1
|
Xiong Y, Knoedler S, Alfertshofer M, Kim BS, Jiang D, Liu G, Rinkevich Y, Mi B. Mechanisms and therapeutic opportunities in metabolic aberrations of diabetic wounds: a narrative review. Cell Death Dis 2025; 16:341. [PMID: 40280905 PMCID: PMC12032273 DOI: 10.1038/s41419-025-07583-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 01/28/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025]
Abstract
Metabolic aberrations are fundamental to the complex pathophysiology and challenges associated with diabetic wound healing. These alterations, induced by the diabetic environment, trigger a cascade of events that disrupt the normal wound-healing process. Key factors in this metabolic alternation include chronic hyperglycemia, insulin resistance, and dysregulated lipid and amino acid metabolism. In this review, we summarize the underlying mechanisms driving these metabolic changes in diabetic wounds, while emphasizing the broad implications of these disturbances. Additionally, we discuss therapeutic approaches that target these metabolic anomalies and how their integration with existing wound-healing treatments may yield synergistic effects, offering promising avenues for innovative therapies.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Samuel Knoedler
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, 81377, Munich, Germany
| | - Michael Alfertshofer
- Department of Hand, Plastic and Aesthetic Surgery, Ludwig-Maximilians-University Munich, 80336, Munich, Germany
| | - Bong-Sung Kim
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Dongsheng Jiang
- Precision Research Centre for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, 81377, Munich, Germany.
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
2
|
Lan Q, Li X, Fang J, Yu X, Wu ZE, Yang C, Jian H, Li F. Comprehensive biomarker analysis of metabolomics in different syndromes in traditional Chinese medical for prediabetes mellitus. Chin Med 2024; 19:114. [PMID: 39183283 PMCID: PMC11346218 DOI: 10.1186/s13020-024-00983-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Prediabetes mellitus (PreDM) is a high-risk state for developing type 2 diabetes mellitus (T2DM) and often goes undiagnosed, which is closely associated with obesity and characterized by insulin resistance that urgently needs to be treated. PURPOSE To obtain a better understanding of the biological processes associated with both "spleen-dampness" syndrome individuals and those with dysglycaemic control at its earliest stages, we performed a detailed metabolomic analysis of individuals with various early impairments in glycaemic control, the results can facilitate clinicians' decision making and benefit individuals at risk. METHODS According to the diagnostic criteria of TCM patterns and PreDM, patients were divided into 4 groups with 20 cases, patients with syndrome of spleen deficiency with dampness encumbrance and PreDM (PDMPXSK group), patients with syndrome of dampness-heat in the spleen and PreDM (PDMSRYP group), patients with syndrome of spleen deficiency with dampness encumbrance and normal blood glucose (NDMPXSK group), and patients with syndrome of dampness-heat in the spleen and normal blood glucose (NDMSRYP group). Plasma samples from patients were collected for clinical index assessment and untargeted metabolomics using liquid chromatography-mass spectrometry. RESULTS Among patients with the syndrome of spleen deficiency with dampness encumbrance (PXSK), those with PreDM (PDMPXSK group) had elevated levels of 2-hour post-load blood glucose (2-h PG), glycosylated hemoglobin (HbA1c), high-density lipoprotein cholesterol (HDL-C), and systolic blood pressure (SBP) than those in the normal blood glucose group (NDMPXSK group, P < 0.01). Among patients with the syndrome of dampness-heat in the spleen (SRYP), the levels of body mass index (BMI), fasting blood glucose (FBG), 2-h PG, HbA1c, and fasting insulin (FINS) were higher in the PreDM group (PDMSRYP group) than those in the normal blood glucose group (NDMSRYP group, P < 0.05). In both TCM syndromes, the plasma metabolomic profiles of PreDM patients were mainly discriminatory from the normal blood glucose controls of the same syndrome in the levels of lipid species, with the PXSK syndrome showing a more pronounced and broader spectrum of alterations than the SRYP syndrome. Changes associated with PreDM common to both syndromes included elevations in the levels of 27 metabolites which were mainly lipid species encompassing glycerophospholipids (GPs), diglycerides (DGs) and triglycerides (TGs), cholesterol and derivatives, and decreases in 5 metabolites consisting 1 DG, 1 TG, 2 N,N-dimethyl phosphatidylethanolamine (PE-NMe2) and iminoacetic acid. Correlation analysis identified significant positive correlations of 3α,7α,12α,25-Tetrahydroxy-5β-cholestane-24-one with more than one glycaemia-related indicators, whereas DG (20:4/20:5) and PC (20:3/14:0) were positively and PC (18:1/14:0) was inversely correlated with more than one lipid profile-related indicators. Based on the value of correlation coefficient, the top three correlative pairs were TG with PC (18:1/14:0) (r = - 0.528), TG with TG (14:0/22:4/22:5) (r = 0.521) and FINS with PE-NMe (15:0/22:4) (r = 0.52). CONCLUSION Our results revealed PreDM patients with different TCM syndromes were characterized by different clinical profiles. Common metabolite markers associated with PreDM shared by the two TCM syndromes were mainly lipid species encompassing GP, GL, cholesterol and derivatives. Our findings were in line with the current view that altered lipid metabolism is a conserved and early event of dysglycaemia. Our study also implied the possible involvement of perturbed bile acid homeostasis and dysregulated PE methylation during development of dysglycaemia.
Collapse
Affiliation(s)
- Qin Lan
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
- Outpatient Department, Hongdu Traditional Chinese Medicine Hospital Affiliated to Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China
| | - Xue Li
- Department of Gastroenterology and Hepatology, Laboratory of Metabolomics and Drug-Induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jianhe Fang
- Medical Ancient Literature Teaching and Research Office, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Xinyu Yu
- Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Zhanxuan E Wu
- Department of Gastroenterology and Hepatology, Laboratory of Metabolomics and Drug-Induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Caiyun Yang
- Endocrinology Department II, Hongdu Traditional Chinese Medicine Hospital Affiliated to Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China
| | - Hui Jian
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Fei Li
- Department of Gastroenterology and Hepatology, Laboratory of Metabolomics and Drug-Induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
McClure RD, Carr ALJ, Boulé NG, Yardley JE. An Aerobic Cooldown After Morning, Fasted Resistance Exercise Has Limited Impact on Post-exercise Hyperglycemia in Adults With Type 1 Diabetes: A Randomized Crossover Study. Can J Diabetes 2024; 48:387-393.e2. [PMID: 38735638 DOI: 10.1016/j.jcjd.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/28/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
OBJECTIVES Expert guidelines recommend an aerobic cooldown to lower blood glucose for the management of post-exercise hyperglycemia. This strategy has never been empirically tested. Our aim in this study was to compare the glycemic effects of performing an aerobic cooldown vs not performing a cooldown after a fasted resistance exercise session. We hypothesized that the cooldown would lower blood glucose in the 30 minutes after exercise and would result in less time in hyperglycemia in the 6 hours after exercise. METHODS Participants completed 2 identical resistance exercise sessions. One was followed by a low-intensity (30% of peak oxygen consumption) 10-minute cycle ergometer cooldown, and the other was followed by 10 minutes of sitting. We compared the changes in capillary glucose concentration during these sessions and continuous glucose monitoring (CGM) outcomes over 24 hours post-exercise. RESULTS Sixteen participants completed the trial. Capillary glucose was similar between conditions at the start of exercise (p=0.07). Capillary glucose concentration decreased by 0.6±1.0 mmol/L during the 10-minute cooldown, but it increased by 0.7±1.3 mmol/L during the same time in the no-cooldown condition. The resulting difference in glucose trajectory led to a significant interaction (p=0.02), with no effect from treatment (p=0.7). Capillary glucose values at the end of recovery were similar between conditions (p>0.05). There were no significant differences in CGM outcomes. CONCLUSIONS An aerobic cooldown reduces glucose concentration in the post-exercise period, but the small and brief nature of this reduction makes this strategy unlikely to be an effective treatment for hyperglycemia occurring after fasted exercise.
Collapse
Affiliation(s)
- Reid D McClure
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, Edmonton, Alberta, Canada
| | | | - Normand G Boulé
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, Edmonton, Alberta, Canada
| | - Jane E Yardley
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, Edmonton, Alberta, Canada; Augustana Faculty, University of Alberta, Camrose, Alberta, Canada; Women and Children's Health Research Institute, Edmonton, Alberta, Canada; Ecole de kinésiologie et des sciences de l'activité physique, Université de Montréal, Montréal, Québec, Canada; Institut de recherches cliniques de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
4
|
Eng PC, Phylactou M, Qayum A, Woods C, Lee H, Aziz S, Moore B, Miras AD, Comninos AN, Tan T, Franks S, Dhillo WS, Abbara A. Obesity-Related Hypogonadism in Women. Endocr Rev 2024; 45:171-189. [PMID: 37559411 PMCID: PMC10911953 DOI: 10.1210/endrev/bnad027] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/02/2023] [Accepted: 08/07/2023] [Indexed: 08/11/2023]
Abstract
Obesity-related hypogonadotropic hypogonadism is a well-characterized condition in men (termed male obesity-related secondary hypogonadism; MOSH); however, an equivalent condition has not been as clearly described in women. The prevalence of polycystic ovary syndrome (PCOS) is known to increase with obesity, but PCOS is more typically characterized by increased gonadotropin-releasing hormone (GnRH) (and by proxy luteinizing hormone; LH) pulsatility, rather than by the reduced gonadotropin levels observed in MOSH. Notably, LH levels and LH pulse amplitude are reduced with obesity, both in women with and without PCOS, suggesting that an obesity-related secondary hypogonadism may also exist in women akin to MOSH in men. Herein, we examine the evidence for the existence of a putative non-PCOS "female obesity-related secondary hypogonadism" (FOSH). We précis possible underlying mechanisms for the occurrence of hypogonadism in this context and consider how such mechanisms differ from MOSH in men, and from PCOS in women without obesity. In this review, we consider relevant etiological factors that are altered in obesity and that could impact on GnRH pulsatility to ascertain whether they could contribute to obesity-related secondary hypogonadism including: anti-Müllerian hormone, androgen, insulin, fatty acid, adiponectin, and leptin. More precise phenotyping of hypogonadism in women with obesity could provide further validation for non-PCOS FOSH and preface the ability to define/investigate such a condition.
Collapse
Affiliation(s)
- Pei Chia Eng
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, National University of Singapore, Singapore 117549
| | - Maria Phylactou
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W12 0NN, UK
| | - Ambreen Qayum
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W12 0NN, UK
| | - Casper Woods
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
| | - Hayoung Lee
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
| | - Sara Aziz
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
| | - Benedict Moore
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
| | - Alexander D Miras
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W12 0NN, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W12 0NN, UK
| | - Tricia Tan
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W12 0NN, UK
| | - Steve Franks
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W12 0NN, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W12 0NN, UK
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W12 0NN, UK
| |
Collapse
|
5
|
Li Y, Wang H, Chen H, Liao Y, Gou S, Yan Q, Zhuang Z, Li H, Wang J, Suo Y, Lan T, Liu Y, Zhao Y, Zou Q, Nie T, Hui X, Lai L, Wu D, Fan N. Generation of a genetically modified pig model with CREBRF R457Q variant. FASEB J 2022; 36:e22611. [PMID: 36250915 DOI: 10.1096/fj.202201117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022]
Abstract
Obesity is among the strongest risk factors for type 2 diabetes (T2D). The CREBRF missense allele rs373863828 (p. Arg457Gln, p. R457Q) is associated with increased body mass index but reduced risk of T2D in people of Pacific ancestry. To investigate the functional consequences of the CREBRF variant, we introduced the corresponding human mutation R457Q into the porcine genome. The CREBRFR457Q pigs displayed dramatically increased fat deposition, which was mainly distributed in subcutaneous adipose tissue other than visceral adipose tissue. The CREBRFR457Q variant promoted preadipocyte differentiation. The increased differentiation capacity of precursor adipocytes conferred pigs the unique histological phenotype that adipocytes had a smaller size but a greater number in subcutaneous adipose tissue (SAT) of CREBRFR457Q variant pigs. In addition, in SAT of CREBRFR457Q pigs, the contents of the peroxidative metabolites 4-hydroxy-nonenal and malondialdehyde were significantly decreased, while the activity of antioxidant enzymes, such as glutathione peroxidase, superoxide dismutase, and catalase, was increased, which was in accordance with the declined level of the reactive oxygen species (ROS) in CREBRFR457Q pigs. Together, these data supported a causal role of the CREBRFR457Q variant in the pathogenesis of obesity, partly via adipocyte hyperplasia, and further suggested that reduced oxidative stress in adipose tissue may mediate the relative metabolic protection afforded by this variant despite the related obesity.
Collapse
Affiliation(s)
- Yingying Li
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Hai Wang
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Huangyao Chen
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yuan Liao
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Shixue Gou
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Quanmei Yan
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhenpeng Zhuang
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Hao Li
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Jiaowei Wang
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yangyang Suo
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Ting Lan
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yang Liu
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yu Zhao
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Qingjian Zou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Tao Nie
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoyan Hui
- School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong SAR
| | - Liangxue Lai
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Donghai Wu
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Nana Fan
- CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
6
|
Shibib L, Al-Qaisi M, Ahmed A, Miras AD, Nott D, Pelling M, Greenwald SE, Guess N. Reversal and Remission of T2DM - An Update for Practitioners. Vasc Health Risk Manag 2022; 18:417-443. [PMID: 35726218 PMCID: PMC9206440 DOI: 10.2147/vhrm.s345810] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/10/2022] [Indexed: 01/04/2023] Open
Abstract
Over the past 50 years, many countries around the world have faced an unchecked pandemic of obesity and type 2 diabetes (T2DM). As best practice treatment of T2DM has done very little to check its growth, the pandemic of diabesity now threatens to make health-care systems economically more difficult for governments and individuals to manage within their budgets. The conventional view has been that T2DM is irreversible and progressive. However, in 2016, the World Health Organization (WHO) global report on diabetes added for the first time a section on diabetes reversal and acknowledged that it could be achieved through a number of therapeutic approaches. Many studies indicate that diabetes reversal, and possibly even long-term remission, is achievable, belying the conventional view. However, T2DM reversal is not yet a standardized area of practice and some questions remain about long-term outcomes. Diabetes reversal through diet is not articulated or discussed as a first-line target (or even goal) of treatment by any internationally recognized guidelines, which are mostly silent on the topic beyond encouraging lifestyle interventions in general. This review paper examines all the sustainable, practical, and scalable approaches to T2DM reversal, highlighting the evidence base, and serves as an interim update for practitioners looking to fill the practical knowledge gap on this topic in conventional diabetes guidelines.
Collapse
Affiliation(s)
- Lina Shibib
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Mo Al-Qaisi
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Ahmed Ahmed
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Alexander D Miras
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - David Nott
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Marc Pelling
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Stephen E Greenwald
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, UK
| | - Nicola Guess
- School of Life Sciences, Westminster University, London, UK
| |
Collapse
|
7
|
Wang Y, Zhang X, Hu W, Dong C, Fu D, Habtegabir SG, Han Y. Ultra-fast screening of free fatty acids in human plasma using ion mobility mass spectrometry. J Sep Sci 2022; 45:1818-1826. [PMID: 35340115 DOI: 10.1002/jssc.202200037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 11/06/2022]
Abstract
Free fatty acids involved in many metabolic regulations in human body. In this work, an ultra-fast screening method was developed for the analysis of free fatty acids using trapped ion mobility spectrometry coupled with mass spectrometry. Thirty-three free fatty acids possessing different unsaturation degrees and different carbon chain lengths were baseline separated and characterized within milliseconds. Saturated, monounsaturated, and polyunsaturated free fatty acids showed different linearities between collision cross section values and m/z. Establishment of correlations between structures and collision cross section values provided additional qualitative information and made it possible to determine free fatty acids which were out of the standards pool but possessed the confirmed linearity. Gas-phase separation made the quantitative analysis reliable and repeatable at a much lower time cost than chromatographic methods. The sensitivity was comparable to and even better than the reported results. The method was validated and applied to profiling free fatty acids in human plasma. Saturated free fatty acids abundance in the fasting state was found to be lower than that in the postprandial state, while unsaturated species abundance was found higher. The method was fast and robust with minimum sample pretreatment, so it was promising in high-throughput screening of free fatty acids. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yinghao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Xianxie Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.,Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wenya Hu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Chenglong Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Dali Fu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Sara Girmay Habtegabir
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yehua Han
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| |
Collapse
|
8
|
Mohd Ghozali N, Giribabu N, Salleh N. Mechanisms Linking Vitamin D Deficiency to Impaired Metabolism: An Overview. Int J Endocrinol 2022; 2022:6453882. [PMID: 35859985 PMCID: PMC9293580 DOI: 10.1155/2022/6453882] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/19/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
Vitamin D deficiency is a common health problem worldwide. Despite its known skeletal effects, studies have begun to explore its extra-skeletal effects, that is, in preventing metabolic diseases such as obesity, hyperlipidemia, and diabetes mellitus. The mechanisms by which vitamin D deficiency led to these unfavorable metabolic consequences have been explored. Current evidence indicates that the deficiency of vitamin D could impair the pancreatic β-cell functions, thus compromising its insulin secretion. Besides, vitamin D deficiency could also exacerbate inflammation, oxidative stress, and apoptosis in the pancreas and many organs, which leads to insulin resistance. Together, these will contribute to impairment in glucose homeostasis. This review summarizes the reported metabolic effects of vitamin D, in order to identify its potential use to prevent and overcome metabolic diseases.
Collapse
Affiliation(s)
- Nurulmuna Mohd Ghozali
- Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur 59100, Malaysia
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur 59100, Malaysia
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur 59100, Malaysia
| |
Collapse
|
9
|
Kovačević S, Brkljačić J, Vojnović Milutinović D, Gligorovska L, Bursać B, Elaković I, Djordjevic A. Fructose Induces Visceral Adipose Tissue Inflammation and Insulin Resistance Even Without Development of Obesity in Adult Female but Not in Male Rats. Front Nutr 2021; 8:749328. [PMID: 34869524 PMCID: PMC8632624 DOI: 10.3389/fnut.2021.749328] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Introduction: Obesity and related metabolic disturbances are frequently related to modern lifestyle and are characterized by excessive fructose intake. Visceral adipose tissue (VAT) inflammation has a central role in the development of insulin resistance, type 2 diabetes (T2D), and metabolic syndrome. Since sex-related differences in susceptibility and progression of metabolic disorders are not yet fully understood, our aim was to examine inflammation and insulin signaling in VAT of fructose-fed female and male adult rats. Methods: We analyzed effects of 9-week 10% fructose-enriched diet on energy intake, VAT mass and histology, and systemic insulin sensitivity. VAT insulin signaling and markers of VAT inflammation, and antioxidative defense status were also evaluated. Results: The fructose diet had no effect on VAT mass and systemic insulin signaling in the female and male rats, while it raised plasma uric acid, increased PPARγ level in the VAT, and initiated the development of a distinctive population of small adipocytes in the females. Also, adipose tissue insulin resistance, evidenced by increased PTP1B and insulin receptor substrate 1 (IRS1) inhibitory phosphorylation and decreased Akt activity, was detected. In addition, fructose stimulated the nuclear accumulation of NFκB, increased expression of proinflammatory cytokines (IL-1β, IL-6, and TNFα), and protein level of macrophage marker F4/80, superoxide dismutase 1, and glutathione reductase. In contrast to the females, the fructose diet had no effect on plasma uric acid and VAT inflammation in the male rats, but less prominent alterations in VAT insulin signaling were observed. Conclusion: Even though dietary fructose did not elicit changes in energy intake and led to obesity in the females, it initiated the proliferation of small-sized adipocytes capable of storing fats further. In contrast to the males, this state of VAT was accompanied with enhanced inflammation, which most likely contributed to the development of insulin resistance. The observed distinction could possibly originate from sex-related differences in uric acid metabolism. Our results suggest that VAT inflammation could precede obesity and start even before the measurable increase in VAT mass, making it a silent risk factor for the development of T2D. Our results emphasize that adipose tissue dysfunction, rather than its simple enlargement, could significantly contribute to the onset and development of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Sanja Kovačević
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena Brkljačić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danijela Vojnović Milutinović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ljupka Gligorovska
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Biljana Bursać
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivana Elaković
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
10
|
Zhang Y, Ye T, Zhou P, Li R, Liu Z, Xie J, Hua T, Sun Q. Exercise ameliorates insulin resistance and improves ASK1-mediated insulin signalling in obese rats. J Cell Mol Med 2021; 25:10930-10938. [PMID: 34734480 PMCID: PMC8642671 DOI: 10.1111/jcmm.16994] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 11/30/2022] Open
Abstract
Increasing evidence reveals that physical exercise is an efficient therapeutical approach in the treatment of insulin resistance (IR) and related metabolic diseases. However, the potential beneficial effects of exercise on insulin resistance and its underlying mechanisms remain unclear. Recent findings elucidated the negative role of ASK1 in repressing the glucose uptake through JNK1‐IRS1‐Akt signalling in liver. Thus, a detailed investigation of the effect of ASK1‐mediated insulin signalling on exercise‐mediated improvement of insulin sensitivity and its underlying mechanism was implemented in this study. Using a high‐fat diet‐induced IR rat model of chronic or acute swimming exercise training, we here showed that body weight and visceral fat mass were significantly reduced after chronic exercise. Moreover, chronic exercise reduced serum FFAs levels and hepatic triglyceride content. Both chronic and acute exercise promoted glucose tolerance and insulin sensitivity. Meanwhile, both chronic and acute exercise decreased ASK1 phosphorylation and improved JNK1‐IRS1‐Akt signalling. Furthermore, exercise training decreased CFLAR, CREG and TRAF1 protein levels in liver of obese rats, which are positive regulator of ASK1 activity. These results suggested that swimming exercise demonstrated to be an effective ameliorator of IR through the regulation of ASK1‐mediated insulin signalling and therefore, could present a prospective therapeutic mean towards the treatment of IR and several metabolic diseases based on IR, containing NAFLD and type Ⅱ diabetes.
Collapse
Affiliation(s)
- Yong Zhang
- Physiology laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China.,The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Tingting Ye
- Physiology laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Puqing Zhou
- Physiology laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Runjing Li
- Department of Cardiology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Zuofeng Liu
- Department of Hepatobiliary Surgery, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Jianyuan Xie
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Tianmiao Hua
- Neurobiology laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Qingyan Sun
- Physiology laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
11
|
Liu X, Xi X, Jia A, Zhang M, Cui T, Bai X, Shi Y, Liu C. A fucoidan from Sargassum fusiforme with novel structure and its regulatory effects on intestinal microbiota in high-fat diet-fed mice. Food Chem 2021; 358:129908. [PMID: 33933948 DOI: 10.1016/j.foodchem.2021.129908] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/13/2021] [Accepted: 04/18/2021] [Indexed: 01/22/2023]
Abstract
A fucoidan SFP, having novel structure, was extracted from Sargassum fusiforme. It had a molecular weight of 703 kDa and was composed of fucose and galactose with the ratio of 73.16:26.84 (mol%). Structural analyses showed that it mainly consisted of 1,3-, 1,4-, 1,3,4-linked-α-l-Fucp and 1,3-, 1,6-linked-β-d-Galp, with partial sulfation at C-4, C-3 of fucose units and C-6, C-3 of galactose units. The branches consisted of sulfated fucosyl and galactofucosyl oligosaccharides. The regulatory effects of SFP on the intestinal microbiota in high-fat diet-fed mice were investigated. The high-dosage SFP exhibited good hypolipidemic effects, especially in regulating the high-densitylipoproteincholesterol, non-esterified fatty acid levels and lipase activity. It also significantly decreased the ratio of phyla Firmicutes/Bacteroidetes (P < 0.05). Besides, SFP had certain effects on the richness and diversity of intestinal microbiota. Therefore, SFP exhibited novel structure and certain beneficial effects on the disorder of intestinal microbiota in high-fat diet-fed mice.
Collapse
Affiliation(s)
- Xue Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250103, China
| | - Xiangyu Xi
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Airong Jia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250103, China
| | - Miansong Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250103, China
| | - Tingting Cui
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250103, China
| | - Xinfeng Bai
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250103, China
| | - Yaping Shi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250103, China
| | - Changheng Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250103, China.
| |
Collapse
|
12
|
Zhang CL, Wang JJ, Li JN, Yang Y. Nonalcoholic fatty pancreas disease: An emerging clinical challenge. World J Clin Cases 2021; 9:6624-6638. [PMID: 34447810 PMCID: PMC8362510 DOI: 10.12998/wjcc.v9.i23.6624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/20/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty pancreas disease (NAFPD) is an emerging disease that has gained an increasing amount of attention in recent years. It describes fat accumulation in the pancreas with insignificant alcohol consumption, but the pathogenesis is largely unknown. A wide range of terms have been used to describe the phenomenon of pancreatic fat accumulation, but NAFPD remains an under-recognized and non-independent disorder. Obesity, age, sex, race, and unhealthy lifestyle are established independent risk factors for NAFPD, which is strongly associated with metabolic syndrome, type 2 diabetes, pancreatitis, pancreatic fistula, pancreatic cancer, and nonalcoholic fatty liver disease. At present, imaging techniques are common diagnostic aids, but uniform criteria and consensus are lacking. Therapeutically, healthy diet, weight loss, and exercise are the mainstays to reduce pancreatic fat accumulation. It can be seen that there is a limited understanding of NAFPD at this stage and further exploration is needed. Previous studies have revealed that NAFPD may directly affect diagnosis and clinical decision-making. Therefore, exploring the pathophysiological mechanism and clinical associations of NAFPD is a major challenge for researchers and clinicians.
Collapse
Affiliation(s)
- Cheng-Lei Zhang
- Department of Clinical Laboratory, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- The Institute of Endocrinology, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Jing-Jiao Wang
- Department of Stomatology, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Jian-Ning Li
- The Institute of Endocrinology, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Yang
- The Institute of Endocrinology, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
13
|
Zhang Y, Yang Z, Xu Z, Wan J, Hua T, Sun Q. Exercise ameliorates insulin resistance and improves SIRT6-mediated insulin signaling transduction in liver of obese rats. Can J Physiol Pharmacol 2021; 99:506-511. [PMID: 32970960 DOI: 10.1139/cjpp-2020-0083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Physical exercise is essential for the amelioration of insulin resistance (IR). The mechanisms in charge of improved IR, regulated by exercise, are insufficiently studied. Previous research revealed that Sirtuin 6 (SIRT6) - mediated insulin signaling acts a crucial element in hepatic IR. The objective of our research was to determine the effects of exercise on SIRT6-mediated insulin signaling in liver of IR rats. Forty male Sprague Dawley rats were randomly assigned to four groups (n = 10 rats each): control rats fed with standard chow (Lean group); sedentary rats fed with a high-fat diet (HFD-SED); rats fed with HFD and submitted to 8 week chronic swimming exercise training (HFD-CE); and rats fed HFD and submitted to one acute swimming exercise training (HFD-AE). HFD feeding lead to increased body weight, accumulation of hepatic triglyceride and serum free fatty acids, and enhanced gluconeogenesis. Besides, HFD feeding decreased body insulin sensitivity. Hepatic USP10 and SIRT6 protein levels decreased under obese status. Both chronic and acute exercise intervention alleviated physiological and metabolic status, increased hepatic USP10 and SIRT6 levels, improved insulin signaling transduction, and inhibited gluconeogenesis. These results showed that exercise intervention regulated SIRT6-mediated insulin signaling, which contributes to our understanding of the molecular mechanisms behind IR, in that a regular exercise can mitigate the effects of IR.
Collapse
Affiliation(s)
- Yong Zhang
- Physiology laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Zhiwei Yang
- Physiology laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Zhen Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Jianyong Wan
- Physiology laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Tianmiao Hua
- Neurobiology laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Qingyan Sun
- Physiology laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
14
|
Barella LF, Jain S, Kimura T, Pydi SP. Metabolic roles of G protein-coupled receptor signaling in obesity and type 2 diabetes. FEBS J 2021; 288:2622-2644. [PMID: 33682344 DOI: 10.1111/febs.15800] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/31/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022]
Abstract
The incidence of obesity and type 2 diabetes (T2D) has been increasing steadily worldwide. It is estimated that by 2045 more than 800 million people will be suffering from diabetes. Despite the advancements in modern medicine, more effective therapies for treating obesity and T2D are needed. G protein-coupled receptors (GPCRs) have emerged as important drug targets for various chronic diseases, including obesity, T2D, and liver diseases. During the past two decades, many laboratories worldwide focused on understanding the role of GPCR signaling in regulating glucose metabolism and energy homeostasis. The information gained from these studies can guide the development of novel therapeutic agents. In this review, we summarize recent studies providing insights into the role of GPCR signaling in peripheral, metabolically important tissues such as pancreas, liver, skeletal muscle, and adipose tissue, focusing primarily on the use of mutant animal models and human data.
Collapse
Affiliation(s)
- Luiz F Barella
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.,Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Takefumi Kimura
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Sai P Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.,Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| |
Collapse
|
15
|
Taddeo EP, Alsabeeh N, Baghdasarian S, Wikstrom JD, Ritou E, Sereda S, Erion K, Li J, Stiles L, Abdulla M, Swanson Z, Wilhelm JJ, Bellin MD, Kibbey RG, Liesa M, Shirihai OS. Mitochondrial Proton Leak Regulated by Cyclophilin D Elevates Insulin Secretion in Islets at Nonstimulatory Glucose Levels. Diabetes 2020; 69:131-145. [PMID: 31740442 PMCID: PMC6971491 DOI: 10.2337/db19-0379] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022]
Abstract
Fasting hyperinsulinemia precedes the development of type 2 diabetes. However, it is unclear whether fasting insulin hypersecretion is a primary driver of insulin resistance or a consequence of the progressive increase in fasting glycemia induced by insulin resistance in the prediabetic state. Herein, we have discovered a mechanism that specifically regulates non-glucose-stimulated insulin secretion (NGSIS) in pancreatic islets that is activated by nonesterified free fatty acids, the major fuel used by β-cells during fasting. We show that the mitochondrial permeability transition pore regulator cyclophilin D (CypD) promotes NGSIS, but not glucose-stimulated insulin secretion, by increasing mitochondrial proton leak. Islets from prediabetic obese mice show significantly higher CypD-dependent proton leak and NGSIS compared with lean mice. Proton leak-mediated NGSIS is conserved in human islets and is stimulated by exposure to nonesterified free fatty acids at concentrations observed in obese subjects. Mechanistically, proton leak activates islet NGSIS independently of mitochondrial ATP synthesis but ultimately requires closure of the KATP channel. In summary, we have described a novel nonesterified free fatty acid-stimulated pathway that selectively drives pancreatic islet NGSIS, which may be therapeutically exploited as an alternative way to halt fasting hyperinsulinemia and the progression of type 2 diabetes.
Collapse
Affiliation(s)
- Evan P Taddeo
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Nour Alsabeeh
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Siyouneh Baghdasarian
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jakob D Wikstrom
- Dermatology and Venereology Unit, Department of Medicine, Karolinska Institutet, and Department of Dermato-Venereology, Karolinska University Hospital, Stockholm, Sweden
| | - Eleni Ritou
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Samuel Sereda
- Endocrinology, Diabetes, Nutrition and Weight Management Section, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Karel Erion
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jin Li
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Linsey Stiles
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Muhamad Abdulla
- Department of Surgery and Schulze Diabetes Institute, University of Minnesota School of Medicine, Minneapolis, MN
| | - Zachary Swanson
- Department of Surgery and Schulze Diabetes Institute, University of Minnesota School of Medicine, Minneapolis, MN
| | - Joshua J Wilhelm
- Department of Surgery and Schulze Diabetes Institute, University of Minnesota School of Medicine, Minneapolis, MN
| | - Melena D Bellin
- Department of Surgery and Schulze Diabetes Institute, University of Minnesota School of Medicine, Minneapolis, MN
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| | - Richard G Kibbey
- Departments of Internal Medicine (Endocrinology) and Cellular & Molecular Physiology, Yale University, New Haven, CT
| | - Marc Liesa
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA
| | - Orian S Shirihai
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
16
|
Abstract
Pancreatic steatosis is an emerging clinical entity whose pathophysiology, natural history, and long-term complications are poorly characterized in the current literature. Epidemiological and prospective studies have described prevalence rates between 16% and 35%. Although the natural history is not well known, there are strong associations with obesity, metabolic syndrome, type 2 diabetes mellitus, and nonalcoholic fatty liver disease. Ectopic fat accumulation of the pancreas can cause chronic, low-grade inflammation from adipocytokine imbalances that involve beta cells and acinar cells. This mechanism can lead to pancreatic endocrine and exocrine dysfunction and initiate carcinogenesis. Although it is associated with morbid conditions, pancreatic steatosis may be amendable to treatment with a healthy diet, less meat consumption, exercise, and smoking cessation. Pancreatic steatosis should factor into clinical decision-making and prognostication of patients with pancreatic and systemic disease. This review seeks to describe the pathophysiology, natural history, diagnosis, and complications of this emerging clinically relevant entity.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Pancreatic steatosis is a clinical entity with emerging significance and impacts patient health in a multitude of ways. It has a high prevalence in the global population with predilections for different demographics by age, sex and ethnicity. Understanding the pathophysiology, clinical features and complications of this entity may be important to understanding the consequences of the ongoing obesity global epidemic. RECENT FINDINGS Obesity and metabolic syndrome contribute to metabolic derangements that result in lipid mishandling by adipocytes. Adipocytokine imbalances in circulation and in the pancreatic microenvironment cause chronic, low-grade inflammation. The resulting beta cell and acinar cell apoptosis leads to pancreatic endocrine and exocrine dysfunction. Furthermore, these adipocytokines regulate cell growth, differentiation, as well as angiogenesis and lymphatic spread. These consequences of adipocyte infiltration are thought to initiate carcinogenesis, leading to pancreatic intraepithelial neoplasia and pancreatic ductal adenocarcinoma. SUMMARY Obesity will lead to millions of deaths each year and pancreatic steatosis may be the key intermediate entity that leads to obesity-related complications. Enhancing our understanding may reveal strategies for preventing mortality and morbidity related to the global epidemic of obesity. Further research is needed to determine the pathophysiology, long-term complications and effective treatment strategies for this condition.
Collapse
|
18
|
Yang Q, Zhu Z, Wang L, Xia H, Mao J, Wu J, Kato K, Li H, Zhang J, Yamanaka K, An Y. The protective effect of silk fibroin on high glucose induced insulin resistance in HepG2 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 69:66-71. [PMID: 30959417 DOI: 10.1016/j.etap.2019.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
The therapeutic use of silk-derived materials such as fibroin in biomedicine is well-established in Southeast Asian countries. Studies indicated that silk fibroin (SF) peptide enhances insulin sensitivity and glucose metabolism phenomena associated with type 2 diabetes mellitus (T2DM) suggesting this peptide may be beneficial to treat this disease. However, the mechanisms underlying protective effect of SF in insulin-mediated hepatic metabolic dysfunction remains unclear. The aim of this study was to investigate the influence of SF on insulin resistant HepG2 cells which were used a model of T2DM. Treatment of cells with 30 mmol/L of glucose and 10-6 mol/L insulin for 48 h significantly reduced glucose consumptions and intracellular glycogen levels but increased triglyceride (TG) levels. SF or metformin alone elevated glucose consumptions and glycogen accumulation accompanied by lower TG content. Greater effects in these metabolic parameters were found when SF and metformin were combined. Treatment of insulin resistant cells with SF or metformin alone decreased levels of reactive oxygen species (ROS), malondialdehyde (MDA), tumor necrosis factor (TNF-α) and interleukin-6 (IL-6); whereas antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) activity, as well as total antioxidant capacity (T-AOC) ability increased. The combination of SF and metformin produced greater changes in these parameters compared to metformin alone. Data indicated that the protective effect of SF or metformin in insulin resistant HepG2 cells involves inhibition of oxidant processes and that the combination of agents may prove more effective therapeutically.
Collapse
Affiliation(s)
- Qianlei Yang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Zhen Zhu
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Luna Wang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Haixuan Xia
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Jiayuan Mao
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Jing Wu
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Koichi Kato
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba 274-8555, Japan
| | - Heran Li
- Microwants International Biotechnology LTD, Hong Kong, China
| | - Jie Zhang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, People's Republic of China.
| | - Kenzo Yamanaka
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba 274-8555, Japan.
| | - Yan An
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, People's Republic of China.
| |
Collapse
|
19
|
Wrzosek M, Sawicka A, Wrzosek M, Piątkiewicz P, Tałałaj M, Nowicka G. Age at onset of obesity, transcription factor 7-like 2 (TCF7L2) rs7903146 polymorphism, adiponectin levels and the risk of type 2 diabetes in obese patients. Arch Med Sci 2019; 15:321-329. [PMID: 30899283 PMCID: PMC6425208 DOI: 10.5114/aoms.2017.69638] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 02/13/2017] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Interaction between obesity and genetic factors involved in the regulatory pathways of glucose homeostasis may play a significant role in diabetes development in the obese. The aim of this study was to investigate the associations between the TCF7L2 rs7903146 polymorphism, adiponectin levels, age at onset of obesity and the occurrence of type 2 diabetes (T2D) in a sample of obese Polish adults. MATERIAL AND METHODS A total of 474 unrelated obese subjects were included in this study. Real-time PCR was used to detect the TCF7L2 rs7903146 polymorphism. Serum level of adiponectin was determined by the ELISA method. Standard assays were used to measure total cholesterol, HDL cholesterol, triglycerides, glucose and HbA1c concentrations. We used multiple logistic regression to identify factors associated with type 2 diabetes. RESULTS We found that the T allele of rs7903146 was significantly associated with T2D risk (odds ratio of 1.59 for T allele, p = 0.005). This association persisted after adjusting for confounders in the recessive model (odds ratio of 3.54 for TT genotype, p = 0.011). Serum adiponectin levels were significantly lower in diabetic subjects than in nondiabetic individuals (3.6 vs. 5.6 µg/ml, p < 0.001). Participants who were obese at age ≥ 20 years had significantly higher odds of having T2D (OR = 4.94) than those with the onset of obesity before 20 years (p < 0.001). CONCLUSIONS Our study highlights the significance of the relationship between the TCF7L2 polymorphism, a person's age at onset of obesity and the prevalence of T2D, and confirms lower adiponectin levels in obese diabetics in comparison to obese nondiabetics.
Collapse
Affiliation(s)
- Małgorzata Wrzosek
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy and Center for Preclinical Studies, Medical University of Warsaw, Warsaw, Poland
| | - Ada Sawicka
- Department of Geriatrics, Internal Medicine and Metabolic Bone Diseases, Medical Centre of Postgraduate Education, Orlowski Hospital, Warsaw, Poland
| | - Michał Wrzosek
- Department of Internal Medicine and Diabetology, Medical University of Warsaw, Warsaw, Poland
| | - Paweł Piątkiewicz
- Department of Internal Medicine and Diabetology, Medical University of Warsaw, Warsaw, Poland
| | - Marek Tałałaj
- Department of Geriatrics, Internal Medicine and Metabolic Bone Diseases, Medical Centre of Postgraduate Education, Orlowski Hospital, Warsaw, Poland
| | - Grażyna Nowicka
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy and Center for Preclinical Studies, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
20
|
Grycel S, Markowski AR, Hady HR, Zabielski P, Kojta I, Imierska M, Górski J, Blachnio-Zabielska AU. Metformin treatment affects adipocytokine secretion and lipid composition in adipose tissues of diet-induced insulin-resistant rats. Nutrition 2019; 63-64:126-133. [PMID: 30959381 DOI: 10.1016/j.nut.2019.01.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/09/2019] [Accepted: 01/25/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Adipose tissue plays a central role in the pathogenesis of insulin resistance (IR) and type 2 diabetes. However, the molecular changes that promote these diseases are not completely understood. Several studies demonstrated that ceramide (Cer) and diacylglycerol (DAG) accumulation in muscle is associated with IR. The aim of this study was to explain whether a high-fat diet (HFD) leads to bioactive lipid accumulation in adipose tissue and how metformin affects the lipid content in adipocytes and the concentration of plasma adipocytokines. METHODS The experiments were conducted on male Wistar rats divided into three groups: control, HFD-fed, and HFD-fed and treated with metformin. Cer and DAGs were analyzed by liquid chromatography tandem mass spectrometry. Phosphorylation of hormone-sensitive lipase (HSL) was analyzed by Western blot. Oral glucose tolerance and insulin tolerance tests were also performed. Plasma adiponectin and tumor necrosis factor (TNF)-α concentration were measured by enzyme-linked immunosorbent assay. RESULTS HFD induced IR and elevated DAGs and Cer content in subcutaneous and visceral adipose tissues, which was accompanied by an increased phosphorylation of HSL. Metformin improved insulin sensitivity, decreased Cer and DAG levels, and attenuated the phosphorylation of HSL in both fat depots. Furthermore, we observed a strong correlation between adiponectin (negative) and TNF-α (positive) and bioactive lipids in both fat tissues. CONCLUSIONS These results indicated that bioactive lipids accumulation in adipose tissue influences the induction of IR and, at least in part, answered the question of what the insulin-sensitizing effect of metformin at the level of adipose tissue is.
Collapse
Affiliation(s)
| | - Adam R Markowski
- Department of Internal Medicine and Gastroenterology, Polish Red Cross Memorial Municipal Hospital, Bialystok, Poland
| | - Hady Razak Hady
- 1st Department of General Surgery and Endocrinology, Medical University Bialystok, Bialystok, Poland
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, Bialystok, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Iwona Kojta
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Monika Imierska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Jan Górski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland; Department of Basic Sciences, Faculty of Health Sciences, Lomza State University of Applied Sciences, Lomza, Poland
| | | |
Collapse
|
21
|
Blachnio-Zabielska AU, Hady HR, Markowski AR, Kurianiuk A, Karwowska A, Górski J, Zabielski P. Inhibition of Ceramide De Novo Synthesis Affects Adipocytokine Secretion and Improves Systemic and Adipose Tissue Insulin Sensitivity. Int J Mol Sci 2018; 19:ijms19123995. [PMID: 30545025 PMCID: PMC6321500 DOI: 10.3390/ijms19123995] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022] Open
Abstract
Ceramide accumulation in muscle and in liver is implicated in the induction of insulin resistance. Much less in known about the role of ceramide in adipose tissue. The aim of the present study was to elucidate the role of ceramide in adipose tissue and to clarify whether lipids participate in the regulation of adipocytokine secretion. The experiments were performed on male Wistar rats divided into three groups: 1. Control, 2. fed high fat diet (HFD), and 3. fed HFD and treated with myriocin. Ceramide (Cer) and diacylglycerol (DAG) content were analyzed by LC/MS/MS. Hormone sensitive lipase (HSL) phosphorylation was analyzed by Western Blot. Plasma adiponectin and tumor necrosis factor alpha (TNF-α) concentration were measured by enzyme-linked immunosorbent assay. An oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) was also performed. In HFD group, total DAG and Cer content was elevated in both subcutaneous and visceral adipose tissue, which was accompanied by increased glucose, insulin, and HOMA-IR value. Myriocin treatment restored HOMA-IR as well as glucose and insulin concentration to control values. Moreover, myriocin decreased not only Cer, but also DAG levels in both fat depots. Furthermore, we observed a strong correlation between adiponectin (negative) and TNF-α (positive) and Cer in both fat tissues, which suggests that Cer is involved in the regulation of adipocytokine secretion.
Collapse
Affiliation(s)
- Agnieszka U Blachnio-Zabielska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland.
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland.
| | - Hady Razak Hady
- 1st Department of General Surgery and Endocrinology, Medical University Bialystok, Bialystok, Poland.
| | - Adam R Markowski
- Department of Internal Medicine and Gastroenterology, Polish Red Cross Memorial Municipal Hospital, Bialystok, Poland.
| | - Adam Kurianiuk
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland.
| | - Alicja Karwowska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland.
| | - Jan Górski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland.
- Department of Basic Sciences, Faculty of Health Sciences, Lomza State University of Applied Sciences, 18-400 Lomza, Poland.
| | - Piotr Zabielski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland.
- Department of Medical Biology, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
22
|
Zhang Y, Wan J, Xu Z, Hua T, Sun Q. Exercise ameliorates insulin resistance via regulating TGFβ-activated kinase 1 (TAK1)-mediated insulin signaling in liver of high-fat diet-induced obese rats. J Cell Physiol 2018; 234:7467-7474. [PMID: 30367484 DOI: 10.1002/jcp.27508] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/10/2018] [Indexed: 12/16/2022]
Abstract
Exercise is an effective therapy for insulin resistance. However, the underlying mechanism remains to be elucidated. Previous research demonstrated that TGFβ-activated kinase 1 (TAK1)-dependent signaling plays a crucial character in hepatic insulin resistance. Hepatic ubiquitin specific protease 4 (USP4), USP18, and dual-specificity phosphatases 14 (DUSP14) can suppress TAK1 phosphorylation, besides tumor necrosis factor receptor-associated factor 3 (TRAF3) and tripartite motif 8 (TRIM8) promote its phosphorylation. In this study, we tried to verify our hypothesis that exercise improves insulin resistance in high-fat diet (HFD)-induced obese (DIO) rats via regulating the TAK1 dependent signaling and TAK1 regulators in liver. Forty male Sprague-Dawley rats were randomized into four groups (n = 10): standard diet and sedentary as normal control; fed on HFD and DIO-sedentary; fed on HFD and DIO-chronic exercise; and fed on HFD and DIO-acute exercise. HFD feeding resulted in increased body weight, visceral fat mass, serum FFAs and hepatic lipid deposition, but decreased hepatic glycogen content and insulin sensitivity. Moreover, hepatic TRAF3 and TRIM8 protein levels increased, whereas USP4, USP18, and DUSP14 protein levels were decreased under obese status, which resulted in enhanced TAK1 phosphorylation and impaired insulin signaling. Exercise training, containing chronic and acute mode, both ameliorated insulin resistance. Meanwhile, decreased TAK1, c-Jun N-terminal kinase 1 (JNK1), and insulin receptor substrate 1 (IRS1) phosphorylation enhanced Akt phosphorylation in liver. Moreover, exercise enhanced USP4 and DUSP14 protein levels, whereas decreased TRIM8 protein levels in obese rats' liver. These results showed that exercise triggered a crucial modulation in TAK1-dependent signaling and its regulators in obese rats' liver, and distinct improvement in insulin sensitivity, which provide new insights into the mechanism by which physical exercise improves insulin resistance.
Collapse
Affiliation(s)
- Yong Zhang
- Division of Physiology, Physiology Laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Jianyong Wan
- Division of Physiology, Physiology Laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Zhen Xu
- Division of Immunology, The State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
| | - Tianmiao Hua
- Division of Neurobiology, Neurobiology Laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Qingyan Sun
- Division of Physiology, Physiology Laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
23
|
Marei WFA, Alvarez MA, Van Hoeck V, Gutierrez-Adan A, Bols PEJ, Leroy JLMR. Effect of nutritionally induced hyperlipidaemia on in vitro bovine embryo quality depends on the type of major fatty acid in the diet. Reprod Fertil Dev 2018; 29:1856-1867. [PMID: 27832581 DOI: 10.1071/rd16297] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/10/2016] [Indexed: 12/24/2022] Open
Abstract
The present study examined whether the effects of dietary-induced hyperlipidaemia on preimplantation embryo development depend on the predominant fatty acid (FA) type in the diet. In a combined in vivo-in vitro bovine model, two groups of cows (n=3 in each group) were fed with three diets consecutively (4 weeks feeding for each): (1) a maintenance control diet (CONT); (2) a high-starch diet rich in saturated fat (SAT); and (3) a high-starch diet rich in omega-3 unsaturated fat (UNSAT). Two feeding sequences were used to test for carry-over effects: Group A was fed CONT, SAT1 and then UNSAT2, whereas Group B was fed CONT, UNSAT1 and then SAT2. Serum was collected after each dietary period, analysed and tested in bovine in vitro embryo culture. Introducing SAT and UNSAT diets induced hyperlipidaemia (specifically hypercholesterolaemia and elevated free FAs) and reduced insulin sensitivity. Carry-over effects in serum metabolites and FA profile were dependent on the diet and feeding sequence. SAT1 and SAT2 serum decreased blastocyst rates and altered blastocyst mRNA expression related to apoptosis and oxidative stress. UNSAT1 and UNSAT2 serum resulted in normal embryo development and quality. Other in vitro effects depended on the sequence of feeding. In conclusion, substitution of saturated fat with omega-3 fat in a high-caloric diet induced hyperlipidaemia with an FA profile yielding similar rates and quality of blastocysts compared with normolipidaemic controls.
Collapse
Affiliation(s)
- Waleed F A Marei
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Maria Arias Alvarez
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Veerle Van Hoeck
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Alfonso Gutierrez-Adan
- Departamento de Reproduccion Animal, Instituto nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Ctra. De la CorunaKm 5.9, Madrid 28040, Spain
| | - Peter E J Bols
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Jo L M R Leroy
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| |
Collapse
|
24
|
Zhang Y, Wan J, Liu S, Hua T, Sun Q. Exercise induced improvements in insulin sensitivity are concurrent with reduced NFE2/miR-432-5p and increased FAM3A. Life Sci 2018; 207:23-29. [PMID: 29802941 DOI: 10.1016/j.lfs.2018.05.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/14/2018] [Accepted: 05/22/2018] [Indexed: 10/16/2022]
Abstract
AIMS Little is known regarding whether the NFE2/miR-423-5p and FAM3A-ATP-Akt pathway in liver mediates exercise allured alleviation of insulin resistance connected with diet-induced obesity. This research inquired the influence of exercise on liver insulin sensitivity and whole body insulin resistance in high-fat diet fed rats. MATERIALS AND METHODS Forty male Sprague-Dawley rats at seven-week-old were assigned to four groups at random: standard diet as normal control group (NC, n = 10), high-fat diet group (HFD, n = 10), high-fat diet with chronic exercise intervention group (HFD-CE, n = 10) and high-fat diet with acute exercise intervention group (HFD-AE, n = 10). KEY FINDINGS Compared with rats fed with a standard diet, eight-week high-fat diet feeding lead to elevated body weight, visceral fat content and serum FFAs, and decreased insulin sensitivity index. Moreover, high-fat diet enhanced NFE2 protein expression and miR-423-5p level, decreased FAM3A mRNA and protein expression, ATP level and Akt phosphorylation in liver. In contrast, physical exercise, both chronic and acute exercise alleviated whole body insulin resistance, reduced hepatic NFE2 and miR-423-5p expression, and serum FFAs level, meanwhile enhanced FAM3A mRNA and protein expression, ATP level and Akt phosphorylation in liver. The current findings indicated that exercise in diet-induced obesity, both chronic and acute, induce a momentous regulation in NFE2/miR-423-5p and FAM3A-ATP-Akt pathway in liver, and improve hepatic insulin sensitivity and whole body insulin resistance. SIGNIFICANCE All these results supply crucial evidence in our comprehending of the molecular mechanism that connected exercise to an alleviation of insulin resistance.
Collapse
Affiliation(s)
- Yong Zhang
- Physiology Laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Jianyong Wan
- Physiology Laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Shiqiang Liu
- Physiology Laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Tianmiao Hua
- Neurobiology Laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Qingyan Sun
- Physiology Laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China.
| |
Collapse
|
25
|
Maciejewska D, Michalczyk M, Czerwińska-Rogowska M, Banaszczak M, Ryterska K, Jakubczyk K, Piotrwski J, Hołowko J, Drozd A, Wysokińki P, Ficek K, Wilk K, Lubkowska A, Cięszczyk P, Bertrand J, Stachowska E. Seeking Optimal Nutrition for Healthy Body Mass Reduction among Former Athletes. J Hum Kinet 2017; 60:63-75. [PMID: 29339986 PMCID: PMC5765786 DOI: 10.1515/hukin-2017-0090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The aim of the study was to investigate the efficacy of 6 week Mediterranean diet or 30% calorie restriction on the fatty acid profile and eicosanoids (hydroxyoctadecadienoi acids and hydroxyeicosatetraenoic acids) concentration. Furthermore, basic biochemical variables such as insulin, glucose, HOMA-IR, and a lipid profile were estimated. The study enrolled 94 Caucasian former athletes aged 20-42, with body height of 179 ± 16.00 cm and body mass of 89.26 ± 13.25 kg who had not been active for at least 5 years. The subjects were randomly assigned to one of the three intervention groups: CR group – the 30% calorie restriction (n = 32), MD group - the Mediterranean diet (n = 34), and C group - a control group (n = 28). The pattern of nutrition was analysed before and after the experiment using the 72 h food diaries. In order to evaluate the effect of diet intervention, the following variables were measured: anthropometrics, basic biochemical variables (insulin, fasting glucose, HOMA-IR, lipid profile), fatty acids and their blood derivatives profiles. The CR group showed significantly lower levels of several biochemical variables, i.e., BMI, total cholesterol LDL, TG, total lipids, insulin and HOMA – IR (p < 0.05). Subjects consuming the MD diet significantly decreased their BMI and reduced the level of total lipids (p < 0.05). We did not find any significant changes in the C group. The analysis of the fatty acid profile revealed that the CR group had a significantly decreased EPA level (p < 0.05). The MD group showed a significantly increased level of the DHA (p < 0.05) and improvement in the omega - 3 index (p < 0.05). Subjects following the MD also showed significantly lower concentrations of 15 - hydroxyicosatetraenoic acid (15-HETE). We did not observe any significant differences between the CR and C groups. Within short time, calorie restriction helps to improve lipid variables and insulin resistance. The MD diet seems to be more advantageous in the decrease of inflammation, but does not improve basic biochemical variables. We can conclude that calorie restriction can be a good choice for former athletes, although EPA and DHA supplementation is needed.
Collapse
Affiliation(s)
- Dominika Maciejewska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin, Poland
| | - Małgorzata Michalczyk
- Department of Sports Nutrition, Academy of Physical Education in Katowice, Katowice, Poland
| | | | - Marcin Banaszczak
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin, Poland
| | - Karina Ryterska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin, Poland
| | - Karolina Jakubczyk
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin, Poland
| | - Jakub Piotrwski
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin, Poland
| | - Joanna Hołowko
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin, Poland
| | - Arleta Drozd
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin, Poland
| | - Paweł Wysokińki
- Medical Education Unit, Pomeranian Medical University, Szczecin, Poland
| | - Krzysztof Ficek
- Department of Medicine and Sport Physioteraphy, Academy of Physical Education in Katowice, Katowice, Poland
| | - Krzysztof Wilk
- Faculty of Physical Culture and Health Promotion, University of Szczecin, Szczecin, Poland
| | - Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Paweł Cięszczyk
- Department of Physical Education, Gdańsk University of Physical Education and Sport, Gdansk, Poland
| | - Jerzy Bertrand
- Department of Hygiene and Physiology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Ewa Stachowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
26
|
Sipe LM, Yang C, Ephrem J, Garren E, Hirsh J, Deppmann CD. Differential sympathetic outflow to adipose depots is required for visceral fat loss in response to calorie restriction. Nutr Diabetes 2017; 7:e260. [PMID: 28394360 PMCID: PMC5436093 DOI: 10.1038/nutd.2017.13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/01/2017] [Indexed: 01/10/2023] Open
Abstract
The sympathetic nervous system (SNS) regulates energy homeostasis in part by governing fatty acid liberation from adipose tissue. We first examined whether SNS activity toward discrete adipose depots changes in response to a weight loss diet in mice. We found that SNS activity toward each adipose depot is unique in timing, pattern of activation, and habituation with the most dramatic contrast between visceral and subcutaneous adipose depots. Sympathetic drive toward visceral epididymal adipose is more than doubled early in weight loss and then suppressed later in the diet when weight loss plateaued. Coincident with the decline in SNS activity toward visceral adipose is an increase in activity toward subcutaneous depots indicating a switch in lipolytic sources. In response to calorie restriction, SNS activity toward retroperitoneal and brown adipose depots is unaffected. Finally, pharmacological blockage of sympathetic activity on adipose tissue using the β3-adrenergic receptor antagonist, SR59230a, suppressed loss of visceral adipose mass in response to diet. These findings indicate that SNS activity toward discrete adipose depots is dynamic and potentially hierarchical. This pattern of sympathetic activation is required for energy liberation and loss of adipose tissue in response to calorie-restricted diet.
Collapse
Affiliation(s)
- L M Sipe
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - C Yang
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - J Ephrem
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - E Garren
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - J Hirsh
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - C D Deppmann
- Department of Biology, University of Virginia, Charlottesville, VA, USA.,Department of Cell Biology, University of Virginia, Charlottesville, VA, USA.,Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.,Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
27
|
Hizel C, Tremblay J, Bartlett G, Hamet P. Introduction. PROGRESS AND CHALLENGES IN PRECISION MEDICINE 2017:1-34. [DOI: 10.1016/b978-0-12-809411-2.00001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
28
|
Mingrone G. Dietary fatty acids and insulin secretion. SCANDINAVIAN JOURNAL OF FOOD & NUTRITION 2016. [DOI: 10.1080/17482970601076354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- G. Mingrone
- Department of Internal MedicineCatholic University, School of MedicineRomeItaly
| |
Collapse
|
29
|
Gibas-Dorna M, Szulińska M, Turkowski P, Kupsz J, Sowińska A, Mikrut K, Bernatek M, Piatek J. The Effect of VASER Abdominal Liposuction on Metabolic Profile in Overweight Males. Am J Mens Health 2016; 11:284-293. [PMID: 27756865 PMCID: PMC5675295 DOI: 10.1177/1557988316674841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of the current study was to examine the liposuction-induced metabolic changes with regard to release of major adipokines and insulin sensitivity in overweight male patients. Seventeen overweight male patients aged 37.15 ± 9.60 years (6 with diabetes type 2, 11 without comorbidities) and 10 age-matched healthy lean controls were enrolled in the study. Using Vibration Amplification of Sound Energy at Resonance System, ultrasound assisted liposuction was applied onto the deep layers of abdominal subcutaneous adipose tissue. The mean volume supranatant fat was 2208 ± 562 ml. To eliminate the confounding effects of postsurgical inflammation and to evaluate delayed metabolic effects, fasting blood was collected on the day of liposuction, within 1 to 2 months and more than 6 months after surgery. Serum leptin, soluble receptor for leptin, adiponectin, insulin, and glucose concentrations were tested and insulin sensitivity was calculated using updated model Homeostasis Model Assessment 2. Both treatment groups (diabetic and nondiabetic patients) experienced similar postsurgical weight reduction with concomitant lowering of body mass index value at 1 to 2 months follow-up, which was sustained after 6 months from surgery. Improvement in insulin sensitivity at 1 to 2 months follow-up was observed ( p = .017 and p = .002, for diabetics and nondiabetics, respectively) and this change persisted over the next 4 months. At the same time, no significant changes in adipokines and soluble leptin receptor were found. These data demonstrate that in terms of metabolic consequences, Vibration Amplification of Sound Energy at Resonance abdominal liposuction might have beneficial effects in overweight diabetic and nondiabetic males by improving their insulin sensitivity.
Collapse
Affiliation(s)
| | | | | | - Justyna Kupsz
- 1 Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Sowińska
- 1 Poznan University of Medical Sciences, Poznan, Poland
| | - Kinga Mikrut
- 1 Poznan University of Medical Sciences, Poznan, Poland
| | | | - Jacek Piatek
- 1 Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
30
|
Nascimento AR, Machado MV, Gomes F, Vieira AB, Gonçalves-de-Albuquerque CF, Lessa MA, Bousquet P, Tibiriçá E. Central Sympathetic Modulation Reverses Microvascular Alterations in a Rat Model of High-Fat Diet-Induced Metabolic Syndrome. Microcirculation 2016; 23:320-9. [DOI: 10.1111/micc.12280] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/14/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Alessandro R. Nascimento
- Laboratory of Cardiovascular Investigation; Oswaldo Cruz Institute; FIOCRUZ; Rio de Janeiro Brazil
- Laboratory of Neurobiology and Cardiovascular Pharmacology; EA 7296; Faculty of Medicine of the University of Strasbourg; Strasbourg France
| | - Marcus V. Machado
- Laboratory of Cardiovascular Investigation; Oswaldo Cruz Institute; FIOCRUZ; Rio de Janeiro Brazil
| | - Fabiana Gomes
- Laboratory of Cardiovascular Investigation; Oswaldo Cruz Institute; FIOCRUZ; Rio de Janeiro Brazil
| | - Aline B. Vieira
- Laboratory of Inflammation Oswaldo Cruz Institute; FIOCRUZ; Rio de Janeiro Brazil
| | | | - Marcos A. Lessa
- Laboratory of Cardiovascular Investigation; Oswaldo Cruz Institute; FIOCRUZ; Rio de Janeiro Brazil
| | - Pascal Bousquet
- Laboratory of Neurobiology and Cardiovascular Pharmacology; EA 7296; Faculty of Medicine of the University of Strasbourg; Strasbourg France
| | - Eduardo Tibiriçá
- Laboratory of Cardiovascular Investigation; Oswaldo Cruz Institute; FIOCRUZ; Rio de Janeiro Brazil
| |
Collapse
|
31
|
Han X, Liu C, Xue Y, Wang J, Xue C, Yanagita T, Gao X, Wang Y. Long-term fatty liver-induced insulin resistance in orotic acid-induced nonalcoholic fatty liver rats. Biosci Biotechnol Biochem 2016; 80:735-43. [DOI: 10.1080/09168451.2015.1123608] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
We investigated whether fatty liver preceded insulin resistance or vice versa using a long-term orotic acid (OA)-induced nonalcoholic fatty liver disease (NAFLD) model without the confounding effects of obesity and hyperlipidemia and explored the role of the liver in insulin resistance. Male Wistar rats were fed with or without OA supplementation for 30, 60, and 90 days. The NAFLD group showed increased liver lipid at 30, 60, and 90 days; glucose intolerance was noted at 60 and 90 days. Furthermore, partial liver proteins and gene expressions related to upstream signaling of insulin were decreased. However, the liver glycogen content was elevated, and gluconeogenesis genes expressions were obviously decreased at 90 days. The occurrence of fatty liver preceded insulin resistance in OA-induced NAFLD without the interference of obesity and hyperlipidemia, and hepatic insulin resistance may not play a conclusive role in insulin resistance in this model.
Collapse
Affiliation(s)
- Xiuqing Han
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Chunhua Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yong Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | | | - Xiang Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Faculty of Medicine, Memorial University, Saint John's, Canada
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
32
|
Forest C, Joffin N, Jaubert AM, Noirez P. What induces watts in WAT? Adipocyte 2016; 5:136-52. [PMID: 27386158 PMCID: PMC4916896 DOI: 10.1080/21623945.2016.1187345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 01/05/2023] Open
Abstract
Excess calories stored in white adipose tissue (WAT) could be reduced either through the activation of brown adipose tissue (BAT) or the development of brown-like cells ("beige" or "brite") in WAT, a process named "browning." Calorie dissipation in brown and beige adipocytes might rely on the induction of uncoupling protein 1 (UCP1), which is absent in white fat cells. Any increase in UCP1 is commonly considered as the trademark of energy expenditure. The intracellular events involved in the recruitment process of beige precursors were extensively studied lately, as were the effectors, hormones, cytokines, nutrients and drugs able to modulate the route of browning and theoretically affect fat mass in rodents and in humans. The aim of this review is to update the characterization of the extracellular effectors that induce UCP1 in WAT and potentially provoke calorie dissipation. The potential influence of metabolic cycling in energy expenditure is also questioned.
Collapse
Affiliation(s)
- Claude Forest
- Institut National de la Santé et de la Recherche Médicale UMR-S 1124, Faculté des Sciences Fondamentales et Biomédicales, Pharmacologie Toxicologie et Signalisation Cellulaire, Université Paris Descartes, Paris, France
- Institut de Recherche Biomédicale et d'Epidémiologie du Sport, Université Paris Descartes, Paris, France
| | - Nolwenn Joffin
- Institut National de la Santé et de la Recherche Médicale UMR-S 1124, Faculté des Sciences Fondamentales et Biomédicales, Pharmacologie Toxicologie et Signalisation Cellulaire, Université Paris Descartes, Paris, France
- Institut de Recherche Biomédicale et d'Epidémiologie du Sport, Université Paris Descartes, Paris, France
| | - Anne-Marie Jaubert
- Institut National de la Santé et de la Recherche Médicale UMR-S 1124, Faculté des Sciences Fondamentales et Biomédicales, Pharmacologie Toxicologie et Signalisation Cellulaire, Université Paris Descartes, Paris, France
| | - Philippe Noirez
- Institut de Recherche Biomédicale et d'Epidémiologie du Sport, Université Paris Descartes, Paris, France
- Faculté des Sciences et Techniques des Activités Physiques et Sportives, Université Paris Descartes, Paris, France
| |
Collapse
|
33
|
Abstract
Adenosine exerts a variety of physiological effects by binding to cell surface G-protein-coupled receptor subtypes, namely, A1, A2a, A2b, and A3. The central physiological role of adenosine is to preclude tissue injury and promote repair in response to stress. In the heart, adenosine acts as a cytoprotective modulator, linking cardiac function to metabolic demand predominantly via activation of adenosine A1 receptors (A1Rs), which leads to inhibition of adenylate cyclase activity, modulation of protein kinase C, and opening of ATP-sensitive potassium channels. Activation of myocardial adenosine A1Rs has been shown to modulate a variety of pathologies associated with ischemic cardiac injury, including arrhythmogenesis, coronary and ventricular dysfunction, apoptosis, mitochondrial dysfunction, and ventricular remodeling. Partial A1R agonists are agents that are likely to elicit favorable pharmacological responses in heart failure (HF) without giving rise to the undesirable cardiac and extra-cardiac effects observed with full A1R agonism. Preclinical data have shown that partial adenosine A1R agonists protect and improve cardiac function at doses that do not result in undesirable effects on heart rate, atrioventricular conduction, and blood pressure, suggesting that these compounds may constitute a valuable new therapy for chronic HF. Neladenoson bialanate (BAY1067197) is the first oral partial and highly selective A1R agonist that has entered clinical development for the treatment of HF. This review provides an overview of adenosine A1R-mediated signaling in the heart, summarizes the results from preclinical and clinical studies of partial A1R agonists in HF, and discusses the potential benefits of these drugs in the clinical setting.
Collapse
|
34
|
Lipina C, Nardi F, Grace H, Hundal HS. NEU3 sialidase as a marker of insulin sensitivity: Regulation by fatty acids. Cell Signal 2015; 27:1742-50. [PMID: 26022181 DOI: 10.1016/j.cellsig.2015.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/05/2015] [Accepted: 05/18/2015] [Indexed: 12/27/2022]
Abstract
The plasma membrane-associated enzyme NEU3 sialidase functions to cleave sialic acid residues from the ganglioside GM3 thereby promoting its degradation, and has been implicated in the modulation of insulin action. Herein, we report for the first time that impaired insulin sensitivity in skeletal muscle and liver of obese Zucker fatty rats and aged C57BL/6 mice coincides with reduced NEU3 protein abundance. In addition, high fat feeding was found to significantly reduce NEU3 protein in white adipose tissue of rats. Notably, we also demonstrate the ability of the fatty acids palmitate and oleate to repress and induce NEU3 protein in L6 myotubes, concomitant with their insulin desensitising and enhancing effects, respectively. Moreover, we show that the palmitate-driven loss in NEU3 protein is mediated, at least in part, by intracellular ceramide synthesis but does not involve the proteasomal pathway. Strikingly, we further reveal that protein kinase B (PKB/Akt) acts as a key positive modulator of NEU3 protein abundance. Together, our findings implicate NEU3 as a potential biomarker of insulin sensitivity, and provide novel mechanistic insight into the regulation of NEU3 expression.
Collapse
Affiliation(s)
- Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Francesca Nardi
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Helen Grace
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
35
|
Farsi PF, Djazayery A, Eshraghian MR, Koohdani F, Saboor-Yaraghi AA, Derakhshanian H, Zarei M, Javanbakht MH, Djalali M. Effects of supplementation with omega-3 on insulin sensitivity and non-esterified free fatty acid (NEFA) in type 2 diabetic patients. ACTA ACUST UNITED AC 2015; 58:335-40. [PMID: 24936727 DOI: 10.1590/0004-2730000002861] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/24/2013] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aim of this study was to determine the role of omega-3 supplementation on NEFA concentration, insulin sensitivity and resistance, and glucose and lipid metabolism in type 2 diabetic patients. SUBJECTS AND METHODS Forty-four type 2 diabetic patients were randomly recruited into two groups. Group A received 4 g/day omega-3 soft gels, and group B received a placebo for 10 wks. Blood samples were collected after 12-h fast. Physical activity records, three-day food records, and anthropometric measurements were obtained from all participants at the beginning and end of the study. RESULTS Omega-3 supplementation caused a significant reduction in NEFA in the intervention group compared with the placebo group (P = 0.009). Additionally, the administration of omega-3 resulted in significantly greater changes (Diff) for the intervention group in various parameters, such as insulin and Quicki indices compared with the placebo group (P < 0.05). CONCLUSIONS Omega-3 fatty acid supplementation in type 2 diabetic patients improved insulin sensitivity, probably due to the decrease in NEFA concentrations.
Collapse
Affiliation(s)
- Payam Farahbakhsh Farsi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolghassem Djazayery
- Department of Nutrition and Biochemistry, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Eshraghian
- Department of Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Koohdani
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Saboor-Yaraghi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoda Derakhshanian
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Zarei
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Javanbakht
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Djalali
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Thorp AA, Schlaich MP. Relevance of Sympathetic Nervous System Activation in Obesity and Metabolic Syndrome. J Diabetes Res 2015; 2015:341583. [PMID: 26064978 PMCID: PMC4430650 DOI: 10.1155/2015/341583] [Citation(s) in RCA: 263] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/30/2015] [Indexed: 01/29/2023] Open
Abstract
Sympathetic tone is well recognised as being implicit in cardiovascular control. It is less readily acknowledged that activation of the sympathetic nervous system is integral in energy homeostasis and can exert profound metabolic effects. Accumulating data from animal and human studies suggest that central sympathetic overactivity plays a pivotal role in the aetiology and complications of several metabolic conditions that can cluster to form the Metabolic Syndrome (MetS). Given the known augmented risk for type 2 diabetes, cardiovascular disease, and premature mortality associated with the MetS understanding the complex pathways underlying the metabolic derangements involved has become a priority. Many factors have been proposed to contribute to increased sympathetic nerve activity in metabolic abnormalities including obesity, impaired baroreflex sensitivity, hyperinsulinemia, and elevated adipokine levels. Furthermore there is mounting evidence to suggest that chronic sympathetic overactivity can potentiate two of the key metabolic alterations of the MetS, central obesity and insulin resistance. This review will discuss the regulatory role of the sympathetic nervous system in metabolic control and the proposed pathophysiology linking sympathetic overactivity to metabolic abnormalities. Pharmacological and device-based approaches that target central sympathetic drive will also be discussed as possible therapeutic options to improve metabolic control in at-risk patient cohorts.
Collapse
Affiliation(s)
- Alicia A. Thorp
- Neurovascular Hypertension and Kidney Disease Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Markus P. Schlaich
- Neurovascular Hypertension and Kidney Disease Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Department of Cardiovascular Medicine, Alfred Hospital, Melbourne, VIC 3004, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3800, Australia
- School of Medicine and Pharmacology, Royal Perth Hospital Unit, Faculty of Medicine, Dentistry & Health Sciences, The University of Western Australia, Level 3, MRF Building, Rear 50 Murray Street, Perth, WA 6000, Australia
- *Markus P. Schlaich:
| |
Collapse
|
37
|
Ortega L, Garcia-Anguita A, Riestra P, Ortega H, Soriano-Guillén L, Lasunción MA, de Oya M, Garcés C. Plasma non-esterified fatty acid levels in children and their relationship with sex steroids. Steroids 2014; 88:15-8. [PMID: 24945112 DOI: 10.1016/j.steroids.2014.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 05/30/2014] [Accepted: 06/04/2014] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Puberty is associated with decreased insulin sensitivity. Sexual hormones have been related with the onset of insulin resistance, but their relationship with non-esterified fatty acids (NEFA) remains unexplored. The aim of this study was to evaluate circulating NEFA levels in population-based samples of prepubertal children and adolescents and to analyze the association of NEFA with obesity, insulin resistance, and sexual hormones in adolescents. EXPERIMENTAL The studied population included 854 randomly selected 6-8-year-old children and 822 children aged 12-16years. NEFA levels were determined using a commercial kit. Testosterone and estradiol levels were determined by RIA, and insulin and sex hormone binding protein by IRMA. HOMA was calculated as an indicator of insulin resistance. RESULTS NEFA levels were lower in adolescents than in 6-8-year-old children, and decreased progressively with age between 12-year-olds and 16-year-olds. No significant differences in NEFA levels were observed between obese and non-obese adolescents. NEFA were not correlated with insulin or HOMA in 12-16-year-old girls, and appear negatively correlated with these variables in boys. Insulin and HOMA were negatively correlated with SHBG levels in both sexes adjusting by age but NEFA levels were not. CONCLUSIONS NEFA levels decrease with age in adolescents and are not significantly increased in obese children, supporting the fact that the decreased insulin sensitivity at this age is not affecting NEFA metabolism. Although SHBG is related to insulin and HOMA independently of age in both sexes, SHBG levels are not associated with NEFA.
Collapse
Affiliation(s)
- Lorena Ortega
- Lipid Metabolism Research Laboratory, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | | | - Pía Riestra
- Lipid Metabolism Research Laboratory, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Henar Ortega
- Servicio de Bioquímica-Investigación, Hospital Ramón y Cajal Madrid, and CIBER de Fisiología de la Obesidad y Nutrición (CIBERobn), Spain
| | | | - Miguel A Lasunción
- Servicio de Bioquímica-Investigación, Hospital Ramón y Cajal Madrid, and CIBER de Fisiología de la Obesidad y Nutrición (CIBERobn), Spain
| | - Manuel de Oya
- Lipid Metabolism Research Laboratory, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Carmen Garcés
- Lipid Metabolism Research Laboratory, IIS-Fundación Jiménez Díaz, Madrid, Spain.
| |
Collapse
|
38
|
Mazzoccoli G, Vinciguerra M, Oben J, Tarquini R, De Cosmo S. Non-alcoholic fatty liver disease: the role of nuclear receptors and circadian rhythmicity. Liver Int 2014; 34:1133-52. [PMID: 24649929 DOI: 10.1111/liv.12534] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/16/2014] [Indexed: 12/22/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the accumulation of triglycerides in the hepatocytes in the absence of excess alcohol intake, and is caused by an imbalance between hepatic synthesis and breakdown of fats, as well as fatty acid storage and disposal. Liver metabolic pathways are driven by circadian biological clocks, and hepatic health is maintained by proper timing of circadian patterns of metabolic gene expression with the alternation of anabolic processes corresponding to feeding/activity during wake times, and catabolic processes characterizing fasting/resting during sleep. A number of nuclear receptors in the liver are expressed rhythmically, bind hormones and metabolites, sense energy flux and expenditure, and connect the metabolic pathways to the molecular clockwork throughout the 24-h day. In this review, we describe the role played by the nuclear receptors in the genesis of NAFLD in relationship with the circadian clock circuitry.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Division of Internal Medicine and Chronobiology Unit, Department of Medical Sciences, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | | | | | | | | |
Collapse
|
39
|
Zhang Y, Foncea R, Deis JA, Guo H, Bernlohr DA, Chen X. Lipocalin 2 expression and secretion is highly regulated by metabolic stress, cytokines, and nutrients in adipocytes. PLoS One 2014; 9:e96997. [PMID: 24818605 PMCID: PMC4018437 DOI: 10.1371/journal.pone.0096997] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/14/2014] [Indexed: 01/03/2023] Open
Abstract
Lipocalin 2 (Lcn2) has been recently characterized as a new adipokine having a role in innate immunity and energy metabolism. Nonetheless, the metabolic regulation of Lcn2 production in adipocytes has not been comprehensively studied. To better understand the Lcn2 biology, we investigated the regulation of Lcn2 expression in adipose tissue in response to metabolic stress in mice as well as the control of Lcn2 expression and secretion by cytokines and nutrients in 3T3-L1 adipocytes. Our results showed that the mRNA expression of Lcn2 was upregulated in white and brown adipose tissues as well as liver during fasting and cold stress in mice. Among pro-inflammatory cytokines TNFα, IL-1β, and IL-6, IL-1β showed most profound effect on Lcn2 expression and secretion in 3T3-L1 adipocytes. Insulin stimulated Lcn2 expression and secretion in a dose-dependent manner; this insulin effect was significantly abolished in the presence of low concentration of glucose. Moreover, insulin-stimulated Lcn2 expression and secretion was also attenuated when glucose was replaced by 3-O-methyl-d-glucose or by blocking NFκB pathway activation. Additionally, we showed that palmitate and oleate induced Lcn2 expression and secretion more significantly than EPA, while phytanic acid reduced Lcn2 production. Our results demonstrated that Lcn2 production in adipocytes is highly responsive to metabolic stress, cytokines, and nutrient signals, suggesting an important role of Lcn2 in adipocyte metabolism and inflammation.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, Saint Paul, Minnesota, United States of America
| | - Rocio Foncea
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, Minnesota, United States of America
| | - Jessica A. Deis
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, Saint Paul, Minnesota, United States of America
| | - Hong Guo
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, Saint Paul, Minnesota, United States of America
| | - David A. Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, Minnesota, United States of America
| | - Xiaoli Chen
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, Saint Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
40
|
Kuleshova DK, Davydov VV. [Some peculiarities in the manifestation of oxidative stress and current status of antioxidant system in adolescents of different age groups with obesity, complicated by insulin resistance and without it]. BIOMEDITSINSKAIA KHIMIIA 2014; 60:264-274. [PMID: 24837315 DOI: 10.18097/pbmc20146002264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The study has shown that neuroendocrine obesity in adolescents is associated with the formation of oxidative stress which is more pronounced in early than in late puberty. Obesity with concomitant insulin resistance increases manifestations of oxidative stress accompanied by a compensatory increase in the activity of catabolic enzymes and reduced capacity of the defense antioxidant system in late puberty. These alterations may be caused by age-related changes in hormonal secretion under conditions of insulin resistance in late puberty.
Collapse
|
41
|
Czech MP, Tencerova M, Pedersen DJ, Aouadi M. Insulin signalling mechanisms for triacylglycerol storage. Diabetologia 2013; 56:949-64. [PMID: 23443243 PMCID: PMC3652374 DOI: 10.1007/s00125-013-2869-1] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/22/2013] [Indexed: 02/06/2023]
Abstract
Insulin signalling is uniquely required for storing energy as fat in humans. While de novo synthesis of fatty acids and triacylglycerol occurs mostly in liver, adipose tissue is the primary site for triacylglycerol storage. Insulin signalling mechanisms in adipose tissue that stimulate hydrolysis of circulating triacylglycerol, uptake of the released fatty acids and their conversion to triacylglycerol are poorly understood. New findings include (1) activation of DNA-dependent protein kinase to stimulate upstream stimulatory factor (USF)1/USF2 heterodimers, enhancing the lipogenic transcription factor sterol regulatory element binding protein 1c (SREBP1c); (2) stimulation of fatty acid synthase through AMP kinase modulation; (3) mobilisation of lipid droplet proteins to promote retention of triacylglycerol; and (4) upregulation of a novel carbohydrate response element binding protein β isoform that potently stimulates transcription of lipogenic enzymes. Additionally, insulin signalling through mammalian target of rapamycin to activate transcription and processing of SREBP1c described in liver may apply to adipose tissue. Paradoxically, insulin resistance in obesity and type 2 diabetes is associated with increased triacylglycerol synthesis in liver, while it is decreased in adipose tissue. This and other mysteries about insulin signalling and insulin resistance in adipose tissue make this topic especially fertile for future research.
Collapse
Affiliation(s)
- M P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.
| | | | | | | |
Collapse
|
42
|
Staehr PM, Dhalla AK, Zack J, Wang X, Ho YL, Bingham J, Belardinelli L. Reduction of free fatty acids, safety, and pharmacokinetics of oral GS-9667, an A(1) adenosine receptor partial agonist. J Clin Pharmacol 2013; 53:385-92. [PMID: 23427000 DOI: 10.1002/jcph.9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 06/24/2012] [Indexed: 11/09/2022]
Abstract
GS-9667, a new selective, partial agonist of the A(1) adenosine receptor (AR), may represent an effective therapy for Type 2 diabetes (T2DM) and dyslipidemia via lowering of free fatty acids (FFA). The objectives of the studies were to evaluate the effects of single and multiple doses of GS-9667 on plasma FFA concentrations, its pharmacokinetics (PK) and safety/tolerability. Two studies were conducted. In the single ascending dose study, healthy, non-obese, and obese subjects received a single oral dose of GS-9667 (30-1,800 mg). In the multiple, ascending dose study, healthy, obese subjects received GS-9667 (600-2,400 mg QD, 1,200 mg BID, or 600 mg QID) for 14 days. Blood and urine samples were collected for lipid profiling and PK analyses. The ECG, vital signs, and subject tolerability were monitored. Doses of GS-9667 ≥300 mg caused dose-dependent reductions in FFA levels that were reproducible over 14 days without evidence of desensitization or rebound. All doses were well tolerated. GS-9667 was rapidly absorbed and distributed; Steady-state concentrations were achieved within 3-5 days. The A(1) AR partial agonist GS-9667 reduced plasma FFA, exhibited linear kinetics, and was well-tolerated in healthy non-obese and obese subjects.
Collapse
|
43
|
Age-related distributions of nine fasting plasma free fatty acids in a population of Chinese adults. Clin Chim Acta 2013; 415:81-7. [DOI: 10.1016/j.cca.2012.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/29/2012] [Accepted: 10/01/2012] [Indexed: 11/23/2022]
|
44
|
Szczepaniak LS, Victor RG, Mathur R, Nelson MD, Szczepaniak EW, Tyer N, Chen I, Unger RH, Bergman RN, Lingvay I. Pancreatic steatosis and its relationship to β-cell dysfunction in humans: racial and ethnic variations. Diabetes Care 2012; 35:2377-83. [PMID: 22968187 PMCID: PMC3476895 DOI: 10.2337/dc12-0701] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To evaluate racial/ethnic differences in pancreatic triglyceride (TG) levels and their relationship to β-cell dysfunction in humans. RESEARCH DESIGN AND METHODS We studied black, Hispanic, and white adults who completed three research visits: screening and an oral glucose tolerance test; frequently sampled intravenous glucose tolerance tests for evaluation of β-cell function and insulin resistance; and proton magnetic resonance spectroscopy for evaluation of pancreatic and hepatic TG levels. RESULTS Pancreatic TG levels were higher in Hispanics and whites than in blacks (P = 0.006). Hepatic TG levels were highest in Hispanics (P = 0.004). Compensatory insulin secretion and disposition index were higher in blacks (P = 0.003 and P = 0.024, respectively). Insulin sensitivity was comparable between Hispanics and blacks and was lower than in whites (P = 0.005). In blacks, compensatory insulin secretion increased steeply with small increments in pancreatic TG levels (R(2) = 0.45, slope = 247). In whites, the range of pancreatic TG levels was higher, and the slope was less steep than in blacks (R(2) = 0.27, slope = 27). In Hispanics, pancreatic TG levels were similar to those of whites, but compensatory insulin secretion was described by a combination of pancreatic and hepatic TG levels and visceral fat mass ( R(2) = 0.32). CONCLUSIONS In a multiethnic sample of adults with mild obesity and without diabetes, we found striking ethnic differences in the levels of pancreatic TGs and in the relationship between pancreatic TGs and β-cell dysfunction. Our data implicate pancreatic TG content measured by proton magnetic resonance spectroscopy as a noninvasive novel biomarker for pancreatic β-cell dysfunction, especially in the Hispanic population.
Collapse
|
45
|
Than A, Cheng Y, Foh LC, Leow MKS, Lim SC, Chuah YJ, Kang Y, Chen P. Apelin inhibits adipogenesis and lipolysis through distinct molecular pathways. Mol Cell Endocrinol 2012; 362:227-41. [PMID: 22842084 DOI: 10.1016/j.mce.2012.07.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/19/2012] [Accepted: 07/06/2012] [Indexed: 12/30/2022]
Abstract
Apelin is an adipokine secreted by adipocytes. Co-expression of apelin and apelin receptor (APJ) in adipocytes implies the autocrine regulations of apelin on adipocyte functions through yet unknown molecular mechanisms. In the present study, we provide evidence that apelin, through its interaction with APJ receptor, inhibits adipogenesis of pre-adipocytes and lipolysis in mature adipocytes. The detailed molecular pathways underlying apelin signaling is proposed based on our experimental observations. Specifically, we show that apelin suppresses adipogenesis through MAPK kinase/ERK dependent pathways. And by preventing lipid droplet fragmentation, apelin inhibits basal lipolysis through AMP kinase dependent enhancement of perilipin expression and inhibits hormone-stimulated acute lipolysis through decreasing perilipin phosphorylation. Apelin induced decrease of free fatty acid release can be attributed to its dual inhibition on adipogenesis and lipolysis. This study suggests that the autocrine signaling of apelin may serve as a novel therapeutic target for obesity and other metabolic disorders.
Collapse
Affiliation(s)
- Aung Than
- Division of Bioengineering, Nanyang Technological University, Singapore 637457, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Hu X, Li Z, Xue Y, Xu J, Xue C, Wang J, Wang Y. Dietary Saponins of Sea Cucumber Ameliorate Obesity, Hepatic Steatosis, and Glucose Intolerance in High-Fat Diet–Fed Mice. J Med Food 2012; 15:909-16. [DOI: 10.1089/jmf.2011.2042] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Xiaoqian Hu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yong Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
47
|
Roth J, Qiang X, Marbán SL, Redelt H, Lowell BC. The Obesity Pandemic: Where Have We Been and Where Are We Going? ACTA ACUST UNITED AC 2012; 12 Suppl 2:88S-101S. [PMID: 15601956 DOI: 10.1038/oby.2004.273] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Obesity, a new pandemic, is associated with an increased risk of death, morbidity, and accelerated aging. The multiple therapeutic modalities used to promote weight loss are outlined with caution, especially for patients who are very young or old. Except for very rare single gene defects, the inheritance of obesity is complex and still poorly understood, despite active investigations. Recent advances that have shed light on the pathophysiology of obesity are the recognition that 1) excess fat is deposited in liver, muscle, and pancreatic islets; 2) fat tissue secretes a large number of active signaling molecules including leptin, adiponectin, and resistin, as well as free fatty acids; and 3) activated macrophages colonize the adipose tissue. Other candidates for key roles in the causes and consequences of obesity include 1) metabolic programming, where food acts as a developmental regulator; 2) the constellation of defects known as the "metabolic syndrome;" 3) cortisol overproduction in the adipose tissue; and especially, 4) insulin resistance. The possible etiologies of insulin resistance include cytokine excess, elevated free fatty acids, and hyperinsulinemia itself, as with transgenic overproduction of insulin in mice.
Collapse
Affiliation(s)
- Jesse Roth
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | | | | | | | |
Collapse
|
48
|
Na LX, Li Y, Pan HZ, Zhou XL, Sun DJ, Meng M, Li XX, Sun CH. Curcuminoids exert glucose-lowering effect in type 2 diabetes by decreasing serum free fatty acids: a double-blind, placebo-controlled trial. Mol Nutr Food Res 2012; 57:1569-77. [DOI: 10.1002/mnfr.201200131] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/02/2012] [Accepted: 06/12/2012] [Indexed: 12/16/2022]
Affiliation(s)
- Li-Xin Na
- Department of Nutrition and Food Hygiene; Public Health College; Harbin Medical University; Harbin; P. R. China
| | - Ying Li
- Department of Nutrition and Food Hygiene; Public Health College; Harbin Medical University; Harbin; P. R. China
| | - Hong-Zhi Pan
- Department of Nutrition and Food Hygiene; Public Health College; Harbin Medical University; Harbin; P. R. China
| | - Xian-Li Zhou
- Department of Type B Transonic Diagnosis; 2nd Affiliated Hospital of Harbin Medical University; Harbin; P. R. China
| | - Dian-Jun Sun
- Center for Endemic Disease Control; Chinese Center for Disease Control and Prevention; Harbin; P. R. China
| | - Man Meng
- Department of Nutrition and Food Hygiene; Public Health College; Harbin Medical University; Harbin; P. R. China
| | - Xiao-Xia Li
- Department of Nutrition and Food Hygiene; Public Health College; Harbin Medical University; Harbin; P. R. China
| | - Chang-Hao Sun
- Department of Nutrition and Food Hygiene; Public Health College; Harbin Medical University; Harbin; P. R. China
| |
Collapse
|
49
|
Ruge T, Sukonina V, Kroupa O, Makoveichuk E, Lundgren M, Svensson MK, Olivecrona G, Eriksson JW. Effects of hyperinsulinemia on lipoprotein lipase, angiopoietin-like protein 4, and glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 in subjects with and without type 2 diabetes mellitus. Metabolism 2012; 61:652-60. [PMID: 22078753 DOI: 10.1016/j.metabol.2011.09.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 09/27/2011] [Indexed: 11/22/2022]
Abstract
Our aims were to compare the systemic effects of insulin on lipoprotein lipase (LPL) in tissues from subjects with different degrees of insulin sensitivity. The effects of insulin on LPL during a 4-hour hyperinsulinemic, euglycemic clamp were studied in skeletal muscle, adipose tissue, and postheparin plasma from young healthy subjects (YS), older subjects with type 2 diabetes mellitus (DS), and older control subjects (CS). In addition, we studied the effects of insulin on the expression of 2 recently recognized candidate genes for control of LPL activity: angiopoietin-like protein 4 (ANGPTL4) and glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1. As an effect of insulin, LPL activity decreased by 20% to 25% in postheparin plasma and increased by 20% to 30% in adipose tissue in all groups. In YS, the levels of ANGPTL4 messenger RNA in adipose tissue decreased 3-fold during the clamp. In contrast, there was no significant change in DS or CS. Regression analysis showed that the ability of insulin to reduce the expression of ANGPTL4 was positively correlated with M-values and inversely correlated with factors linked to the metabolic syndrome. Expression of glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 tended to be higher in YS than in DS or CS, but the expression was not affected by insulin in any of the groups. Our data imply that the insulin-mediated regulation of LPL is not directly linked to the control of glucose turnover by insulin or to ANGPTL4 expression in adipose tissue or plasma. Interestingly, the response of ANGPTL4 expression in adipose tissue to insulin was severely blunted in both DS and CS.
Collapse
Affiliation(s)
- Toralph Ruge
- Department of Surgery and Peri-Operative Sciences/Surgery, Umeå University, SE-901 85 Umeå, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Umeda LM, Silva EA, Carneiro G, Arasaki CH, Geloneze B, Zanella MT. Early improvement in glycemic control after bariatric surgery and its relationships with insulin, GLP-1, and glucagon secretion in type 2 diabetic patients. Obes Surg 2012; 21:896-901. [PMID: 21559794 DOI: 10.1007/s11695-011-0412-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The surgical treatment of obesity ameliorates metabolic abnormalities in patients with type 2 diabetes. The objective of this study was to evaluate the early effects of Roux-en-Y gastric bypass (RYGB) on metabolic and hormonal parameters in patients with type 2 diabetes (T2DM). METHODS Ten patients with T2DM (BMI, 39.7 ± 1.9) were evaluated before and 7, 30, and 90 days after RYGB. A meal test was performed, and plasma insulin, glucose, glucagon, and glucagon-like-peptide 1 (GLP-1) levels were measured at fasting and postprandially. RESULTS Seven days after RYGB, a significant reduction was observed in HOMA-IR index from 7.8 ± 5.5 to 2.6 ± 1.7; p < 0.05 was associated with a nonsignificant reduction in body weight. The insulin and GLP-1 curves began to show a peak at 30 min after food ingestion, while there was a progressive decrease in glucagon and blood glucose levels throughout the meal test. Thirty and 90 days after RYGB, along with progressive weight loss, blood glucose and hormonal changes remained in the same direction and became more expressive with the post-meal insulin curve suggesting recovery of the first phase of insulin secretion and with the increase in insulinogenic index, denoting improvement in β-cell function. Furthermore, a positive correlation was found between changes in GLP-1 and insulin levels measured at 30 min after meal (r = 0.6; p = 0.000). CONCLUSION Our data suggest that the RYGB surgery, beyond weight loss, induces early beneficial hormonal changes which favor glycemic control in type 2 diabetes.
Collapse
Affiliation(s)
- Luciana Mela Umeda
- Department of Medicine, Division of Endocrinology, Universidade Federal de São Paulo, Rua Leandro Dupret 365, CEP 04025011, Vila Clementino, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|