1
|
Li Y, Chen Y, Tang Y, Yang T, Zhou P, Miao L, Chen H, Deng Y. Breaking the barriers in effective and safe Toll-like receptor stimulation via nano-immunomodulators for potent cancer immunotherapy. J Control Release 2025; 382:113667. [PMID: 40157608 DOI: 10.1016/j.jconrel.2025.113667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/20/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Immunotherapy is an emerging strategy that awakens the intrinsic immune system for cancer treatment. Generally, successful immunotherapy of malignant tumours relies on the effective production of tumour-associated antigens and their lymph node delivery, antigen processing and presentation for T-cell activation, and the dismantling of the immunosuppressive tumour microenvironment. Toll-like receptor (TLR) agonists are potent stimulants in cancer immunotherapy, which can directly activate antigen-presenting cells (APCs) and further induce T cell activation for antitumour immune response and convert immunosuppressive tumour microenvironment to an immunogenic one for cooperative tumour ablation. However, TLR agonists for effective cancer immunotherapy have encountered essential challenges, such as insufficient immune activation and systemic side effects. In recent years, nano-immunomodulators with TLR agonists have been employed for tumour- and/or lymph node-targeted immune activation to improve the antitumour immune response and alleviate their systemic toxicities, providing a promising strategy for enhanced cancer immunotherapy. Herein, we introduce the recent progress in developing various TLR nano-immunomodulators for cancer immunotherapy via APC activation and tumour microenvironment remodelling. Upon elucidating the rational design principles of nano-immunomodulators, we elucidate the advancement of TLR nanoagonists to break the barriers in effective and safe Toll-like receptor stimulation for potent cancer immunotherapy.
Collapse
Affiliation(s)
- Yaoqi Li
- Department of Pharmacy, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou 215006, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yitian Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yong'an Tang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Tao Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Ping Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Liyan Miao
- Department of Pharmacy, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou 215006, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou 215006, China.
| | - Huabing Chen
- Department of Pharmacy, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou 215006, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China.
| | - Yibin Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China.
| |
Collapse
|
2
|
Chen R, Ren J, Wang Y, Zhang X, Jia Y, Liu C, Qu K. A Comprehensive Analysis Exploring the Impact of an Immunogenic Cell Death-Related Panel for Ovarian Cancer. Mol Biotechnol 2025; 67:2520-2535. [PMID: 39112745 PMCID: PMC12055628 DOI: 10.1007/s12033-024-01215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/02/2024] [Indexed: 05/07/2025]
Abstract
Ovarian cancer (OV) is a malignant tumor that ranks first among gynecological cancers, thus posing a significant threat to women's health. Immunogenic cell death (ICD) can regulate cell death by activating the adaptive immune system. Here, we aimed to comprehensively characterize the features of ICD-associated genes in ovarian cancer, and to investigate their prognostic value and role in the response to immunotherapy. After analyzing datasets from The Cancer Genome Atlas, we utilized weighted gene coexpression network analysis to screen for hub genes strongly correlated with ICD genes in OV, which was subsequently validated with OV samples from the Gene Expression Omnibus (GEO) database. A prognostic risk model was then constructed after combining univariate, multivariate Cox regression and LASSO regression analysis to recognize nine ICD-associated molecules. Next, we stratified all OV patients into two subgroups according to the median value. The multivariate Cox regression analysis showed that the risk model could predict OV patient survival with good accuracy. The same results were also found in the validation set from GEO. We then compared the degree of immune cell infiltration in the tumor microenvironment between the two subgroups of OV patients, and revealed that the high-risk subtype had a higher degree of immune infiltration than the low-risk subtype. Additionally, in contrast to patients in the high-risk subgroup, those in the low-risk subgroup were more susceptible to chemotherapy. In conclusion, our research offers an independent and validated model concerning ICD-related molecules to estimate the prognosis, degree of immune infiltration, and chemotherapy susceptibility in patients with OV.
Collapse
Affiliation(s)
- Rui Chen
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Jie Ren
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Yifei Wang
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Xing Zhang
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
- Hangzhou Institute of National Extremely-Weak Magnetic Field Infrastructure, Hangzhou, 310028, China
| | - Yifan Jia
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, China.
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Chang Liu
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, China.
| | - Kai Qu
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, China.
| |
Collapse
|
3
|
Huang C, Li J, Wu R, Li Y, Zhang C. Targeting pyroptosis for cancer immunotherapy: mechanistic insights and clinical perspectives. Mol Cancer 2025; 24:131. [PMID: 40319304 PMCID: PMC12049004 DOI: 10.1186/s12943-025-02344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025] Open
Abstract
Pyroptosis is a distinct form of programmed cell death characterized by the rupture of the cell membrane and robust inflammatory responses. Increasing evidence suggests that pyroptosis significantly affects the tumor microenvironment and antitumor immunity by releasing damage-associated molecular patterns (DAMPs) and pro-inflammatory mediators, thereby establishing it as a pivotal target in cancer immunotherapy. This review thoroughly explores the molecular mechanisms underlying pyroptosis, with a particular focus on inflammasome activation and the gasdermin family of proteins (GSDMs). It examines the role of pyroptotic cell death in reshaping the tumor immune microenvironment (TIME) involving both tumor and immune cells, and discusses recent advancements in targeting pyroptotic pathways through therapeutic strategies such as small molecule modulators, engineered nanocarriers, and combinatory treatments with immune checkpoint inhibitors. We also review recent advances and future directions in targeting pyroptosis to enhance tumor immunotherapy with immune checkpoint inhibitors, adoptive cell therapy, and tumor vaccines. This study suggested that targeting pyroptosis offers a promising avenue to amplify antitumor immune responses and surmount resistance to existing immunotherapies, potentially leading to more efficacious cancer treatments.
Collapse
Affiliation(s)
- Chen Huang
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiayi Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ruiyan Wu
- West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yangqian Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Chenliang Zhang
- Division of Abdominal Tumor Multimodality Treatment, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
4
|
Li H, Yang F, Bai B, Jiang Z, Li B, Fu G, Hu X. Tumor associated chromosomal instability drives colorectal adenoma to adenocarcinoma progression based on 17 year follow up evidence. Sci Rep 2025; 15:13733. [PMID: 40258890 PMCID: PMC12012205 DOI: 10.1038/s41598-025-96921-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 04/01/2025] [Indexed: 04/23/2025] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths globally. Adenomas, precursors to CRC, can be diagnosed early, but the genetic events leading to adenoma-adenocarcinoma conversion remain unclear. This study explored the role of chromosomal instabilities (CINs) in this conversion. Over a 17-year follow-up period, 119 adenomas were analyzed using low-coverage whole-genome sequencing (LC-WGS) and Ultrasensitive Chromosomal Aneuploidy Detector. Risk factors for adenocarcinoma development were identified through logistic regression analysis, and survival was assessed using Kaplan-Meier curves. CIN was found in 32% of adenomas, with a higher incidence in high-grade adenomas (P = 0.0359). Common chromosomal changes included loss of 18q, 1p, and 17p and gain of 8q (MYC), 20q, and 7p (EGFR). During the 17-year follow-up, 88 patients experienced recurrence, including 40 cases of adenomas and 48 cases of progression to adenocarcinoma. CIN was identified in 40% of progression cases, 33.6% of adenoma recurrence cases, and 26% of nonrecurrent cases. A strong genetic linkage was observed before and after tumor transformation, with a high match between the tumors and matched prior adenomas. CIN was significantly associated with disease progression (HR: 2.5, 95% CI: 1.4-4.5, P = 0.00162) and was an independent risk factor. Additionally, MFN2 gene copy number deletion was linked to recurrence and/or progression after resection, with reduced expression in tumor tissues. In conclusion, CIN is a key risk factor for adenoma recurrence and progression, and MFN2 gene copy number deletion is associated with adverse outcomes, providing insights for more accurate clinical prognostication of adenoma-to-adenocarcinoma transformation.
Collapse
Affiliation(s)
- Hui Li
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Fang Yang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Bingjun Bai
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Zhinong Jiang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Bing Li
- Data & Science, Burning Rock Biotech, Guangzhou, 510300, Guangdong, China
| | - Guoxiang Fu
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China.
| | - Xiaotong Hu
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
5
|
Deng W, Wang Y, Wang J, Su Y, Li M, Qu K, Wang Y, Li M. Leveraging Vitamin C to Augment Nanoenabled Photothermal Immunotherapy. ACS NANO 2025; 19:12982-12995. [PMID: 40138545 DOI: 10.1021/acsnano.4c17080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Photothermal immunotherapy (PTI) is valuable for precise tumor targeting and immune activation. However, its efficacy is hindered by insufficient immune response, elevated antioxidant levels within tumor, and intrinsic tumor resistance mechanisms. This study introduces Vitamin C (VC), a widely available dietary nutrient, as an effective enhancer for PTI. High-dose VC induces oxidative imbalance in tumor cells, making them more susceptible to nanoenabled near-infrared-II photothermal therapy (NIR-II PTT) with the photosensitizer IR1080. The combination of VC and NIR-II PTT significantly amplifies antitumor immunity by upregulating CXCL16 expression and promoting CXCR6+ T cell infiltration. Clinical data reveal that higher CXCL16 and CXCR6 levels in human tumors correlate with improved survival and T cell infiltration, underscoring the translational potential of this approach. This study positions VC as a safe, accessible, and cost-effective dietary enhancer for PTI, reshaping the role of dietary nutrients in cancer therapy and offering a strategy for overcoming treatment resistance.
Collapse
Affiliation(s)
- Wuxian Deng
- Department of Radiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China
- National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027 Anhui, China
| | - Yiyuan Wang
- Department of Radiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China
- National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027 Anhui, China
| | - Junyu Wang
- National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027 Anhui, China
| | - Yitan Su
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601 Anhui, China
| | - Mingyang Li
- National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027 Anhui, China
| | - Kun Qu
- National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027 Anhui, China
| | - Yucai Wang
- Department of Radiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China
- National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027 Anhui, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601 Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027 Anhui, China
| | - Min Li
- Department of Radiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China
- National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027 Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027 Anhui, China
| |
Collapse
|
6
|
Qiao W, Li S, Luo L, Chen M, Zheng X, Ye J, Liang Z, Wang Q, Hu T, Zhou L, Wang J, Ge X, Feng G, Hu F, Liu R, Li J, Yang J. Ce6-GFFY is a novel photosensitizer for colorectal cancer therapy. Genes Dis 2025; 12:101441. [PMID: 39759121 PMCID: PMC11697048 DOI: 10.1016/j.gendis.2024.101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/10/2024] [Accepted: 10/21/2024] [Indexed: 01/07/2025] Open
Abstract
Photodynamic therapy is an "old" strategy for cancer therapy featuring clinical safety and rapid working, but suitable photosensitizers for colorectal cancer therapy remain lacking. This study synthesized a novel photosensitizer termed Ce6-GFFY based on a self-assembling peptide GFFY and a photo-responsive molecule chlorin e6 (Ce6). Ce6-GFFY forms macroparticles with a diameter of ∼160 nm and possesses a half-life of 10 h, as well as an ideal tumor-targeting ability in mouse models. Ce6-GFFY effectively penetrates cells and generates numerous reactive oxygen species upon 660 nm laser irradiation. The reactive oxygen species promotes the accumulation of cytotoxic T cells and decrease of myeloid-derived suppressor cells in the tumor microenvironment through immunogenic cell death, thus prohibiting the growth of both primary and metastatic tumors after once treatment. This study not only provides a strategy for photosensitizer development but also confirms a promising application of Ce6-GFFY for colorectal cancer therapy.
Collapse
Affiliation(s)
- Wei Qiao
- Department of Endoscopy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Shuxin Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Linna Luo
- Department of Endoscopy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Meiling Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
- Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Xiaobin Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
- Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Jiacong Ye
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Zhaohui Liang
- Department of Endoscopy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Qiaoli Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Ting Hu
- Department of Endoscopy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Ling Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Jing Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Xiaosong Ge
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China
| | - Guokai Feng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Fang Hu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Rongbin Liu
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Jianjun Li
- Department of Endoscopy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Jie Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| |
Collapse
|
7
|
Niu X, You Q, Hou K, Tian Y, Wei P, Zhu Y, Gao B, Ashrafizadeh M, Aref AR, Kalbasi A, Cañadas I, Sethi G, Tergaonkar V, Wang L, Lin Y, Kang D, Klionsky DJ. Autophagy in cancer development, immune evasion, and drug resistance. Drug Resist Updat 2025; 78:101170. [PMID: 39603146 DOI: 10.1016/j.drup.2024.101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Macroautophagy/autophagy is a highly conserved evolutionary mechanism involving lysosomes for the degradation of cytoplasmic components including organelles. The constitutive, basal level of autophagy is fundamental for preserving cellular homeostasis; however, alterations in autophagy can cause disease pathogenesis, including cancer. The role of autophagy in cancer is particularly complicated, since this process acts both as a tumor suppressor in precancerous stages but facilitates tumor progression during carcinogenesis and later stages of cancer progression. This shift between anti-tumor and pro-tumor roles may be influenced by genetic and environmental factors modulating key pathways such as those involving autophagy-related proteins, the PI3K-AKT-MTOR axis, and AMPK, which often show dysregulation in tumors. Autophagy regulates various cellular functions, including metabolism of glucose, glutamine, and lipids, cell proliferation, metastasis, and several types of cell death (apoptosis, ferroptosis, necroptosis and immunogenic cell death). These multifaceted roles demonstrate the potential of autophagy to affect DNA damage repair, cell death pathways, proliferation and survival, which are critical in determining cancer cells' response to chemotherapy. Therefore, targeting autophagy pathways presents a promising strategy to combat chemoresistance, as one of the major reasons for the failure in cancer patient treatment. Furthermore, autophagy modulates immune evasion and the function of immune cells such as T cells and dendritic cells, influencing the tumor microenvironment and cancer's biological behavior. However, the therapeutic targeting of autophagy is complex due to its dual role in promoting survival and inducing cell death in cancer cells, highlighting the need for strategies that consider both the beneficial and detrimental effects of autophagy modulation in cancer therapy. Hence, both inducers and inhibitors of autophagy have been introduced for the treatment of cancer. This review emphasizes the intricate interplay between autophagy, tumor biology, and immune responses, offering insights into potential therapeutic approaches that deploy autophagy in the cancer suppression.
Collapse
Affiliation(s)
- Xuegang Niu
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Qi You
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Kaijian Hou
- School of Public Health(Long Hu people hospital), Shantou University, Shantou, 515000, Guangdong, China
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, IL 60532, USA
| | - Penghui Wei
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Yang Zhu
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Bin Gao
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Amir Reza Aref
- VitroVision Department, DeepkinetiX, Inc, Boston, MA, USA
| | - Alireza Kalbasi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Israel Cañadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Gautam Sethi
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Lingzhi Wang
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Yuanxiang Lin
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Dezhi Kang
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Fang F, Hua M, Yu G. Study of the mechanism of fibroblast-like synoviocytes-derived exosomes inducing macrophages M1 polarization and CD8 +T cells immune regulation ferroptosis and autophagy in rheumatoid arthritis. Immunol Lett 2024; 270:106936. [PMID: 39447763 DOI: 10.1016/j.imlet.2024.106936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that affects the joints. The pathogenesis of RA is complex, involving membrane lipid antioxidant systems, oxidative stress, and lipid peroxidation. In this study, it was found that cysteine dioxygenase 1 (CDO1) is significantly upregulated in RA fibroblast-like synoviocytes (RA-FLS) and that exosomes derived from these RA-FLS deliver CDO1 to promote M1 polarization of macrophages, thus facilitating RA progression. In the immune microenvironment, CD8+T cells play a role in immune regulation by producing cytokines such as interferon gamma (IFNγ) in various diseases. The results of this study suggested that in RA-FLS, CD8+T cells deliver IFNγ, which not only inhibits the viability of RA-FLS but also affects glutathione (GSH) through CDO1, regulating the GPX4 antioxidant signaling pathway to promote ferroptosis and autophagy in cells. It was also discovered that IFNγ enhances the expression of TRI69, ubiquitinates and degrades FSP1, thereby forming a cooperative regulation process of GPX4 and FSP1 in ferroptosis. These findings provide a new direction for the treatment of RA.
Collapse
Affiliation(s)
- Fang Fang
- Department of Immunology, School of Laboratory Medicine, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, Anhui 233030, China.
| | - Mengqing Hua
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - GenMing Yu
- Bengbu Medical College, Bengbu, Anhui 233030, China
| |
Collapse
|
9
|
Tian J, Wan S, Yang Z, Wang M, Zhou W, Wo G, Fu S, Zheng S, Zhou G, Hu X, Guo Y, Guo J. PDL1/HER2-Targeted Lipid-Encapsulated Oxygen Nanobubbles Combined with Photodynamic Therapy for HER2 + Breast Cancer Immunotherapy. Adv Healthc Mater 2024; 13:e2400030. [PMID: 39113347 DOI: 10.1002/adhm.202400030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/29/2024] [Indexed: 12/18/2024]
Abstract
Programmed death (PD) 1/PD ligand 1 (PDL1) inhibitors are immune checkpoint inhibitors (ICIs) that may facilitate HER2-positive breast cancer treatment; however, their clinical efficacy remains elusive. Oxygen-enhanced photodynamic therapy (PDT) increases immunogenic cell death (ICD), providing a promising strategy to render the tumor microenvironment more sensitive to the ICIs. Lipid-encapsulated oxygen nanobubbles (Lipo-NBs-O2) obtained using nanobubbles (NBs) water for oxygen delivery in vivo can facilitate enhanced PDT. Here, dual-receptor targeted Lipo-NBs-O2 (DRT@Lipo-NBs-O2) is prepared by modifying Lipo-NBs-O2 with anti-PDL1 scFv and the fusion protein anti-HER2 scFv-tandem-repeat cytochrome c (anti-HER2-nCytc). Copper phthalocyanine is the photosensitizer (PS). DRT@Lipo-PS-NBs-O2 plus near-infrared irradiation leads to robust ICD induction, increasing DC activation and CD8+ T-cell numbers. Modification with anti-PDL1 scFv improves tumor distribution of DRT@Lipo-PS-NBs-O2 and plays the ICI role, invigorating CD8+ T cells and boosting the effects of immunotherapy. Oxygen supplied through DRT@Lipo-PS-NBs-O2 reduces P-glycoprotein expression. Enhanced PDT and Cytc can cause tumor cell death, thereby reducing the immune burden. Under dual receptor targeting and laser local irradiation, tumor cells become subject to the combination effects of PDT, ICD, ICIs, and apoptosis; this effectively suppresses tumor growth and metastasis. Lipo-NBs-O2 affords a combination of oxygen delivery and multidrug therapy to alleviate HER2-positive breast cancer.
Collapse
Affiliation(s)
- Jilai Tian
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Shixiao Wan
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Zhen Yang
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Mengting Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Wenzhao Zhou
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Guanqun Wo
- Department of Integrated Chinese and Western Medicine, School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Shuping Fu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Shiya Zheng
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Gaoxin Zhou
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Xiaomin Hu
- OriGene Technologies Inc. at Wuxi, Jiangsu, 214000, P. R. China
| | - Yichen Guo
- OriGene Technologies Inc., Rockville, MD, 20850, USA
| | - Jun Guo
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| |
Collapse
|
10
|
Xu Q, Wang M, Zhang F, Chen G, Shu Z, Li L, Zhang F, Wang Y, Wang Y, Duan X, Yu M. A Bimetallic Electro-Sensitizer Improves ROS Therapy by Relieving Autophagy-Induced ROS Tolerance and Immune Suppression. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402312. [PMID: 39077967 DOI: 10.1002/smll.202402312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/04/2024] [Indexed: 07/31/2024]
Abstract
Reactive oxygen species (ROS)-dependent monotherapy usually demonstrates poor therapeutic outcomes, due to the accompanied activation of protective autophagy in tumor cells, which results in ROS tolerance and immune suppression. In this study, a bimetallic electro-sensitizer, Pt-Ir NPs is constructed, loaded with the autophagy inhibitor chloroquine (Pt-Ir-CQ NPs), to enhance the effectiveness of electrotherapy by inhibiting autophagy and activating anti-tumor immune responses. This novel electrotherapy platform demonstrates unique advantages, particularly in the treatment of hypoxic and immunosuppressive tumors. First, the electro-sensitizer catalyzes water molecules into ROS under electric field, achieving tumor ablation through electrotoxicity. Second, the incorporated CQ inhibits the protective autophagy induced by electrotherapy, restoring the sensitivity of tumor cells to ROS and thereby enhancing the anti-tumor effects of electrotherapy. Third, Pt-Ir-CQ NPs enhance the functionality of antigen-presenting cells and immunogenic cells through inhibiting autophagy, synergistically activating the anti-tumor immune responses along with the immunogenic cell death (ICD) effect induced by electrotherapy. This study provides a novel approach for the effective ablation and long-term inhibition of solid tumors through flexible modulation by an exogenous electric field.
Collapse
Affiliation(s)
- Qinqin Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Manchun Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fengling Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Gui Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhilin Shu
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Lei Li
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Fang Zhang
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yu Wang
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yongxia Wang
- Breast Department, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523018, China
| | - Xiaohui Duan
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Meng Yu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| |
Collapse
|
11
|
Zhou Z, Mai Y, Zhang G, Wang Y, Sun P, Jing Z, Li Z, Xu Y, Han B, Liu J. Emerging role of immunogenic cell death in cancer immunotherapy: Advancing next-generation CAR-T cell immunotherapy by combination. Cancer Lett 2024; 598:217079. [PMID: 38936505 DOI: 10.1016/j.canlet.2024.217079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Immunogenic cell death (ICD) is a stress-driven form of regulated cell death (RCD) in which dying tumor cells' specific signaling pathways are activated to release damage-associated molecular patterns (DAMPs), leading to the robust anti-tumor immune response as well as a reversal of the tumor immune microenvironment from "cold" to "hot". Chimeric antigen receptor (CAR)-T cell therapy, as a landmark in anti-tumor immunotherapy, plays a formidable role in hematologic malignancies but falls short in solid tumors. The Gordian knot of CAR-T cells for solid tumors includes but is not limited to, tumor antigen heterogeneity or absence, physical and immune barriers of tumors. The combination of ICD induction therapy and CAR-T cell immunotherapy is expected to promote the intensive use of CAR-T cell in solid tumors. In this review, we summarize the characteristics of ICD, stress-responsive mechanism, and the synergistic effect of various ICD-based therapies with CAR-T cells to effectively improve anti-tumor capacity.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yumiao Mai
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Henan Province Key Laboratory of Cardiac Injury and Repair, Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, 450052, China
| | - Yingjie Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Pan Sun
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhaohe Jing
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yudi Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jian Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
12
|
Xi Y, Zhou S, Long J, Zhou L, Tang P, Qian H, Jiang J, Hu Y. Construction of polypyrrole nanoparticles with a rough surface for enhanced chemo-photothermal therapy against triple negative breast cancer. NANOSCALE ADVANCES 2024; 6:d4na00434e. [PMID: 39247870 PMCID: PMC11378020 DOI: 10.1039/d4na00434e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/17/2024] [Indexed: 09/10/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer, characterized by aggressive malignancy and a poor prognosis. Emerging nanomedicine-based combination therapy represents one of the most promising strategies for combating TNBC. Polypyrrole nanoparticles (PPY) are excellent drug delivery vehicles with outstanding photothermal performances. However, the impact of morphology on PPY's drug loading efficiency and photothermal properties remains largely unexplored. In this study, we propose that pluronic P123 can assist in the synthesis of polypyrrole nanoparticles with rough surfaces (rPPY). During the synthesis, P123 formed small micelles around the nanoparticle surface, which were later removed, resulting in small pits and cavities in rPPY. Subsequently, the rPPY was loaded with the chemotherapy drug gemcitabine (Gem@rPPY) for chemo-photothermal therapy against TNBCs. Our results demonstrate that rPPY exhibited superior photothermal performance and significantly enhanced drug loading efficiency by five times compared to smooth PPY nanoparticles. In vitro assessments confirmed Gem@rPPY's robust photothermal properties by efficiently converting light into heat. Cell culture experiments with 4T1 cells and a TNBC mice model revealed significant tumor suppression upon Gem@rPPY administration, emphasizing its efficacy in inducing apoptosis. Toxicity evaluations demonstrated minimal adverse effects both in vitro and in vivo, highlighting the biocompatibility of Gem@rPPY. Overall, this study introduces a promising combination therapy nanoplatform that underscores the importance of surface engineering to enhance therapeutic outcomes and overcome current limitations in TNBC therapy.
Collapse
Affiliation(s)
- Yuanyin Xi
- Breast Disease Center, Southwest Hospital, Army Medical University Chongqing 400038 China
| | - Shiqi Zhou
- Department of Plastic, Reconstructive and Cosmetic Surgery, Xinqiao Hospital, Army Medical University Chongqing 400037 China
| | - Junhui Long
- Department of Dermatology, The 958th Army Hospital of the Chinese People's Liberation Army China
| | - Linxi Zhou
- Breast Disease Center, Southwest Hospital, Army Medical University Chongqing 400038 China
| | - Peng Tang
- Breast Disease Center, Southwest Hospital, Army Medical University Chongqing 400038 China
| | - Hang Qian
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Army Medical University Chongqing 400037 China
| | - Jun Jiang
- Breast Disease Center, Southwest Hospital, Army Medical University Chongqing 400038 China
| | - Ying Hu
- Breast Disease Center, Southwest Hospital, Army Medical University Chongqing 400038 China
| |
Collapse
|
13
|
Bueno MLP, Foglio MA, Baréa P, de Oliveira AR, Sarragiotto MH, Saad STO, Roversi FM. β-Carboline derivatives are potent against Acute Myeloid Leukemia in vitro and in vivo. Pharmacol Rep 2024; 76:838-850. [PMID: 38902478 DOI: 10.1007/s43440-024-00614-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND β-carboline alkaloids exert a distinguished ability to impair cell growth and induce cell death in a variety of cancers and the evaluation of such new therapeutic candidates may denote new possibilities for leukemia treatment. In this present study, we screened 12 β-carboline derivatives containing different substituents at 1- and 3-positions of β-carboline nucleus for their antineoplastic activities in a panel of leukemia cell lines. METHODS The cytotoxic effects of the β-carboline derivatives were evaluated in different leukemia cell lines as well as reactive oxygen species (ROS) generation, autophagy, and important signaling pathways. RESULTS Treatment with the β-carboline derivatives resulted in a potent antineoplastic activity leading to a reduced cell viability that was associated with increased cell death in a concentration-dependent manner. Interestingly, the treatment of primary mononuclear cells isolated from the peripheral blood of healthy donors with the β-carboline derivatives showed a minor change in cell survival. The antineoplastic activity occurs by blocking ROS production causing consequent interruption of the PI3K/AKT and MAPK/ERK signaling and modulating autophagy processes. Notably, in vivo, AML burden was diminished in peripheral blood and bone marrow of a xenograft mouse model. CONCLUSIONS Our results indicated that β-carboline derivatives have an on-target malignant cell-killing activity and may be promising candidates for treating leukemia cells by disrupting crucial events that promote leukemia expansion and chemotherapy resistance.
Collapse
Affiliation(s)
- Maura Lima Pereira Bueno
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro-UNICAMP, Rua Carlos Chagas, 480 - Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, SP, CEP: 13083-878, Brazil
| | - Mary Ann Foglio
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro-UNICAMP, Rua Carlos Chagas, 480 - Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, SP, CEP: 13083-878, Brazil
- Faculty of Pharmaceutical Sciences, University of Campinas/UNICAMP, Campinas, SP, Brazil
| | - Paula Baréa
- Department of Chemistry, State University of Maringá, Maringá, PR, Brazil
| | | | | | - Sara T Olalla Saad
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro-UNICAMP, Rua Carlos Chagas, 480 - Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, SP, CEP: 13083-878, Brazil
| | - Fernanda Marconi Roversi
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro-UNICAMP, Rua Carlos Chagas, 480 - Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, SP, CEP: 13083-878, Brazil.
- Division of Transplantation, Department of Surgery, Emory University, 101 Woodruff Circle, Atlanta, GA, 300322, USA.
| |
Collapse
|
14
|
Yang LJ, Han T, Liu RN, Shi SM, Luan SY, Meng SN. Plant-derived natural compounds: A new frontier in inducing immunogenic cell death for cancer treatment. Biomed Pharmacother 2024; 177:117099. [PMID: 38981240 DOI: 10.1016/j.biopha.2024.117099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
Immunogenic cell death (ICD) can activate adaptive immune response in the host with normal immune system. Some synthetic chemotherapeutic drugs and natural compounds have shown promising results in cancer treatment by triggering the release of damage-associated molecules (DAMPs) to trigger ICD. However, most chemotherapeutic drugs exhibit non-selective cytotoxicity and may also induce and promote metastasis, thereby significantly reducing their clinical efficacy. Among the natural compounds that can induce ICD, plant-derived compounds account for the largest proportion, which are of increasing value in the treatment of cancer. Understanding which plant-derived natural compounds can induce ICD and how they induce ICD is crucial for developing strategies to improve chemotherapy outcomes. In this review, we focus on the recent findings regarding plant-derived natural compounds that induce ICD according to the classification of flavonoids, alkaloids, glycosides, terpenoids and discuss the potential mechanisms including endoplasmic reticulum (ER) stress, DNA damage, apoptosis, necroptosis autophagy, ferroptosis. In addition, plant-derived natural compounds that can enhance the ICD induction ability of conventional therapies for cancer treatment is also elaborated. The rational use of plant-derived natural compounds to induce ICD is helpful for the development of new cancer treatment methods.
Collapse
Affiliation(s)
- Li-Juan Yang
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Ting Han
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Ruo-Nan Liu
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Shu-Ming Shi
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Shi-Yun Luan
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Sheng-Nan Meng
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
15
|
Skrzeszewski M, Maciejewska M, Kobza D, Gawrylak A, Kieda C, Waś H. Risk factors of using late-autophagy inhibitors: Aspects to consider when combined with anticancer therapies. Biochem Pharmacol 2024; 225:116277. [PMID: 38740222 DOI: 10.1016/j.bcp.2024.116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Cancer resistance to therapy is still an unsolved scientific and clinical problem. In 2022, the hallmarks of cancer have been expanded to include four new features, including cellular senescence. Therapy-induced senescence (TIS) is a stressor-based response to conventional treatment methods, e.g. chemo- and radiotherapy, but also to non-conventional targeted therapies. Since TIS reinforces resistance in cancers, new strategies for sensitizing cancer cells to therapy are being adopted. These include macroautophagy as a potential target for inhibition due to its potential cytoprotective role in many cancers. The mechanism of late-stage autophagy inhibitors is based on blockage of autophagolysosome formation or an increase in lysosomal pH, resulting in disrupted cargo degradation. Such inhibitors are relevant candidates for increasing anticancer therapy effectiveness. In particular, 4-aminoquoline derivatives: chloroquine/hydroxychloroquine (CQ/HCQ) have been tested in multiple clinical trials in combination with senescence-inducing anti-cancer drugs. In this review, we summarize the properties of selected late-autophagy inhibitors and their role in the regulation of autophagy and senescent cell phenotype in vitro and in vivo models of cancer as well as treatment response in clinical trials on oncological patients. Additionally, we point out that, although these compounds increase the effectiveness of treatment in some cases, their practical usage might be hindered due to systemic toxicity, hypoxic environment, dose- ant time-dependent inhibitory effects, as well as a possible contribution to escaping from TIS.
Collapse
Affiliation(s)
- Maciej Skrzeszewski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Doctoral School of Translational Medicine, Centre of Postgraduate Medical Education, Poland
| | - Monika Maciejewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland
| | - Dagmara Kobza
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; School of Chemistry, University of Leeds, Leeds, UK
| | - Aleksandra Gawrylak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Centre for Molecular Biophysics, UPR CNRS 4301, Orléans, France; Department of Molecular and Translational Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Halina Waś
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland.
| |
Collapse
|
16
|
Peng J, Li S, Ti H. Sensitize Tumor Immunotherapy: Immunogenic Cell Death Inducing Nanosystems. Int J Nanomedicine 2024; 19:5895-5930. [PMID: 38895146 PMCID: PMC11184231 DOI: 10.2147/ijn.s457782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Low immunogenicity of tumors poses a challenge in the development of effective tumor immunotherapy. However, emerging evidence suggests that certain therapeutic approaches, such as chemotherapy, radiotherapy, and phototherapy, can induce varying degrees of immunogenic cell death (ICD). This ICD phenomenon leads to the release of tumor antigens and the maturation of dendritic cells (DCs), thereby enhancing tumor immunogenicity and promoting immune responses. However, the use of a single conventional ICD inducer often fails to achieve in situ tumor ablation and establish long-term anti-tumor immune responses. Furthermore, the induction of ICD induction varies among different approaches, and the distribution of the therapeutic agent within the body influences the level of ICD and the occurrence of toxic side effects. To address these challenges and further boost tumor immunity, researchers have explored nanosystems as inducers of ICD in combination with tumor immunotherapy. This review examines the mechanisms of ICD and different induction methods, with a specific focus on the relationship between ICD and tumor immunity. The aim is to explore the research advancements utilizing various nanomaterials to enhance the body's anti-tumor effects by inducing ICD. This paper aims to contribute to the development and clinical application of nanomaterial-based ICD inducers in the field of cancer immunotherapy by providing important theoretical guidance and practical references.
Collapse
Affiliation(s)
- Jianlan Peng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Shiying Li
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Huihui Ti
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Province Precise Medicine and Big Data Engineering Technology Research Center for Traditional Chinese Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
17
|
Li G, Liao C, Chen J, Wang Z, Zhu S, Lai J, Li Q, Chen Y, Wu D, Li J, Huang Y, Tian Y, Chen Y, Chen S. Targeting the MCP-GPX4/HMGB1 Axis for Effectively Triggering Immunogenic Ferroptosis in Pancreatic Ductal Adenocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308208. [PMID: 38593415 PMCID: PMC11151063 DOI: 10.1002/advs.202308208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/22/2024] [Indexed: 04/11/2024]
Abstract
Induction of ferroptosis can inhibit cancer cells in vitro, however, the role of ferroptosis in treatment in vivo is controversial. The immunosuppressive cells activated by the ferroptotic tumor cells can promote the growth of residual tumor cells, hindering the application of ferroptosis stimulation in tumor treatment. In this study, a new strategy is aimed to be identified for effectively triggering immunogenic ferroptosis in pancreatic ductal adenocarcinoma (PDAC) and simultaneously stimulating antitumor immune responses. Toward this, several molecular and biochemical experiments are performed using patient-derived organoid models and a KPC mouse model (LSL-KrasG12D /+, LSL-Trp53R172H/+, Pdx-1-Cre). It is observed that the inhibition of macrophage-capping protein (MCP) suppressed the ubiquitin fold modifier (UFM)ylation of pirin (PIR), a newly identified substrate of UFM1, thereby decreasing the transcription of GPX4, a marker of ferroptosis, and promoting the cytoplasmic transportation of HMGB1, a damage-associated molecular pattern. GPX4 deficiency triggered ferroptosis, and the pre-accumulated cytosolic HMGB1 is released rapidly. This altered release pattern of HMGB1 facilitated the pro-inflammatory M1-like polarization of macrophages. Thus, therapeutic inhibition of MCP yielded dual antitumor effects by stimulating ferroptosis and activating antitumor pro-inflammatory M1-like macrophages. The nanosystem developed for specifically silencing MCP is a promising tool for treating PDAC.
Collapse
Affiliation(s)
- Ge Li
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary SurgeryFujian Medical University Union HospitalFuzhou350001China
| | - Chengyu Liao
- Shengli Clinical Medical College of Fujian Medical UniversityFujian Medical UniversityFuzhou350001China
| | - Jiangzhi Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary SurgeryFujian Medical University Union HospitalFuzhou350001China
| | - Zuwei Wang
- Shengli Clinical Medical College of Fujian Medical UniversityFujian Medical UniversityFuzhou350001China
- Department of Hepatopancreatobiliary SurgeryFujian Provincial HospitalFuzhou350001China
| | - Shuncang Zhu
- Shengli Clinical Medical College of Fujian Medical UniversityFujian Medical UniversityFuzhou350001China
| | - Jianlin Lai
- Shengli Clinical Medical College of Fujian Medical UniversityFujian Medical UniversityFuzhou350001China
- Department of Hepatopancreatobiliary SurgeryFujian Provincial HospitalFuzhou350001China
| | - Qiaowei Li
- Fujian Provincial Center for GeriatricsFuzhou350001China
- Fujian Key Laboratory of GeriatricsFuzhou350001China
| | - Yinhao Chen
- Shengli Clinical Medical College of Fujian Medical UniversityFujian Medical UniversityFuzhou350001China
| | - Dihan Wu
- Shengli Clinical Medical College of Fujian Medical UniversityFujian Medical UniversityFuzhou350001China
| | - Jianbo Li
- Shengli Clinical Medical College of Fujian Medical UniversityFujian Medical UniversityFuzhou350001China
| | - Yi Huang
- Shengli Clinical Medical College of Fujian Medical UniversityFujian Medical UniversityFuzhou350001China
- Center for Experimental Research in Clinical MedicineFujian Provincial HospitalFuzhou350001China
| | - Yifeng Tian
- Shengli Clinical Medical College of Fujian Medical UniversityFujian Medical UniversityFuzhou350001China
- Department of Hepatopancreatobiliary SurgeryFujian Provincial HospitalFuzhou350001China
| | - Yanling Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary SurgeryFujian Medical University Union HospitalFuzhou350001China
| | - Shi Chen
- Shengli Clinical Medical College of Fujian Medical UniversityFujian Medical UniversityFuzhou350001China
- Department of Hepatopancreatobiliary SurgeryFujian Provincial HospitalFuzhou350001China
- Fujian Provincial Center for GeriatricsFuzhou350001China
- Fujian Key Laboratory of GeriatricsFuzhou350001China
| |
Collapse
|
18
|
Dong Z, Xue K, Verma A, Shi J, Wei Z, Xia X, Wang K, Zhang X. Photothermal therapy: a novel potential treatment for prostate cancer. Biomater Sci 2024; 12:2480-2503. [PMID: 38592730 DOI: 10.1039/d4bm00057a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Prostate cancer (PCa) is a leading cause of cancer-related death in men, and most PCa patients treated with androgen deprivation therapy will progress to metastatic castration-resistant prostate cancer (mCRPC) due to the lack of efficient treatment. Recently, lots of research indicated that photothermal therapy (PTT) was a promising alternative that provided an accurate and efficient prostate cancer therapy. A photothermic agent (PTA) is a basic component of PPT and is divided into organic and inorganic PTAs. Besides, the combination of PTT and other therapies, such as photodynamic therapy (PDT), immunotherapy (IT), chemotherapy (CT), etc., provides an more efficient strategy for PCa therapy. Here, we introduce basic information about PTT and summarize the PTT treatment strategies for prostate cancer. Based on recent works, we think the combination of PPT and other therapies provides a novel possibility for PCa, especially CRPC clinical treatment.
Collapse
Affiliation(s)
- Zirui Dong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Kaming Xue
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anushikha Verma
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zhihao Wei
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaotian Xia
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan 430022, Hubei, China.
| | - Keshan Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
19
|
Wang J, Ma J, Xie F, Miao F, lv L, Huang Y, Zhang X, Yu J, Tai Z, Zhu Q, Bao L. Immunogenic cell death-based cancer vaccines: promising prospect in cancer therapy. Front Immunol 2024; 15:1389173. [PMID: 38745666 PMCID: PMC11092378 DOI: 10.3389/fimmu.2024.1389173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Tumor immunotherapy is a promising approach for addressing the limitations of conventional tumor treatments, such as chemotherapy and radiotherapy, which often have side effects and fail to prevent recurrence and metastasis. However, the effectiveness and sustainability of immune activation in tumor immunotherapy remain challenging. Tumor immunogenic cell death, characterized by the release of immunogenic substances, damage associated molecular patterns (DAMPs), and tumor associated antigens, from dying tumor cells (DTCs), offers a potential solution. By enhancing the immunogenicity of DTCs through the inclusion of more immunogenic antigens and stimulating factors, immunogenic cell death (ICD) based cancer vaccines can be developed as a powerful tool for immunotherapy. Integrating ICD nanoinducers into conventional treatments like chemotherapy, photodynamic therapy, photothermal therapy, sonodynamic therapy, and radiotherapy presents a novel strategy to enhance treatment efficacy and potentially improve patient outcomes. Preclinical research has identified numerous potential ICD inducers. However, effectively translating these findings into clinically relevant applications remains a critical challenge. This review aims to contribute to this endeavor by providing valuable insights into the in vitro preparation of ICD-based cancer vaccines. We explored established tools for ICD induction, followed by an exploration of personalized ICD induction strategies and vaccine designs. By sharing this knowledge, we hope to stimulate further development and advancement in the field of ICD-based cancer vaccines.
Collapse
Affiliation(s)
- Jiandong Wang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Jinyuan Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Fangyuan Xie
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Lei lv
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yueying Huang
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Junxia Yu
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Leilei Bao
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
20
|
Wang G, Jiang X, Torabian P, Yang Z. Investigating autophagy and intricate cellular mechanisms in hepatocellular carcinoma: Emphasis on cell death mechanism crosstalk. Cancer Lett 2024; 588:216744. [PMID: 38431037 DOI: 10.1016/j.canlet.2024.216744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024]
Abstract
Hepatocellular carcinoma (HCC) stands as a formidable global health challenge due to its prevalence, marked by high mortality and morbidity rates. This cancer type exhibits a multifaceted etiology, prominently linked to viral infections, non-alcoholic fatty liver disease, and genomic mutations. The inherent heterogeneity of HCC, coupled with its proclivity for developing drug resistance, presents formidable obstacles to effective therapeutic interventions. Autophagy, a fundamental catabolic process, plays a pivotal role in maintaining cellular homeostasis, responding to stressors such as nutrient deprivation. In the context of HCC, tumor cells exploit autophagy, either augmenting or impeding its activity, thereby influencing tumorigenesis. This comprehensive review underscores the dualistic role of autophagy in HCC, acting as both a pro-survival and pro-death mechanism, impacting the trajectory of tumorigenesis. The anti-carcinogenic potential of autophagy is evident in its ability to enhance apoptosis and ferroptosis in HCC cells. Pertinently, dysregulated autophagy fosters drug resistance in the carcinogenic context. Both genomic and epigenetic factors can regulate autophagy in HCC progression. Recognizing the paramount importance of autophagy in HCC progression, this review introduces pharmacological compounds capable of modulating autophagy-either inducing or inhibiting it, as promising avenues in HCC therapy.
Collapse
Affiliation(s)
- Gang Wang
- Department of Interventional, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China
| | - Xiaodi Jiang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, 110020, PR China
| | - Pedram Torabian
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada; Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada.
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China.
| |
Collapse
|
21
|
Cho H, Kim K. Multi-functional nanomedicines for combinational cancer immunotherapy that transform cold tumors to hot tumors. Expert Opin Drug Deliv 2024; 21:627-638. [PMID: 38682272 DOI: 10.1080/17425247.2024.2348656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
INTRODUCTION Currently, cancer immunotherapy is widely used as a groundbreaking method that can completely cure advanced cancers. However, this new immunotherapy has the challenge of low patient response, which is often due to many patients' tumors having an immunosuppressive environment, known as cold tumors. AREAS COVERED This review aims to introduce various nanomedicine-derived combinational cancer immunotherapy that can transform cold tumor into hot tumors. Initially, we discuss new technologies for combinational immunotherapy based on multifunctional nanomedicines that can deliver combinational immunogenic cell death (ICD) inducers, immune checkpoint blockades (ICBs) and immune modulators (IMs) to targeted tumor tissues at the same time. Ultimately, we highlight how multifunctional nanomedicines for combinational cancer immunotherapy can be used to transform cold tumor into hot tumors against advanced cancers. EXPERT OPINION Nanomedicine-derived combinational cancer immunotherapy for delivering multiple ICD inducers, ICBs, and IMs at the same time is recognized as a new potential technology that can activate tumor immunity and simultaneously increase the therapeutic efficacy of immune cells that can transform effectively the cold tumors into hot tumors. Finally, nanomedicine-derived combinational cancer immunotherapy can solve the serious problems of low therapeutic efficacy that occurs when treating single drug or simple combinational drugs in cancer immunotherapy.
Collapse
Affiliation(s)
- Hanhee Cho
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Woman's University, Seoul, Republic of Korea
| | | |
Collapse
|
22
|
Leng J, Zhao Y, Zhao S, Xie S, Sheng P, Zhu L, Zhang M, Chen T, Kong L, Yin Y. Discovery of Novel Isoquinoline Analogues as Dual Tubulin Polymerization/V-ATPase Inhibitors with Immunogenic Cell Death Induction. J Med Chem 2024; 67:3144-3166. [PMID: 38336655 DOI: 10.1021/acs.jmedchem.3c02399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Cancer immunotherapy has revolutionized clinical advances in a variety of cancers. Due to the low immunogenicity of the tumor, only a few patients can benefit from it. Specific microtubule inhibitors can effectively induce immunogenic cell death and improve immunogenicity of the tumor. A series of isoquinoline derivatives based on the natural products podophyllotoxin and diphyllin were designed and synthesized. Among them, F10 showed robust antiproliferation activity against four human cancer cell lines, and it was verified that F10 exerted antiproliferative activity by inhibiting tubulin and V-ATPase. Further studies indicated that F10 is able to induce immunogenic cell death in addition to apoptosis. Meanwhile, F10 inhibited tumor growth in an RM-1 homograft model with enhanced T lymphocyte infiltration. These results suggest that F10 may be a promising lead compound for the development of a new generation of microtubule drugs.
Collapse
Affiliation(s)
- Jiafu Leng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yongjun Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shifang Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shanshan Xie
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ping Sheng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Liqiao Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Mengyu Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Tingting Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yong Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
23
|
Qu C, Yuan H, Tian M, Zhang X, Xia P, Shi G, Hou R, Li J, Jiang H, Yang Z, Chen T, Li Z, Wang J, Yuan Y. Precise Photodynamic Therapy by Midkine Nanobody-Engineered Nanoparticles Remodels the Microenvironment of Pancreatic Ductal Adenocarcinoma and Potentiates the Immunotherapy. ACS NANO 2024; 18:4019-4037. [PMID: 38253029 DOI: 10.1021/acsnano.3c07002] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is notorious for its resistance against chemotherapy and immunotherapy due to its dense desmoplastic and immunosuppressive tumor microenvironment (TME). Traditional photodynamic therapy (PDT) was also less effective for PDAC owing to poor selectivity, insufficient penetration, and accumulation of photosensitizers in tumor sites. Here, we designed a light-responsive novel nanoplatform targeting the TME of PDAC through tumor-specific midkine nanobodies (Nbs), which could efficiently deliver semiconducting polymeric nanoparticles (NPs) to the TME of PDAC and locally produce abundant reactive oxygen species (ROS) for precise photoimmunotherapy. The synthesized nanocomposite can not only achieve multimodal imaging of PDAC tumors (fluorescence and photoacoustic imaging) but also lead to apoptosis and immunogenic cell death of tumor cells via ROS under light excitation, ultimately preventing tumor progression and remodeling the immunosuppressive TME with increased infiltration of T lymphocytes. Combined with a PD-1 checkpoint blockade, the targeted PDT platform showed the best antitumor performance and markedly extended mice survival. Conclusively, this work integrating Nbs with photodynamic NPs provides a novel strategy to target formidable PDAC to achieve tumor suppression and activate antitumor immunity, creating possibilities for boosting efficacy of immunotherapy for PDAC tumors through the combination with precise local PDT.
Collapse
Affiliation(s)
- Chengming Qu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, P. R. China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, P. R. China
| | - Haitao Yuan
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital; First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Ming Tian
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, P. R. China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, P. R. China
| | - Xiaodong Zhang
- Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics· Guangdong Province), Guangzhou 510630, Guangdong, P. R. China
| | - Peng Xia
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, P. R. China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, P. R. China
| | - Guangwei Shi
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People' s Hospital of Shunde Foshan), Guangzhou 528300, Guangdong, P. R. China
| | - Rui Hou
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital; First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Ji Li
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands 6009, Western Australia, Australia
| | - Haibo Jiang
- Department of Chemistry, The University of Hong Kong, Pok Fu Lam, Hong Kong 999077, P. R. China
| | - Zhiyong Yang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, P. R. China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, P. R. China
| | - Tengxiang Chen
- Precision Medicine Research Institute of Guizhou Medical University, Affiliated Hospital of Guizhou Medical University, Guiyang 550009, Guizhou, P. R. China
| | - Zhijie Li
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital; First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Jigang Wang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital; First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, P. R. China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, P. R. China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, P. R. China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, Hubei, P. R. China
| |
Collapse
|
24
|
Zhang X, Zhang M, Cui H, Zhang T, Wu L, Xu C, Yin C, Gao J. Autophagy-modulating biomembrane nanostructures: A robust anticancer weapon by modulating the inner and outer cancer environment. J Control Release 2024; 366:85-103. [PMID: 38142964 DOI: 10.1016/j.jconrel.2023.12.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/09/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Recently, biomembrane nanostructures, such as liposomes, cell membrane-coated nanostructures, and exosomes, have demonstrated promising anticancer therapeutic effects. These nanostructures possess remarkable biocompatibility, multifunctionality, and low toxicity. However, their therapeutic efficacy is impeded by chemoresistance and radiotherapy resistance, which are closely associated with autophagy. Modulating autophagy could enhance the therapeutic sensitivity and effectiveness of these biomembrane nanostructures by influencing the immune system and the cancer microenvironment. For instance, autophagy can regulate the immunogenic cell death of cancer cells, antigen presentation of dendritic cells, and macrophage polarization, thereby activating the inflammatory response in the cancer microenvironment. Furthermore, combining autophagy-regulating drugs or genes with biomembrane nanostructures can exploit the targeting and long-term circulation properties of these nanostructures, leading to increased drug accumulation in cancer cells. This review explores the role of autophagy in carcinogenesis, cancer progression, metastasis, cancer immune responses, and resistance to treatment. Additionally, it highlights recent research advancements in the synergistic anticancer effects achieved through autophagy regulation by biomembrane nanostructures. The review also discusses the prospects and challenges associated with the future clinical translation of these innovative treatment strategies. In summary, these findings provide valuable insights into autophagy, autophagy-modulating biomembrane-based nanostructures, and the underlying molecular mechanisms, thereby facilitating the development of promising cancer therapeutics.
Collapse
Affiliation(s)
- Xinyi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Mengya Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Hengqing Cui
- Department of Burns and Plastic Surgery, Shanghai Changzheng Hospital, Shanghai 200003, China; Tongji Hospital,School of Medicine, Tongji University, Shanghai 200092, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Lili Wu
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Can Xu
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Chuan Yin
- Department of Gastroenterology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
25
|
Zhu H, Zhong Y, Chen R, Wang L, Li Y, Jian Z, Gu L, Xiong X. ATG5 Knockdown Attenuates Ischemia‒Reperfusion Injury by Reducing Excessive Autophagy-Induced Ferroptosis. Transl Stroke Res 2024; 15:153-164. [PMID: 36522583 DOI: 10.1007/s12975-022-01118-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Autophagy has been described to be both protective and pathogenic in cerebral ischemia/reperfusion (I/R) injury. The underlying association between autophagy and ferroptosis in ischemic stroke has not yet been clearly investigated. The purpose of this study was to explore the role of autophagy-related gene 5 (ATG5) in experimental ischemic stroke. After injection of ATG5 shRNA lentivirus, mice underwent surgery for transient middle cerebral artery occlusion (MCAO)-induced focal cerebral ischemia. The infarct volume, neurological function, apoptosis, reactive oxygen species (ROS), autophagy, and ferroptosis levels were evaluated. After MCAO, ATG5-knockdown mice had a smaller infarct size and fewer neurological deficits than wild-type mice. The levels of apoptosis and ROS in ischemic mouse brains were alleviated through ATG5 knockdown. The expression of LC3 I/II was reduced through ATG5 knockdown after MCAO. Additionally, the expression of beclin1 and LC3 II was increased after I/R, but the increase was counteracted by preconditioning with ATG5 knockdown. After ischemic stroke, the levels of Fe2+ and malondialdehyde (MDA) were increased, but they were reduced by ATG5 knockdown. Similarly, the expression of glutathione peroxidase 4 (GPX4) and glutathione (GSH) was decreased by I/R but elevated by ATG5 knockdown. The present study shows that ATG5 knockdown attenuates autophagy-induced ferroptosis, which may offer a novel potential approach for ischemic stroke treatment.
Collapse
Affiliation(s)
- Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ran Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
| | - Yuntao Li
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
26
|
Miao Z, Li J, Zeng S, Lv Y, Jia S, Ding D, Li W, Liu Q. Endoplasmic Reticulum-Targeting AIE Photosensitizers to Boost Immunogenic Cell Death for Immunotherapy of Bladder Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16:245-260. [PMID: 38113527 DOI: 10.1021/acsami.3c14068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Bladder cancer is characterized by high rates of recurrence and multifocality. Immunogenic cell death (ICD) of cancer cells has emerged as a promising strategy to improve the immunogenicity of tumor cells for enhanced cancer immunotherapy. Although photosensitizer-based photodynamic therapy (PDT) has been validated as capable of inducing ICD in cancer cells, the photosensitizers with a sufficient ICD induction ability are still rare, and there have been few reports on the development of advanced photosensitizers to strongly evoke the ICD of bladder cancer cells for eliciting potent antitumor immune responses and eradicating bladder carcinoma in situ. In this work, we have synthesized a new kind of endoplasmic reticulum (ER)-targeting aggregation-induced emission (AIE) photosensitizer (named DPASCP-Tos), which could effectively anchor to the cellular ER and trigger focused reactive oxygen species (ROS) production within the ER, thereby boosting ICD in bladder cancer cells. Furthermore, we have demonstrated that bladder cancer cells killed by ER-targeted PDT could serve as a therapeutic cancer vaccine to elicit a strong antitumor immunity. Prophylactic vaccination of the bladder cancer cells killed by DPASCP-Tos under light irradiation promoted the maturation of dendritic cells (DCs) and the expansion of tumor antigen-specific CD8+ T cells in vivo and protected mice from subsequent in situ bladder tumor rechallenge and extended animal survival. In summary, the ER-targeted AIEgens developed here significantly amplified the ICD of bladder cells through focused ROS-based ER oxidative stress and transformed bladder cancer cells into the therapeutic vaccine to enhance immunogenicity against orthotopic bladder cancer, providing valuable insights for bladder carcinoma treatment.
Collapse
Affiliation(s)
- Zhizhao Miao
- Tianjin First Central Hospital, Nankai University, Tianjin 300071, China
| | - Jisen Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Sheng Zeng
- Department of Urology, Tianjin First Central Hospital, Tianjin 300384, China
| | - Yonghui Lv
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shaorui Jia
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wen Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Qian Liu
- Tianjin First Central Hospital, Nankai University, Tianjin 300071, China
| |
Collapse
|
27
|
Galassi C, Klapp V, Yamazaki T, Galluzzi L. Molecular determinants of immunogenic cell death elicited by radiation therapy. Immunol Rev 2024; 321:20-32. [PMID: 37679959 PMCID: PMC11075037 DOI: 10.1111/imr.13271] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Cancer cells undergoing immunogenic cell death (ICD) can initiate adaptive immune responses against dead cell-associated antigens, provided that (1) said antigens are not perfectly covered by central tolerance (antigenicity), (2) cell death occurs along with the emission of immunostimulatory cytokines and damage-associated molecular patterns (DAMPs) that actively engage immune effector mechanisms (adjuvanticity), and (3) the microenvironment of dying cells is permissive for the initiation of adaptive immunity. Finally, ICD-driven immune responses can only operate and exert cytotoxic effector functions if the microenvironment of target cancer cells enables immune cell infiltration and activity. Multiple forms of radiation, including non-ionizing (ultraviolet) and ionizing radiation, elicit bona fide ICD as they increase both the antigenicity and adjuvanticity of dying cancer cells. Here, we review the molecular determinants of ICD as elicited by radiation as we critically discuss strategies to reinforce the immunogenicity of cancer cells succumbing to clinically available radiation strategies.
Collapse
Affiliation(s)
- Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Vanessa Klapp
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| |
Collapse
|
28
|
Xi Y, Chen L, Tang J, Yu B, Shen W, Niu X. Amplifying "eat me signal" by immunogenic cell death for potentiating cancer immunotherapy. Immunol Rev 2024; 321:94-114. [PMID: 37550950 DOI: 10.1111/imr.13251] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/15/2023] [Indexed: 08/09/2023]
Abstract
Immunogenic cell death (ICD) is a unique mode of cell death, which can release immunogenic damage-associated molecular patterns (DAMPs) and tumor-associated antigens to trigger long-term protective antitumor immune responses. Thus, amplifying "eat me signal" during tumor ICD cascade is critical for cancer immunotherapy. Some therapies (radiotherapy, photodynamic therapy (PDT), photothermal therapy (PTT), etc.) and inducers (chemotherapeutic agents, etc.) have enabled to initiate and/or facilitate ICD and activate antitumor immune responses. Recently, nanostructure-based drug delivery systems have been synthesized for inducing ICD through combining treatment of chemotherapeutic agents, photosensitizers for PDT, photothermal transformation agents for PTT, radiosensitizers for radiotherapy, etc., which can release loaded agents at an appropriate dosage in the designated place at the appropriate time, contributing to higher efficiency and lower toxicity. Also, immunotherapeutic agents in combination with nanostructure-based drug delivery systems can produce synergetic antitumor effects, thus potentiating immunotherapy. Overall, our review outlines the emerging ICD inducers, and nanostructure drug delivery systems loading diverse agents to evoke ICD through chemoradiotherapy, PDT, and PTT or combining immunotherapeutic agents. Moreover, we discuss the prospects and challenges of harnessing ICD induction-based immunotherapy, and highlight the significance of multidisciplinary and interprofessional collaboration to promote the optimal translation of this treatment strategy.
Collapse
Affiliation(s)
- Yong Xi
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lijie Chen
- School of Medicine, Xiamen University, Xiamen, China
- China Medical University, Shenyang, China
| | - Jian Tang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bentong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weiyu Shen
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Xing Niu
- China Medical University, Shenyang, China
| |
Collapse
|
29
|
Sun Y, Lian T, Huang Q, Chang Y, Li Y, Guo X, Kong W, Yang Y, Zhang K, Wang P, Wang X. Nanomedicine-mediated regulated cell death in cancer immunotherapy. J Control Release 2023; 364:174-194. [PMID: 37871752 DOI: 10.1016/j.jconrel.2023.10.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Immunotherapy has attracted widespread attention in cancer treatment and has achieved considerable success in the clinical treatment of some tumors, but it has a low response rate in most tumors. To achieve sufficient activation of the immune response, significant efforts using nanotechnology have been made to enhance cancer immune response. In recent years, the induction of various regulated cell death (RCD) has emerged as a potential antitumor immuno-strategy, including processes related to apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and cuproptosis. In particular, damage-associated molecular patterns (DAMPs) released from the damaged membrane of dying cells act as in situ adjuvants to trigger antigen-specific immune responses by the exposure of an increased antigenicity. Thus, RCD-based immunotherapy offers a new approach for enhancing cancer treatment efficacy. Furthermore, incorporation with multimodal auxiliary therapies in cell death-based immunotherapy can trigger stronger immune responses, resulting in more efficient therapeutic outcome. This review discusses different RCD modalities and summarizes recent nanotechnology-mediated RCDs in cancer immunotherapy.
Collapse
Affiliation(s)
- Yue Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China; The Xi'an key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Ting Lian
- Research Center for Prevention and Treatment of Respiratory Disease, School of Clinical Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Qichao Huang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yawei Chang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuan Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaoyu Guo
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Weirong Kong
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yifang Yang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Kun Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
30
|
Calvillo-Rodríguez KM, Lorenzo-Anota HY, Rodríguez-Padilla C, Martínez-Torres AC, Scott-Algara D. Immunotherapies inducing immunogenic cell death in cancer: insight of the innate immune system. Front Immunol 2023; 14:1294434. [PMID: 38077402 PMCID: PMC10701401 DOI: 10.3389/fimmu.2023.1294434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Cancer immunotherapies include monoclonal antibodies, cytokines, oncolytic viruses, cellular therapies, and other biological and synthetic immunomodulators. These are traditionally studied for their effect on the immune system's role in eliminating cancer cells. However, some of these therapies have the unique ability to directly induce cytotoxicity in cancer cells by inducing immunogenic cell death (ICD). Unlike general immune stimulation, ICD triggers specific therapy-induced cell death pathways, based on the release of damage-associated molecular patterns (DAMPs) from dying tumour cells. These activate innate pattern recognition receptors (PRRs) and subsequent adaptive immune responses, offering the promise of sustained anticancer drug efficacy and durable antitumour immune memory. Exploring how onco-immunotherapies can trigger ICD, enhances our understanding of their mechanisms and potential for combination strategies. This review explores the complexities of these immunotherapeutic approaches that induce ICD, highlighting their implications for the innate immune system, addressing challenges in cancer treatment, and emphasising the pivotal role of ICD in contemporary cancer research.
Collapse
Affiliation(s)
- Kenny Misael Calvillo-Rodríguez
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Helen Yarimet Lorenzo-Anota
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
- The Institute for Obesity Research, Tecnológico de Monterrey, Monterrey, NL, Mexico
| | - Cristina Rodríguez-Padilla
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Ana Carolina Martínez-Torres
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Daniel Scott-Algara
- Département d'Immunologie, Unité de Biologie Cellulaire des Lymphocytes, Pasteur Institute, Paris, France
| |
Collapse
|
31
|
Zhou M, Liang S, Liu D, Ma K, Yun K, Yao J, Peng Y, Hai L, Zhang Q, Wang Z. Manganese-Enriched Zinc Peroxide Functional Nanoparticles for Potentiating Cancer Immunotherapy. NANO LETTERS 2023; 23:10350-10359. [PMID: 37930173 DOI: 10.1021/acs.nanolett.3c02941] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Immunotherapies have shown high clinical success, however, the therapeutical efficacy is largely restrained by insufficient immune activation and an immunosuppressive microenvironment. Herein, we report tumor microenvironment (TME)-responsive manganese-enriched zinc peroxide nanoparticles (MONPs) for synergistic cancer immunotherapy by inducing the immunogenic death (ICD) of cancer cells and activating the stimulator of the interferon gene (STING) pathway. MONPs especially disassociate upon exposure to acidic tumor tissue and in situ generate •OH for the ICD effect. Moreover, Mn2+ activated the STING and synergistically induced the secretion of type I interferon and inflammatory cytokines for specific T cell responses. Meanwhile, MONPs relieved the immunosuppression of TME through decreasing Tregs and polarizing M2 macrophages to the M1 type to unleash a cascade adaptive immune response. In combination with the anti-PD-1 antibody, MONPs showed superior efficacy in inhibiting tumor growth and preventing lung metastasis. Our study demonstrates the feasibility of functional nanoparticles to amplify STING innate stimulation, showing a prominent strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Mengli Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuang Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Dan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Kongshuo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Kaiqing Yun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jianjun Yao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuxuan Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Linna Hai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhaohui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
32
|
Chou W, Sun T, Peng N, Wang Z, Chen D, Qiu H, Zhao H. Photodynamic Therapy-Induced Anti-Tumor Immunity: Influence Factors and Synergistic Enhancement Strategies. Pharmaceutics 2023; 15:2617. [PMID: 38004595 PMCID: PMC10675361 DOI: 10.3390/pharmaceutics15112617] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Photodynamic therapy (PDT) is an approved therapeutic procedure that exerts cytotoxic activity towards tumor cells by activating photosensitizers (PSs) with light exposure to produce reactive oxygen species (ROS). Compared to traditional treatment strategies such as surgery, chemotherapy, and radiation therapy, PDT not only kills the primary tumors, but also effectively suppresses metastatic tumors by activating the immune response. However, the anti-tumor immune effects induced by PDT are influenced by several factors, including the localization of PSs in cells, PSs concentration, fluence rate of light, oxygen concentration, and the integrity of immune function. In this review, we systematically summarize the influence factors of anti-tumor immune effects mediated by PDT. Furthermore, an update on the combination of PDT and other immunotherapy strategies are provided. Finally, the future directions and challenges of anti-tumor immunity induced by PDT are discussed.
Collapse
Affiliation(s)
- Wenxin Chou
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (W.C.); (T.S.); (N.P.); (D.C.)
| | - Tianzhen Sun
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (W.C.); (T.S.); (N.P.); (D.C.)
| | - Nian Peng
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (W.C.); (T.S.); (N.P.); (D.C.)
| | - Zixuan Wang
- Department of Laser Medicine, the First Medical Center, PLA General Hospital, Beijing 100853, China;
| | - Defu Chen
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (W.C.); (T.S.); (N.P.); (D.C.)
| | - Haixia Qiu
- Department of Laser Medicine, the First Medical Center, PLA General Hospital, Beijing 100853, China;
| | - Hongyou Zhao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (W.C.); (T.S.); (N.P.); (D.C.)
| |
Collapse
|
33
|
Linnert J, Güler BE, Krzysko J, Wolfrum U. The adhesion G protein-coupled receptor VLGR1/ADGRV1 controls autophagy. Basic Clin Pharmacol Toxicol 2023; 133:313-330. [PMID: 37002809 DOI: 10.1111/bcpt.13869] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
VLGR1/ADGRV1 (very large G protein-coupled receptor-1) is the largest known adhesion G protein-coupled receptor. Mutations in VLGR1/ADGRV1 cause Usher syndrome (USH), the most common form of hereditary deaf-blindness, and have been additionally linked to epilepsy. Although VLGR1/ADGRV1 is almost ubiquitously expressed, little is known about the subcellular function and signalling of the VLGR1 protein and thus about mechanisms underlying the development of diseases. Using affinity proteomics, we identified key components of autophagosomes as putative interacting proteins of VLGR1. In addition, whole transcriptome sequencing of the retinae of the Vlgr1/del7TM mouse model revealed altered expression profiles of gene-related autophagy. Monitoring autophagy by immunoblotting and immunocytochemistry of the LC3 and p62 as autophagy marker proteins revealed evoked autophagy in VLGR1-deficient hTERT-RPE1 cells and USH2C patient-derived fibroblasts. Our data demonstrate the molecular and functional interaction of VLGR1 with key components of the autophagy process and point to an essential role of VLGR1 in the regulation of autophagy at internal membranes. The close association of VLGR1 with autophagy helps to explain the pathomechanisms underlying human USH and epilepsy related to VLGR1 defects.
Collapse
Affiliation(s)
- Joshua Linnert
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Baran E Güler
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jacek Krzysko
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
34
|
Khalili Najafabad B, Attaran N, Barati M, Mohammadi Z, Mahmoudi M, Sazgarnia A. Cobalt ferrite nanoparticle for the elimination of CD133+CD44 + and CD44 +CD24 -, in breast and skin cancer stem cells, using non-ionizing treatments. Heliyon 2023; 9:e19893. [PMID: 37810832 PMCID: PMC10556613 DOI: 10.1016/j.heliyon.2023.e19893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Background Cancer stem cells (CSCs) are the most challenging issue in cancer treatment, because of their high resistance mechanisms, that can cause tumor recurrence after common cancer treatments such as drug and radiation based therapies, and the insufficient efficiency of common treatments in CSCs removal and the recurrence of tumors after these treatments, it is essential to consider other methods, including non-ionizing treatments likes light-based treatments and magnetic hyperthermia (MHT). Method and material After synthesis, characterization and investigation, the toxicity of novel on A375 and MAD-MB-231 cell lines, magnetic hyperthermia and light-based treatments were applied. MTT assay and flow cytometry was employed to determine cell survival. the influence of combination therapy on CD44 + CD24-and CD133 + CD44+ cell population, Comparison and evaluation of combination treatments was done respectively using Combination Indices (CIs). Result The final nanoparticle has a high efficiency in producing hydroxyl radicals and generating heat in MHT. According to CIs, we can conclude that combined using of light-based treatment and MHT in the presence of final synthesized nanoparticle have synergistic effect and a high ability to reduce the population of stem cells in both cell lines compared to single treatments. Conclusion In this study a novel multi-functional nanoplatform acted well in dual and triple combined treatments, and showed a good performance in the eradication of CSCs, in A375 and MAD-MB-231 cell lines.
Collapse
Affiliation(s)
- Bahareh Khalili Najafabad
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Attaran
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Barati
- Department of Pathobiology and Laboratory Sciences, North Khorasan, University of Medical Science, Bojnurd, Iran
| | - Zahra Mohammadi
- Radiological Technology Department of Actually Paramedical Sciences, Babol University of Medical Science, Babol, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Bu-Ali Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ameneh Sazgarnia
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
35
|
Yu S, Xiao H, Ma L, Zhang J, Zhang J. Reinforcing the immunogenic cell death to enhance cancer immunotherapy efficacy. Biochim Biophys Acta Rev Cancer 2023; 1878:188946. [PMID: 37385565 DOI: 10.1016/j.bbcan.2023.188946] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Immunogenic cell death (ICD) has been a revolutionary modality in cancer treatment since it kills primary tumors and prevents recurrent malignancy simultaneously. ICD represents a particular form of cancer cell death accompanied by production of damage-associated molecular patterns (DAMPs) that can be recognized by pattern recognition receptors (PRRs), which enhances infiltration of effector T cells and potentiates antitumor immune responses. Various treatment methods can elicit ICD involving chemo- and radio-therapy, phototherapy and nanotechnology to efficiently convert dead cancer cells into vaccines and trigger the antigen-specific immune responses. Nevertheless, the efficacy of ICD-induced therapies is restrained due to low accumulation in the tumor sites and damage of normal tissues. Thus, researchers have been devoted to overcoming these problems with novel materials and strategies. In this review, current knowledge on different ICD modalities, various ICD inducers, development and application of novel ICD-inducing strategies are summarized. Moreover, the prospects and challenges are briefly outlined to provide reference for future design of novel immunotherapy based on ICD effect.
Collapse
Affiliation(s)
- Sihui Yu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hongyang Xiao
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Li Ma
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Jiarong Zhang
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
36
|
Qin Y, Zhang H, Li Y, Xie T, Yan S, Wang J, Qu J, Ouyang F, Lv S, Guo Z, Wei H, Yu CY. Promotion of ICD via Nanotechnology. Macromol Biosci 2023; 23:e2300093. [PMID: 37114599 DOI: 10.1002/mabi.202300093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Immunotherapy represents the most promising treatment strategy for cancer, but suffers from compromised therapeutic efficiency due to low immune activity of tumor cells and an immunosuppressive microenvironment, which significantly hampers the clinical translations of this treatment strategy. To promote immunotherapy with desired therapeutic efficiency, immunogenic cell death (ICD), a particular type of death capable of reshaping body's antitumor immune activity, has drawn considerable attention due to the potential to stimulate a potent immune response. Still, the potential of ICD effect remains unsatisfactory because of the intricate tumor microenvironment and multiple drawbacks of the used inducing agents. ICD has been thoroughly reviewed so far with a general classification of ICD as a kind of immunotherapy strategy and repeated discussion of the related mechanism. However, there are no published reviews, to the authors' knowledge, providing a systematic summarization on the enhancement of ICD via nanotechnology. For this purpose, this review first discusses the four stages of ICD according to the development mechanisms, followed by a comprehensive description on the use of nanotechnology to enhance ICD in the corresponding four stages. The challenges of ICD inducers and possible solutions are finally summarized for future ICD-based enhanced immunotherapy.
Collapse
Affiliation(s)
- Yang Qin
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yunxian Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ting Xie
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shuang Yan
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jiaqi Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jun Qu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Feijun Ouyang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shaoyang Lv
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Zifen Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
37
|
Cui J, Xu H, Shi J, Fang K, Liu J, Liu F, Chen Y, Liang H, Zhang Y, Piao H. Carbonic anhydrase IX inhibitor S4 triggers release of DAMPs related to immunogenic cell death in glioma cells via endoplasmic reticulum stress pathway. Cell Commun Signal 2023; 21:167. [PMID: 37386564 PMCID: PMC10311836 DOI: 10.1186/s12964-023-01180-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Immunogenic cell death (ICD), which releases danger-associated molecular patterns (DAMP) that induce potent anticancer immune response, has emerged as a key component of therapy-induced anti-tumor immunity. The aim of this work was to analyze whether the carbonic anhydrase IX inhibitor S4 can elicit ICD in glioma cells. METHODS The effects of S4 on glioma cell growth were evaluated using the CCK-8, clonogenic and sphere assays. Glioma cell apoptosis was determined by flow cytometry. Surface-exposed calreticulin (CRT) was inspected by confocal imaging. The supernatants of S4-treated cells were concentrated for the determination of HMGB1and HSP70/90 expression by immunoblotting. RNA-seq was performed to compare gene expression profiles between S4-treated and control cells. Pharmacological inhibition of apoptosis, autophagy, necroptosis and endoplasmic reticulum (ER) stress was achieved by inhibitors. In vivo effects of S4 were evaluated in glioma xenografts. Immunohistochemistry (IHC) was performed to stain Ki67 and CRT. RESULTS S4 significantly decreased the viability of glioma cells and induced apoptosis and autophagy. Moreover, S4 triggered CRT exposure and the release of HMGB1 and HSP70/90. Inhibition of either apoptosis or autophagy significantly reversed S4-induced release of DAMP molecules. RNA-seq analysis indicated that the ER stress pathway was deregulated upon exposure to S4. Both PERK-eIF2α and IRE1α- XBP1 axes were activated in S4-treated cells. Furthermore, pharmacological inhibition of PERK significantly suppressed S4-triggered ICD markers and autophagy. In glioma xenografts, S4 significantly reduced tumor growth. CONCLUSIONS Altogether, these findings suggest S4 as a novel ICD inducer in glioma and might have implications for S4-based immunotherapy. Video Abstract.
Collapse
Affiliation(s)
- Jing Cui
- Department of Neurosurgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Huizhe Xu
- Central Laboratory, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Ji Shi
- Department of Neurosurgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Kun Fang
- Central Laboratory, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Jia Liu
- Department of Neurosurgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Feng Liu
- Department of Neurosurgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, China
- Institute of Cancer Stem Cell, Dalian Medical University, No.9 Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Yi Chen
- Department of Neurosurgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Haiyang Liang
- Department of Neurosurgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Ye Zhang
- Department of Neurosurgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
- Central Laboratory, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| |
Collapse
|
38
|
Bueno MLP, Saad STO, Roversi FM. The antitumor effects of WNT5A against hematological malignancies. J Cell Commun Signal 2023:10.1007/s12079-023-00773-8. [PMID: 37310653 DOI: 10.1007/s12079-023-00773-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023] Open
Abstract
The bone marrow (BM) microenvironment (niche) is abnormally altered in acute myeloid leukemia (AML), leading to deficient secretion of proteins, soluble factors, and cytokines by mesenchymal stromal cells (MSC) that modifies the crosstalk between MSC and hematopoietic cells. We focused on a WNT gene/protein family member, WNT5A, which is downregulated in leukemia and correlated with disease progression and poor prognosis. We demonstrated that WNT5A protein upregulated the WNT non-canonical pathway only in leukemic cells, without modulating normal cell behavior. We also introduced a novel WNT5A-mimicking compound, Foxy-5. Our results showed reduction of crucial biological functions that are upregulated in leukemia cells, including ROS generation, cell proliferation, and autophagy, as well as G0/G1 cell cycle arrest. Additionally, Foxy-5 induced early-stage macrophage cell differentiation, a crucial process during leukemia development. At a molecular level, Foxy-5 led to the downregulation of two overexpressed leukemia pathways, PI3K and MAPK, which resulted in a disarrangement of actin polymerization with consequent impairment of CXCL12-induced chemotaxis. Notably, in a novel tri-dimensional bone marrow-mimicking model, Foxy-5 led to reduced leukemia cell growth and similar results were observed in a xenograft in vivo model. Overall, our findings highlight the pivotal role of WNT5A in leukemia and demonstrate that Foxy-5 acts as a specific antineoplastic agent in leukemia, counterbalancing several leukemic oncogenic processes related to the crosstalk in the bone marrow niche, and represents a promising therapeutic option for AML. WNT5A, a WNT gene/protein family member, is naturally secreted by mesenchymal stromal cells and contributes to the maintenance of the bone marrow microenvironment. WNT5A downregulation is correlated with disease progression and poor prognosis. The treatment with Foxy-5, a WNT5A mimetizing compound, counterbalanced several leukemogenic processes that are upregulated in leukemia cells, including ROS generation, cell proliferation, and autophagy and disruption of PI3K and MAPK signaling pathways.
Collapse
Affiliation(s)
- Maura Lima Pereira Bueno
- Hematology and Transfusion Medicine Center - University of Campinas/Hemocentro-UNICAMP, Rua Carlos Chagas, 480 - Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, São Paulo, 13083-878, Brazil
| | - Sara Teresinha Olalla Saad
- Hematology and Transfusion Medicine Center - University of Campinas/Hemocentro-UNICAMP, Rua Carlos Chagas, 480 - Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, São Paulo, 13083-878, Brazil
| | - Fernanda Marconi Roversi
- Hematology and Transfusion Medicine Center - University of Campinas/Hemocentro-UNICAMP, Rua Carlos Chagas, 480 - Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, São Paulo, 13083-878, Brazil.
- Department of Surgery Division of Transplantation, Emory University, Atlanta, GA, USA.
| |
Collapse
|
39
|
Shi F, Huang X, Hong Z, Lu N, Huang X, Liu L, Liang T, Bai X. Improvement strategy for immune checkpoint blockade: A focus on the combination with immunogenic cell death inducers. Cancer Lett 2023; 562:216167. [PMID: 37031916 DOI: 10.1016/j.canlet.2023.216167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Cancer immunotherapies have yielded promising outcomes in various malignant tumors by blocking specific immune checkpoint molecules, such as programmed cell death 1 and cytotoxic T lymphocyte antigen 4. However, only a few patients respond to immune checkpoint blockade therapy because of the poor immunogenicity of tumor cells and immune-suppressive tumor microenvironment. Accumulating evidence suggests that chemotherapeutic agents, including oxaliplatin and doxorubicin, not only mediate direct cytotoxicity in tumor cells but also induce immunogenic cancer cell death to stimulate a powerful anti-cancer immune response in the tumor microenvironment. In this review, we summarize the recent advances in cancer combination therapy based on immune checkpoint inhibitors plus immunogenic cell death inducers. Despite some clinical failures and challenges, immunogenic cell death inducers have displayed great potential when combined with immune checkpoint inhibitors for anti-cancer treatment in both preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Fukang Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xing Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Zhengtao Hong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Na Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xin Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Lingyue Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
40
|
Kirat D, Alahwany AM, Arisha AH, Abdelkhalek A, Miyasho T. Role of Macroautophagy in Mammalian Male Reproductive Physiology. Cells 2023; 12:cells12091322. [PMID: 37174722 PMCID: PMC10177121 DOI: 10.3390/cells12091322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Physiologically, autophagy is an evolutionarily conserved and self-degradative process in cells. Autophagy carries out normal physiological roles throughout mammalian life. Accumulating evidence shows autophagy as a mechanism for cellular growth, development, differentiation, survival, and homeostasis. In male reproductive systems, normal spermatogenesis and steroidogenesis need a balance between degradation and energy supply to preserve cellular metabolic homeostasis. The main process of autophagy includes the formation and maturation of the phagophore, autophagosome, and autolysosome. Autophagy is controlled by a group of autophagy-related genes that form the core machinery of autophagy. Three types of autophagy mechanisms have been discovered in mammalian cells: macroautophagy, microautophagy, and chaperone-mediated autophagy. Autophagy is classified as non-selective or selective. Non-selective macroautophagy randomly engulfs the cytoplasmic components in autophagosomes that are degraded by lysosomal enzymes. While selective macroautophagy precisely identifies and degrades a specific element, current findings have shown the novel functional roles of autophagy in male reproduction. It has been recognized that dysfunction in the autophagy process can be associated with male infertility. Overall, this review provides an overview of the cellular and molecular basics of autophagy and summarizes the latest findings on the key role of autophagy in mammalian male reproductive physiology.
Collapse
Affiliation(s)
- Doaa Kirat
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed Mohamed Alahwany
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Badr City 11829, Egypt
| | - Ahmed Hamed Arisha
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Badr City 11829, Egypt
| | - Adel Abdelkhalek
- Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Badr City 11829, Egypt
| | - Taku Miyasho
- Laboratory of Animal Biological Responses, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
41
|
Liu Y, Chang R, Xing R, Yan X. Bioactive Peptide Nanodrugs Based on Supramolecular Assembly for Boosting Immunogenic Cell Death-Induced Cancer Immunotherapy. SMALL METHODS 2023; 7:e2201708. [PMID: 36720041 DOI: 10.1002/smtd.202201708] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/12/2023] [Indexed: 05/17/2023]
Abstract
Immunogenic cell death (ICD)-induced immunotherapy holds promise for complete elimination and long-term protective immune responses against cancer by combining direct tumor cell killing and antitumor immune response. Some therapeutic approaches (such as hyperthermia, photodynamic therapy, or radiotherapy) and inducers (certain chemotherapy drugs, oncolytic viruses) have been devoted to initiating and/or boosting ICD, leading to the activation of tumor-specific immune responses. Recently, supramolecular assembled bioactive peptide nanodrugs have been employed to improve the efficacy of ICD-induced cancer immunotherapy by increasing tumor targeted accumulation as well as responsive release of ICD inducers, directly inducing high levels of ICD and realizing the simultaneous enhancement of immune response through the immune function of the active peptide itself. Here, the authors review bioactive peptide nanodrugs based on supramolecular assembly, mainly as an intelligent delivery system, a direct ICD inducer and an immune response enhancer, for boosting ICD induced cancer immunotherapy. The functions of diverse bioactive peptides used in the construction of nanodrugs are described. The design of a supramolecular assembly, the mechanism of boosting ICD, and synergetic effects of bioactive peptides combined immunotherapy are critically emphasized.
Collapse
Affiliation(s)
- Yamei Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Rui Chang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
42
|
Guo J, Zou Y, Huang L. Nano Delivery of Chemotherapeutic ICD Inducers for Tumor Immunotherapy. SMALL METHODS 2023; 7:e2201307. [PMID: 36604976 DOI: 10.1002/smtd.202201307] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/24/2022] [Indexed: 05/17/2023]
Abstract
Immunogenic cell death (ICD, also known as immunogenic apoptosis) of malignant cells is confirmed to activate the host immune system to prevent, control, and eliminate tumors. Recently, a range of chemotherapeutic drugs have been repurposed as ICD inducers and applied for tumor immunotherapy. However, several hurdles to the widespread application of chemotherapeutic ICD inducers remain, namely poor water solubility, short blood circulation, non-specific tissue distribution, and severe toxicity. Recent advances in nanotechnology and pharmaceutical formulation foster the development of nano drug delivery systems to tackle the aforementioned hurdles and expedite safe, effective, and specific delivery. This review will describe delivery barriers to chemical ICD inducers and highlight recent nanoformulations for these drugs in tumor immunotherapy.
Collapse
Affiliation(s)
- Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yifang Zou
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
43
|
Jeon J, Yoon B, Dey A, Song SH, Li Y, Joo H, Park JH. Self-immolative polymer-based immunogenic cell death inducer for regulation of redox homeostasis. Biomaterials 2023; 295:122064. [PMID: 36827894 DOI: 10.1016/j.biomaterials.2023.122064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
Doxorubicin (DOX), widely used as an anticancer drug, is considered an immunogenic cell death (ICD) inducer that enhances cancer immunotherapy. However, its extended application as an ICD inducer has been limited owing to poor antigenicity and inefficient adjuvanticity. To enhance the immunogenicity of DOX, we prepare a reactive oxygen species (ROS)-responsive self-immolative polymer (R-SIP) that can efficiently destroy redox homeostasis via self-immolation-mediated glutathione depletion in cancer cells. Owing to its amphiphilic nature, R-SIP self-assemble into nano-sized particles under aqueous conditions, and DOX is efficiently encapsulated inside the nanoparticles by a simple dialysis method. Interestingly, when treated with 4T1 cancer cells, DOX-encapsulated R-SIP (DR-SIP) induces the phosphorylation of eukaryotic translation initiation factor 2α and overexpression of ecto-calreticulin, resulting in endoplasmic reticulum-associated ICD. In addition, DR-SIP contributes to the maturation of dendritic cells by promoting the release of damage-associated molecular patterns (DAMPs) from cancer cells. When intravenously administered to tumor-bearing mice, DR-SIP remarkably inhibits tumor growth compared with DOX alone. Overall, DR-SIP may have the potential to elicit an immune response as an ICD inducer.
Collapse
Affiliation(s)
- Jueun Jeon
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Been Yoon
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Anup Dey
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seok Ho Song
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yuce Li
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyeyeon Joo
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
44
|
Sen S, Karoscik K, Maier E, Arambula JF. Immunogenic cell death-inducing metal complexes: From the benchtop to the clinic. Curr Opin Chem Biol 2023; 73:102277. [PMID: 36867977 DOI: 10.1016/j.cbpa.2023.102277] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 03/05/2023]
Abstract
The immune system presents a complex array of processes designed to maintain homeostasis in malignant cellular growth. Malignancy is the result of a breakdown in immune surveillance by cancer cells evading immune recognition. Significant efforts have been made in modulating immune checkpoint signaling cascades to bypass the resulting immune evasion and establish an anticancer effect. More recently, it was discovered that a form of regulated cell death can involve the stimulation of immune response as its downstream effect and subsequently re-establish immune surveillance. This mechanism, known as immunogenic cell death (ICD), is being exploited as a target to prevent tumor relapse and prevent cancer metastasis. It is now appreciated that metal-based compounds play a key role in ICD activation due to their unique biochemical properties and interactions within cancer cells. With fewer than 1% of known anticancer agents documented as ICD inducers, recent efforts have been made to identify novel entities capable of stimulating a more potent anticancer immune response. While the recent reviews by us or others focus primarily on either discussing the chemical library of ICD inducers or intricate detailing of biological pathways associated with ICD, this review aims to bridge these two topics as a concise summary. Furthermore, early clinical evidence and future directions of ICD are briefly summarized.
Collapse
Affiliation(s)
- Sajal Sen
- Department of Biological Engineering, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA.
| | | | - Esther Maier
- Drug Dynamics Institute, College of Pharmacy, The University of Texas at Austin, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| | | |
Collapse
|
45
|
Xiong X, Wang Y, Zou T. Towards Understanding the Molecular Mechanisms of Immunogenic Cell Death. Chembiochem 2023; 24:e202200621. [PMID: 36445798 DOI: 10.1002/cbic.202200621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022]
Abstract
The discovery of immunogenic cell death (ICD) by small molecules (e. g., chemotherapeutic drugs) intrigued medicinal chemists and led them to exploit anticancer agents with such a trait because ICD agents provoke anticancer immune responses in addition to their cytotoxicity. However, the unclear molecular mechanism of ICD hampers further achievements in drug development. Fortunately, increasing efforts have been made in this area in recent years by using either chemical or biological approaches. Here, we review the current achievements towards understanding the mechanisms of small molecule-induced ICD effects. Based on the established role of the unfolded protein response (UPR) in ICD, we classify the mechanisms of different inducers by their dependency on UPR. Key proteins and pathways with important implications are discussed in depth. We also give our perspectives on the research strategies for future investigation in this field.
Collapse
Affiliation(s)
- Xiaolin Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yuan Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
46
|
Lin H, Tong Q, Xu J, Li T, Yang A, Sun J, Lu W. An "IgG-hitchhiking" approach for rapid tumor accumulation and clearance of photosensitizers. J Control Release 2023; 356:242-255. [PMID: 36813039 DOI: 10.1016/j.jconrel.2023.02.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Photodynamic therapy (PDT) has been widely used for the local treatment of a variety of cancer. To improve the therapeutic effect, delicate nanoparticles loading photosensitizers (PSs) have been designed to improve the accumulation of PSs in tumor. Different from the anti-cancer drugs for chemotherapy or immunotherapy, the delivery of PSs requires rapid tumor accumulation followed by quick elimination to reduce the potential risk of phototoxicity. However, owing to the nature of prolonged blood circulation of the nanoparticles, the conventional nanoparticulate delivery systems may decelerate the clearance of PSs. Here, we present a tumor-targeted delivery approach termed "IgG-hitchhiking" strategy through a self-assembled PSs nanostructure, according to the intrinsic binding between the photosensitizer pheophorbide A (PhA) and immunoglobulin (IgG). We utilize the intravital fluorescence microscopic imaging to uncover that the nanostructures (IgG:PhA NPs) increase the extravasation of PhA into tumor within the first hour post intravenous injection compared with free PhA, correlating with an improved efficacy of PDT. After ∼1 h post-injection, a quick decrease in the PhA amount in the tumor is observed, while the tumor IgG level is continuously increasing. The disparity of the tumor distribution between PhA and IgG allows the quick elimination of the PSs for minimized skin phototoxicity. Our results provide a direct evidence of the enhanced accumulation and elimination of the PSs in the tumor microenvironment through the "IgG-hitchhiking" approach. This strategy presents a promising tumor-targeted delivery approach for the PSs in lieu of the existing strategy for enhanced PDT with minimal toxicity in clinic.
Collapse
Affiliation(s)
- Hongzheng Lin
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy & Minhang Hospital, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Qinli Tong
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy & Minhang Hospital, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Jiaojiao Xu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy & Minhang Hospital, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Tingting Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy & Minhang Hospital, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Afeng Yang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy & Minhang Hospital, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Jingwen Sun
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy & Minhang Hospital, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Wei Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy & Minhang Hospital, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China.
| |
Collapse
|
47
|
Wu JJ, Zhang J, Xia CY, Ding K, Li XX, Pan XG, Xu JK, He J, Zhang WK. Hypericin: A natural anthraquinone as promising therapeutic agent. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154654. [PMID: 36689857 DOI: 10.1016/j.phymed.2023.154654] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Hypericin is a prominent secondary metabolite mainly existing in genus Hypericum. It has become a research focus for a quiet long time owing to its extensively pharmacological activities especially the anti-cancer, anti-bacterial, anti-viral and neuroprotective effects. This review concentrated on summarizing and analyzing the existing studies of hypericin in a comprehensive perspective. METHODS The literature with desired information about hypericin published after 2010 was gained from electronic databases including PubMed, SciFinder, Science Direct, Web of Science, China National Knowledge Infrastructure databases and Wan Fang DATA. RESULTS According to extensive preclinical and clinical studies conducted on the hypericin, an organized and comprehensive summary of the natural and artificial sources, strategies for improving the bioactivities, pharmacological activities, drug combination of hypericin was presented to explore the future therapeutic potential of this active compound. CONCLUSIONS Overall, this review offered a theoretical guidance for the follow-up research of hypericin. However, the pharmacological mechanisms, pharmacokinetics and structure activity relationship of hypericin should be further studied in future research.
Collapse
Affiliation(s)
- Jing-Jing Wu
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jia Zhang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cong-Yuan Xia
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Kang Ding
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xin-Xin Li
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue-Ge Pan
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Wei-Ku Zhang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
48
|
Sun Z, Zhao M, Wang W, Hong L, Wu Z, Luo G, Lu S, Tang Y, Li J, Wang J, Zhang Y, Zhang L. 5-ALA mediated photodynamic therapy with combined treatment improves anti-tumor efficacy of immunotherapy through boosting immunogenic cell death. Cancer Lett 2023; 554:216032. [PMID: 36493899 DOI: 10.1016/j.canlet.2022.216032] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/04/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Photodynamic therapy (PDT) is clinically promising in destructing primary tumors and immunotherapy awakes host immunity to control distant metastases. 5-aminolevulinic acid (5-ALA), a smart photosensitizer, converts into a physiological PDT agent with no dark toxicity in vivo. In this study, we found for the first time 5-ALA-PDT induced colorectal cancer (CRC) cells death by immunogenic cell death (ICD) upon AKT inhibition. Dying cancer cells induced by 5-ALA-PDT efficiently activated bone-marrow derived dendritic cells (BMDCs). Simultaneously, autophagy was observed after AKT inhibition by 5-ALA-PDT. Besides, we found cells died more remarkable by ICD under a circumstance of low occurrence of autophagy. To evaluate the effects of 5-ALA-PDT in vivo, we applied subcutaneous tumor mouse model and delightedly found 5-ALA-PDT induced a systemic antitumor immune response to control both primary tumors and distant metastases. Meanwhile, 5-ALA-PDT enhanced Th1 immunity, leading cytotoxic T lymphocyte response, and raised tumor-specific T cells. Combining with Chloroquine (CQ), 5-ALA-PDT further augmented tumor-specific immunity effects indicating protective role of autophagy. Together, the combination therapy of 5-ALA-PDT and autophagy inhibitor synergistically led to a novel clinical approach and potential ICD-based tumor vaccine for CRC patients.
Collapse
Affiliation(s)
- Zhuoran Sun
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, 410013, PR China; Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China
| | - Weibi Wang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, 410013, PR China
| | - Lanhui Hong
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, 410013, PR China
| | - Zhongguang Wu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, 410013, PR China
| | - Guang Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, 410013, PR China
| | - Siyao Lu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, 410013, PR China
| | - Yueyue Tang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, 410013, PR China
| | - Jiehan Li
- School of Biomedical Sciences, Hunan University, Changsha, 410082, PR China
| | - Jiangang Wang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China
| | - Yingjie Zhang
- School of Biomedical Sciences, Hunan University, Changsha, 410082, PR China.
| | - Lingling Zhang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, 410013, PR China.
| |
Collapse
|
49
|
Xu J, Xu W, Wang Z, Jiang Y. Study on combination therapy for lung cancer through pemetrexed-loaded mesoporous polydopamine nanoparticles. J Biomed Mater Res A 2023; 111:158-169. [PMID: 36479812 PMCID: PMC10087741 DOI: 10.1002/jbm.a.37436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/30/2022] [Accepted: 07/28/2022] [Indexed: 12/13/2022]
Abstract
Lung cancer is one of the most commonly diagnosed cancers, and surgical resection is the optimal choice for the primary lung tumor. But for the secondary lung cancer, chemotherapy and combined radiotherapy still are the main strategies. To realize the combined treatment for non-small cell lung cancer (NSCLC), in this work, a nanoplatform based on pemetrexed (PE)-loaded mesoporous polydopamine (MPDA) nanoparticles were investigated. PE, a special therapeutic drug for NSCLC, was loaded into the MPDA nanoparticles via electrostatic attraction and was encapsulated with polyvinyl pyrrolidone (PVP). The results showed that, when irradiating with 808 nm near-infrared light, the PE loaded MPDA (MPDA@PE@PVP) nanoparticles have excellent photothermal conversion properties, which would result in increase of ambient temperature and could accelerate the release of PE. In vitro cell experiments proved that MPDA@PE@PVP nanoparticles have excellent killing ability for NSCLC A549 cells by the functions of PE and photothermal ability of MPDA nanoparticles. Meanwhile, the intra-cellular reactive oxygen species (ROS) levels of A549 cells in the MPDA@PE@PVP nanoparticle-treated group could be promoted significantly after irradiation, leading to the death of A549 cells. In vivo animal model results showed that MPDA@PE@PVP nanoparticles could gather at the tumor site by enhanced permeability and retention (EPR) effect and have significant inhibition ability for lung tumor by synergistic therapy of chemotherapy, photothermal therapy and photodynamic therapy.
Collapse
Affiliation(s)
- Jian Xu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Wei Xu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Zhiqiang Wang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Yuequan Jiang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
50
|
Kashefizadeh A, Kazemizadeh H. Immunogenic cell death (ICD)-inducers in non-small-cell lung carcinoma (NSCLC): current knowledge and future perspective. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:316-322. [PMID: 36180811 DOI: 10.1007/s12094-022-02949-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/05/2022] [Indexed: 01/27/2023]
Abstract
The prevalence of non-small-cell lung cancer (NSCLC) is rising every year all around the world. The interaction between cancer cells and the tumor microenvironment (TME) is a crucial factor in determining the development of human neoplasms. Organellar and cellular stress are induced during immunogenic cell death (ICD), a particularly functional response pattern. ICD is a separate but poorly characterized entity caused by various cancer treatments. The induction of ICD has the potential to change TME and the recruitment of tumor-infiltrating lymphocytes (TILs), and the coupling of ICD-inducers and other therapeutic approaches can have a synergistic role in boosting anticancer impacts. The purpose of this study is to review the studies in the field of NSCLC using ICD-inducers as a treatment strategy or as a combination therapy. This review provide for researches a better view of what has been done so far and the challenges they face in the future.
Collapse
Affiliation(s)
- Alireza Kashefizadeh
- Department of Pulmonology, Shahid Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Kazemizadeh
- Advanced Thoracic Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|