1
|
Pötzsch C, Kurch L, Naumann S, Georgi TW, Sabri O, Stoevesandt D, Cepelova M, Körholz D, Mauz-Körholz C, Hasenclever D, Kluge R. Prevention of activated brown adipose tissue on 18F-FDG-PET scans of young lymphoma patients: results of an ancillary study within the EuroNet-PHL-C2 trial. Sci Rep 2023; 13:21944. [PMID: 38081864 PMCID: PMC10713612 DOI: 10.1038/s41598-023-48871-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Activated brown fat (aBAT) is known to affect the evaluation of 18F-FDG PET scans, especially in young patients. The aim of this study was to determine factors influencing the occurrence of aBAT, and to investigate the effectiveness of the two preventive measures, warming and beta-blocker (propranolol) administration. Five-hundred-twenty-eight 18F-FDG-PET scans of 241 EuroNet-PHL-C2 trial patients from 41 nuclear medicine departments in Germany and Czech Republic were screened for aBAT. The occurrence of aBAT was analyzed with patient characteristics (age, sex, body mass index, predisposition to aBAT), weather data at the day of 18F-FDG PET scanning as well as the preventive measures taken. Potentially important factors from univariate analyses were included into a logistic regression model. Warming as a preventive measure was used in 243 18F-FDG-PET scans, propranolol was administered in 36, warming and propranolol were combined in 84, and no preventive measures were taken in 165 scans. Whereas age, sex and body mass index had no clear impact, there was an individual predisposition to aBAT. Logistic regression model revealed that the frequency of aBAT mainly depends on the outside temperature (p = 0.005) and can be effectively reduced by warming (p = 0.004), the administration of unselective beta-blocker or the combination of both. Warming is a simple, cheap and non-invasive method to reduce the frequency of aBAT. However, the effect of warming decreases with increasing outside temperatures. Administration of propranolol seems to be equally effective and provides advantages whenever the positive effect of warming is compromised. The combination of both preventive measures could have an additive effect.
Collapse
Affiliation(s)
- C Pötzsch
- Department of Nuclear Medicine, University Hospital of Leipzig, University of Leipzig, Liebigstraße 18, 04103, Leipzig, Germany
| | - Lars Kurch
- Department of Nuclear Medicine, University Hospital of Leipzig, University of Leipzig, Liebigstraße 18, 04103, Leipzig, Germany.
| | - S Naumann
- Department of Nuclear Medicine, University Hospital of Leipzig, University of Leipzig, Liebigstraße 18, 04103, Leipzig, Germany
| | - T W Georgi
- Department of Nuclear Medicine, University Hospital of Leipzig, University of Leipzig, Liebigstraße 18, 04103, Leipzig, Germany
| | - O Sabri
- Department of Nuclear Medicine, University Hospital of Leipzig, University of Leipzig, Liebigstraße 18, 04103, Leipzig, Germany
| | - D Stoevesandt
- Department of Radiology, Medical Faculty of the Martin-Luther-University, Halle (Saale), Germany
| | - M Cepelova
- Department of Pediatric Hematology and Oncology, University Hospital Motol and Second Medical Faculty of Charles University, Prague, Czech Republic
| | - D Körholz
- Department of Pediatric Hematology and Oncology, Justus-Liebig University Giessen, Giessen, Germany
| | - C Mauz-Körholz
- Department of Pediatric Hematology and Oncology, Justus-Liebig University Giessen, Giessen, Germany
| | - D Hasenclever
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
| | - R Kluge
- Department of Nuclear Medicine, University Hospital of Leipzig, University of Leipzig, Liebigstraße 18, 04103, Leipzig, Germany
| |
Collapse
|
2
|
Jalloul W, Moscalu M, Grierosu I, Ionescu T, Stolniceanu CR, Gutu M, Ghizdovat V, Mocanu V, Azoicai D, Iliescu R, Moscalu R, Stefanescu C. Brown Adipose Tissue Biodistribution and Correlations Particularities in Parathyroid Pathology Personalized Diagnosis. Diagnostics (Basel) 2022; 12:diagnostics12123182. [PMID: 36553189 PMCID: PMC9777039 DOI: 10.3390/diagnostics12123182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Brown adipose tissue (BAT) participates in the regulation of whole-body metabolism by producing a variety of adipokines. This study investigates into the BAT pattern and the clinical aspects of overweight and obese (OOB) vs. non-obese (NO) hyperparathyroidism (HPT) patients with the aim of assessing the impact of BAT and obesity on HPT. Parathyroid scans performed on 441 HPT patients between 2015 and 2020 were retrospectively analyzed in order to select the images with active BAT. Based on their BMI, the patients with active BAT were divided into OOB vs. NO. The results showed that BAT was present in cervical and supraclavicular regions, with a single localization especially among NO vs. multiple sites among OOB. The (total counts/pixels)BAT/(total counts/pixels)non-BAT ratio in the right cervical localization showed a significant difference between the groups with higher values in OOB. BMI, PTH, FT4, vitamin D, magnesium, creatinine, and urea had significant correlations with BAT ratios. The predictive values showed that right cervical ratios higher than 1.52 and right supraclavicular ratios lower than 1.15 indicated an increased probability of being OOB. The significant correlations between BAT activation in OOB vs. NO and HPT clinical parameters could be useful for developing potential treatments based on this tissue.
Collapse
Affiliation(s)
- Wael Jalloul
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mihaela Moscalu
- Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence:
| | - Irena Grierosu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Teodor Ionescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cati Raluca Stolniceanu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mihai Gutu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Vlad Ghizdovat
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Veronica Mocanu
- Department of Morpho-Functional Sciences (Pathophysiology), “Grigore T. Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania
| | - Doina Azoicai
- Department of Epidemiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Radu Iliescu
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Roxana Moscalu
- Manchester Academic Health Science Centre, Cell Matrix Biology and Regenerative Medicine, The University of Manchester, Manchester M139PT, UK
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
3
|
Czamara K, Majka Z, Stanek E, Hachlica N, Kaczor A. Raman studies of the adipose tissue: Current state-of-art and future perspectives in diagnostics. Prog Lipid Res 2022; 87:101183. [PMID: 35961483 DOI: 10.1016/j.plipres.2022.101183] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
Abstract
The last decades revealed that the adipose tissue shows an unexplored therapeutic potential. In particular, targeting the perivascular adipose tissue (PVAT), that surrounds blood vessels, can prevent cardiovascular pathologies and browning of the adipose tissue can become an effective strategy against obesity. Therefore, new analytical tools are necessary to analyze this tissue. This review reports on the recent developments of various Raman-based techniques for the identification and quantification of the adipose tissue compared to conventional analytical methods. In particular, the emphasis is on analysis of PVAT, investigation of pathological changes of the adipose tissue in model systems and possibilities for its characterization in the clinical context. Overall, the review critically discusses the potential and limitations of Raman techniques in adipose tissue-targeted diagnostics and possible future anti-obesity therapies.
Collapse
Affiliation(s)
- Krzysztof Czamara
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland.
| | - Zuzanna Majka
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Ewa Stanek
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Natalia Hachlica
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Agnieszka Kaczor
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland.
| |
Collapse
|
4
|
Morrison JL, Ayonrinde OT, Care AS, Clarke GD, Darby JRT, David AL, Dean JM, Hooper SB, Kitchen MJ, Macgowan CK, Melbourne A, McGillick EV, McKenzie CA, Michael N, Mohammed N, Sadananthan SA, Schrauben E, Regnault TRH, Velan SS. Seeing the fetus from a DOHaD perspective: discussion paper from the advanced imaging techniques of DOHaD applications workshop held at the 2019 DOHaD World Congress. J Dev Orig Health Dis 2021; 12:153-167. [PMID: 32955011 DOI: 10.1017/s2040174420000884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Advanced imaging techniques are enhancing research capacity focussed on the developmental origins of adult health and disease (DOHaD) hypothesis, and consequently increasing awareness of future health risks across various subareas of DOHaD research themes. Understanding how these advanced imaging techniques in animal models and human population studies can be both additively and synergistically used alongside traditional techniques in DOHaD-focussed laboratories is therefore of great interest. Global experts in advanced imaging techniques congregated at the advanced imaging workshop at the 2019 DOHaD World Congress in Melbourne, Australia. This review summarizes the presentations of new imaging modalities and novel applications to DOHaD research and discussions had by DOHaD researchers that are currently utilizing advanced imaging techniques including MRI, hyperpolarized MRI, ultrasound, and synchrotron-based techniques to aid their DOHaD research focus.
Collapse
Affiliation(s)
- Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Oyekoya T Ayonrinde
- Fiona Stanley Hospital, Murdoch, WA, Australia
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Alison S Care
- The Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Geoffrey D Clarke
- Department of Radiology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - Justin M Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- The Department of Obstetrics and Gynecology, Monash University, Melbourne, Victoria, Australia
| | - Marcus J Kitchen
- School of Physics and Astronomy, Monash University, Melbourne, Victoria, Australia
| | | | - Andrew Melbourne
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
| | - Erin V McGillick
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- The Department of Obstetrics and Gynecology, Monash University, Melbourne, Victoria, Australia
| | - Charles A McKenzie
- Department of Medical Biophysics, Western University, London, ON, Canada
- Lawson Health Research Institute and Children's Health Research Institute, London, ON, Canada
| | - Navin Michael
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Nuruddin Mohammed
- Maternal Fetal Medicine Unit, Department of Obstetrics and Gynecology, Aga Khan University Hospital, Karachi, Pakistan
| | - Suresh Anand Sadananthan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Eric Schrauben
- Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Timothy R H Regnault
- Lawson Health Research Institute and Children's Health Research Institute, London, ON, Canada
- Department of Obstetrics and Gynecology, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - S Sendhil Velan
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
5
|
Wang H, Wang M, Chansaenpak K, Liu Y, Yuan H, Xie J, Yin H, Branca RT, Li Z, Wu Z. A Novel PET Probe for Brown Adipose Tissue Imaging in Rodents. Mol Imaging Biol 2020; 22:675-684. [PMID: 31520279 PMCID: PMC7665842 DOI: 10.1007/s11307-019-01426-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Brown adipose tissue (BAT) has emerged as a promising target to counteract obesity and its associated metabolic disorders. However, the detection of this tissue remains one of the major roadblocks. PROCEDURES In this study, we assess the use of BODIPY 1 as a positron emission tomography (PET) imaging agent to image BAT depots in vivo in two mouse phenotypes: obesity-resistant BALB/c mice and the obesity-prone C57BL/6 mice. [18F]BODIPY 1 is a radioactive dye that processed both radioactivity for PET imaging and fluorescence signal for in vitro mechanism study. RESULTS Through the co-staining of cancer cells with BODIPY 1 and MitoTracker, we found BODIPY 1 mainly accumulated in cell mitochondria in vitro. Fluorescence imaging of primary brown and white adipocytes further confirmed BODIPY 1 had significantly higher accumulation in primary brown adipocytes compared with primary white adipocytes. We evaluated [18F]BODIPY 1 for BAT imaging in both obesity-resistant BALB/c mice and obesity-prone C57BL/6 mice. Indeed, [18F]BODIPY 1 was efficiently taken up by BAT in both mouse genotypes (6.40 ± 1.98 %ID/g in obesity-resistant BALB/c mice (n = 8) and 5.37 ± 0.82 %ID/g in obesity-prone C57BL/6 mice (n = 7)). Although norepinephrine stimulation could increase the absolute BAT uptake, the enhancement is not significant in both genotypes (p > 0.05) at current sample size. These results suggest BAT uptake of [18F]BODIPY 1 may be independent of BAT thermogenic activity. As a comparison, 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) PET imaging was performed in obesity-resistant BALB/c mice. Significantly increased uptake was observed in adrenergically activated BAT (10.08 ± 2.52 %ID/g, n = 3) but not in inactive BAT (3.803 ± 0.70 %ID/g; n = 3). Because [18F]BODIPY 1 maintained its fluorescent property, BAT tissue was excised and studied using fluorescence microscopy. Strong fluorescence signal was observed in BAT mouse that was injected with BODIPY 1. CONCLUSIONS Unlike [18F]FDG, [18F]BODIPY 1 showed prominent accumulation in BAT under both inactive and stimulated status. [18F]BODIPY 1 may serve as a valuable BAT PET agent to possibly assess BAT mitochondria density, thus BAT thermogenic capacity after further evaluation.
Collapse
Affiliation(s)
- Hui Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mengzhe Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kantapat Chansaenpak
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yang Liu
- Center for Molecular Medicine, Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, 30602, USA
| | - Hong Yuan
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jin Xie
- Department of Chemistry, Bio-Imaging Research Center, The University of Georgia, Athens, GA, 30602, USA
| | - Hang Yin
- Center for Molecular Medicine, Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, 30602, USA
| | - Rosa T Branca
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zibo Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zhanhong Wu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
6
|
Vraka C, Pichler V, Berroterán-Infante N, Wollenweber T, Pillinger A, Hohensinner M, Fetty L, Beitzke D, Li X, Philippe C, Pallitsch K, Mitterhauser M, Hacker M, Wadsak W. Optimization of the Automated Synthesis of [11C]mHED-Administered and Apparent Molar Activities. Pharmaceuticals (Basel) 2019; 12:ph12010012. [PMID: 30646635 PMCID: PMC6469290 DOI: 10.3390/ph12010012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/27/2018] [Accepted: 01/10/2019] [Indexed: 11/16/2022] Open
Abstract
The tracer [11C]meta-Hydroxyephedrine ([11C]mHED) is one of the most applied PET tracers for cardiac imaging, whose radiosynthesis was already reported in 1990. While not stated in the literature, separation difficulties and an adequate formulation of the product are well known challenges in its production. Furthermore, the precursor (metaraminol) is also a substrate for the norepinephrine transporter, and can therefore affect the image quality. This study aims at optimizing the synthetic process of [11C]mHED and investigating the effect of the apparent molar activity (sum of mHED and metaraminol) in patients and animals. The main optimization was the improved separation through reverse phase-HPLC by a step gradient and subsequent retention of the product on a weakly-cationic ion exchange cartridge. The µPET/µCT was conducted in ten rats (ischemic model) and the apparent molar activity was correlated to the VOI- and SUV-ratio of the myocardium/intra-ventricular blood pool. Moreover, nine long-term heart transplanted and five Morbus Fabry patients underwent PET and MRI imaging for detection of changes in the sympathetic innervation. In summary, the fully-automated synthesis and optimized purification method of [11C]mHED is easily applicable and reproducible. Moreover, it was shown that the administered apparent molar activities had a negligible effect on the imaging quality.
Collapse
Affiliation(s)
- Chrysoula Vraka
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090Vienna, Austria.
| | - Verena Pichler
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090Vienna, Austria.
| | - Neydher Berroterán-Infante
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090Vienna, Austria.
| | - Tim Wollenweber
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090Vienna, Austria.
| | - Anna Pillinger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090Vienna, Austria.
| | - Maximilian Hohensinner
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090Vienna, Austria.
| | - Lukas Fetty
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090Vienna, Austria.
| | - Dietrich Beitzke
- Department of Biomedical Imaging and Image-guided Therapy, Division of Cardiovascular and Interventional Radiology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Xiang Li
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090Vienna, Austria.
| | - Cecile Philippe
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090Vienna, Austria.
| | | | - Markus Mitterhauser
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090Vienna, Austria.
- Ludwig-Boltzmann-Institute Applied Diagnostics, Vienna 1090, Austria.
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090Vienna, Austria.
| | - Wolfgang Wadsak
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090Vienna, Austria.
- Center for Biomarker Research in Medicine, CBmed GmbH, 8010 Graz, Austria.
| |
Collapse
|
7
|
Karampinos DC, Weidlich D, Wu M, Hu HH, Franz D. Techniques and Applications of Magnetic Resonance Imaging for Studying Brown Adipose Tissue Morphometry and Function. Handb Exp Pharmacol 2019; 251:299-324. [PMID: 30099625 DOI: 10.1007/164_2018_158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The present review reports on the current knowledge and recent findings in magnetic resonance imaging (MRI) and spectroscopy (MRS) of brown adipose tissue (BAT). The work summarizes the features and mechanisms that allow MRI to differentiate BAT from white adipose tissue (WAT) by making use of their distinct morphological appearance and the functional characteristics of BAT. MR is a versatile imaging modality with multiple contrast mechanisms as potential candidates in the study of BAT, targeting properties of 1H, 13C, or 129Xe nuclei. Techniques for assessing BAT morphometry based on fat fraction and markers of BAT microstructure, including intermolecular quantum coherence and diffusion imaging, are first described. Techniques for assessing BAT function based on the measurement of BAT metabolic activity, perfusion, oxygenation, and temperature are then presented. The application of the above methods in studies of BAT in animals and humans is described, and future directions in MR study of BAT are finally discussed.
Collapse
Affiliation(s)
- Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| | - Dominik Weidlich
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Mingming Wu
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Houchun H Hu
- Department of Radiology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Daniela Franz
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
8
|
Huber JS, Hernandez AM, Janabi M, O'Neil JP, Brennan KM, Murphy ST, Seo Y, Gullberg GT. Longitudinal Evaluation of Myocardial Fatty Acid and Glucose Metabolism in Fasted and Nonfasted Spontaneously Hypertensive Rats Using MicroPET/CT. Mol Imaging 2018; 16:1536012117724558. [PMID: 28877656 PMCID: PMC5593226 DOI: 10.1177/1536012117724558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Using longitudinal micro positron emission tomography (microPET)/computed tomography (CT) studies, we quantified changes in myocardial metabolism and perfusion in spontaneously hypertensive rats (SHRs), a model of left ventricular hypertrophy (LVH). Fatty acid and glucose metabolism were quantified in the hearts of SHRs and Wistar-Kyoto (WKY) normotensive rats using long-chain fatty acid analog 18F-fluoro-6-thia heptadecanoic acid (18F-FTHA) and glucose analog 18F-fluorodeoxyglucose (18F-FDG) under normal or fasting conditions. We also used 18F-fluorodihydrorotenol (18F-FDHROL) to investigate perfusion in their hearts without fasting. Rats were imaged at 4 or 5 times over their life cycle. Compartment modeling was used to estimate the rate constants for the radiotracers. Blood samples were obtained and analyzed for glucose and free fatty acid concentrations. SHRs demonstrated no significant difference in 18F-FDHROL wash-in rate constant (P = .1) and distribution volume (P = .1), significantly higher 18F-FDG myocardial influx rate constant (P = 4×10−8), and significantly lower 18F-FTHA myocardial influx rate constant (P = .007) than WKYs during the 2009-2010 study without fasting. SHRs demonstrated a significantly higher 18F-FDHROL wash-in rate constant (P = 5×10−6) and distribution volume (P = 3×10−8), significantly higher 18F-FDG myocardial influx rate constant (P = 3×10−8), and a higher trend of 18F-FTHA myocardial influx rate constant (not significant, P = .1) than WKYs during the 2011–2012 study with fasting. Changes in glucose plasma concentrations were generally negatively correlated with corresponding radiotracer influx rate constant changes. The study indicates a switch from preferred fatty acid metabolism to increased glucose metabolism with hypertrophy. Increased perfusion during the 2011-2012 study may be indicative of increased aerobic metabolism in the SHR model of LVH.
Collapse
Affiliation(s)
- Jennifer S Huber
- 1 Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Andrew M Hernandez
- 2 Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Mustafa Janabi
- 1 Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - James P O'Neil
- 1 Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kathleen M Brennan
- 1 Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Stephanie T Murphy
- 3 Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Youngho Seo
- 1 Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,3 Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.,4 Department of Radiation Oncology, University of California, San Francisco, CA, USA.,5 UC Berkeley-UCSF Graduate Program in Bioengineering, Berkeley and San Francisco, CA, USA
| | - Grant T Gullberg
- 1 Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,3 Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.,5 UC Berkeley-UCSF Graduate Program in Bioengineering, Berkeley and San Francisco, CA, USA
| |
Collapse
|
9
|
Li Y, Liu X, Fan Y, Yang B, Huang C. Radix Stellariae extract prevents high-fat-diet-induced obesity in C57BL/6 mice by accelerating energy metabolism. PeerJ 2017; 5:e3305. [PMID: 28507819 PMCID: PMC5429735 DOI: 10.7717/peerj.3305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/12/2017] [Indexed: 12/22/2022] Open
Abstract
Stellaria dichotoma L. is widely distributed in Ningxia and surrounding areas in northwestern China. Its root, Radix Stellariae (RS), has been used in herbal formulae for treating asthenic-fever, infection, malaria, dyspepsia in children and several other symptoms. This study investigated whether the RS extract (RSE) alleviates metabolic disorders. The results indicated that RSE significantly inhibited body weight gain in high-fat (HF)-diet-fed C57BL/6 mice, reduced fasting glucose levels, and improved insulin tolerance. Moreover, RSE increased the body temperature of the mice and the expression of uncoupling proteins and peroxisome proliferator-activated receptors in the white adipose tissue. Thus, RSE alleviated metabolic disorders in HF-diet-fed C57BL/6 mice by potentially activating UCP and PPAR signaling.
Collapse
Affiliation(s)
- Yin Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baican Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Koksharova E, Ustyuzhanin D, Philippov Y, Mayorov A, Shestakova M, Shariya M, Ternovoy S, Dedov I. The Relationship Between Brown Adipose Tissue Content in Supraclavicular Fat Depots and Insulin Sensitivity in Patients with Type 2 Diabetes Mellitus and Prediabetes. Diabetes Technol Ther 2017; 19:96-102. [PMID: 28118051 PMCID: PMC5278804 DOI: 10.1089/dia.2016.0360] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND The evaluation of brown adipose tissue (BAT) and its role in metabolism and obesity remains an important topic in the recent literature. This study evaluated the influence of the BAT triglyceride content measured by proton magnetic resonance (MR) spectroscopy in patients with type 2 diabetes mellitus (DM2) and prediabetes on insulin sensitivity. METHODS A total of 25 patients with DM2 and prediabetes (45.9 ± 10.1 years old, body mass index [BMI] of 31.6 ± 5.4 kg/m2) underwent anthropometric measurements (BMI), insulin sensitivity analysis (M value during euglycemic hyperinsulinemic clamp and homeostasis model assessment of insulin resistance), proton MR spectroscopy, and blood tests (total cholesterol, low-density lipoproteins, high-density lipoproteins, and triglycerides). The relationship between the triglyceride content in the supraclavicular fat depot and insulin sensitivity, anthropometric measurements, and blood test results was assessed. RESULTS The triglyceride content in the supraclavicular fat depot varied between 79.2% and 97.1% (mean: 92.6% ± 4.2%). The triglyceride content in the subcutaneous white adipose tissue of the neck was significantly higher (85.3%-99.3%; mean: 95.5% ± 2.9%; P = 0.0007). The triglyceride content in the supraclavicular fat depot exhibited a significantly moderate correlation with the BMI (r = 0.64; P = 0.0009). A significant weak negative correlation between the supraclavicular fat content and M value was revealed (r = -0.44; P = 0.002). Patients with high insulin resistance (IR) had a higher triglyceride content in the supraclavicular fat depot than patients with normal and lower IR (94.3% ± 2.0% vs. 90.4% ± 5.2%; P = 0.02). CONCLUSIONS Reducing the BAT content in the supraclavicular fat depot can influence the development of IR in patients with DM2 and prediabetes.
Collapse
Affiliation(s)
| | | | | | - Alexander Mayorov
- Endocrinology Research Centre, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Marina Shestakova
- Endocrinology Research Centre, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Sergey Ternovoy
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ivan Dedov
- Endocrinology Research Centre, Moscow, Russia
| |
Collapse
|
11
|
Pardo F, Villalobos-Labra R, Chiarello DI, Salsoso R, Toledo F, Gutierrez J, Leiva A, Sobrevia L. Molecular implications of adenosine in obesity. Mol Aspects Med 2017; 55:90-101. [PMID: 28104382 DOI: 10.1016/j.mam.2017.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/30/2016] [Accepted: 01/13/2017] [Indexed: 12/31/2022]
Abstract
Adenosine has broad activities in organisms due to the existence of multiple receptors, the differential adenosine concentrations necessary to activate these receptors and the presence of proteins able to synthetize, degrade or transport this nucleoside. All adenosine receptors have been reported to be involved in glucose homeostasis, inflammation, adipogenesis, insulin resistance, and thermogenesis, indicating that adenosine could participate in the process of obesity. Since adenosine seems to be associated with several effects, it is plausible that adenosine participates in the initiation and development of obesity or may function to prevent it. Thus, the purpose of this review was to explore the involvement of adenosine in adipogenesis, insulin resistance and thermogenesis, with the aim of understanding how adenosine could be used to avoid, treat or improve the metabolic state of obesity. Treatment with specific agonists and/or antagonists of adenosine receptors could reverse the obesity state, since adenosine receptors normalizes several mechanisms involved in obesity, such as lipolysis, insulin sensitivity and thermogenesis. Furthermore, obesity is a preventable state, and the specific activation of adenosine receptors could aid in the prevention of obesity. Nevertheless, for the treatment of obesity and its consequences, more studies and therapeutic strategies in addition to adenosine are necessary.
Collapse
Affiliation(s)
- Fabián Pardo
- Metabolic Diseases Research Laboratory, Center of Research, Development and Innovation in Health - Aconcagua Valley, San Felipe Campus, School of Medicine, Faculty of Medicine, Universidad de Valparaiso, 2172972 San Felipe, Chile; Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Roberto Villalobos-Labra
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Delia I Chiarello
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Rocío Salsoso
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán 3780000, Chile
| | - Jaime Gutierrez
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Cellular Signaling Differentiation and Regeneration Laboratory, Health Sciences Faculty, Universidad San Sebastian, Santiago, Chile
| | - Andrea Leiva
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research, Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Queensland, Australia.
| |
Collapse
|
12
|
Apostolopoulos V, de Courten MPJ, Stojanovska L, Blatch GL, Tangalakis K, de Courten B. The complex immunological and inflammatory network of adipose tissue in obesity. Mol Nutr Food Res 2015; 60:43-57. [PMID: 26331761 DOI: 10.1002/mnfr.201500272] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/22/2015] [Accepted: 08/24/2015] [Indexed: 12/27/2022]
Abstract
A number of approaches have been utilized in the prevention, management, and treatment of obesity, including, surgery, medication, diet, exercise, and overall lifestyle changes. Despite these interventions, the prevalence of obesity and the various disorders related to it is growing. In obesity, there is a constant state of chronic low-grade inflammation which is characterized by activation and infiltration of pro-inflammatory immune cells and a dysregulated production of high levels of pro-inflammatory cytokines. This pro-inflammatory milieu contributes to insulin resistance, type-2 diabetes, cardiovascular disease, and other related co-morbidities. The roles of the innate (macrophages, neutrophils, eosinophils, mast cells, NK cells, MAIT cells) and the adaptive (CD4 T cells, CD8 T cells, regulatory T cells, and B cells) immune responses and the roles of adipokines and cytokines in adipose tissue inflammation and obesity are discussed. An understanding of the crosstalk between the immune system and adipocytes may shed light in better treatment modalities for obesity and obesity-related diseases.
Collapse
Affiliation(s)
- Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, VIC, Australia
| | | | - Lily Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, VIC, Australia
| | - Gregory L Blatch
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, VIC, Australia
| | - Kathy Tangalakis
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, VIC, Australia
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation, School of Public Health and preventative Medicine, Monash University, VIC, Australia.,Diabetes and Vascular Medicine Unit, Monash Health, Clayton, VIC, Australia
| |
Collapse
|