1
|
Sepp K, Hausinger P, Hegedűs B, Kiss PS, Cseszkó E, Mózes M, Radács M, Valkusz Z, Gálfi M, Molnár Z. Effects of in vivo chlorobenzene exposure on bone tissue in a rat model. Biol Futur 2025:10.1007/s42977-025-00256-4. [PMID: 40314863 DOI: 10.1007/s42977-025-00256-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/07/2025] [Indexed: 05/03/2025]
Abstract
Calcipaenic bone disorders (e.g., osteoporosis) are becoming an epidemic as a significant public health concern. The underlying genetic, epigenetic, and homeostatic factors and the determinants of bone tissue expression are triggered by environmental exposures. Endocrine disruptor compounds are important in the development of pathological bone alterations. The aim of this study is to design an in vivo subtoxic chlorobenzene exposure model that can be used to explore certain bone changes and their consequences. Male Wistar rats were treated via gastric tube with a 1:1 mixture of hexachlorobenzene + 1,2,4-trichlorobenzene at a dose of 1.0 μg/kg bw; in a final volume of 1 mL, for 30, 60 and 90 days. Blood serum and bone samples were obtained from the femur diaphysis. The results of the treatments (n = 10/group) were interpreted as related to the controls. Serum levels of γGT, SGOT, SGPT were determined, along with bone tissue morphology, as well as the total mineral content of the bone and the mobilizable anorganic content. ANOVA was used to analyze the measurement data. As a result of the treatment protocol, histological examinations of bone morphology showed osteoid degeneration, as well as an altered state of the bone matrix. These findings are supported by the DEXA images, which showed a time-dependent decrease in surface mineral content, in parallel, an increase in the mobilizable anorganic content of the bone was detected. These results suggest that chlorobenzene administered may be a causal factor and changes in bone tissue structure can be traced.
Collapse
Affiliation(s)
- Krisztián Sepp
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Péter Hausinger
- Department of Neurosurgery, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Béla Hegedűs
- SS. Cosmas and Damian Rehabilitation Institute, Visegrád, Hungary
| | - Péter Sándor Kiss
- Institute of Applied Health Sciences and Environmental Education, Department of Environmental Biology and Education, Juhász Gyula Faculty of Education, University of Szeged, 6. Boldogasszony Boulevard, 6725, Szeged, Hungary
| | - Edina Cseszkó
- Institute of Applied Health Sciences and Environmental Education, Department of Environmental Biology and Education, Juhász Gyula Faculty of Education, University of Szeged, 6. Boldogasszony Boulevard, 6725, Szeged, Hungary
| | - Miklós Mózes
- Institute of Applied Health Sciences and Environmental Education, Department of Environmental Biology and Education, Juhász Gyula Faculty of Education, University of Szeged, 6. Boldogasszony Boulevard, 6725, Szeged, Hungary
| | - Marianna Radács
- Institute of Applied Health Sciences and Environmental Education, Department of Environmental Biology and Education, Juhász Gyula Faculty of Education, University of Szeged, 6. Boldogasszony Boulevard, 6725, Szeged, Hungary
| | - Zsuzsanna Valkusz
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Márta Gálfi
- Institute of Applied Health Sciences and Environmental Education, Department of Environmental Biology and Education, Juhász Gyula Faculty of Education, University of Szeged, 6. Boldogasszony Boulevard, 6725, Szeged, Hungary
| | - Zsolt Molnár
- Institute of Applied Health Sciences and Environmental Education, Department of Environmental Biology and Education, Juhász Gyula Faculty of Education, University of Szeged, 6. Boldogasszony Boulevard, 6725, Szeged, Hungary.
| |
Collapse
|
2
|
Dayal A, Gray M, Vallejo JA, Lara-Castillo N, Johnson ML, Wacker MJ. MLO-Y4 fluid flow shear stress conditioned media enhances cardiac contractility and intracellular Ca 2. Am J Physiol Regul Integr Comp Physiol 2025; 328:R591-R600. [PMID: 40135808 DOI: 10.1152/ajpregu.00287.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/05/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
The skeleton is in complex interplay with the other systems of the body and is highly responsive to input from the external environment. Bone mechanical loading results in interstitial fluid flow via the lacunar-canalicular system, generating fluid flow sheer stress (FFSS). FFSS variably stresses osteocytes, subsequently causing the release of metabolites and protein factors that function locally to increase bone formation and may play a role in cross talk between various organ systems, for instance between bone and skeletal muscle. Therefore, we hypothesized that this cross talk includes altering cardiac function. To test this hypothesis, media conditioned by MLO-Y4 osteocyte-like cell culture line under FFSS was used to model the endocrine effects of bone during mechanical loading on contraction of ex vivo Langendorf-perfused isolated hearts. When hearts were externally paced at a fixed rate, FFSS osteocyte conditioned media (CM) induced significant premature contractions compared with vehicle (control). FFSS osteocyte CM administration to self-paced hearts increased total contraction force by 31%. To determine whether the mechanism involved intracellular Ca2+, vehicle and FFSS bone CM were perfused over cultured H9C2 cardiomyocytes while undergoing Ca2+ imaging using Fluo-8. We observed an increase in intracellular Ca2+ with FFSS CM perfusion of cardiomyocytes compared with vehicle. These increases were only present with exogenous electrical pacing. Our findings demonstrate that FFSS bone CM enhances cardiac contractility by increasing intracellular cardiomyocyte Ca2+. The results obtained in this study suggest that the skeleton, responding to mechanical strain, has the potential to augment cardiac output and provide evidence for bone-heart cross talk.NEW & NOTEWORTHY The skeletal system operates as an endocrine organ, releasing factors that impact multi-tissue physiology. The results obtained in this study demonstrate that conditioned media collected from MLO-Y4 osteocytes exposed to fluid flow shear stress increases cardiomyocyte intracellular calcium and enhances cardiac contractility in vitro. These results support the concept of bone-heart cross talk that may have implications in exercise training, reduced-function settings such as bedrest, and the interplay between bone and heart health.
Collapse
Affiliation(s)
- Anuhya Dayal
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, United States
| | - Mark Gray
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, United States
| | - Julian A Vallejo
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, United States
- Department of Oral & Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, United States
| | - Nuria Lara-Castillo
- Department of Oral & Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, United States
| | - Mark L Johnson
- Department of Oral & Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, United States
| | - Michael J Wacker
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, United States
| |
Collapse
|
3
|
Bordoni B, Escher AR. Fascial Manual Medicine: The Concept of Fascial Continuum. Cureus 2025; 17:e82136. [PMID: 40226146 PMCID: PMC11992952 DOI: 10.7759/cureus.82136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2025] [Indexed: 04/15/2025] Open
Abstract
Fascial tissue ubiquitously pervades the body system, becoming the target of many disciplines that use manual techniques for patient treatment. It is a much-debated topic as there is currently no univocal definition among different authors. Due to the non-discontinuity of the fascia, we can speak of a fascial continuum; this principle is the basis of the osteopathic perspective. This vision, which seems banal, is not always applied in manual fascial medicine, where, often, it is conditioned by a reductionist (layers) and mechanistic (compartments) approach, forgetting that the body is not a machine but an organism. This continuity teaches that manual treatment does not only reverberate in the area where the operator's hands rest but creates a series of local and systemic adaptations. This narrative review revises the concept of the fascial continuum by highlighting that fascia is a tissue system (different tissues working in harmony), multi-organ (capable of behaving like an organ), whose macroscopic functional expression (movement) and microscopic (with cellular adaptations) derives from a nanoscopic coherence (electromagnetic behaviors). This means that the body acts as a unit, and makes the manual approach never local but always systemic. The aim of the article is to highlight the fact that the fascial continuum is a single biological entity (solid and fluid), and that manual fascial medicine does not approach a single segment, but the entire person.
Collapse
Affiliation(s)
- Bruno Bordoni
- Physical Medicine and Rehabilitation, Foundation Don Carlo Gnocchi, Milan, ITA
| | - Allan R Escher
- Oncologic Sciences, University of South Florida Morsani College of Medicine, Tampa, USA
- Anesthesiology/Pain Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| |
Collapse
|
4
|
Wang Z, Wang J, Fu Q, Zhao H, Wang Z, Gao Y. Efficient evaluation of osteotoxicity and mechanisms of endocrine disrupting chemicals using network toxicology and molecular docking approaches: triclosan as a model compound. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118030. [PMID: 40080935 DOI: 10.1016/j.ecoenv.2025.118030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 02/11/2025] [Accepted: 03/08/2025] [Indexed: 03/15/2025]
Abstract
This study aimed to demonstrate the utility of a network toxicology strategy in elucidating osteotoxicity and the molecular mechanisms of endocrine-disrupting chemicals (EDCs) using triclosan exposure in postmenopausal osteoporosis (PMOP) as a case study. The potential targets of triclosan were identified using the Comparative Toxicogenomics Database, SwissTargetPrediction, and TargetNet. PMOP-related targets were obtained from GeneCards, DisGeNET, and DrugBank. A total of 478 overlapping genes between disease targets and triclosan effectors were identified. Subsequent analysis using STRING and Cytoscape, applying the Matthews correlation coefficient algorithm, identified five core genes: STAT3, TP53, EGFR, MYC, and JUN. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses performed using R revealed that triclosan-induced PMOP is primarily associated with disrupted endocrine signaling and activation of the Phosphoinositide 3-kinase (PI3K)-Protein kinase B (Akt) signaling pathway. Molecular docking using CB-Dock2 confirmed strong binding affinities between triclosan and the core targets. Collectively, these results indicate that triclosan adversely affects bone health by disrupting endocrine regulation and energy metabolism through the PI3K-Akt pathway. This study establishes a theoretical framework for understanding how long-term triclosan exposure induces or exacerbates PMOP by investigating the underlying molecular mechanisms. These findings present a novel paradigm for evaluating the health risks posed by environmental pollutants.
Collapse
Affiliation(s)
- Zhongyuan Wang
- Department of orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Jian Wang
- Department of orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Qiang Fu
- Department of orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Hui Zhao
- Department of orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Zaijun Wang
- Department of orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Yuzhong Gao
- Department of orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China.
| |
Collapse
|
5
|
Ren J, Marahleh A, Ma J, Ohori F, Noguchi T, Fan Z, Hu J, Narita K, Lin A, Kitaura H. Angiotensin II Promotes Osteocyte RANKL Expression via AT1R Activation. Biomedicines 2025; 13:426. [PMID: 40002839 PMCID: PMC11853621 DOI: 10.3390/biomedicines13020426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objective: Osteocytes are the most abundant cell type in the skeleton, with key endocrine functions, particularly in regulating osteoblast and osteoclast activity to maintain bone quality. Angiotensin II (Ang II), a critical component of the renin-angiotensin-aldosterone system, is well-known for its role in vasoconstriction during hypertension. Beyond its cardiovascular functions, Ang II participates in various biological processes, including bone metabolism. While its influence on osteoblast proliferation, differentiation, and osteoclastogenesis has been documented, its effects on osteocytes remain unexplored. This study hypothesized that Ang II enhances the osteoclastogenic activity of osteocytes. Methods: Mouse calvariae were cultured ex vivo in an Ang II-containing medium, analyzed via immunohistochemistry, and evaluated for osteoclastogenic gene expression through real-time PCR. Western blotting was employed to assess protein levels and signaling pathway activation in the MLO-Y4 osteocytic cell line in vitro. Results: Ang II significantly increased the expression of receptor activator of nuclear factor κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). These effects were abrogated by azilsartan, a blocker targeting Ang II type 1 receptors (AT1R). p38 and ERK1/2 in the MAPK pathway were also activated by Ang II. Conclusions: Ang II enhances osteocyte-mediated osteoclastogenesis via AT1R activation, highlighting its potential as a therapeutic target for bone diseases.
Collapse
Affiliation(s)
- Jiayi Ren
- Department of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (J.R.); (A.M.); (J.M.); (F.O.); (T.N.); (Z.F.); (J.H.); (K.N.); (A.L.)
| | - Aseel Marahleh
- Department of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (J.R.); (A.M.); (J.M.); (F.O.); (T.N.); (Z.F.); (J.H.); (K.N.); (A.L.)
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| | - Jinghan Ma
- Department of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (J.R.); (A.M.); (J.M.); (F.O.); (T.N.); (Z.F.); (J.H.); (K.N.); (A.L.)
| | - Fumitoshi Ohori
- Department of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (J.R.); (A.M.); (J.M.); (F.O.); (T.N.); (Z.F.); (J.H.); (K.N.); (A.L.)
| | - Takahiro Noguchi
- Department of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (J.R.); (A.M.); (J.M.); (F.O.); (T.N.); (Z.F.); (J.H.); (K.N.); (A.L.)
| | - Ziqiu Fan
- Department of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (J.R.); (A.M.); (J.M.); (F.O.); (T.N.); (Z.F.); (J.H.); (K.N.); (A.L.)
| | - Jin Hu
- Department of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (J.R.); (A.M.); (J.M.); (F.O.); (T.N.); (Z.F.); (J.H.); (K.N.); (A.L.)
| | - Kohei Narita
- Department of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (J.R.); (A.M.); (J.M.); (F.O.); (T.N.); (Z.F.); (J.H.); (K.N.); (A.L.)
| | - Angyi Lin
- Department of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (J.R.); (A.M.); (J.M.); (F.O.); (T.N.); (Z.F.); (J.H.); (K.N.); (A.L.)
| | - Hideki Kitaura
- Department of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (J.R.); (A.M.); (J.M.); (F.O.); (T.N.); (Z.F.); (J.H.); (K.N.); (A.L.)
| |
Collapse
|
6
|
Bernhard M, Okorie O, Tseng WJ, Chen M, Danon J, Cui M, Lashbrooks E, Yang Y, Wang B. Metabolic shifts in ratio of ucOcn to cOcn toward bone resorption contribute to age-dependent bone loss in male mice. Am J Physiol Endocrinol Metab 2024; 327:E711-E722. [PMID: 39441240 PMCID: PMC11684868 DOI: 10.1152/ajpendo.00294.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
The study of the senile osteoporosis in men still lags significantly behind that in women. The changes of protein molecule levels and their relationships with bone loss remain poorly understood. In the present study, we used C57BL/6J male mice at ages from 3 to 24 mo to delineate the mechanisms of aging effects on bone loss. We used the microcomputed tomography, mechanical testing, histomorphometry assays, and detection of serum levels of undercarboxylated osteocalcin (ucOcn) and carboxylated osteocalcin (cOcn) to assess bone mass changes and their relationships with the ratios of ucOcn-to-cOcn in mice from different age groups. The results showed that mouse trabecular bone mass reduced gradually with age, whereas cortical bone loss and mechanical property changes mostly occurred in advanced age. Our findings further demonstrated that the increase in osteoclast activity and the decrease in osteoblast function were significantly corelated with blood levels of ucOcn and cOcn, respectively. The dynamic metabolic changes of ucOcn to cOcn ratio were correlated with age-dependent bone loss in mice. In summary, metabolic shifts in the ratio of ucOcn to cOcn toward bone resorption from young adult to elderly mice contribute to the pathogenesis of age-related bone loss. Simultaneously monitoring blood ratios of ucOcn-to-cOcn may be useful to predict the status of bone mass in vivo.NEW & NOTEWORTHY To our knowledge, our finding in this study shows for the first time that metabolic shifts in ratio of ucOcn to cOcn toward bone resorption are markedly correlated with age-dependent bone loss in male mice. These findings for the effects of aging on bone loss will assist in studying the pathogenesis of human type II osteoporosis.
Collapse
Affiliation(s)
- Matthew Bernhard
- Departments of Medicine, The Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Obinna Okorie
- Departments of Medicine, The Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Wei-Ju Tseng
- Departments of Medicine, The Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Mengcun Chen
- Departments of Medicine, The Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Julia Danon
- Departments of Medicine, The Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Mingshu Cui
- Departments of Medicine, The Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Elisabeth Lashbrooks
- Departments of Medicine, The Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Yanmei Yang
- Departments of Medicine, The Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Bin Wang
- Departments of Medicine, The Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
7
|
Bellman J, Sjöros T, Hägg D, Atencio Herre E, Hieta J, Eskola O, Laitinen K, Nuutila P, Jansson JO, Jansson PA, Kalliokoski K, Roivainen A, Ohlsson C. Loading Enhances Glucose Uptake in Muscles, Bones, and Bone Marrow of Lower Extremities in Humans. J Clin Endocrinol Metab 2024; 109:3126-3136. [PMID: 38753869 PMCID: PMC11570666 DOI: 10.1210/clinem/dgae344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/29/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
CONTEXT Increased standing time has been associated with improved health, but the underlying mechanism is unclear. OBJECTIVES We herein investigate if increased weight loading increases energy demand and thereby glucose uptake (GU) locally in bone and/or muscle in the lower extremities. METHODS In this single-center clinical trial with a randomized crossover design (ClinicalTrials.gov ID, NCT05443620), we enrolled 10 men with body mass index between 30 and 35 kg/m2. Participants were treated with both high load (standing with weight vest weighing 11% of body weight) and no load (sitting) on the lower extremities. GU was measured using whole-body quantitative positron emission tomography/computed tomography imaging. The primary endpoint was the change in GU ratio between loaded bones (ie, femur and tibia) and nonloaded bones (ie, humerus). RESULTS High load increased the GU ratio between lower and upper extremities in cortical diaphyseal bone (eg, femur/humerus ratio increased by 19%, P = .029), muscles (eg, m. quadriceps femoris/m. triceps brachii ratio increased by 28%, P = .014), and certain bone marrow regions (femur/humerus diaphyseal bone marrow region ratio increased by 17%, P = .041). Unexpectedly, we observed the highest GU in the bone marrow region of vertebral bodies, but its GU was not affected by high load. CONCLUSION Increased weight-bearing loading enhances GU in muscles, cortical bone, and bone marrow of the exposed lower extremities. This could be interpreted as increased local energy demand in bone and muscle caused by increased loading. The physiological importance of the increased local GU by static loading remains to be determined.
Collapse
Affiliation(s)
- Jakob Bellman
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, SE-41390 Gothenburg, Sweden
| | - Tanja Sjöros
- Turku PET Centre, University of Turku, FI-20014 Turun yliopisto, Finland
- Turku PET Centre, Turku University Hospital, FI-20520 Turku, Finland
| | - Daniel Hägg
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, SE-41390 Gothenburg, Sweden
| | - Erika Atencio Herre
- Turku PET Centre, University of Turku, FI-20014 Turun yliopisto, Finland
- Turku PET Centre, Turku University Hospital, FI-20520 Turku, Finland
| | - Janina Hieta
- Nutrition and Food Research Center and Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, Faculty of Medicine, University of Turku, FI-20014 Turun yliopisto, Finland
| | - Olli Eskola
- Turku PET Centre, University of Turku, FI-20014 Turun yliopisto, Finland
| | - Kirsi Laitinen
- Nutrition and Food Research Center and Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, Faculty of Medicine, University of Turku, FI-20014 Turun yliopisto, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, FI-20014 Turun yliopisto, Finland
- Turku PET Centre, Turku University Hospital, FI-20520 Turku, Finland
- Department of Endocrinology, Turku University Hospital, FI-20520 Turku, Finland
| | - John-Olov Jansson
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, SE-41390 Gothenburg, Sweden
| | - Per-Anders Jansson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden
- Gothia Forum, Region Västra Götaland, Sahlgrenska University Hospital, SE-41346 Gothenburg, Sweden
| | - Kari Kalliokoski
- Turku PET Centre, University of Turku, FI-20014 Turun yliopisto, Finland
- Turku PET Centre, Turku University Hospital, FI-20520 Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku, FI-20014 Turun yliopisto, Finland
- Turku PET Centre, Turku University Hospital, FI-20520 Turku, Finland
- InFLAMES Research Flagship, University of Turku, FI-20014 Turku, Finland
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Center for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden
- Department of Drug Treatment, Region Västra Götaland, Sahlgrenska University Hospital, SE-41345 Gothenburg, Sweden
| |
Collapse
|
8
|
Ronghe R, Tavares AAS. The skeleton: an overlooked regulator of systemic glucose metabolism in cancer? Front Oncol 2024; 14:1481241. [PMID: 39588310 PMCID: PMC11586348 DOI: 10.3389/fonc.2024.1481241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/22/2024] [Indexed: 11/27/2024] Open
Abstract
Recent discoveries demonstrated the skeleton's role as an endocrine organ regulating whole-body glucose homeostasis. Glucose metabolism is critical for rapid cell proliferation and tumour growth through increasing glucose uptake and fermentation of glucose to lactate despite being in an aerobic environment. This hypothesis paper discusses emerging evidence on how bones can regulate whole-body glucose homeostasis with potential to impact on tumour growth and proliferation. Moreover, it proposes a clinical link between bone glucose metabolism and prognosis of cancer based on recent clinical trial data. Targeting metabolic pathways related with classic glucose metabolism and also bone metabolism, novel methods of cancer therapy and treatment could be developed. This paper objective is to highlight the need for future research on this altered metabolism with potential to change future management of cancer patients.
Collapse
Affiliation(s)
- Rucha Ronghe
- Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| | - Adriana A. S. Tavares
- University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Queens Medical Research Institute, Edinburgh, United Kingdom
- Edinburgh Imaging, The University of Edinburgh, Queens Medical Research Institute, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Liao J, Jiang L, Qin Y, Hu J, Tang Z. GENETIC PREDICTION OF CAUSAL RELATIONSHIPS BETWEEN OSTEOPOROSIS AND SEPSIS: EVIDENCE FROM MENDELIAN RANDOMIZATION WITH TWO-SAMPLE DESIGNS. Shock 2024; 62:628-632. [PMID: 38813935 DOI: 10.1097/shk.0000000000002383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
ABSTRACT Background: Recent observational studies have suggested that osteoporosis may be a risk factor for sepsis. To mitigate confounding factors and establish the causal relationship between sepsis and osteoporosis, we conducted a two-sample Mendelian randomization analysis using publicly available summary statistics. Methods: Utilizing summary data from FinnGen Biobank, we employed a two-sample Mendelian randomization (MR) analysis to predict the causal relationship between osteoporosis and sepsis. The MR analysis primarily utilized the inverse variance weighted (IVW) method, supplemented by MR-Egger, weighted median, weighted mode, and simple mode analyses, with Bayesian weighted MR (BWMR) analysis employed for result validation. Sensitivity analyses included MR-PRESSO, "leave-one-out" analysis, MR-Egger regression, and Cochran Q test. Results: In the European population, an increase of one standard deviation in osteoporosis was associated with an 11% increased risk of sepsis, with an odds ratio (OR) of 1.11 (95% CI, 1.06-1.16; P = 3.75E-06). BWMR yielded an OR of 1.11 (95% CI, 1.06-1.67; P = 1.21E-05), suggesting osteoporosis as a risk factor for sepsis. Conversely, an increase of one standard deviation in sepsis was associated with a 26% increased risk of osteoporosis, with an OR of 1.26 (95% CI, 1.11-1.16; P = 0.45E-03). BWMR yielded an OR of 1.26 (95% CI, 1.09-1.45; P = 1.45E-03), supporting sepsis as a risk factor for osteoporosis. Conclusion: There is an association between osteoporosis and sepsis, with osteoporosis serving as a risk factor for the development of sepsis, while sepsis may also promote the progression of osteoporosis.
Collapse
Affiliation(s)
- Jing Liao
- Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | | | | | | | | |
Collapse
|
10
|
Zhou D, Tian JM, Li Z, Huang J. Cbx4 SUMOylates BRD4 to regulate the expression of inflammatory cytokines in post-traumatic osteoarthritis. Exp Mol Med 2024; 56:2184-2201. [PMID: 39349832 PMCID: PMC11541578 DOI: 10.1038/s12276-024-01315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 10/03/2024] Open
Abstract
Brominated domain protein 4 (BRD4) is a chromatin reader known to exacerbate the inflammatory response in post-traumatic osteoarthritis (PTOA) by controlling the expression of inflammatory cytokines. However, the extent to which this regulatory effect is altered after BRD4 translation remains largely unknown. In this study, we showed that the E3 SUMO protein ligase CBX4 (Cbx4) is involved in the SUMO modification of BRD4 to affect its ability to control the expression of the proinflammatory genes IL-1β, TNF-α, and IL-6 in synovial fibroblasts. Specifically, Cbx4-mediated SUMOylation of K1111 lysine residues prevents the degradation of BRD4, thereby activating the transcriptional activities of the IL-1β, TNF-α and IL-6 genes, which depend on BRD4. SUMOylated BRD4 also recruits the multifunctional methyltransferase subunit TRM112-like protein (TRMT112) to further promote the processing of proinflammatory gene transcripts to eventually increase their expression. In vivo, treatment of PTOA with a Cbx4 inhibitor in rats was comparable to treatment with BRD4 inhibitors, indicating the importance of SUMOylation in controlling BRD4 to alleviate PTOA. Overall, this study is the first to identify Cbx4 as the enzyme responsible for the SUMO modification of BRD4 and highlights the central role of the Cbx4-BRD4 axis in exacerbating PTOA from the perspective of inflammation.
Collapse
Affiliation(s)
- Ding Zhou
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia-Ming Tian
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zi Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun Huang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
11
|
Wu Z, Li W, Jiang K, Lin Z, Qian C, Wu M, Xia Y, Li N, Zhang H, Xiao H, Bai J, Geng D. Regulation of bone homeostasis: signaling pathways and therapeutic targets. MedComm (Beijing) 2024; 5:e657. [PMID: 39049966 PMCID: PMC11266958 DOI: 10.1002/mco2.657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
As a highly dynamic tissue, bone is continuously rebuilt throughout life. Both bone formation by osteoblasts and bone resorption by osteoclasts constitute bone reconstruction homeostasis. The equilibrium of bone homeostasis is governed by many complicated signaling pathways that weave together to form an intricate network. These pathways coordinate the meticulous processes of bone formation and resorption, ensuring the structural integrity and dynamic vitality of the skeletal system. Dysregulation of the bone homeostatic regulatory signaling network contributes to the development and progression of many skeletal diseases. Significantly, imbalanced bone homeostasis further disrupts the signaling network and triggers a cascade reaction that exacerbates disease progression and engenders a deleterious cycle. Here, we summarize the influence of signaling pathways on bone homeostasis, elucidating the interplay and crosstalk among them. Additionally, we review the mechanisms underpinning bone homeostatic imbalances across diverse disease landscapes, highlighting current and prospective therapeutic targets and clinical drugs. We hope that this review will contribute to a holistic understanding of the signaling pathways and molecular mechanisms sustaining bone homeostasis, which are promising to contribute to further research on bone homeostasis and shed light on the development of targeted drugs.
Collapse
Affiliation(s)
- Zebin Wu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Wenming Li
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Kunlong Jiang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Zhixiang Lin
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Chen Qian
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Mingzhou Wu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yu Xia
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Ning Li
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMDivision of Life Sciences and MedicineThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Hongtao Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Haixiang Xiao
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- Department of OrthopedicsJingjiang People's HospitalSeventh Clinical Medical School of Yangzhou UniversityJingjiangJiangsu ProvinceChina
| | - Jiaxiang Bai
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMDivision of Life Sciences and MedicineThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Dechun Geng
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
12
|
Kalc P, Hoffstaedter F, Luders E, Gaser C, Dahnke R. Approximation of bone mineral density and subcutaneous adiposity using T1-weighted images of the human head. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595163. [PMID: 38826477 PMCID: PMC11142097 DOI: 10.1101/2024.05.22.595163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Bones and brain are intricately connected and scientific interest in their interaction is growing. This has become particularly evident in the framework of clinical applications for various medical conditions, such as obesity and osteoporosis. The adverse effects of obesity on brain health have long been recognised, but few brain imaging studies provide sophisticated body composition measures. Here we propose to extract the following bone- and adiposity-related measures from T1-weighted MR images of the head: an approximation of skull bone mineral density (BMD), skull bone thickness, and two approximations of subcutaneous fat (i.e., the intensity and thickness of soft non-brain head tissue). The measures pertaining to skull BMD, skull bone thickness, and intensi-ty-based adiposity proxy proved to be reliable ( r =.93/.83/.74, p <.001) and valid, with high correlations to DXA-de-rived head BMD values (rho=.70, p <.001) and MRI-derived abdominal subcutaneous adipose volume (rho=.62, p <.001). Thickness-based adiposity proxy had only a low retest reliability ( r =.58, p <.001).The outcomes of this study constitute an important step towards extracting relevant non-brain features from available brain scans.
Collapse
|
13
|
Luo Y, Zheng S, Xiao W, Zhang H, Li Y. Pannexins in the musculoskeletal system: new targets for development and disease progression. Bone Res 2024; 12:26. [PMID: 38705887 PMCID: PMC11070431 DOI: 10.1038/s41413-024-00334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/04/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024] Open
Abstract
During cell differentiation, growth, and development, cells can respond to extracellular stimuli through communication channels. Pannexin (Panx) family and connexin (Cx) family are two important types of channel-forming proteins. Panx family contains three members (Panx1-3) and is expressed widely in bone, cartilage and muscle. Although there is no sequence homology between Panx family and Cx family, they exhibit similar configurations and functions. Similar to Cxs, the key roles of Panxs in the maintenance of physiological functions of the musculoskeletal system and disease progression were gradually revealed later. Here, we seek to elucidate the structure of Panxs and their roles in regulating processes such as osteogenesis, chondrogenesis, and muscle growth. We also focus on the comparison between Cx and Panx. As a new key target, Panxs expression imbalance and dysfunction in muscle and the therapeutic potentials of Panxs in joint diseases are also discussed.
Collapse
Affiliation(s)
- Yan Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, 410008, China
| | - Shengyuan Zheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, 410008, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hang Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
14
|
Patil JD, Fredericks S. The role of adipokines in osteoporosis management: a mini review. Front Endocrinol (Lausanne) 2024; 15:1336543. [PMID: 38516409 PMCID: PMC10956128 DOI: 10.3389/fendo.2024.1336543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
The prevalence of osteoporosis has been on the rise globally. With ageing populations, research has sought therapeutic solutions in novel areas. One such area is that of the adipokines. Current literature points to an important role for these chemical mediators in relation to bone metabolism. Well-established adipokines have been broadly reported upon. These include adiponectin and leptin. However, other novel adipokines such as visfatin, nesfatin-1, meteorin-like protein (Metrnl), apelin and lipocalin-2 are starting to be addressed pre-clinically and clinically. Adipokines hold pro-inflammatory and anti-inflammatory properties that influence the pathophysiology of various bone diseases. Omentin-1 and vaspin, two novel adipokines, share cardioprotective effects and play essential roles in bone metabolism. Studies have reported bone-protective effects of omentin-1, whilst others report negative associations between omentin-1 and bone mineral density. Lipocalin-2 is linked to poor bone microarchitecture in mice and is even suggested to mediate osteoporosis development from prolonged disuse. Nesfatin-1, an anorexigenic adipokine, has been known to preserve bone density. Animal studies have demonstrated that nesfatin-1 treatment limits bone loss and increases bone strength, suggesting exogenous use as a potential treatment for osteopenic disorders. Pre-clinical studies have shown adipokine apelin to have a role in bone metabolism, mediated by the enhancement of osteoblast genesis and the inhibition of programmed cell death. Although many investigations have reported conflicting findings, sufficient literature supports the notion that adipokines have a significant influence on the metabolism of bone. This review aims at highlighting the role of novel adipokines in osteoporosis while also discussing their potential for treating osteoporosis.
Collapse
Affiliation(s)
| | - Salim Fredericks
- The Royal College of Surgeons in Ireland – Medical University of Bahrain, Al Sayh, Bahrain
| |
Collapse
|
15
|
Morimoto T, Hirata H, Sugita K, Paholpak P, Kobayashi T, Tanaka T, Kato K, Tsukamoto M, Umeki S, Toda Y, Mawatari M. A view on the skin-bone axis: unraveling similarities and potential of crosstalk. Front Med (Lausanne) 2024; 11:1360483. [PMID: 38500951 PMCID: PMC10944977 DOI: 10.3389/fmed.2024.1360483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/12/2024] [Indexed: 03/20/2024] Open
Abstract
The phrase "skin as a mirror of internal medicine," which means that the skin reflects many of the diseases of the internal organs, is a well-known notion. Despite the phenotypic differences between the soft skin and hard bone, the skin and bone are highly associated. Skin and bone consist of fibroblasts and osteoblasts, respectively, which secrete collagen and are involved in synthesis, while Langerhans cells and osteoclasts control turnover. Moreover, the quality and quantity of collagen in the skin and bone may be modified by aging, inflammation, estrogen, diabetes, and glucocorticoids. Skin and bone collagen are pathologically modified by aging, drugs, and metabolic diseases, such as diabetes. The structural similarities between the skin and bone and the crosstalk controlling their mutual pathological effects have led to the advocacy of the skin-bone axis. Thus, the skin may mirror the health of the bones and conversely, the condition of the skin may be reflected in the bones. From the perspective of the skin-bone axis, the similarities between skin and bone anatomy, function, and pathology, as well as the crosstalk between the two, are discussed in this review. A thorough elucidation of the pathways governing the skin-bone axis crosstalk would enhance our understanding of disease pathophysiology, facilitating the development of new diagnostics and therapies for skin collagen-induced bone disease and of new osteoporosis diagnostics and therapies that enhance skin collagen to increase bone quality and density.
Collapse
Affiliation(s)
- Tadatsugu Morimoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Hirohito Hirata
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Kazunari Sugita
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Permsak Paholpak
- Department of Orthopedics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Takaomi Kobayashi
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Tatsuya Tanaka
- Department of Neurosurgery, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Kinshi Kato
- Department of Orthopaedic Surgery, Fukushima Medical University, Fukushima, Japan
| | - Masatsugu Tsukamoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Shun Umeki
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Yu Toda
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Masaaki Mawatari
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
16
|
Paneru D, Sharma MK, Shi H, Wang J, Kim WK. Aflatoxin B1 Impairs Bone Mineralization in Broiler Chickens. Toxins (Basel) 2024; 16:78. [PMID: 38393156 PMCID: PMC10893327 DOI: 10.3390/toxins16020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Aflatoxin B1 (AFB1), a ubiquitous mycotoxin in corn-based animal feed, particularly in tropical regions, impairs liver function, induces oxidative stress and disrupts cellular pathways, potentially worsening bone health in modern broilers. A 19-day experiment was conducted to investigate the effects of feeding increasing levels of AFB1-contaminated feed (<2, 75-80, 150, 230-260 and 520-560 ppb) on bone mineralization markers in broilers (n = 360). While growth performance remained unaffected up to Day 19, significant reductions in tibial bone ash content were observed at levels exceeding 260 ppb. Micro-computed tomography results showed that AFB1 levels at 560 ppb significantly decreased trabecular bone mineral content and density, with a tendency for reduced connectivity density in femur metaphysis. Moreover, AFB1 above 230 ppb reduced the bone volume and tissue volume of the cortical bone of femur. Even at levels above 75 ppb, AFB1 exposure significantly downregulated the jejunal mRNA expressions of the vitamin D receptor and calcium and phosphorus transporters. It can be concluded that AFB1 at levels higher than 230 ppb negatively affects bone health by impairing bone mineralization via disruption of the vitamin D receptor and calcium and phosphorus homeostasis, potentially contributing to bone health issues in broilers.
Collapse
Affiliation(s)
| | | | | | | | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (D.P.); (M.K.S.); (H.S.); (J.W.)
| |
Collapse
|
17
|
Šromová V, Sobola D, Kaspar P. A Brief Review of Bone Cell Function and Importance. Cells 2023; 12:2576. [PMID: 37947654 PMCID: PMC10648520 DOI: 10.3390/cells12212576] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/22/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
This review focuses on understanding the macroscopic and microscopic characteristics of bone tissue and reviews current knowledge of its physiology. It explores how these features intricately collaborate to maintain the balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, which plays a pivotal role in shaping not only our physical framework but also overall health. In this work, a comprehensive exploration of microscopic and macroscopic features of bone tissue is presented.
Collapse
Affiliation(s)
- Veronika Šromová
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, 601 90 Brno, Czech Republic
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, 601 90 Brno, Czech Republic;
| | - Dinara Sobola
- Academy of Sciences of the Czech Republic, Institute of Physics of Materials, Žižkova 22, 616 62 Brno, Czech Republic
| | - Pavel Kaspar
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, 601 90 Brno, Czech Republic;
| |
Collapse
|
18
|
Kalc P, Dahnke R, Hoffstaedter F, Gaser C. Low bone mineral density is associated with gray matter volume decrease in UK Biobank. Front Aging Neurosci 2023; 15:1287304. [PMID: 38020770 PMCID: PMC10654785 DOI: 10.3389/fnagi.2023.1287304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Objectives Previous research has found an association of low bone mineral density (BMD) and regional gray matter (GM) volume loss in Alzheimer's disease (AD). We were interested whether BMD is associated with GM volume decrease in brains of a healthy elderly population from the UK Biobank. Materials and methods T1-weighted images from 5,518 women (MAge = 70.20, SD = 3.54; age range: 65-82 years) and 7,595 men (MAge = 70.84, SD = 3.68; age range: 65-82 years) without neurological or psychiatric impairments were included in voxel-based morphometry (VBM) analysis in CAT12 with threshold-free-cluster-enhancement (TFCE) across the whole brain. Results We found a significant decrease of GM volume in women in the superior frontal gyri, middle temporal gyri, fusiform gyri, temporal poles, cingulate gyri, precunei, right parahippocampal gyrus and right hippocampus, right ventral diencephalon, and right pre- and postcentral gyrus. Only small effects were found in men in subcallosal area, left basal forebrain and entorhinal area. Conclusion BMD is associated with low GM volume in women but less in men in regions afflicted in the early-stages of AD even in a sample without neurodegenerative diseases.
Collapse
Affiliation(s)
- Polona Kalc
- Structural Brain Mapping Group, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Robert Dahnke
- Structural Brain Mapping Group, Department of Neurology, Jena University Hospital, Jena, Germany
- Structural Brain Mapping Group, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Felix Hoffstaedter
- Brain and Behaviour (INM-7), Institute of Neuroscience and Medicine, Forschungszentrum Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Gaser
- Structural Brain Mapping Group, Department of Neurology, Jena University Hospital, Jena, Germany
- Structural Brain Mapping Group, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- German Center for Mental Health (DZPG), Jena-Halle-Magdeburg, Germany
| |
Collapse
|
19
|
Karimi F, Mardani P. Determinants of Bone Mineral Density in Iranian Women with Polycystic Ovary Syndrome. Int J Endocrinol Metab 2023; 21:e137594. [PMID: 38666045 PMCID: PMC11041818 DOI: 10.5812/ijem-137594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/08/2023] [Accepted: 09/25/2023] [Indexed: 04/28/2024] Open
Abstract
Background Whether the endocrine aberrations caused by polycystic ovary syndrome (PCOS) might influence bone density in women of reproductive age is controversial. Objectives The present study aimed to compare PCOS women to a control group matched in terms of age and body mass index (BMI) regarding bone indices and to clarify the potential relationship between their hormonal changes and bone density. Methods This case-control study consisted of 61 PCOS patients, and 35 women with normal ovulatory function served as controls. Bone parameters, including bone mineral content (BMC) and bone mineral density (BMD) in addition to T- and Z-scores, were measured at the lumbar vertebrae, neck of the left femur, hip, and distal part of the radial bone, using dual-energy X-ray absorptiometry. Blood samples were taken to be tested for biochemical parameters and serum concentrations of insulin, osteocalcin, parathyroid hormone (PTH), vitamin D, follicle-stimulating hormone (FSH), luteinizing hormone (LH), total testosterone, dehydroepiandrosterone sulfate (DHEAS), and estradiol were measured. Insulin resistance was evaluated through the homeostatic model assessment of insulin resistance (HOMA-IR). Results The results revealed greater levels of HOMA-IR and total testosterone in PCOS women than in controls. Nevertheless, the two groups were comparable in terms of bone parameters. In the control group, BMI was the only determinant of bone density at most of the skeletal sites. Nonetheless, BMI and HOMA-IR were independently and positively associated with bone indices at the femoral neck (FN) and total hip in the PCOS group. Parathyroid hormone and vitamin D concentrations were not different in the two groups. However, phosphate levels were higher in PCOS patients (P = 0.025). Osteocalcin was inversely correlated to BMI, and both groups had a negative correlation between DHEAS and PTH. Serum phosphate was inversely and independently associated with estrogen in the PCOS group (r = -0.377, P = 0.004). Conclusions Body mass index and HOMA-IR were independent and positive determinants of FN and total hip bone density in the PCOS subjects. Nonetheless, in the non-PCOS women, BMI was the only independent determinant of bone density at most of the skeletal sites. Additionally, osteocalcin was inversely correlated with BMI in both groups.
Collapse
Affiliation(s)
- Fariba Karimi
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Mardani
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Du Y, Liu G, Liu Z, Mo J, Zheng M, Wei Q, Xu Y. Avermectin reduces bone mineralization via the TGF-β signaling pathway in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2023; 272:109702. [PMID: 37487806 DOI: 10.1016/j.cbpc.2023.109702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/05/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Avermectin, a widely used insecticide, is primarily effective against animal parasites and insects. Given its extensive application in agriculture, a large amount of avermectin accumulates in natural water bodies. Studies have shown that avermectin has significant toxic effects on various organisms and on the nervous system, spine, and several other organs in humans. However, the effects of avermectin on bone development have not been reported yet. In this study, zebrafish embryos were treated with different concentrations of avermectin to explore the effects of avermectin on early bone development. The results showed that avermectin disturbed early bone development in zebrafish, caused abnormal craniofacial chondrogenesis, and reduced bone mineralization. Avermectin treatment significantly reduced mineralization in zebrafish scales and increased osteoclast activity. Real-time quantitative PCR results showed that avermectin decreased the expression of genes related to osteogenesis and transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) signaling pathways. The TGF-β inhibitor SB431542 rescued avermectin-induced bone mineralization and osteogenesis related gene expression in zebrafish during early development. Thus, this study provides insight into the mechanism of damage caused by avermectin on bone development, thus helping demonstrate its toxicity.
Collapse
Affiliation(s)
- Yongwei Du
- Soochow University, Department Orthopedics, Affiliated Hospital 2, Suzhou 320505, China; Gannan Medical University, Department Orthopedics, Affiliated Hospital 1, Ganzhou 341000, China; Soochow University, Department Orthopedics, Suzhou 320505, China
| | - Gongwen Liu
- Suzhou Traditional Chinese Medicine Hospital, Suzhou 320505, China
| | - Zhen Liu
- Gannan Medical University, Department Orthopedics, Affiliated Hospital 1, Ganzhou 341000, China
| | - Jianwen Mo
- Gannan Medical University, Department Orthopedics, Affiliated Hospital 1, Ganzhou 341000, China
| | - Miao Zheng
- Osteoporosis Clinical Center of Second Affiliated Hospital, Soochow University, Suzhou 320505, China
| | - Qi Wei
- Osteoporosis Clinical Center of Second Affiliated Hospital, Soochow University, Suzhou 320505, China
| | - Youjia Xu
- Soochow University, Department Orthopedics, Affiliated Hospital 2, Suzhou 320505, China; Soochow University, Department Orthopedics, Suzhou 320505, China.
| |
Collapse
|
21
|
Khosla S. Evidence in Humans for Bone as an Endocrine Organ Regulating Energy Metabolism. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2023; 31:100471. [PMID: 37576432 PMCID: PMC10417886 DOI: 10.1016/j.coemr.2023.100471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
There is increasing evidence from animal models that bone, in addition to its traditional function of providing structural support for the organism, has a rich network of interactions with multiple other tissues. This perspective focuses on evidence from human studies demonstrating that bone is an endocrine organ regulating energy metabolism, with the specific examples being osteocalcin, lipocalin 2, RANKL, and sclerostin. Conversely, animal studies have also demonstrated that a key hormone regulating energy metabolism, leptin, regulates bone metabolism via the sympathetic nervous system. Studies in humans have established a role for the sympathetic nervous system in regulating bone turnover; indeed, the potential therapeutic benefit of targeting this pathway in humans to prevent postmenopausal bone loss is currently being evaluated.
Collapse
Affiliation(s)
- Sundeep Khosla
- Kogod Center on Aging and Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
22
|
Schkoda S, Horman B, Witchey SK, Jansson A, Macari S, Patisaul HB. Skeletal effects following developmental flame-retardant exposure are specific to sex and chemical class in the adult Wistar rat. FRONTIERS IN TOXICOLOGY 2023; 5:1216388. [PMID: 37577032 PMCID: PMC10414991 DOI: 10.3389/ftox.2023.1216388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/22/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction: Accumulating evidence reveals that endocrine disrupting chemicals (EDCs) can disrupt aspects of metabolic programming, suggesting that skeletal development may be at risk, a possibility that is rarely examined. The commercial flame retardant (FR) mixture, Firemaster 550 (FM 550), has repeatedly been shown to negatively influence metabolic programming, raising concerns that skeletal integrity may consequently be impaired. We have previously shown that gestational and lactational exposure to 1,000 µg FM 550 negatively affected sex-specific skeletal traits in male, but not female, rats assessed at 6 months of age. Whether this outcome is primarily driven by the brominated (BFR) or organophosphate ester (OPFR) portions of the mixture or the effects persist to older ages is unknown. Materials and methods: To address this, in the present study, dams were orally exposed throughout gestation and lactation to either 1,000 μg BFR, 1,000 µg OPFR, or 2,000 µg FM 550. Offspring (n = 8/sex/exposure) were weaned at PND 21 and assessed for femoral cortical and trabecular bone parameters at 8 months of age by high-resolution X-ray micro-computed tomography (micro-CT). Serum levels of serotonin, osteocalcin, alkaline phosphatase, and calcium were quantified. Results: FM 550 affected both sexes, but the females were more appreciably impacted by the OPFRs, while the males were more vulnerable to the BFRs. Conclusion: Although sex specificity was expected due to the sexual dimorphic nature of skeletal physiology, the mechanisms accounting for the male- and female-specific phenotypes remain to be determined. Future work aims to clarify these unresolved issues.
Collapse
Affiliation(s)
- Stacy Schkoda
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Brian Horman
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Shannah K. Witchey
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Anton Jansson
- Analytical Instrumentation Facility, North Carolina State University, Raleigh, NC, United States
| | - Soraia Macari
- Department of Restorative Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Heather B. Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
23
|
Lu W, Duan Y, Li K, Qiu J, Cheng Z. Glucose uptake and distribution across the human skeleton using state-of-the-art total-body PET/CT. Bone Res 2023; 11:36. [PMID: 37407553 DOI: 10.1038/s41413-023-00268-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/25/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
A growing number of studies have demonstrated that the skeleton is an endocrine organ that is involved in glucose metabolism and plays a significant role in human glucose homeostasis. However, there is still a limited understanding of the in vivo glucose uptake and distribution across the human skeleton. To address this issue, we aimed to elucidate the detailed profile of glucose uptake across the skeleton using a total-body positron emission tomography (PET) scanner. A total of 41 healthy participants were recruited. Two of them received a 1-hour dynamic total-body 18F-fluorodeoxyglucose (18F-FDG) PET scan, and all of them received a 10-minute static total-body 18F-FDG PET scan. The net influx rate (Ki) and standardized uptake value normalized by lean body mass (SUL) were calculated as indicators of glucose uptake from the dynamic and static PET data, respectively. The results showed that the vertebrae, hip bone and skull had relatively high Ki and SUL values compared with metabolic organs such as the liver. Both the Ki and SUL were higher in the epiphyseal, metaphyseal and cortical regions of long bones. Moreover, trends associated with age and overweight with glucose uptake (SULmax and SULmean) in bones were uncovered. Overall, these results indicate that the skeleton is a site with significant glucose uptake, and skeletal glucose uptake can be affected by age and dysregulated metabolism.
Collapse
Affiliation(s)
- Weizhao Lu
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Yanhua Duan
- Department of PET-CT, the First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital Affiliated with Shandong University, Jinan, 250014, China
| | - Kun Li
- Department of PET-CT, the First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital Affiliated with Shandong University, Jinan, 250014, China
| | - Jianfeng Qiu
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China.
| | - Zhaoping Cheng
- Department of PET-CT, the First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital Affiliated with Shandong University, Jinan, 250014, China.
| |
Collapse
|
24
|
Xourafa A, Gaudio A. Special Issue: Metabolic Bone Diseases: Molecular Biology, Pathophysiology and Therapy. Int J Mol Sci 2023; 24:ijms24109065. [PMID: 37240410 DOI: 10.3390/ijms24109065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Bone is a vital tissue as it carries out various metabolic functions: support of the body, protection of the internal organs, mineral deposit and hematopoietic functions [...].
Collapse
Affiliation(s)
- Anastasia Xourafa
- UO di Medicina Interna, Policlinico "G. Rodolico", Via S. Sofia 78, 95123 Catania, Italy
| | - Agostino Gaudio
- UO di Medicina Interna, Policlinico "G. Rodolico", Via S. Sofia 78, 95123 Catania, Italy
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
25
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, et alBao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Show More Authors] [Citation(s) in RCA: 163] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
26
|
Cellular and Molecular Mechanisms Associating Obesity to Bone Loss. Cells 2023; 12:cells12040521. [PMID: 36831188 PMCID: PMC9954309 DOI: 10.3390/cells12040521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Obesity is an alarming disease that favors the upset of other illnesses and enhances mortality. It is spreading fast worldwide may affect more than 1 billion people by 2030. The imbalance between excessive food ingestion and less energy expenditure leads to pathological adipose tissue expansion, characterized by increased production of proinflammatory mediators with harmful interferences in the whole organism. Bone tissue is one of those target tissues in obesity. Bone is a mineralized connective tissue that is constantly renewed to maintain its mechanical properties. Osteoblasts are responsible for extracellular matrix synthesis, while osteoclasts resorb damaged bone, and the osteocytes have a regulatory role in this process, releasing growth factors and other proteins. A balanced activity among these actors is necessary for healthy bone remodeling. In obesity, several mechanisms may trigger incorrect remodeling, increasing bone resorption to the detriment of bone formation rates. Thus, excessive weight gain may represent higher bone fragility and fracture risk. This review highlights recent insights on the central mechanisms related to obesity-associated abnormal bone. Publications from the last ten years have shown that the main molecular mechanisms associated with obesity and bone loss involve: proinflammatory adipokines and osteokines production, oxidative stress, non-coding RNA interference, insulin resistance, and changes in gut microbiota. The data collection unveils new targets for prevention and putative therapeutic tools against unbalancing bone metabolism during obesity.
Collapse
|
27
|
Sato H, Goto M, Nishimura G, Morimoto N, Tokushima H, Horii Y, Takahashi N. Upacicalcet, a positive allosteric modulator of the calcium-sensing receptor, prevents vascular calcification and bone disorder in a rat adenine-induced secondary hyperparathyroidism model. Bone 2023; 167:116613. [PMID: 36395959 DOI: 10.1016/j.bone.2022.116613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Secondary hyperparathyroidism (SHPT) is a major comorbidity of chronic kidney disease (CKD). Chronic elevation of PTH levels is associated with cortical bone deterioration and increase in the risk of fractures in CKD patients. Here, we evaluated the effect of repeated administration of upacicalcet, a novel positive allosteric modulator of the calcium-sensing receptor, in a rat model of adenine-induced renal failure, by determining serum levels of intact PTH (iPTH), calcium, phosphorus, creatinine, and urea nitrogen. Furthermore, parathyroid hyperplasia (parathyroid gland weight and Ki-67-positive cell density), ectopic calcification (calcium content in the thoracic aorta, kidney and heart and positive von Kossa staining in the thoracic aorta), and bone morphometry parameters (cortical porosity and fibrosis volume) were evaluated. Rats treated with either 0.2 mg/kg or 1 mg/kg upacicalcet exhibited significantly lower serum iPTH levels than CKD-control rats, as early as 7 days after the first dose. Repeated administration of upacicalcet reduced serum iPTH levels and inhibited parathyroid hyperplasia in rats with adenine-induced severe renal failure. Moreover, it suppressed ectopic calcification and cortical pore formation. In contrast, serum calcium and phosphorus levels were not significantly affected, suggesting a low risk of hypocalcemia, which often occurs with SHPT treatment. In conclusion, repeated administration of upacicalcet decreased serum iPTH levels and suppressed parathyroid hyperplasia in the adenine-induced CKD rat model of SHPT. Furthermore, ectopic calcification and cortical pore formation were suppressed without significant changes in blood mineral parameters. Upacicalcet safely inhibited the progression of SHPT in an adenine-induced CKD rat model.
Collapse
Affiliation(s)
- Hirofumi Sato
- Pharmaceuticals Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd., Mie, Japan
| | - Moritaka Goto
- Pharmaceuticals Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd., Mie, Japan.
| | - Go Nishimura
- Pharmaceuticals Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd., Mie, Japan
| | - Nobutaka Morimoto
- Pharmaceuticals Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd., Mie, Japan
| | - Hiroki Tokushima
- Pharmaceuticals Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd., Mie, Japan
| | - Yusuke Horii
- Pharmaceuticals Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd., Mie, Japan
| | - Naoki Takahashi
- Pharmaceuticals Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd., Mie, Japan
| |
Collapse
|
28
|
Tompkins YH, Choi J, Teng PY, Yamada M, Sugiyama T, Kim WK. Reduced bone formation and increased bone resorption drive bone loss in Eimeria infected broilers. Sci Rep 2023; 13:616. [PMID: 36635321 PMCID: PMC9837181 DOI: 10.1038/s41598-023-27585-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Coccidiosis is an economically significant disease in the global poultry industry, but little is known about the mechanisms of bone defects caused by coccidiosis; thus, the study focused on effects of coccidiosis on the bone homeostasis of young broiler chickens. A total of 480 male Cobb500 broilers were randomly allocated into four treatment groups, including an uninfected control consuming diet ad libitum, two infected groups were orally gavaged with two different concentrations of sporulated Eimeria oocysts, and an uninfected pair-fed group fed the same amount of feed as the high Eimeria-infected group consumed. Growth performance and feed intake were recorded, and samples were collected on 6 days post infection. Results indicated that coccidiosis increased systemic oxidative status and elevated immune response in bone marrow, suppressing bone growth rate (P < 0.05) and increasing bone resorption (P < 0.05) which led to lower bone mineral density (P < 0.05) and mineral content (P < 0.05) under Eimeria infection. With the same amount of feed intake, the uninfected pair-fed group showed a distinguished bone formation rate and bone resorption level compared with the Eimeria infected groups. In conclusion, inflammatory immune response and oxidative stress in broilers after Eimeria infection were closely associated with altered bone homeostasis, highlighting the role of inflammation and oxidative stress in broiler bone homeostasis during coccidiosis.
Collapse
Affiliation(s)
- Yuguo Hou Tompkins
- grid.213876.90000 0004 1936 738XDepartment of Poultry Science, University of Georgia, Athens, GA 30602 USA
| | - Janghan Choi
- grid.213876.90000 0004 1936 738XDepartment of Poultry Science, University of Georgia, Athens, GA 30602 USA
| | - Po-Yun Teng
- grid.213876.90000 0004 1936 738XDepartment of Poultry Science, University of Georgia, Athens, GA 30602 USA
| | - Masayoshi Yamada
- grid.260975.f0000 0001 0671 5144Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata, 950-2181 Japan
| | - Toshie Sugiyama
- grid.260975.f0000 0001 0671 5144Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata, 950-2181 Japan
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
29
|
Kubatzky KF. Pasteurella multocida toxin - lessons learned from a mitogenic toxin. Front Immunol 2022; 13:1058905. [PMID: 36591313 PMCID: PMC9800868 DOI: 10.3389/fimmu.2022.1058905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
The gram-negative, zoonotic bacterium Pasteurella multocida was discovered in 1880 and found to be the causative pathogen of fowl cholera. Pasteurella-related diseases can be found in domestic and wild life animals such as buffalo, sheep, goat, deer and antelope, cats, dogs and tigers and cause hemorrhagic septicemia in cattle, rhinitis or pneumonia in rabbits or fowl cholera in poultry and birds. Pasteurella multocida does not play a major role in the immune-competent human host, but can be found after animal bites or in people with close contact to animals. Toxigenic strains are most commonly found in pigs and express a phage-encoded 146 kDa protein, the Pasteurella multocida toxin (PMT). Toxin-expressing strains cause atrophic rhinitis where nasal turbinate bones are destroyed through the inhibition of bone building osteoblasts and the activation of bone resorbing osteoclasts. After its uptake through receptor-mediated endocytosis, PMT specifically targets the alpha subunit of several heterotrimeric G proteins and constitutively activates them through deamidation of a glutamine residue to glutamate in the alpha subunit. This results in cytoskeletal rearrangement, proliferation, differentiation and survival of cells. Because of the toxin's mitogenic effects, it was suggested that it might have carcinogenic properties, however, no link between Pasteurella infections and cell transformation could be established, neither in tissue culture models nor through epidemiological data. In the recent years it was shown that the toxin not only affects bone, but also the heart as well as basically all cells of innate and adaptive immunity. During the last decade the focus of research shifted from signal transduction processes to understanding how the bacteria might benefit from a bone-destroying toxin. The primary function of PMT seems to be the modulation of immune cell activation which at the same time creates an environment permissive for osteoclast formation. While the disease is restricted to pigs, the implications of the findings from PMT research can be used to explore human diseases and have a high translational potential. In this review our current knowledge will be summarized and it will be discussed what can be learned from using PMT as a tool to understand human pathologies.
Collapse
Affiliation(s)
- Katharina F. Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
30
|
Eknoyan G, Moe SM. Renal osteodystrophy: A historical review of its origins and conceptual evolution. Bone Rep 2022; 17:101641. [PMID: 36466709 PMCID: PMC9713281 DOI: 10.1016/j.bonr.2022.101641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Long considered an inert supporting framework, bone studies went neglected until the 17th century when they began as descriptive microscopic studies of structure which over time progressed into that of chemistry and physiology. It was in the mid-19th century that studies evolved into an inquisitive discipline which matured into the experimental investigation of bone in health and disease in the 20th century, and ultimately that of molecular studies now deciphering the genetic language of bone biology. These fundamental studies were catalyzed by increasing clinical interest in bone disease. The first bone disease to be identified was rickets in 1645. Its subsequent connection to albuminuric patients reported in 1883 later became renal osteodystrophy in 1942, launching studies that elucidated the functions of vitamin D and parathyroid hormone and their role in the altered calcium and phosphate metabolism of the disease. Studies in osteoporosis and renal osteodystrophy have driven most recent progress benefitting from technological advances in imaging and the precision of evaluating bone turnover, mineralization, and volume. This review exposes the progress of bone biology from a passive support structure to a dynamically regulated organ with vital homeostatic functions whose understanding has undergone more revisions and paradigm shifts than that of any other organ.
Collapse
Affiliation(s)
- Garabed Eknoyan
- The Selzman Institute of Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Sharon M. Moe
- Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
31
|
Zhu Q, Ding L, Yue R. Skeletal stem cells: a game changer of skeletal biology and regenerative medicine? LIFE MEDICINE 2022; 1:294-306. [PMID: 36811113 PMCID: PMC9938637 DOI: 10.1093/lifemedi/lnac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/13/2022] [Indexed: 11/12/2022]
Abstract
Skeletal stem cells (SSCs) were originally discovered in the bone marrow stroma. They are capable of self-renewal and multilineage differentiation into osteoblasts, chondrocytes, adipocytes, and stromal cells. Importantly, these bone marrow SSCs localize in the perivascular region and highly express hematopoietic growth factors to create the hematopoietic stem cell (HSC) niche. Thus, bone marrow SSCs play pivotal roles in orchestrating osteogenesis and hematopoiesis. Besides the bone marrow, recent studies have uncovered diverse SSC populations in the growth plate, perichondrium, periosteum, and calvarial suture at different developmental stages, which exhibit distinct differentiation potential under homeostatic and stress conditions. Therefore, the current consensus is that a panel of region-specific SSCs collaborate to regulate skeletal development, maintenance, and regeneration. Here, we will summarize recent advances of SSCs in long bones and calvaria, with a special emphasis on the evolving concept and methodology in the field. We will also look into the future of this fascinating research area that may ultimately lead to effective treatment of skeletal disorders.
Collapse
Affiliation(s)
- Qiaoling Zhu
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Lei Ding
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine and Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| |
Collapse
|
32
|
Wölfel EM, Schmidt FN, Vom Scheidt A, Siebels AK, Wulff B, Mushumba H, Ondruschka B, Püschel K, Scheijen J, Schalkwijk CG, Vettorazzi E, Jähn-Rickert K, Gludovatz B, Schaible E, Amling M, Rauner M, Hofbauer LC, Zimmermann EA, Busse B. Dimorphic Mechanisms of Fragility in Diabetes Mellitus: the Role of Reduced Collagen Fibril Deformation. J Bone Miner Res 2022; 37:2259-2276. [PMID: 36112316 DOI: 10.1002/jbmr.4706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 08/25/2022] [Accepted: 09/10/2022] [Indexed: 11/06/2022]
Abstract
Diabetes mellitus (DM) is an emerging metabolic disease, and the management of diabetic bone disease poses a serious challenge worldwide. Understanding the underlying mechanisms leading to high fracture risk in DM is hence of particular interest and urgently needed to allow for diagnosis and treatment optimization. In a case-control postmortem study, the whole 12th thoracic vertebra and cortical bone from the mid-diaphysis of the femur from male individuals with type 1 diabetes mellitus (T1DM) (n = 6; 61.3 ± 14.6 years), type 2 diabetes mellitus (T2DM) (n = 11; 74.3 ± 7.9 years), and nondiabetic controls (n = 18; 69.3 ± 11.5) were analyzed with clinical and ex situ imaging techniques to explore various bone quality indices. Cortical collagen fibril deformation was measured in a synchrotron setup to assess changes at the nanoscale during tensile testing until failure. In addition, matrix composition was analyzed including determination of cross-linking and non-crosslinking advanced glycation end-products like pentosidine and carboxymethyl-lysine. In T1DM, lower fibril deformation was accompanied by lower mineralization and more mature crystalline apatite. In T2DM, lower fibril deformation concurred with a lower elastic modulus and tendency to higher accumulation of non-crosslinking advanced glycation end-products. The observed lower collagen fibril deformation in diabetic bone may be linked to altered patterns mineral characteristics in T1DM and higher advanced glycation end-product accumulation in T2DM. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Eva M Wölfel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Vom Scheidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Anna K Siebels
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Birgit Wulff
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Herbert Mushumba
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Püschel
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jean Scheijen
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM) School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM) School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Eik Vettorazzi
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bernd Gludovatz
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, Australia
| | - Eric Schaible
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Rauner
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Elizabeth A Zimmermann
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
33
|
Charoenngam N, Nasr A, Shirvani A, Holick MF. Hereditary Metabolic Bone Diseases: A Review of Pathogenesis, Diagnosis and Management. Genes (Basel) 2022; 13:genes13101880. [PMID: 36292765 PMCID: PMC9601711 DOI: 10.3390/genes13101880] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/03/2022] [Accepted: 10/13/2022] [Indexed: 11/20/2022] Open
Abstract
Hereditary metabolic bone diseases are characterized by genetic abnormalities in skeletal homeostasis and encompass one of the most diverse groups among rare diseases. In this review, we examine 25 selected hereditary metabolic bone diseases and recognized genetic variations of 78 genes that represent each of the three groups, including sclerosing bone disorders, disorders of defective bone mineralization and disorder of bone matrix and cartilage formation. We also review pathophysiology, manifestation and treatment for each disease. Advances in molecular genetics and basic sciences has led to accurate genetic diagnosis and novel effective therapeutic strategies for some diseases. For other diseases, the genetic basis and pathophysiology remain unclear. Further researches are therefore crucial to innovate ways to overcome diagnostic challenges and develop effective treatment options for these orphan diseases.
Collapse
Affiliation(s)
- Nipith Charoenngam
- Section Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Cambridge, MA 02138, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Aryan Nasr
- Section Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Arash Shirvani
- Section Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Michael F. Holick
- Section Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
- Correspondence: ; Tel.: +1-617-358-6139
| |
Collapse
|
34
|
Shen L, Yu Y, Karner CM. SLC38A2 provides proline and alanine to regulate postnatal bone mass accrual in mice. Front Physiol 2022; 13:992679. [PMID: 36213239 PMCID: PMC9538353 DOI: 10.3389/fphys.2022.992679] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Amino acids have recently emerged as important regulators of osteoblast differentiation and bone formation. Osteoblasts require a continuous supply of amino acids to sustain biomass production to fuel cell proliferation, osteoblast differentiation and bone matrix production. We recently identified proline as an essential amino acid for bone development by fulfilling unique synthetic demands that are associated with osteoblast differentiation. Osteoblasts rely on the amino acid transporter SLC38A2 to provide proline to fuel endochondral ossification. Despite this, very little is known about the function or substrates of SLC38A2 during bone homeostasis. Here we demonstrate that the neutral amino acid transporter SLC38A2 is expressed in osteoblast lineage cells and provides proline and alanine to osteoblast lineage cells. Genetic ablation of SLC38A2 using Prrx1Cre results in decreased bone mass in both male and female mice due to a reduction in osteoblast numbers and bone forming activity. Decreased osteoblast numbers are attributed to impaired proliferation and osteogenic differentiation of skeletal stem and progenitor cells. Collectively, these data highlight the necessity of SLC38A2-mediated proline and alanine uptake during postnatal bone formation and bone homeostasis.
Collapse
Affiliation(s)
- Leyao Shen
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yilin Yu
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Courtney M. Karner
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States
- *Correspondence: Courtney M. Karner,
| |
Collapse
|
35
|
Sapra L, Saini C, Garg B, Gupta R, Verma B, Mishra PK, Srivastava RK. Long-term implications of COVID-19 on bone health: pathophysiology and therapeutics. Inflamm Res 2022; 71:1025-1040. [PMID: 35900380 PMCID: PMC9330992 DOI: 10.1007/s00011-022-01616-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND SARS-CoV-2 is a highly infectious respiratory virus associated with coronavirus disease (COVID-19). Discoveries in the field revealed that inflammatory conditions exert a negative impact on bone metabolism; however, only limited studies reported the consequences of SARS-CoV-2 infection on skeletal homeostasis. Inflammatory immune cells (T helper-Th17 cells and macrophages) and their signature cytokines such as interleukin (IL)-6, IL-17, and tumor necrosis factor-alpha (TNF-α) are the major contributors to the cytokine storm observed in COVID-19 disease. Our group along with others has proven that an enhanced population of both inflammatory innate (Dendritic cells-DCs, macrophages, etc.) and adaptive (Th1, Th17, etc.) immune cells, along with their signature cytokines (IL-17, TNF-α, IFN-γ, IL-6, etc.), are associated with various inflammatory bone loss conditions. Moreover, several pieces of evidence suggest that SARS-CoV-2 infects various organs of the body via angiotensin-converting enzyme 2 (ACE2) receptors including bone cells (osteoblasts-OBs and osteoclasts-OCs). This evidence thus clearly highlights both the direct and indirect impact of SARS-CoV-2 on the physiological bone remodeling process. Moreover, data from the previous SARS-CoV outbreak in 2002-2004 revealed the long-term negative impact (decreased bone mineral density-BMDs) of these infections on bone health. METHODOLOGY We used the keywords "immunopathogenesis of SARS-CoV-2," "SARS-CoV-2 and bone cells," "factors influencing bone health and COVID-19," "GUT microbiota," and "COVID-19 and Bone health" to integrate the topics for making this review article by searching the following electronic databases: PubMed, Google Scholar, and Scopus. CONCLUSION Current evidence and reports indicate the direct relation between SARS-CoV-2 infection and bone health and thus warrant future research in this field. It would be imperative to assess the post-COVID-19 fracture risk of SARS-CoV-2-infected individuals by simultaneously monitoring them for bone metabolism/biochemical markers. Importantly, several emerging research suggest that dysbiosis of the gut microbiota-GM (established role in inflammatory bone loss conditions) is further involved in the severity of COVID-19 disease. In the present review, we thus also highlight the importance of dietary interventions including probiotics (modulating dysbiotic GM) as an adjunct therapeutic alternative in the treatment and management of long-term consequences of COVID-19 on bone health.
Collapse
Affiliation(s)
- Leena Sapra
- Translational Immunology, Osteoimmunology and Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Chaman Saini
- Translational Immunology, Osteoimmunology and Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Bhavuk Garg
- Department of Orthopaedics, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Ranjan Gupta
- Department of Rheumatology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Bhupendra Verma
- Translational Immunology, Osteoimmunology and Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | | | - Rupesh K Srivastava
- Translational Immunology, Osteoimmunology and Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.
| |
Collapse
|
36
|
Xu J, Zhang Z, Zhao J, Meyers CA, Lee S, Qin Q, James AW. Interaction between the nervous and skeletal systems. Front Cell Dev Biol 2022; 10:976736. [PMID: 36111341 PMCID: PMC9468661 DOI: 10.3389/fcell.2022.976736] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 11/14/2022] Open
Abstract
The skeleton is one of the largest organ systems in the body and is richly innervated by the network of nerves. Peripheral nerves in the skeleton include sensory and sympathetic nerves. Crosstalk between bones and nerves is a hot topic of current research, yet it is not well understood. In this review, we will explore the role of nerves in bone repair and remodeling, as well as summarize the molecular mechanisms by which neurotransmitters regulate osteogenic differentiation. Furthermore, we discuss the skeleton’s role as an endocrine organ that regulates the innervation and function of nerves by secreting bone-derived factors. An understanding of the interactions between nerves and bone can help to prevent and treat bone diseases caused by abnormal innervation or nerve function, develop new strategies for clinical bone regeneration, and improve patient outcomes.
Collapse
Affiliation(s)
- Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Academy of Orthopedics, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junjie Zhao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Carolyn A. Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Seungyong Lee
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
- Department of Physical Education, Incheon National University, Incheon, South Korea
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Aaron W. James,
| |
Collapse
|
37
|
Nakamura M, Imaoka M, Tazaki F, Nakao H, Hida M, Kono R, Kanemoto H, Takeda M. Association between Bone-Related Physiological Substances and Oral Function in Community-Dwelling Older People. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10677. [PMID: 36078393 PMCID: PMC9518358 DOI: 10.3390/ijerph191710677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Oral dysfunction is related to long-term cares including activities of daily living. The objective of this study was to determine the association between oral function and the bone-related physiological substances osteocalcin (OC) and insulin-like growth factor-1 (IGF-1). METHODS The study participants were 139 community-dwelling older people in Japan. Evaluation of oral dysfunction was based on subjective judgment by each participant. Blood analysis included OC, IGF-1, and albumin. RESULTS Univariate and multiple logistic analyses showed that IGF-1 was significantly associated with a "decline in masticatory function" (p = 0.0074 and p = 0.0308, respectively). Receiver operating characteristic curve analysis of IGF-1 levels revealed a threshold score of 108 ng/mL (p < 0.01) for discriminating a "decline in masticatory function". Logistic regression analysis revealed that participants with an IGF-1 level ≤108 ng/mL had an odds ratio of 4.31 (p < 0.05) for a "decline in masticatory function". No significant association was found between the OC level and oral dysfunction. CONCLUSIONS These results suggest a possible relationship between lower serum IGF-1 levels and a decline in masticatory dysfunction in community-dwelling older people.
Collapse
Affiliation(s)
- Misa Nakamura
- Cognitive Reserve Research Center, Osaka Kawasaki Rehabilitation University, Kaizuka 597-0104, Osaka, Japan
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka 597-0104, Osaka, Japan
| | - Masakazu Imaoka
- Cognitive Reserve Research Center, Osaka Kawasaki Rehabilitation University, Kaizuka 597-0104, Osaka, Japan
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka 597-0104, Osaka, Japan
| | - Fumie Tazaki
- Cognitive Reserve Research Center, Osaka Kawasaki Rehabilitation University, Kaizuka 597-0104, Osaka, Japan
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka 597-0104, Osaka, Japan
| | - Hidetoshi Nakao
- Department of Physical Therapy, Josai International University, Tougane 283-0002, Chiba, Japan
| | - Mitsumasa Hida
- Cognitive Reserve Research Center, Osaka Kawasaki Rehabilitation University, Kaizuka 597-0104, Osaka, Japan
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka 597-0104, Osaka, Japan
| | - Ryohei Kono
- Cognitive Reserve Research Center, Osaka Kawasaki Rehabilitation University, Kaizuka 597-0104, Osaka, Japan
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka 597-0104, Osaka, Japan
| | - Hideki Kanemoto
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita 565-0871, Osaka, Japan
| | - Masatoshi Takeda
- Cognitive Reserve Research Center, Osaka Kawasaki Rehabilitation University, Kaizuka 597-0104, Osaka, Japan
| |
Collapse
|
38
|
Sroga GE, Stephen S, Wang B, Vashishth D. Techniques for advanced glycation end product measurements for diabetic bone disease: pitfalls and future directions. Curr Opin Endocrinol Diabetes Obes 2022; 29:333-342. [PMID: 35777968 PMCID: PMC9348815 DOI: 10.1097/med.0000000000000736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Multiple biochemical and biophysical approaches have been broadly used for detection and quantitation of posttranslational protein modifications associated with diabetic bone, yet these techniques present a variety of challenges. In this review, we discuss recent advancements and complementary roles of analytical (UPLC/UPLC-MS/MS and ELISA) and biophysical (Raman and FTIR) techniques used for characterization of glycation products, measured from bone matrix and serum, and provide recommendations regarding the selection of a technique for specific study of diabetic bone. RECENT FINDINGS Hyperglycemia and oxidative stress in diabetes contribute to the formation of a large subgroup of advanced glycation end products (AGEs) known as glycoxidation end products (AGOEs). AGEs/AGOEs have various adverse effects on bone health. Commonly, accumulation of AGEs/AGOEs leads to increased bone fragility. For example, recent studies show that carboxymethyllysine (CML) and pentosidine (PEN) are formed in bone at higher levels in certain diseases and metabolic conditions, in particular, in diabetes and aging. Detection and quantitation of AGEs/AGOEs in rare and/or precious samples is feasible because of a number of technological advancements of the past decade. SUMMARY Recent technological advancements have led to a significant improvement of several key analytical biochemistry and biophysics techniques used for detection and characterization of AGEs/AGOEs in bone and serum. Their principles and applications to skeletal tissue studies as well as limitations are discussed in this review.
Collapse
Affiliation(s)
- Grażyna E. Sroga
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Samuel Stephen
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Bowen Wang
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Deepak Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
39
|
Chitosan-based biomaterials for the treatment of bone disorders. Int J Biol Macromol 2022; 215:346-367. [PMID: 35718150 DOI: 10.1016/j.ijbiomac.2022.06.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 12/22/2022]
Abstract
Bone is an alive and dynamic organ that is well-differentiated and originated from mesenchymal tissues. Bone undergoes continuous remodeling during the lifetime of an individual. Although knowledge regarding bones and their disorders has been constantly growing, much attention has been devoted to effective treatments that can be used, both from materials and medical performance points of view. Polymers derived from natural sources, for example polysaccharides, are generally biocompatible and are therefore considered excellent candidates for various biomedical applications. This review outlines the development of chitosan-based biomaterials for the treatment of bone disorders including bone fracture, osteoporosis, osteoarthritis, arthritis rheumatoid, and osteosarcoma. Different examples of chitosan-based formulations in the form of gels, micro/nanoparticles, and films are discussed herein. The work also reviews recent patents and important developments related to the use of chitosan in the treatment of bone disorders. Although most of the cited research was accomplished before reaching the clinical application level, this manuscript summarizes the latest achievements within chitosan-based biomaterials used for the treatment of bone disorders and provides perspectives for future scientific activities.
Collapse
|
40
|
Nomura S, Kono R, Imaoka M, Tazaki F, Okuno Y, Utsunomiya H, Takeda M, Nakamura M. Traditional Japanese apricot (Prunus mume) induces osteocalcin in osteoblasts. Biosci Biotechnol Biochem 2022; 86:528-534. [PMID: 35150233 DOI: 10.1093/bbb/zbac013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/17/2022] [Indexed: 01/20/2023]
Abstract
The fruit of Prunus mume (ume, also known as Japanese apricot) has been used as a functional food in Japan since ancient times. We previously reported that ume stimulates the differentiation of preosteoblastic cells. Osteocalcin (OCN) is secreted by osteoblasts, and there is known association with glucolipid metabolism and cognitive function. This study sought to clarify the relationship between ume extracts and OCN production both in vitro and in vivo. Alkaline phosphatase activity and OCN level in the ethyl acetate extracts of ume-treated extracts were significantly increased in preosteoblast MC3T3-E1 cells compared with the control group. In human study, serum OCN level was significantly higher in the high ume intake group than in the low intake group in community-dwelling participants over 60 years old. These results suggest that ume has the potential to upregulated OCN production both in vitro and in vivo.
Collapse
Affiliation(s)
- Sachiko Nomura
- Department of Strategic Surveillance for Functional Food and Comprehensive Traditional Medicine, Wakayama Medical University, Wakayama, Japan
- Cognitive Reserve Research Center, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| | - Ryohei Kono
- Department of Strategic Surveillance for Functional Food and Comprehensive Traditional Medicine, Wakayama Medical University, Wakayama, Japan
| | - Masakazu Imaoka
- Cognitive Reserve Research Center, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| | - Fumie Tazaki
- Cognitive Reserve Research Center, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| | - Yoshiharu Okuno
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Wakayama College, Wakayama, Japan
| | - Hirotoshi Utsunomiya
- Department of Strategic Surveillance for Functional Food and Comprehensive Traditional Medicine, Wakayama Medical University, Wakayama, Japan
- Cognitive Reserve Research Center, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| | - Masatoshi Takeda
- Cognitive Reserve Research Center, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| | - Misa Nakamura
- Cognitive Reserve Research Center, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| |
Collapse
|
41
|
Shen L, Yu Y, Zhou Y, Pruett-Miller SM, Zhang GF, Karner CM. SLC38A2 provides proline to fulfil unique synthetic demands arising during osteoblast differentiation and bone formation. eLife 2022; 11:76963. [PMID: 35261338 PMCID: PMC9007586 DOI: 10.7554/elife.76963] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Cellular differentiation is associated with the acquisition of a unique protein signature which is essential to attain the ultimate cellular function and activity of the differentiated cell. This is predicted to result in unique biosynthetic demands that arise during differentiation. Using a bioinformatic approach, we discovered osteoblast differentiation is associated with increased demand for the amino acid proline. When compared to other differentiated cells, osteoblast-associated proteins including RUNX2, OSX, OCN and COL1A1 are significantly enriched in proline. Using a genetic and metabolomic approach, we demonstrate that the neutral amino acid transporter SLC38A2 acts cell autonomously to provide proline to facilitate the efficient synthesis of proline-rich osteoblast proteins. Genetic ablation of SLC38A2 in osteoblasts limits both osteoblast differentiation and bone formation in mice. Mechanistically, proline is primarily incorporated into nascent protein with little metabolism observed. Collectively, these data highlight a requirement for proline in fulfilling the unique biosynthetic requirements that arise during osteoblast differentiation and bone formation.
Collapse
Affiliation(s)
- Leyao Shen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Yilin Yu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Yunji Zhou
- Department of Biostatistics and Bioinformatics, Duke University, Durham, United States
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St Jude Children's Research Hospital, Memphis, United States
| | - Guo-Fang Zhang
- Sarah W Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, United States
| | - Courtney M Karner
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
42
|
Pin F, Jones AJ, Huot JR, Narasimhan A, Zimmers TA, Bonewald LF, Bonetto A. RANKL Blockade Reduces Cachexia and Bone Loss Induced by Non-Metastatic Ovarian Cancer in Mice. J Bone Miner Res 2022; 37:381-396. [PMID: 34904285 PMCID: PMC8940654 DOI: 10.1002/jbmr.4480] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/13/2022]
Abstract
Tumor- and bone-derived soluble factors have been proposed to participate in the alterations of skeletal muscle size and function in cachexia. We previously showed that mice bearing ovarian cancer (OvCa) exhibit cachexia associated with marked bone loss, whereas bone-targeting agents, such as bisphosphonates, are able to preserve muscle mass in animals exposed to anticancer drugs. De-identified CT images and plasma samples from female patients affected with OvCa were used for body composition assessment and quantification of circulating cross-linked C-telopeptide type I (CTX-I) and receptor activator of NF-kB ligand (RANKL), respectively. Female mice bearing ES-2 tumors were used to characterize cancer- and RANKL-associated effects on muscle and bone. Murine C2C12 and human HSMM myotube cultures were used to determine the OvCa- and RANKL-dependent effects on myofiber size. To the extent of isolating new regulators of bone and muscle in cachexia, here we demonstrate that subjects affected with OvCa display evidence of cachexia and increased bone turnover. Similarly, mice carrying OvCa present high RANKL levels. By using in vitro and in vivo experimental models, we found that elevated circulating RANKL is sufficient to cause skeletal muscle atrophy and bone resorption, whereas bone preservation by means of antiresorptive and anti-RANKL treatments concurrently benefit muscle mass and function in cancer cachexia. Altogether, our data contribute to identifying RANKL as a novel therapeutic target for the treatment of musculoskeletal complications associated with RANKL-expressing non-metastatic cancers. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Fabrizio Pin
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexander J Jones
- Department of Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joshua R Huot
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ashok Narasimhan
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Teresa A Zimmers
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lynda F Bonewald
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.,Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrea Bonetto
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
43
|
Trivedi T, Guise TA. Systemic effects of abnormal bone resorption on muscle, metabolism, and cognition. Bone 2022; 154:116245. [PMID: 34718221 DOI: 10.1016/j.bone.2021.116245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022]
Abstract
Skeletal tissue is dynamic, undergoing constant remodeling to maintain musculoskeletal integrity and balance in the human body. Recent evidence shows that apart from maintaining homeostasis in the local microenvironment, the skeleton systemically affects other tissues. Several cancer-associated and noncancer-associated bone disorders can disrupt the physiological homeostasis locally in the bone microenvironment and indirectly contribute to dysregulation of systemic body function. The systemic effects of bone on the regulation of distant organ function have not been widely explored. Recent evidence suggests that bone can interact with skeletal muscle, pancreas, and brain by releasing factors from mineralized bone matrix. Currently available bone-targeting therapies such as bisphosphonates and denosumab inhibit bone resorption, decrease morbidity associated with bone destruction, and improve survival. Bisphosphonates have been a standard treatment for bone metastases, osteoporosis, and cancer treatment-induced bone diseases. The extraskeletal effects of bisphosphonates on inhibition of tumor growth are known. However, our knowledge of the effects of bisphosphonates on muscle weakness, hyperglycemia, and cognitive defects is currently evolving. To be able to identify the molecular link between bone and distant organs during abnormal bone resorption and then treat these abnormalities and prevent their systemic effects could improve survival benefits. The current review highlights the link between bone resorption and its systemic effects on muscle, pancreas, and brain.
Collapse
Affiliation(s)
- Trupti Trivedi
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Theresa A Guise
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America.
| |
Collapse
|
44
|
Olali AZ, Shi Q, Hoover DR, Bucovsky M, Shane E, Yin MT, Ross RD. Bone and fat hormonal crosstalk with antiretroviral initiation. Bone 2022; 154:116208. [PMID: 34547525 PMCID: PMC8671338 DOI: 10.1016/j.bone.2021.116208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/16/2021] [Accepted: 09/15/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Bone mineral density (BMD) loss and fat gain is common in people living with HIV (PLWH), particularly after initiating combination antiretroviral therapy (cART). Given the close metabolic interaction between bone and fat, we tested the hypotheses that changes in bone-derived hormones are associated with fat accumulation and changes in fat-derived hormones are associated with BMD loss following cART initiation. METHODS HIV-seropositive subjects (n = 15) initiating fixed dose cART of tenofovir disoproxil fumarate/emtricitabine/efavirenz (TDF/FTC/EFV) underwent dual X-ray absorptiometry (DXA) assessment pre-cART and again 12-months post-cART initiation. DXA-derived measurements included BMD at the lumbar spine, femoral neck, total hip, and trochanter and the trunk and total fat. Serum undercarboxylated osteocalcin (ucOCN), sclerostin, lipocalin-2, leptin, and adiponectin were measured pre and post-cART. Spearman's rank-order correlations assessed the cross-sectional associations between hormones and bone and fat mass pre- and post-cART. Linear regression models adjusting for baseline bone or fat mass assessed the association between hormone change and BMD/fat changes following cART initiation. RESULTS ucOCN (p = 0.04) and lipocalin-2 (p = 0.03) increased post-cART while sclerostin, leptin, and adiponectin remained unchanged. BMD significantly decreased post-cART at all skeletal sites. Trunk and total fat increased post-cART but not significantly, while weight and BMI remained unchanged. In models adjusting for baseline BMD and fat mass, change in ucOCN was negatively associated with change in trunk (p = 0.008) and total fat (p = 0.01) and the change in leptin was positively associated with change in total hip (p = 0.03) and trochanteric BMD (p = 0.02). CONCLUSION The current study demonstrates bone-fat crosstalk in cART initiating PLWH.
Collapse
Affiliation(s)
- Arnold Z Olali
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, United States of America
| | - Qiuhu Shi
- Department of Public Health, New York Medical College, Valhalla, NY, United States of America
| | - Donald R Hoover
- Department of Statistics and Institute for Health, Health Care Policy and Aging Research, Rutgers University, Piscataway, NJ, United States of America
| | - Mariana Bucovsky
- Columbia University Irving Medical Center, New York, NY, United States of America
| | - Elizabeth Shane
- Columbia University Irving Medical Center, New York, NY, United States of America
| | - Michael T Yin
- Columbia University Irving Medical Center, New York, NY, United States of America
| | - Ryan D Ross
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, United States of America.
| |
Collapse
|
45
|
Abstract
Bone fragility fractures remain an important worldwide health and economic problem due to increased morbidity and mortality. The current methods for predicting fractures are largely based on the measurement of bone mineral density and the utilization of mathematical risk calculators based on clinical risk factors for bone fragility. Despite these approaches, many bone fractures remain undiagnosed. Therefore, current research is focused on the identification of new factors such as bone turnover markers (BTM) for risk calculation. BTM are a group of proteins and peptides released during bone remodeling that can be found in serum or urine. They derive from bone resorptive and formative processes mediated by osteoclasts and osteoblasts, respectively. Potential use of BTM in monitoring these phenomenon and therefore bone fracture risk is limited by physiologic and pathophysiologic factors that influence BTM. These limitations in predicting fractures explain why their inclusion in clinical guidelines remains limited despite the large number of studies examining BTM.
Collapse
Affiliation(s)
- Lisa Di Medio
- Department of Surgery and Translational Medicine, University Hospital of Florence, Florence, Italy.
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University Hospital of Florence, Florence, Italy
| |
Collapse
|
46
|
Santhanam L, Liu G, Jandu S, Su W, Wodu BP, Savage W, Poe A, Liu X, Alexander LM, Cao X, Wan M. Skeleton-secreted PDGF-BB mediates arterial stiffening. J Clin Invest 2021; 131:e147116. [PMID: 34437300 PMCID: PMC8516464 DOI: 10.1172/jci147116] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
Evidence links osteoporosis and cardiovascular disease but the cellular and molecular mechanisms are unclear. Here we identify skeleton-secreted platelet-derived growth factor-BB (PDGF-BB) as a key mediator of arterial stiffening in response to aging and metabolic stress. Aged mice and those fed high-fat diet (HFD), relative to young mice and those fed normal chow food diet, respectively, had higher serum PDGF-BB and developed bone loss and arterial stiffening. Bone/bone marrow preosteoclasts in aged mice and HFD mice secrete an excessive amount of PDGF-BB, contributing to the elevated PDGF-BB in blood circulation. Conditioned medium prepared from preosteoclasts stimulated proliferation and migration of the vascular smooth muscle cells. Conditional transgenic mice, in which PDGF-BB is overexpressed in preosteoclasts, had 3-fold higher serum PDGF-BB concentration and developed simultaneous bone loss and arterial stiffening spontaneously at a young age. Conversely, in conditional knockout mice, in which PDGF-BB is deleted selectively in preosteoclasts, HFD did not affect serum PDGF-BB concentration; as a result, HFD-induced bone loss and arterial stiffening were attenuated. These studies confirm that preosteoclasts are a main source of excessive PDGF-BB in blood circulation during aging and metabolic stress and establish the role of skeleton-derived PDGF-BB as an important mediator of vascular stiffening.
Collapse
Affiliation(s)
- Lakshmi Santhanam
- Department of Anesthesiology and Critical Care Medicine and
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Guanqiao Liu
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Sandeep Jandu
- Department of Anesthesiology and Critical Care Medicine and
| | - Weiping Su
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Orthopaedic Surgery, The Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bulouere P. Wodu
- Department of Biotechnology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - William Savage
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Alan Poe
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xiaonan Liu
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lacy M. Alexander
- Department of Kinesiology, Penn State University, University Park, Pennsylvania, USA
| | - Xu Cao
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mei Wan
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
47
|
Presas A, Valentin D, Deering J, Kampschulte M, Yu B, Grandfield K, Mele E, Biehl C, Krombach GA, Heiss C, Bosbach WA. Resonance vibration interventions in the femur: Experimental-numerical modelling approaches. J Mech Behav Biomed Mater 2021; 124:104850. [PMID: 34607300 DOI: 10.1016/j.jmbbm.2021.104850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 10/20/2022]
Abstract
MOTIVE External vibration excitation might be key to many novel non-surgical interventions for pathologies in the musculoskeletal system and in other parts of the human organism. Lack of understanding about vibration patterns, their controllability, and reproducibility are three limitations of ongoing research. This study establishes a bovine vibration model and animal model replacements for future research. METHODS We used biological samples (n=5) and one polyurethane sample of the bovine femur. Mechanical resonance was measured experimentally and analysed numerically by finite element method. MAIN RESULTS The experiments obtained 5 distinct mode shapes for the biological sample set, with standard deviation < 7.5%. Finite element analysis of the biological samples can replicate experimental mode shape deflection. The use of polyurethane changes resonance character but results are also good approximations of the biological samples. CONCLUSIONS A model of the bovine femur with consistent resonance behaviour is presented with alternatives (polyurethane and finite element analysis) that can serve in reducing the number of necessary biological samples. Future work will be to adapt results to human anatomy. Of clinical interest will be to influence bone pathologies such as post-surgical non-union, or bone functionality as part of haematopoiesis and endocrine secretion.
Collapse
Affiliation(s)
- Alexandre Presas
- Center for Industrial Diagnostics and Fluid Dynamics (CDIF), Polytechnic University of Catalonia (UPC), Spain
| | - David Valentin
- Center for Industrial Diagnostics and Fluid Dynamics (CDIF), Polytechnic University of Catalonia (UPC), Spain
| | - Joseph Deering
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, Canada
| | - Marian Kampschulte
- Experimental Radiology, Justus Liebig University of Giessen, Germany; Department of Diagnostic and Interventional, and Paediatric Radiology, University Hospital of Giessen, Germany
| | - Bosco Yu
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, Canada
| | - Kathryn Grandfield
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, Canada; School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Elisa Mele
- Materials Department, Loughborough University, Loughborough, UK
| | - Christoph Biehl
- Experimental Trauma Surgery, Justus Liebig University of Giessen, Germany; Department of Trauma, Hand and Reconstructive Surgery, University Hospital of Giessen, Germany
| | - Gabriele A Krombach
- Experimental Radiology, Justus Liebig University of Giessen, Germany; Department of Diagnostic and Interventional, and Paediatric Radiology, University Hospital of Giessen, Germany
| | - Christian Heiss
- Experimental Trauma Surgery, Justus Liebig University of Giessen, Germany; Department of Trauma, Hand and Reconstructive Surgery, University Hospital of Giessen, Germany
| | - Wolfram A Bosbach
- Experimental Trauma Surgery, Justus Liebig University of Giessen, Germany; Department of Trauma, Hand and Reconstructive Surgery, University Hospital of Giessen, Germany.
| |
Collapse
|
48
|
Suchacki KJ, Alcaide-Corral CJ, Nimale S, Macaskill MG, Stimson RH, Farquharson C, Freeman TC, Tavares AAS. A Systems-Level Analysis of Total-Body PET Data Reveals Complex Skeletal Metabolism Networks in vivo. Front Med (Lausanne) 2021; 8:740615. [PMID: 34616758 PMCID: PMC8488174 DOI: 10.3389/fmed.2021.740615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Bone is now regarded to be a key regulator of a number of metabolic processes, in addition to the regulation of mineral metabolism. However, our understanding of complex bone metabolic interactions at a systems level remains rudimentary. in vitro molecular biology and bioinformatics approaches have frequently been used to understand the mechanistic changes underlying disease at the cell level, however, these approaches lack the capability to interrogate dynamic multi-bone metabolic interactions in vivo. Here we present a novel and integrative approach to understand complex bone metabolic interactions in vivo using total-body positron emission tomography (PET) network analysis of murine 18F-FDG scans, as a biomarker of glucose metabolism in bones. In this report we show that different bones within the skeleton have a unique glucose metabolism and form a complex metabolic network, which could not be identified using single tissue simplistic PET standard uptake values analysis. The application of our approach could reveal new physiological and pathological tissue interactions beyond skeletal metabolism, due to PET radiotracers diversity and the advent of clinical total-body PET systems.
Collapse
Affiliation(s)
- Karla J. Suchacki
- University/British Heart Foundation (BHF) Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Carlos J. Alcaide-Corral
- University/British Heart Foundation (BHF) Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom
| | - Samah Nimale
- University/British Heart Foundation (BHF) Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark G. Macaskill
- University/British Heart Foundation (BHF) Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom
| | - Roland H. Stimson
- University/British Heart Foundation (BHF) Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Colin Farquharson
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies (RDSVS), Easter Bush Campus, University of Edinburgh, Edinburgh, United Kingdom
| | - Tom C. Freeman
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies (RDSVS), Easter Bush Campus, University of Edinburgh, Edinburgh, United Kingdom
| | - Adriana A. S. Tavares
- University/British Heart Foundation (BHF) Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
49
|
Nicolini C, Michalski B, Toepp SL, Turco CV, D'Hoine T, Harasym D, Gibala MJ, Fahnestock M, Nelson AJ. A Single Bout of High-intensity Interval Exercise Increases Corticospinal Excitability, Brain-derived Neurotrophic Factor, and Uncarboxylated Osteolcalcin in Sedentary, Healthy Males. Neuroscience 2021; 437:242-255. [PMID: 32482330 DOI: 10.1016/j.neuroscience.2020.03.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/17/2022]
Abstract
Exercise induces neuroplasticity in descending motor pathways facilitating motor learning, and as such it could be utilized as an intervention in neurorehabilitation, for example when re-learning motor skills after stroke. To date, however, the neurophysiological and molecular mechanisms underlying exercise-induced neuroplasticity remain largely unknown impeding the potential utilization of exercise protocols as 'motor learning boosters' in clinical and non-clinical settings. Here, we assessed corticospinal excitability, intracortical facilitation (ICF) and short-interval intracortical inhibition (SICI) using transcranial magnetic stimulation (TMS) and serum biochemical markers including brain-derived neurotrophic factor (BDNF), total and precursor cathepsin B (tCTSB, proCTSB), uncarboxylated and carboxylated osteocalcin (unOCN, cOCN) and irisin using ELISA. Measurements were carried out in sedentary, healthy males before and after a single session of high-intensity interval exercise (HIIE) or in individuals who rested and did not perform exercise (No Exercise). We found that HIIE increased corticospinal excitability, BDNF and unOCN, and decreased cOCN. We also determined that greater increases in BDNF were associated with increases in unOCN and irisin and decreases in cOCN only in participants who underwent HIIE, suggesting that unOCN and irisin may contribute to exercise-induced BDNF increases. Conversely, no changes other than a decrease in serum unOCN/tOCN were found in No Exercise participants. The present findings show that a single session of HIIE is sufficient to modulate corticospinal excitability and to increase BDNF and unOCN in sedentary, healthy males.
Collapse
Affiliation(s)
- Chiara Nicolini
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Bernadeta Michalski
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Stephen L Toepp
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Claudia V Turco
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Tarra D'Hoine
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Diana Harasym
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Martin J Gibala
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Margaret Fahnestock
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Aimee J Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada; School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
50
|
Olali AZ, Sharma A, Shi Q, Hoover DR, Weber KM, French AL, McKay HS, Tien PC, Al-Harthi L, Yin MT, Ross RD. Change in Circulating Undercarboxylated Osteocalcin (ucOCN) Is Associated With Fat Accumulation in HIV-Seropositive Women. J Acquir Immune Defic Syndr 2021; 86:e139-e145. [PMID: 33399313 PMCID: PMC7933097 DOI: 10.1097/qai.0000000000002617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/22/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Bone mineral density loss and fat accumulation are common in people living with HIV. The bone-derived hormone, undercarboxylated osteocalcin (ucOCN) regulates fat metabolism. We investigated the relationship between ucOCN change and body fat change among perimenopausal/postmenopausal HIV-seronegative and HIV-seropositive women on long-term antiretrovirals. METHODS Perimenopausal and postmenopausal women enrolled in the Women's Interagency HIV Study MSK substudy underwent trunk and total fat assessment by dual energy x-ray absorptiometry (DXA) at study enrollment (index visit) and again 2 years later. Circulating ucOCN and cOCN were also measured at the index and 2-year visits. The correlation between the 2-year change in ucOCN and cOCN and change in trunk and total fat was assessed as a function of HIV serostatus using linear regression modeling. Multivariate linear regression assessed the association between ucOCN and cOCN change and total and trunk fat change after adjusting for sociodemographic variables. Linear regression models restricted to HIV-seropositive women were performed to examine the contributions of HIV-specific factors (index CD4 count, viral load, and combined antiretroviral therapy use) on the associations. RESULTS Increased ucOCN over the 2-year follow-up was associated with less trunk and total fat accumulation in models adjusting for HIV serostatus and participants sociodemographics, whereas there was no association with cOCN and the fat parameters. None of the HIV-specific factors evaluated influenced the association between ucOCN and fat parameters. CONCLUSION The current study suggests that increases in ucOCN are associated with decreased fat accumulation in HIV-seronegative and HIV-seropositive postmenopausal women on long-term antiretroviral therapy.
Collapse
Affiliation(s)
- Arnold Z. Olali
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL
- Department of Microbial Pathogens and immunity, Rush University Medical Center, Chicago, IL
| | | | - Qiuhu Shi
- New York Medical College, Valhalla, NY
| | - Donald R. Hoover
- Department of Statistics and Institute for Health, Health Care Policy and Aging Research, Rutgers University, Piscataway, NJ
| | - Kathleen M. Weber
- Cook County Health/CORE Center and Hektoen Institute of Medicine, Chicago, IL
| | - Audrey L. French
- Department of Medicine, Stroger Hospital of Cook County/CORE Center, Rush University, Chicago, IL
| | - Heather S. McKay
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Phyllis C. Tien
- Department of Medicine, University of California, San Francisco and Medical Service, Department of Veteran Affairs Medical Center, San Francisco, CA
| | - Lena Al-Harthi
- Department of Microbial Pathogens and immunity, Rush University Medical Center, Chicago, IL
| | | | - Ryan D. Ross
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL
| |
Collapse
|