reduced nitric oxide (NO•) and prostaglandin E2 (PGE2) production in LPS-stimulated RAW 264.7 macrophages, as well as scavenging activity on DPPH and ABTS radicals. Conclusions Our results demonstrated for the first time the anti-inflammatory activity of Cryptostegia grandiflora leaves, supporting its traditional use. This activity was related to inhibition of MPO activity, and PGE2 and NO• production. These mechanisms and its antioxidant activity could contribute, at least in part, to the anti-inflammatory effect showed by this plant.
Collapse
|
22
|
Muthuraman A, Kaur P, Kaur P, Singh H, Boparai PS. Ameliorative potential of vitamin P and digoxin in ischemic–reperfusion induced renal injury using the Langendorff apparatus. Life Sci 2015; 124:75-80. [DOI: 10.1016/j.lfs.2014.12.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 12/18/2014] [Accepted: 12/20/2014] [Indexed: 01/31/2023]
|
23
|
Fang Y, Li J, Ding M, Xu X, Zhang J, Jiao P, Han P, Wang J, Yao S. Ethanol extract of propolis protects endothelial cells from oxidized low density lipoprotein-induced injury by inhibiting lectin-like oxidized low density lipoprotein receptor-1-mediated oxidative stress. Exp Biol Med (Maywood) 2014; 239:1678-87. [PMID: 24962173 DOI: 10.1177/1535370214541911] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lectin-like oxidized low density lipoprotein receptor-1 (LOX-1), as the primary oxidized low-density lipoprotein (ox-LDL) receptor on endothelial cells, plays a crucial role in endothelial injury, which is a driving force in the initiation and development of atherosclerosis. Our previous studies have shown that ethanol extract of propolis (EEP) promotes reverse cholesterol transport and inhibits atherosclerotic lesion development. However, the protective effects of EEP against ox-LDL-induced injury in endothelial cells and the underlying mechanisms are still unknown. This study was designed to test the hypothesis that EEP attenuates ox-LDL-induced endothelial oxidative injury via modulation of LOX-1-mediated oxidative stress. Our results showed that exposure of human umbilical vein endothelial cells (HUVECs) to ox-LDL (100 mg/L) led to the decrease in cell viability and increase in lactate dehydrogenase (LDH) release, caspase-3 activation, and apoptosis, whereas pretreatment with EEP (7.5, 15 and 30 mg/L) protected against such damages in a dose-dependent manner. In addition, EEP mitigated ox-LDL uptake by HUVECs and attenuated ox-LDL-upregulated LOX-1 expression both at the mRNA and protein levels. Moreover, EEP suppressed the ox-LDL-induced oxidative stress as assessed by decreased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation, reactive oxygen species (ROS), and malondialdehyde (MDA) generation as well as increased antioxidant enzyme activities. Similar results were observed in the anti-LOX-1 antibody or diphenyleneiodonium (DPI)-pretreated HUVECs. These data indicate that EEP may protect HUVECs from ox-LDL-induced injury and that the mechanism at least partially involves its ability to inhibit endothelial LOX-1 upregulation and subsequent oxidative stress.
Collapse
Affiliation(s)
- Yongqi Fang
- College of Basic Medical Sciences, Taishan Medical University, Taian, Shandong 271000, China
| | - Jinguo Li
- College of Basic Medical Sciences, Taishan Medical University, Taian, Shandong 271000, China
| | - Mingde Ding
- Affiliated Hospital of Taishan Medical University, Taian, Shandong 271000, China
| | - Xiaoyan Xu
- College of Pharmacy, Taishan Medical University, Taian, Shandong 271000, China
| | - Jiajun Zhang
- Affiliated Hospital of Taishan Medical University, Taian, Shandong 271000, China
| | - Peng Jiao
- Institute of Atherosclerosis, Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, Taian, Shandong 271000, China
| | - Ping Han
- College of Basic Medical Sciences, Taishan Medical University, Taian, Shandong 271000, China
| | - Jiafu Wang
- College of Basic Medical Sciences, Taishan Medical University, Taian, Shandong 271000, China
| | - Shutong Yao
- College of Basic Medical Sciences, Taishan Medical University, Taian, Shandong 271000, China
| |
Collapse
|
24
|
Howard MD, Hood ED, Greineder CF, Alferiev IS, Chorny M, Muzykantov V. Targeting to endothelial cells augments the protective effect of novel dual bioactive antioxidant/anti-inflammatory nanoparticles. Mol Pharm 2014; 11:2262-70. [PMID: 24877560 PMCID: PMC4086738 DOI: 10.1021/mp400677y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxidative stress and inflammation are intertwined contributors to numerous acute vascular pathologies. A novel dual bioactive nanoparticle with antioxidant/anti-inflammatory properties was developed based on the interactions of tocopherol phosphate and the manganese porphyrin SOD mimetic, MnTMPyP. The size and drug incorporation efficiency were shown to be dependent on the amount of MnTMPyP added as well as the choice of surfactant. MnTMPyP was shown to retain its SOD-like activity while in intact particles and to release in a slow and controlled manner. Conjugation of anti-PECAM antibody to the nanoparticles provided endothelial targeting and potentiated nanoparticle-mediated suppression of inflammatory activation of these cells manifested by expression of VCAM, E-selectin, and IL-8. This nanoparticle technology may find applicability with drug combinations relevant for other pathologies.
Collapse
Affiliation(s)
- Melissa D Howard
- Department of Pharmacology and Center for Targeted Therapeutics and Translational Nanomedicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | | | | | | | | | | |
Collapse
|
25
|
Angiotensin-converting-enzyme inhibition counteracts angiotensin II-mediated endothelial cell dysfunction by modulating the p38/SirT1 axis. J Hypertens 2014; 31:1972-83. [PMID: 23868084 DOI: 10.1097/hjh.0b013e3283638b32] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Oxidative stress has been linked to endothelial dysfunction and angiotensin II stimulates the reactive oxygen species production contributing to several cardiovascular diseases. We have studied the chain of events induced by angiotensin-converting-enzyme (ACE) activation in vascular umbilical vein endothelial cells (HUVECs) by using an ACE inhibitor such as zofenoprilat. METHODS We used specific assay to measure the superoxide anion production, tetrazolium bromide (MTT) assay for cell viability, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay for cell apoptosis, and western blot for protein analysis in the study. RESULTS Zofenoprilat counteracts the superoxide anion production and cell apoptosis induced by angiotensin I treatment by blocking the extrinsic caspase cascade, NF-kB and p38 activation. p38 inhibitor SB203580 reverted the angiotensin II oxidant effects while the p38 constitutively activation, by MKK6 transfection, abrogated the zofenoprilat effects. Characterizing the zofenoprilat downstream effector we found that zofenoprilat reverted the SirT-1 downregulation induced by angiotensin II. p38 activation by angiotensin II was strictly correlated with SirT1 protein downregulation; SB203580 significantly prevented SirT1 downregulation induced by angiotensin II while the p38 constitutive activation abolished SIRT1 protein basal levels. p38 directly bound SirT1 sequestering it in the cytoplasm. SirT1 inhibition by sirtinol annulled zofenoprilat action while SirT1 overexpression reverted the cytotoxic effects of angiotensin II. Finally, zofenoprilat negatively controlled angiotensin I receptor protein expression through SirT1. CONCLUSION The p38-SirT1 axis is found markedly relevant in modulating the cardiovascular benefit deriving from ACE-inhibitors and might represent a novel target for innovative drugs in cardiovascular prevention.
Collapse
|
26
|
Hood ED, Chorny M, Greineder CF, S Alferiev I, Levy RJ, Muzykantov VR. Endothelial targeting of nanocarriers loaded with antioxidant enzymes for protection against vascular oxidative stress and inflammation. Biomaterials 2014; 35:3708-15. [PMID: 24480537 DOI: 10.1016/j.biomaterials.2014.01.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/08/2014] [Indexed: 12/11/2022]
Abstract
Endothelial-targeted delivery of antioxidant enzymes, catalase and superoxide dismutase (SOD), is a promising strategy for protecting organs and tissues from inflammation and oxidative stress. Here we describe Protective Antioxidant Carriers for Endothelial Targeting (PACkET), the first carriers capable of targeted endothelial delivery of both catalase and SOD. PACkET formed through controlled precipitation loaded ~30% enzyme and protected it from proteolytic degradation, whereas attachment of PECAM monoclonal antibodies to surface of the enzyme-loaded carriers, achieved without adversely affecting their stability and functionality, provided targeting. Isotope tracing and microscopy showed that PACkET exhibited specific endothelial binding and internalization in vitro. Endothelial targeting of PACkET was validated in vivo by specific (vs IgG-control) accumulation in the pulmonary vasculature after intravenous injection achieving 33% of injected dose at 30 min. Catalase loaded PACkET protects endothelial cells from killing by H2O2 and alleviated the pulmonary edema and leukocyte infiltration in mouse model of endotoxin-induced lung injury, whereas SOD-loaded PACkET mitigated cytokine-induced endothelial pro-inflammatory activation and endotoxin-induced lung inflammation. These studies indicate that PACkET offers a modular approach for vascular targeting of therapeutic enzymes.
Collapse
Affiliation(s)
- Elizabeth D Hood
- Institute for Translational Medicine and Therapeutics, Department of Pharmacology, University of Pennsylvania School of Medicine, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, USA.
| | - Michael Chorny
- Department of Pediatrics, The Children's Hospital of Philadelphia, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, USA
| | - Colin F Greineder
- Institute for Translational Medicine and Therapeutics, Department of Pharmacology, University of Pennsylvania School of Medicine, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, USA
| | - Ivan S Alferiev
- Department of Pediatrics, The Children's Hospital of Philadelphia, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, USA
| | - Robert J Levy
- Department of Pediatrics, The Children's Hospital of Philadelphia, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, USA
| | - Vladimir R Muzykantov
- Institute for Translational Medicine and Therapeutics, Department of Pharmacology, University of Pennsylvania School of Medicine, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, USA.
| |
Collapse
|
27
|
Franceschelli S, Ferrone A, Pesce M, Riccioni G, Speranza L. Biological functional relevance of asymmetric dimethylarginine (ADMA) in cardiovascular disease. Int J Mol Sci 2013; 14:24412-21. [PMID: 24351825 PMCID: PMC3876119 DOI: 10.3390/ijms141224412] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/05/2013] [Accepted: 12/06/2013] [Indexed: 12/20/2022] Open
Abstract
There is growing evidence that increased levels of the endogenous NO synthase inhibitor asymmetric dimethylarginine (ADMA) may contribute to endothelial dysfunction. Studies in animal models as well as in humans have suggested that the increase in ADMA occurs at a time when vascular disease has not yet become clinically evident. ADMA competitively inhibits NO elaboration by displacing L-arginine from NO synthase. In a concentration-dependent manner, it thereby interferes not only with endothelium-dependent, NO-mediated vasodilation, but also with other biological functions exerted by NO. The upshot may be a pro-atherogenic state. Recently, several studies have investigated the effect of various therapeutical interventions on ADMA plasma concentrations.
Collapse
Affiliation(s)
- Sara Franceschelli
- Department of Medicine and Science of Aging, University G. D’Annunzio-Chieti, Chieti 66100, Italy; E-Mails: (S.F.); (A.F.); (M.P.)
| | - Alessio Ferrone
- Department of Medicine and Science of Aging, University G. D’Annunzio-Chieti, Chieti 66100, Italy; E-Mails: (S.F.); (A.F.); (M.P.)
| | - Mirko Pesce
- Department of Medicine and Science of Aging, University G. D’Annunzio-Chieti, Chieti 66100, Italy; E-Mails: (S.F.); (A.F.); (M.P.)
| | - Graziano Riccioni
- Intensive Cardiology Care Unit, San Camillo de Lellis Hospital, San Severo (FG) 71016, Italy; E-Mail:
| | - Lorenza Speranza
- Department of Medicine and Science of Aging, University G. D’Annunzio-Chieti, Chieti 66100, Italy; E-Mails: (S.F.); (A.F.); (M.P.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-871-355-4550; Fax: +39-871-355-4551
| |
Collapse
|
28
|
Sari AN, Kacan M, Unsal D, Sahan Firat S, Kemal Buharalioglu C, Vezir O, Korkmaz B, Cuez T, Canacankatan N, Sucu N, Ayaz L, Tamer Gumus L, Gorur A, Tunctan B. Contribution of RhoA/Rho-kinase/MEK1/ERK1/2/iNOS pathway to ischemia/reperfusion-induced oxidative/nitrosative stress and inflammation leading to distant and target organ injury in rats. Eur J Pharmacol 2013; 723:234-45. [PMID: 24296316 DOI: 10.1016/j.ejphar.2013.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/20/2013] [Accepted: 11/22/2013] [Indexed: 12/26/2022]
Abstract
The small G protein RhoA and its downstream effector Rho-kinase play an important role in various physiopathological processes including ischemia/reperfusion (I/R) injury. Reactive oxygen and nitrogen species produced by iNOS and NADPH oxidase are important mediators of inflammation and organ injury following an initial localized I/R event. The aim of this study was to determine whether RhoA/Rho-kinase signaling pathway increases the expression and activity of MEK1, ERK1/2, iNOS, gp91(phox), and p47(phox), and peroxynitrite formation which result in oxidative/nitrosative stress and inflammation leading to hindlimb I/R-induced injury in kidney as a distant organ and gastrocnemius muscle as a target organ. I/R-induced distant and target organ injury was performed by using the rat hindlimb tourniquet model. I/R caused an increase in the expression and/or activity of RhoA, MEK1, ERK1/2, iNOS, gp91(phox), p47(phox), and 3-nitrotyrosine and nitrotyrosine levels in the tissues. Although Rho-kinase activity was increased by I/R in the kidney, its activity was decreased in the muscle. Serum and tissue MDA levels and MPO activity were increased following I/R. I/R also caused an increase in SOD and catalase activities associated with decreased GSH levels in the tissues. Y-27632, a selective Rho-kinase inhibitor, (100µg/kg, i.p.; 1h before reperfusion) prevented the I/R-induced changes except Rho-kinase activity in the muscle. These results suggest that activation of RhoA/Rho-kinase/MEK1/ERK1/2/iNOS pathway associated with oxidative/nitrosative stress and inflammation contributes to hindlimb I/R-induced distant organ injury in rats. It also seems that hindlimb I/R induces target organ injury via upregulation of RhoA/MEK1/ERK1/2/iNOS pathway associated with decreased Rho-kinase activity.
Collapse
Affiliation(s)
- A Nihal Sari
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33169 Mersin, Turkey
| | - Meltem Kacan
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33169 Mersin, Turkey
| | - Demet Unsal
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33169 Mersin, Turkey
| | - Seyhan Sahan Firat
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33169 Mersin, Turkey
| | - C Kemal Buharalioglu
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33169 Mersin, Turkey
| | - Ozden Vezir
- Department of Cardiovascular Surgery, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Belma Korkmaz
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33169 Mersin, Turkey
| | - Tuba Cuez
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33169 Mersin, Turkey
| | - Necmiye Canacankatan
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Nehir Sucu
- Department of Cardiovascular Surgery, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Lokman Ayaz
- Department of Medicinal Biochemistry, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Lulufer Tamer Gumus
- Department of Medicinal Biochemistry, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Aysegul Gorur
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Bahar Tunctan
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33169 Mersin, Turkey.
| |
Collapse
|
29
|
Shuvaev VV, Han J, Tliba S, Arguiri E, Christofidou-Solomidou M, Ramirez SH, Dykstra H, Persidsky Y, Atochin DN, Huang PL, Muzykantov VR. Anti-inflammatory effect of targeted delivery of SOD to endothelium: mechanism, synergism with NO donors and protective effects in vitro and in vivo. PLoS One 2013; 8:e77002. [PMID: 24146950 PMCID: PMC3795626 DOI: 10.1371/journal.pone.0077002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 08/28/2013] [Indexed: 01/08/2023] Open
Abstract
Pro-inflammatory activation of vascular endothelium is implicated in pathogenesis of severe conditions including stroke, infarction and sepsis. We have recently reported that superoxide dismutase (SOD) conjugated with antibodies (Ab/SOD) that provide targeted delivery into endothelial endosomes mitigates inflammatory endothelial activation by cytokines and agonists of Toll-like receptors (TLR). The goal of this study was to appraise potential utility and define the mechanism of this effect. Ab/SOD, but not non-targeted SOD injected in mice alleviated endotoxin-induced leukocyte adhesion in the cerebral vasculature and protected brain from ischemia-reperfusion injury. Transfection of endothelial cells with SOD, but not catalase inhibited NFκB signaling and expression of Vascular Cell Adhesion Molecule-1 induced by both cytokines and TLR agonists. These results affirmed that Ab/SOD-quenched superoxide anion produced by endothelial cells in response to proinflammatory agents mediates NFκB activation. Furthermore, Ab/SOD potentiates anti-inflammatory effect of NO donors in endothelial cells in vitro, as well as in the endotoxin-challenged mice. These results demonstrate the central role of intracellular superoxide as a mediator of pro-inflammatory activation of endothelium and support the notion of utility of targeted interception of this signaling pathway for management of acute vascular inflammation.
Collapse
Affiliation(s)
- Vladimir V Shuvaev
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Endothelial cells represent important targets for therapeutic and diagnostic interventions in many cardiovascular, pulmonary, neurological, inflammatory, and metabolic diseases. Targeted delivery of drugs (especially potent and labile biotherapeutics that require specific subcellular addressing) and imaging probes to endothelium holds promise to improve management of these maladies. In order to achieve this goal, drug cargoes or their carriers including liposomes and polymeric nanoparticles are chemically conjugated or fused using recombinant techniques with affinity ligands of endothelial surface molecules. Cell adhesion molecules, constitutively expressed on the endothelial surface and exposed on the surface of pathologically altered endothelium—selectins, VCAM-1, PECAM-1, and ICAM-1—represent good determinants for such a delivery. In particular, PECAM-1 and ICAM-1 meet criteria of accessibility, safety, and relevance to the (patho)physiological context of treatment of inflammation, ischemia, and thrombosis and offer a unique combination of targeting options including surface anchoring as well as intra- and transcellular targeting, modulated by parameters of the design of drug delivery system and local biological factors including flow and endothelial phenotype. This review includes analysis of these factors and examples of targeting selected classes of therapeutics showing promising results in animal studies, supporting translational potential of these interventions.
Collapse
|
31
|
Juránek I, Nikitovic D, Kouretas D, Hayes AW, Tsatsakis AM. Biological importance of reactive oxygen species in relation to difficulties of treating pathologies involving oxidative stress by exogenous antioxidants. Food Chem Toxicol 2013; 61:240-7. [PMID: 24025685 DOI: 10.1016/j.fct.2013.08.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 02/07/2023]
Abstract
Findings about involvement of reactive oxygen species (ROS) not only in defense processes, but also in a number of pathologies, stimulated discussion about their role in etiopathogenesis of various diseases. Yet questions regarding the role of ROS in tissue injury, whether ROS may serve as a common cause of different disorders or whether their uncontrolled production is just a manifestation of the processes involved, remain unexplained. Dogmatically, increased ROS formation is considered to be responsible for development of the so-called free-radical diseases. The present review discusses importance of ROS in various biological processes, including origin of life, evolution, genome plasticity, maintaining homeostasis and organism protection. This may be a reason why no significant benefit was found when exogenous antioxidants were used to treat free-radical diseases, even though their causality was primarily attributed to ROS. Here, we postulate that ROS unlikely play a causal role in tissue damage, but may readily be involved in signaling processes and as such in mediating tissue healing rather than injuring. This concept is thus in a contradiction to traditional understanding of ROS as deleterious agents. Nonetheless, under conditions of failing autoregulation, ROS may attack integral cellular components, cause cell death and deteriorate the evolving injury.
Collapse
Affiliation(s)
- Ivo Juránek
- Institute of Experimental Pharmacology & Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | | | | | |
Collapse
|
32
|
Sun GB, Qin M, Ye JX, Pan RL, Meng XB, Wang M, Luo Y, Li ZY, Wang HW, Sun XB. Inhibitory effects of myricitrin on oxidative stress-induced endothelial damage and early atherosclerosis in ApoE−/− mice. Toxicol Appl Pharmacol 2013; 271:114-26. [DOI: 10.1016/j.taap.2013.04.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/23/2013] [Accepted: 04/10/2013] [Indexed: 10/26/2022]
|
33
|
Akhtar S, Chandrasekhar B, Attur S, Yousif MHM, Benter IF. On the nanotoxicity of PAMAM dendrimers: Superfect® stimulates the EGFR-ERK1/2 signal transduction pathway via an oxidative stress-dependent mechanism in HEK 293 cells. Int J Pharm 2013; 448:239-46. [PMID: 23538097 DOI: 10.1016/j.ijpharm.2013.03.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 03/17/2013] [Accepted: 03/18/2013] [Indexed: 12/22/2022]
Abstract
Polyamidoamine (PAMAM) dendrimers are cationic branch-like macromolecules that may serve as drug delivery systems for gene-based therapies such as RNA interference. For their safe use in the clinic, they should ideally only enhance drug delivery to target tissues and exhibit no adverse effects. However, little is known about their toxicological profiles in terms of their interactions with cellular signal transduction pathways such as the epidermal growth factor receptor (EGFR). The EGFR is an important signaling cascade that regulates cell growth, differentiation, migration, survival and apoptosis. Here, we investigated the impact of naked, unmodified Superfect (SF), a commercially available generation 6 PAMAM dendrimer, on the epidermal growth factor receptor (EGFR) tyrosine kinase-extracellular-regulated kinase 1/2 (ERK1/2) signaling pathway in human embryonic kidney (HEK 293) cells. At concentrations routinely used for transfection, SF exhibited time and dose-dependent stimulation of EGFR and ERK1/2 phosphorylation whereas AG1478, a selective EGFR tyrosine kinase antagonist, inhibited EGFR-ERK1/2 signaling. SF-induced phosphorylation of EGFR for 1h was partly reversible upon removal of the dendrimer and examination of cells 24 later. Co-treatment of SF with epidermal growth factor (EGF) ligand resulted in greater EGFR stimulation than either agent alone implying that the stimulatory effects of SF and the ligand are synergistic. Dendrimer-induced stimulation of EGFR-ERK1/2 signaling could be attenuated by the antioxidants apocynin, catalase and tempol implying that an oxidative stress dependent mechanism was involved. These results show for the first time that PAMAM dendrimers, aside from their ability to improve drug delivery, can modulate the important EGFR-ERK1/2 cellular signal transduction pathway - a novel finding that may have a bearing on their safe application as drug delivery systems.
Collapse
Affiliation(s)
- Saghir Akhtar
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait.
| | | | | | | | | |
Collapse
|
34
|
|