1
|
Ferdousmakan S, Mansourian D, Seyedi Asl FS, Fathi Z, Maleki-Sheikhabadi F, Afjadi MN, Zalpoor H. Autophagy induced by metabolic processes leads to solid tumor cell metastatic dormancy and recurrence. Med Oncol 2025; 42:62. [PMID: 39899220 DOI: 10.1007/s12032-025-02607-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025]
Abstract
A crucial cellular mechanism that has a complex impact on the biology of cancer, particularly in solid tumors, is autophagy. This review explores how metabolic processes trigger autophagy, which helps metastatic tumor cells go dormant and recur. During metastasis, tumor cells frequently encounter severe stressors, such as low oxygen levels and nutritional deprivation, which causes them to activate autophagy as a survival tactic. This process allows cancer stem cells (CSCs) to withstand severe conditions while also preserving their features. After years of dormancy, dormant disseminated tumor cells (DTCs) may reappear as aggressive metastatic cancers. The capacity of autophagy to promote resistance to treatments and avoid immune detection is intimately related to this phenomenon. According to recent research, autophagy promotes processes, such as the epithelial-to-mesenchymal transition (EMT) and helps build a pre-metastatic niche, which makes treatment strategies more challenging. Autophagy may be a promising therapeutic target because of its dual function as a tumor suppressor in early-stage cancer and a survival promoter in advanced stages. To effectively treat metastatic diseases, it is crucial to comprehend how metabolic processes interact with autophagy and affect tumor behavior. In order to find novel therapeutic approaches that can interfere with these processes and improve patient outcomes, this study highlights the critical need for additional investigation into the mechanisms by which autophagy controls tumor dormancy and recurrence.
Collapse
Affiliation(s)
- Saeid Ferdousmakan
- Department of Pharmacy Practice, Nargund College of Pharmacy, Bangalore, 560085, India
| | - Dorrin Mansourian
- Faculty of Pharmacy, Eastern Mediterranean University, Gazimagusa TRNC via Mersin 10, Mersin, Turkey
| | | | - Zeinab Fathi
- Medical School, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Maleki-Sheikhabadi
- Department of Hematology and Blood Banking, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Oh MJ, Seo Y, Seo N, An HJ. MS-Based Glycome Characterization of Biotherapeutics With N- and O-Glycosylation. MASS SPECTROMETRY REVIEWS 2025. [PMID: 39871420 DOI: 10.1002/mas.21925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/29/2025]
Abstract
With the increasing FDA approvals of glycoprotein-based biotherapeutics including monoclonal antibodies, cytokines, and enzyme treatments, the significance of glycosylation in modulating drug efficacy and safety becomes central. This review highlights the crucial role of mass spectrometry (MS) in elucidating the glycome of biotherapeutics that feature N- and O-glycosylation, directly addressing the challenges posed by glycosylation complexity and heterogeneity. We have detailed the advancements and application of MS technologies including MALDI-TOF MS, LC-MS, and tandem MS in the precise characterization of glycoprotein therapeutics. Emphasizing MS-based strategies for detecting immunogenic glycans and ensuring batch-to-batch consistency, this review highlights targeted approaches for glycoprotein, glycopeptide, and glycan analysis tailored to meet the stringent analytical and regulatory demands of biopharmaceutical development.
Collapse
Affiliation(s)
- Myung Jin Oh
- Asia-Pacific Glycomics Reference Site, Daejeon, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Korea
| | - Youngsuk Seo
- Life Science Institute, Institute for Basic Science, Daejeon, Korea
| | - Nari Seo
- Asia-Pacific Glycomics Reference Site, Daejeon, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Korea
| | - Hyun Joo An
- Asia-Pacific Glycomics Reference Site, Daejeon, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Korea
| |
Collapse
|
3
|
Aryal S, Park S, Park H, Park C, Kim WC, Thakur D, Won YJ, Key J. Clinical Trials for Oral, Inhaled and Intravenous Drug Delivery System for Lung Cancer and Emerging Nanomedicine-Based Approaches. Int J Nanomedicine 2023; 18:7865-7888. [PMID: 38146467 PMCID: PMC10749572 DOI: 10.2147/ijn.s432839] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/19/2023] [Indexed: 12/27/2023] Open
Abstract
Lung cancer is one of the most common malignant tumors worldwide and is characterized by high morbidity and mortality rates and a poor prognosis. It is the leading cause of cancer-related death in the United States and worldwide. Most patients with lung cancer are treated with chemotherapy, radiotherapy, or surgery; however, effective treatment options remain limited. In this review, we aim to provide an overview of clinical trials, ranging from Phase I to III, conducted on drug delivery systems for lung cancer treatment. The trials included oral, inhaled, and intravenous administration of therapeutics. Furthermore, the study also talks about the evolving paradigm of targeted therapy and immunotherapy providing promising directions for personalized treatment. In addition, we summarize the best results and limitations of these drug delivery systems and discuss the potential capacity of nanomedicine.
Collapse
Affiliation(s)
- Susmita Aryal
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon Province, 26493, Korea
| | - Sanghyo Park
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon Province, 26493, Korea
| | - Hyungkyu Park
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon Province, 26493, Korea
| | - Chaewon Park
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon Province, 26493, Korea
| | - Woo Cheol Kim
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon Province, 26493, Korea
| | - Deepika Thakur
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon Province, 26493, Korea
| | - Young-Joo Won
- Division of Health Administration, College of Software Digital Healthcare Convergence, Yonsei University, Wonju, Gangwon State, 26493, Korea
| | - Jaehong Key
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon Province, 26493, Korea
| |
Collapse
|
4
|
Vartak R, Deore B, Sanhueza CA, Patel K. Cetuximab-based PROteolysis targeting chimera for effectual downregulation of NSCLC with varied EGFR mutations. Int J Biol Macromol 2023; 252:126413. [PMID: 37598823 PMCID: PMC12045033 DOI: 10.1016/j.ijbiomac.2023.126413] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
PROteolysis Targeting Chimeras (PROTACs) showed tremendous therapeutic potential in degrading several oncoproteins including undruggable proteins. PROTACs are bifunctional molecules where one-part binds to target protein while the other end recruits protein degradation machinery. With the unveiling advancements in the field of PROTACs, we explored a combinatorial approach by developing antibody-based PROTAC (ABTAC) which may effectively degrade one of the key oncoprotein driving proliferation and progression of cancer - Epidermal growth factor receptor (EGFR). The objective of current research was to synthesize and characterize an EGFR degrading ABTAC for the treatment of non-small cell lung cancer (NSCLC). Cetuximab and pomalidomide (E3 ligase recruiting ligand) were conjugated using lysine conjugation and copper free azide-alkyne cycloaddition (CuAAC) click chemistry. Analytical characterization using reverse-phase liquid chromatography and mass spectrometry suggested conjugation of five E3-ligase inhibitor molecules/antibody. Nearly 10-30 folds reduction in IC50 was observed with ABTAC in HCC827 (EGFR sensitive) and H1650 (EGFR resistant) cells compared to cetuximab. Multicellular 3D spheroid assay strongly suggested that ABTAC induced significant apoptosis and also inhibited cell proliferation compared to control and antibody alone. Circular dichroism and surface plasmon resonance (SPR) confirmed minor alterations in the structure and receptor binding efficacy of the antibody post-conjugation.
Collapse
Affiliation(s)
- Richa Vartak
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States of America
| | - Bhavesh Deore
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States of America
| | - Carlos A Sanhueza
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States of America
| | - Ketan Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States of America.
| |
Collapse
|
5
|
Farasati Far B, Safaei M, Mokhtari F, Fallahi MS, Naimi-Jamal MR. Fundamental concepts of protein therapeutics and spacing in oncology: an updated comprehensive review. Med Oncol 2023; 40:166. [PMID: 37147486 DOI: 10.1007/s12032-023-02026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/06/2023] [Indexed: 05/07/2023]
Abstract
Current treatment regimens in cancer cases cause significant side effects and cannot effectively eradicate the advanced disease. Hence, much effort has been expended over the past years to understand how cancer grows and responds to therapies. Meanwhile, proteins as a type of biopolymers have been under commercial development for over three decades and have been proven to improve the healthcare system as effective medicines for treating many types of progressive disease, such as cancer. Following approving the first recombinant protein therapeutics by FDA (Humulin), there have been a revolution for drawing attention toward protein-based therapeutics (PTs). Since then, the ability to tailor proteins with ideal pharmacokinetics has provided the pharmaceutical industry with an important noble path to discuss the clinical potential of proteins in oncology research. Unlike traditional chemotherapy molecules, PTs actively target cancerous cells by binding to their surface receptors and the other biomarkers particularly associated with tumorous or healthy tissue. This review analyzes the potential and limitations of protein therapeutics (PTs) in the treatment of cancer as well as highlighting the evolving strategies by addressing all possible factors, including pharmacology profile and targeted therapy approaches. This review provides a comprehensive overview of the current state of PTs in oncology, including their pharmacology profile, targeted therapy approaches, and prospects. The reviewed data show that several current and future challenges remain to make PTs a promising and effective anticancer drug, such as safety, immunogenicity, protein stability/degradation, and protein-adjuvant interactions.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Narmak, Tehran, Iran
| | - Maryam Safaei
- Department of Pharmacology, Faculty of Pharmacy, Eastern Mediterranean University, Via Mersin 10, TR. North Cyprus, Famagusta, Turkey
| | - Fatemeh Mokhtari
- Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani (ASMU), Tabriz, 53751-71379, Iran
| | | | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Narmak, Tehran, Iran.
| |
Collapse
|
6
|
Zaryouh H, Van Loenhout J, Peeters M, Vermorken JB, Lardon F, Wouters A. Co-Targeting the EGFR and PI3K/Akt Pathway to Overcome Therapeutic Resistance in Head and Neck Squamous Cell Carcinoma: What about Autophagy? Cancers (Basel) 2022; 14:cancers14246128. [PMID: 36551613 PMCID: PMC9776372 DOI: 10.3390/cancers14246128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Resistance to EGFR-targeted therapy is a major obstacle on the road to effective treatment options for head and neck cancers. During the search for underlying mechanisms and regulators of this resistance, there were several indications that EGFR-targeted therapy resistance is (partially) mediated by aberrant signaling of the PI3K/Akt pathway. Genomic alterations in and/or overexpression of major components of the PI3K/Akt pathway are common in HNSCC tumors. Therefore, downstream effectors of the PI3K/Akt pathway serve as promising targets in the search for novel therapeutic strategies overcoming resistance to EGFR inhibitors. As both the EGFR/Ras/Raf/MAPK and the PI3K/Akt pathway are involved in autophagy, combinations of EGFR and PI3K/Akt pathway inhibitors can induce an autophagic response in tumor cells. This activation of autophagy can be seen as a "double-edge sword", depending on the cellular context. Autophagy is largely known as a cytoprotective mechanism, but it can also be a mechanism of programmed (autophagic) cell death. The activation of autophagy during anti-cancer treatment is, therefore, not necessarily a bad sign. However, in HNSCC, the role of therapy-induced autophagy as an anti-tumor mechanism is still largely unclear. Further research is warranted to understand the potential of combination treatments targeting both the EGFR and PI3K/Akt pathway.
Collapse
Affiliation(s)
- Hannah Zaryouh
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Antwerp, Belgium
- Correspondence: ; Tel.: +32-3-265-25-33
| | - Jinthe Van Loenhout
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Antwerp, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Antwerp, Belgium
- Department of Medical Oncology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Jan Baptist Vermorken
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Antwerp, Belgium
- Department of Medical Oncology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Antwerp, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
7
|
Bradley ST, Lee YS, Gurel Z, Kimple RJ. Autophagy awakens-the myriad roles of autophagy in head and neck cancer development and therapeutic response. Mol Carcinog 2022; 61:243-253. [PMID: 34780672 PMCID: PMC8799495 DOI: 10.1002/mc.23372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 02/03/2023]
Abstract
Autophagy is an evolutionarily conserved cell survival mechanism that degrades damaged proteins and organelles to generate cellular energy during times of stress. Recycling of these cellular components occurs in a series of sequential steps with multiple regulatory points. Mechanistic dysfunction can lead to a variety of human diseases and cancers due to the complexity of autophagy and its ability to regulate vital cellular functions. The role that autophagy plays in both the development and treatment of cancer is highly complex, especially given the fact that most cancer therapies modulate autophagy. This review aims to discuss the balance of autophagy in the development, progression, and treatment of head and neck cancer, as well as highlighting the need for a deeper understanding of what is still unknown about autophagy.
Collapse
Affiliation(s)
- Samantha T Bradley
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Yong-Syu Lee
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Zafer Gurel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Randall J Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Selvan SR, Brichetti JA, Thurber DB, Botting GM, Bertenshaw GP. Functional Profiling of Head and Neck/Esophageal Squamous Cell Carcinoma to Predict Cetuximab Response. Cancer Biother Radiopharm 2021. [PMID: 34846938 DOI: 10.1089/cbr.2021.0283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: Cetuximab, an epidermal growth factor receptor (EGFR)-targeting antibody, remains the only Food and Drug Administration-approved targeted therapy for squamous cell carcinoma (SCC) of head and neck/esophagus. However, in clinical trials, cetuximab only benefited a subset of patients and frequently caused toxicity. Predicting which patients respond to cetuximab remains unsolved. The authors sought to identify predictive biomarkers in EGFR signaling and autophagy pathways, which may be impacted by cetuximab under certain treatment conditions. Methods: In vitro responses of SCC cell lines to cetuximab under various nutrient conditions were assessed by WST-8 growth assay. Functional profiles of several EGFR signaling biomarkers were investigated by Luminex-based assays and corroborated with immunoblots. Autophagy markers were analyzed with immunoblots. Results: In vitro growth response assays identified cetuximab responder and nonresponder cell lines. Optimal growth conditions and growth factors enhanced responses, and even reversed nonresponsiveness in some cell lines. Strong correlation was found between response in growth assays (reference assay) and dynamic changes in p-Erk1/2 and LC3-II (index assays). Conclusions: This study indicates that nutrient modification may enhance cetuximab response in SCC patients. Biomarker results strengthen the hypothesis that dynamic biomarkers can be used to predict patient response to cetuximab. Future studies are warranted to test in more complex samples including patient-derived tumor tissues.
Collapse
|
9
|
Liu Y, Du Y. Influence of Autophagy Inhibition on Lung Adenocarcinoma Cell Migration and Invasion Ability, and Efficacy of Gefitinib. Technol Cancer Res Treat 2021; 20:15330338211049000. [PMID: 34657484 PMCID: PMC8521425 DOI: 10.1177/15330338211049000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
An increasing number of studies have emphasized the role of autophagy in cancer cell metastasis and treatment of malignant tumors. Autophagy inhibitors have been widely used in combination therapies to treat advanced malignancies. Several lung adenocarcinoma cells harbor epidermal growth factor receptor (EGFR) gene mutations, and EGFR tyrosine kinase inhibitors (TKIs) are routinely used in the treatment of lung adenocarcinoma. However, a number of lung adenocarcinoma tumors do not respond or develop resistance to EGFR TKIs. The aim of the present study was to explore the effect of autophagy inhibition on the biological behavior of lung adenocarcinoma cells. In addition, whether autophagy inhibition increases the efficacy of gefitinib in lung adenocarcinoma was investigated. The activation of autophagy was inhibited via the reduction of the expression of ATG5 in A549, H1975 and HCC827 cells. ATG5 knockdown using ATG5 siRNA partially suppressed the LC3B-II expression, decreased the LC3B-I/II conversion rate and enhanced the P62 expression. Cell scratch test and Transwell assay showed that the inhibition of autophagy could impair the migration and invasion ability of cells. These studies suggested that autophagy may play a pro-survival role in lung adenocarcinoma.
Collapse
Affiliation(s)
- Ying Liu
- 117878Department of Cytology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yun Du
- 117878Department of Cytology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
10
|
Yan RL, Chen RH. Autophagy and cancer metabolism-The two-way interplay. IUBMB Life 2021; 74:281-295. [PMID: 34652063 DOI: 10.1002/iub.2569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022]
Abstract
Autophagy is an intracellular catabolic process that degrades cytoplasmic components for recycling in response to stressed conditions, such as nutrient deprivation. Dysregulation of autophagy is associated with various diseases, including cancer. Although autophagy plays dichotomous and context-dependent roles in cancer, evidence has emerged that cancer cells exploit autophagy for metabolic adaptation. Autophagy is upregulated in many cancer types through tumor cell-intrinsic proliferation demands and the hypoxic and nutrient-limited tumor microenvironment (TME). Autophagy-induced breakdown products then fuel into various metabolic pathways to supply tumor cells with energy and building blocks for biosynthesis and survival. This bidirectional regulation between autophagy and tumor constitutes a vicious cycle to potentiate tumor growth and therapy resistance. In addition, the pro-tumor functions of autophagy are expanded to host, including cells in TME and distant organs. Thus, inhibition of autophagy or autophagy-mediated metabolic reprogramming may be a promising strategy for anticancer therapy. Better understanding the metabolic rewiring mechanisms of autophagy for its pro-tumor effects will provide insights into patient treatment.
Collapse
Affiliation(s)
- Reui-Liang Yan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
11
|
Poillet-Perez L, Sarry JE, Joffre C. Autophagy is a major metabolic regulator involved in cancer therapy resistance. Cell Rep 2021; 36:109528. [PMID: 34407408 DOI: 10.1016/j.celrep.2021.109528] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy sustains cellular homeostasis and metabolism in numerous diseases. By regulating cancer metabolism, both tumor and microenvironmental autophagy promote tumor growth. However, autophagy can support cancer progression through other biological functions such as immune response regulation or cytokine/growth factor secretion. Moreover, autophagy is induced in numerous tumor types as a resistance mechanism following therapy, highlighting autophagy inhibition as a promising target for anti-cancer therapy. Thus, better understanding the mechanisms involved in tumor growth and resistance regulation through autophagy, which are not fully understood, will provide insights into patient treatment.
Collapse
Affiliation(s)
- Laura Poillet-Perez
- Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Université de Toulouse 3 Paul Sabatier, Equipe Labellisée LIGUE 2018, 31037 Toulouse, France.
| | - Jean-Emmanuel Sarry
- Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Université de Toulouse 3 Paul Sabatier, Equipe Labellisée LIGUE 2018, 31037 Toulouse, France
| | - Carine Joffre
- Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Université de Toulouse 3 Paul Sabatier, Equipe Labellisée LIGUE 2018, 31037 Toulouse, France.
| |
Collapse
|
12
|
Rio-Vilariño A, del Puerto-Nevado L, García-Foncillas J, Cebrián A. Ras Family of Small GTPases in CRC: New Perspectives for Overcoming Drug Resistance. Cancers (Basel) 2021; 13:3757. [PMID: 34359657 PMCID: PMC8345156 DOI: 10.3390/cancers13153757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer remains among the cancers with the highest incidence, prevalence, and mortality worldwide. Although the development of targeted therapies against the EGFR and VEGFR membrane receptors has considerably improved survival in these patients, the appearance of resistance means that their success is still limited. Overactivation of several members of the Ras-GTPase family is one of the main actors in both tumour progression and the lack of response to cytotoxic and targeted therapies. This fact has led many resources to be devoted over the last decades to the development of targeted therapies against these proteins. However, they have not been as successful as expected in their move to the clinic so far. In this review, we will analyse the role of these Ras-GTPases in the emergence and development of colorectal cancer and their relationship with resistance to targeted therapies, as well as the status and new advances in the design of targeted therapies against these proteins and their possible clinical implications.
Collapse
Affiliation(s)
| | | | - Jesús García-Foncillas
- Translational Oncology Division, Hospital Universitario Fundación Jimenez Diaz, 28040 Madrid, Spain; (A.R.-V.); (L.d.P.-N.)
| | - Arancha Cebrián
- Translational Oncology Division, Hospital Universitario Fundación Jimenez Diaz, 28040 Madrid, Spain; (A.R.-V.); (L.d.P.-N.)
| |
Collapse
|
13
|
PFKFB3 Inhibition Impairs Erlotinib-Induced Autophagy in NSCLCs. Cells 2021; 10:cells10071679. [PMID: 34359849 PMCID: PMC8307619 DOI: 10.3390/cells10071679] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 01/18/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) targeting the kinase domain of the epidermal growth factor receptor (EGFR), such as erlotinib, have dramatically improved clinical outcomes of patients with EGFR-driven non-small cell lung carcinomas (NSCLCs). However, intrinsic or acquired resistance remains a clinical barrier to the success of FDA-approved EGFR TKIs. Multiple mechanisms of resistance have been identified, including the activation of prosurvival autophagy. We have previously shown that the expression and activity of PFKFB3—a known driver of glycolysis—is associated with resistance to erlotinib and that PFKFB3 inhibition improves the response of NSCLC cells to erlotinib. This study focuses on investigating the role of PFKFB3 in regulating erlotinib-driven autophagy to escape resistance to erlotinib. We evaluated the consequence of pharmacological inhibition of PFKFB3 on erlotinib-driven autophagy in NSCLC cells with different mutation statuses. Here, we identify PFKFB3 as a mediator of erlotinib-induced autophagy in NSCLCs. We demonstrate that PFKFB3 inhibition sensitizes NCSLCs to erlotinib via impairing autophagy flux. In summary, our studies uncovered a novel crosstalk between PFKFB3 and EGFR that regulates erlotinib-induced autophagy, thus contributing to erlotinib sensitivity in NSCLCs.
Collapse
|
14
|
Patel NH, Bloukh S, Alwohosh E, Alhesa A, Saleh T, Gewirtz DA. Autophagy and senescence in cancer therapy. Adv Cancer Res 2021; 150:1-74. [PMID: 33858594 DOI: 10.1016/bs.acr.2021.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tumor cells can undergo diverse responses to cancer therapy. While apoptosis represents the most desirable outcome, tumor cells can alternatively undergo autophagy and senescence. Both autophagy and senescence have the potential to make complex contributions to tumor cell survival via both cell autonomous and cell non-autonomous pathways. The induction of autophagy and senescence in tumor cells, preclinically and clinically, either individually or concomitantly, has generated interest in the utilization of autophagy modulating and senolytic therapies to target autophagy and senescence, respectively. This chapter summarizes the current evidence for the promotion of autophagy and senescence as fundamental responses to cancer therapy and discusses the complexity of their functional contributions to cell survival and disease outcomes. We also highlight current modalities designed to exploit autophagy and senescence in efforts to improve the efficacy of cancer therapy.
Collapse
Affiliation(s)
- Nipa H Patel
- Department of Pharmacology and Toxicology and Medicine, Virginia Commonwealth University, Richmond, VA, United States; Massey Cancer Center, Goodwin Research Laboratories, Virginia Commonwealth University, Richmond, VA, United States
| | - Sarah Bloukh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Enas Alwohosh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Ahmad Alhesa
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Tareq Saleh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - David A Gewirtz
- Department of Pharmacology and Toxicology and Medicine, Virginia Commonwealth University, Richmond, VA, United States; Massey Cancer Center, Goodwin Research Laboratories, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
15
|
Prolonged cetuximab treatment promotes p27 Kip1-mediated G1 arrest and autophagy in head and neck squamous cell carcinoma. Sci Rep 2021; 11:5259. [PMID: 33664437 PMCID: PMC7933308 DOI: 10.1038/s41598-021-84877-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Cetuximab, an anti-epidermal growth factor receptor (EGFR) monoclonal antibody, is an efficient anti-tumor therapeutic agent that inhibits the activation of EGFR; however, data related to the cellular effects of prolonged cetuximab treatment are limited. In this study, the long-term cellular outcome of prolonged cetuximab treatment and the related molecular mechanism were explored in a head and neck squamous cell carcinoma cell line constitutively expressing a fluorescent ubiquitination-based cell cycle indicator. Fluorescent time-lapse imaging was used to assess clonal growth, cell motility, and cell-cycle progression. Western blot analysis was performed to measure the level of phosphorylation and protein-expression following cetuximab treatment. Over 5 days cetuximab treatment decreased cell motility and enhanced G1 phase cell arrest in the central region of the colonies. Significantly decreased phosphorylation of retinoblastoma, Skp2, and Akt-mTOR proteins, accumulation of p27Kip1, and induction of type II LC3B were observed over 8 days cetuximab treatment. Results of the present study elucidate the cetuximab-dependent inhibition of cell migration, resulting in high cell density-related stress and persistent cell-cycle arrest at G1 phase culminating in autophagy. These findings provide novel molecular insights related to the anti-tumor effects of prolonged cetuximab treatment with the potential to improve future therapeutic strategy.
Collapse
|
16
|
Chern YJ, Tai IT. Adaptive response of resistant cancer cells to chemotherapy. Cancer Biol Med 2020; 17:842-863. [PMID: 33299639 PMCID: PMC7721100 DOI: 10.20892/j.issn.2095-3941.2020.0005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Despite advances in cancer therapeutics and the integration of personalized medicine, the development of chemoresistance in many patients remains a significant contributing factor to cancer mortality. Upon treatment with chemotherapeutics, the disruption of homeostasis in cancer cells triggers the adaptive response which has emerged as a key resistance mechanism. In this review, we summarize the mechanistic studies investigating the three major components of the adaptive response, autophagy, endoplasmic reticulum (ER) stress signaling, and senescence, in response to cancer chemotherapy. We will discuss the development of potential cancer therapeutic strategies in the context of these adaptive resistance mechanisms, with the goal of stimulating research that may facilitate the development of effective cancer therapy.
Collapse
Affiliation(s)
- Yi-Jye Chern
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z1L3, Canada.,Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia V5Z1L3, Canada
| | - Isabella T Tai
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z1L3, Canada.,Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia V5Z1L3, Canada
| |
Collapse
|
17
|
Role of PARP1-mediated autophagy in EGFR-TKI resistance in non-small cell lung cancer. Sci Rep 2020; 10:20924. [PMID: 33262410 PMCID: PMC7708842 DOI: 10.1038/s41598-020-77908-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/06/2020] [Indexed: 12/29/2022] Open
Abstract
Resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) has become the main clinical challenge of advanced lung cancer. This research aimed to explore the role of PARP1-mediated autophagy in the progression of TKI therapy. PARP1-mediated autophagy was evaluated in vitro by CCK-8 assay, clonogenic assay, immunofluorescence, and western blot in the HCC-827, H1975, and H1299 cells treated with icotinib (Ico), rapamycin, and AZD2281 (olaparib) alone or in combination. Our results and GEO dataset analysis confirmed that PARP1 is expressed at lower levels in TKI-sensitive cells than in TKI-resistant cells. Low PARP1 expression and high p62 expression were associated with good outcomes among patients with NSCLC after TKI therapy. AZD2281 and a lysosomal inhibitor reversed resistance to Ico by decreasing PARP1 and LC3 in cells, but an mTOR inhibitor did not decrease Ico resistance. The combination of AZD2281 and Ico exerted a markedly enhanced antitumor effect by reducing PARP1 expression and autophagy in vivo. Knockdown of PARP1 expression reversed the resistance to TKI by the mTOR/Akt/autophagy pathway in HCC-827IR, H1975, and H1299 cells. PARP1-mediated autophagy is a key pathway for TKI resistance in NSCLC cells that participates in the resistance to TKIs. Olaparib may serve as a novel method to overcome the resistance to TKIs.
Collapse
|
18
|
Molecular Insights into the Multifunctional Role of Natural Compounds: Autophagy Modulation and Cancer Prevention. Biomedicines 2020; 8:biomedicines8110517. [PMID: 33228222 PMCID: PMC7699596 DOI: 10.3390/biomedicines8110517] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a vacuolar, lysosomal degradation pathway for injured and damaged protein molecules and organelles in eukaryotic cells, which is controlled by nutrients and stress responses. Dysregulation of cellular autophagy may lead to various diseases such as neurodegenerative disease, obesity, cardiovascular disease, diabetes, and malignancies. Recently, natural compounds have come to attention for being able to modulate the autophagy pathway in cancer prevention, although the prospective role of autophagy in cancer treatment is very complex and not yet clearly elucidated. Numerous synthetic chemicals have been identified that modulate autophagy and are favorable candidates for cancer treatment, but they have adverse side effects. Therefore, different phytochemicals, which include natural compounds and their derivatives, have attracted significant attention for use as autophagy modulators in cancer treatment with minimal side effects. In the current review, we discuss the promising role of natural compounds in modulating the autophagy pathway to control and prevent cancer, and provide possible therapeutic options.
Collapse
|
19
|
Tong CWS, Wu MMX, Yan VW, Cho WCS, To KKW. Repurposing loperamide to overcome gefitinib resistance by triggering apoptosis independent of autophagy induction in KRAS mutant NSCLC cells. Cancer Treat Res Commun 2020; 25:100229. [PMID: 33152554 DOI: 10.1016/j.ctarc.2020.100229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/17/2020] [Accepted: 10/23/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND Gefitinib is an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) approved for first-line treatment of non-small cell lung cancer (NSCLC) with sensitizing EGFR mutations. However, NSCLC patients bearing mutant KRAS are inherently unresponsive to gefitinib. Defective autophagy was proposed to mediate resistance to EGFR-TKIs. In this study, the reversal of primary resistance to gefitinib in NSCLC by putative autophagy inducers was investigated. MATERIALS AND METHODS A few putative autophagy inducers were investigated in NSCLC cells harboring KRAS or EGFR mutations. Quantitative real-time PCR and Western blot analysis were used to evaluate expression of autophagy-related genes and proteins. Sulforhodamine B assay was used to evaluate cytotoxicity of drug combinations. Flow cytometric asssays were used to study apoptotic and cell cycle effects. RESULTS The antidiarrheal agent loperamide was identified as an autophagy inducer. Loperamide promoted the formation of autophagosomes and it potentiated the cytotoxic effect of gefitinib specifically in NSCLC cells bearing mutant KRAS and wild-type EGFR. Gefitinib-loperamide combination enhanced apoptosis and G1 cell cycle arrest, both of which could not be reversed by pharmacological autophagy inhibitor (3-methyladenine). Moreover, synergistic anticancer effect of gefitinib-loperamide combination was observed in both autophagy-proficient (Atg5-wild type) and -deficient (Atg5-knockout) mouse embryonic fibroblasts. Loperamide overcome gefitinib resistance in NSCLC harboring mutant KRAS and wild-type EGFR through increased apoptosis but independent of autophagy induction. CONCLUSION Loperamide could be repurposed to overcome primary resistance to gefitinib in KRAS-mutation bearing NSCLC as it also helps relieve the common side effect of diarrhea caused by EGFR-TKIs.
Collapse
Affiliation(s)
- Christy W S Tong
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mia M X Wu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vivi W Yan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
20
|
Chavez-Dominguez R, Perez-Medina M, Lopez-Gonzalez JS, Galicia-Velasco M, Aguilar-Cazares D. The Double-Edge Sword of Autophagy in Cancer: From Tumor Suppression to Pro-tumor Activity. Front Oncol 2020; 10:578418. [PMID: 33117715 PMCID: PMC7575731 DOI: 10.3389/fonc.2020.578418] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
During tumorigenesis, cancer cells are exposed to a wide variety of intrinsic and extrinsic stresses that challenge homeostasis and growth. Cancer cells display activation of distinct mechanisms for adaptation and growth even in the presence of stress. Autophagy is a catabolic mechanism that aides in the degradation of damaged intracellular material and metabolite recycling. This activity helps meet metabolic needs during nutrient deprivation, genotoxic stress, growth factor withdrawal and hypoxia. However, autophagy plays a paradoxical role in tumorigenesis, depending on the stage of tumor development. Early in tumorigenesis, autophagy is a tumor suppressor via degradation of potentially oncogenic molecules. However, in advanced stages, autophagy promotes the survival of tumor cells by ameliorating stress in the microenvironment. These roles of autophagy are intricate due to their interconnection with other distinct cellular pathways. In this review, we present a broad view of the participation of autophagy in distinct phases of tumor development. Moreover, autophagy participation in important cellular processes such as cell death, metabolic reprogramming, metastasis, immune evasion and treatment resistance that all contribute to tumor development, is reviewed. Finally, the contribution of the hypoxic and nutrient deficient tumor microenvironment in regulation of autophagy and these hallmarks for the development of more aggressive tumors is discussed.
Collapse
Affiliation(s)
- Rodolfo Chavez-Dominguez
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico.,Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Mario Perez-Medina
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico.,Laboratorio de Quimioterapia Experimental, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jose S Lopez-Gonzalez
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Miriam Galicia-Velasco
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Dolores Aguilar-Cazares
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| |
Collapse
|
21
|
Pecoraro A, Pagano M, Russo G, Russo A. Role of Autophagy in Cancer Cell Response to Nucleolar and Endoplasmic Reticulum Stress. Int J Mol Sci 2020; 21:ijms21197334. [PMID: 33020404 PMCID: PMC7582989 DOI: 10.3390/ijms21197334] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022] Open
Abstract
Eukaryotic cells are exposed to many internal and external stimuli that affect their fate. In particular, the exposure to some of these stimuli induces stress triggering a variety of stress responses aimed to re-establish cellular homeostasis. It is now established that the deregulation of stress response pathways plays a central role in cancer initiation and progression, allowing the adaptation of cells to an altered state in the new environment. Autophagy is a tightly regulated pathway which exerts “housekeeping” role in physiological processes. Recently, a growing amount of evidence highlighted the crucial role of autophagy in the regulation of integrated stress responses, including nucleolar and endoplasmic reticulum. In this review, we attempt to afford an overview of the complex role of nucleolar and endoplasmic reticulum stress-response mechanisms in the regulation of autophagy in cancer and cancer treatment.
Collapse
Affiliation(s)
| | | | - Giulia Russo
- Correspondence: (G.R.); (A.R.); Tel.: +39-081-678415 (G.R.); +39-081-678414 (A.R.)
| | - Annapina Russo
- Correspondence: (G.R.); (A.R.); Tel.: +39-081-678415 (G.R.); +39-081-678414 (A.R.)
| |
Collapse
|
22
|
Zipporah E B, Patra B, Govarthanan K, Yadav R, Mohan S, Shyamsunder P, Verma RS. Defective cell proliferation is an attribute of overexpressed Notch1 receptor and impaired autophagy in Fanconi Anemia. Genomics 2020; 112:4628-4639. [PMID: 32800766 DOI: 10.1016/j.ygeno.2020.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/01/2020] [Accepted: 08/07/2020] [Indexed: 01/22/2023]
Abstract
Fanconi Anemia (FA) is an inherited bone marrow failure syndrome caused by mutation in FA pathway proteins, involved in Interstrand Cross Link (ICL) repair. FA cells exhibit in vitro proliferation arrest due to accumulated DNA damage, hence understanding the rescue mechanism that renders proliferation advantage is required. Gene expression profiling performed in FA patients Peripheral Blood Mononuclear Cells (PBMCs) revealed a wide array of dysregulated biological processes. Functional enrichment and gene clustering analysis showed crippled autophagy process and escalated Notch signalling pathway in FA clinical samples and cell lines. Notch pathway mediators overexpression were reverted in FANCA mutant cells when treated with Rapamycin, an autophagy inducer. Additionally, Rapamycin stabilized cell viability after treatment with the DNA damaging agent, MitomycinC (MMC) and enhanced cell proliferation genes expression in FANCA mutant cells. Inherently FANCA mutant cells express impaired autophagy; thus activation of autophagy channelizes Notch signalling cascade and sustains cell viability.
Collapse
Affiliation(s)
- Binita Zipporah E
- Stem Cell and Molecular Biology Lab, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, Tamilnadu, India
| | - Bamadeb Patra
- Stem Cell and Molecular Biology Lab, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, Tamilnadu, India
| | - Kavitha Govarthanan
- Stem Cell and Molecular Biology Lab, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, Tamilnadu, India
| | - Rajesh Yadav
- Stem Cell and Molecular Biology Lab, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, Tamilnadu, India
| | - Sheila Mohan
- Apollo Speciality hospital, 320 Padma complex, Anna Salai, Chennai 600 035, India; Registry for Fanconi Anemia in India (REFAIN), India
| | - Pavithra Shyamsunder
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 119077, Singapore
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology Lab, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, Tamilnadu, India.
| |
Collapse
|
23
|
Hu Y, Zhang J, Liu Q, Ke M, Li J, Suo W, Guo W, Ma A. Torin2 inhibits the EGFR-TKI resistant Non-Small Lung Cancer cell proliferation through negative feedback regulation of Akt/mTOR signaling. J Cancer 2020; 11:5746-5757. [PMID: 32913468 PMCID: PMC7477446 DOI: 10.7150/jca.37417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/17/2020] [Indexed: 01/06/2023] Open
Abstract
It is known that mammalian target of rapamycin (mTOR) signaling plays an important role in NSCLC cells proliferation. Torin2 is a second-generation ATP-competitive inhibitor which is selective for mTOR activity. In this study, we investigated whether torin2 was effective against lung cancer cells, especially EGFR-TKIs resistant NSCLC cells. We found that torin2 dramatically inhibited EGFR-TKI resistant cells viability in vitro. In xenograft model, torin2 treatment significantly reduced the volume and weight of xenograft tumor in the erlotinib resistant PC9/E cells. Additionally, autophagy protein of phosphatidylethanolamine-modified microtubule-associated protein light-chain 3II/I (LC3II/I) increased in PC9/E after torin2 treatment. Torin2 blocked the level of phosphorylated S6 and the phosphorylation of Akt at both T308 and S473 sites compared with erlotinib treatment. Furthermore, TUNEL assay showed that apoptosis of tumor tissue increased significantly in the torin2 treatment group. Immunohistochemical analysis demonstrated that tumor angiogenesis was obviously inhibited by torin2 treatment in EGFR-TKI resistant group. Collectively, our results suggested that torin2 could inhibit the NSCLC cells proliferation by negative feedback regulation of Akt/mTOR signaling and inducing autophagy. This suggests that torin2 could be a novel therapeutic approach for EGFR-TKI resistant NSCLC.
Collapse
Affiliation(s)
- Yi Hu
- Department of Clinical Laboratory, The first affiliated hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Ji Zhang
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, China
| | - Qun Liu
- Department of Respiratory and Critical Medicine, The first affiliated hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Mingyao Ke
- Department of Respiratory and Critical Medicine, The secondary hospital of Xiamen Medicine school, Xiamen, China
| | - Jiurong Li
- Department of Respiratory and Critical Medicine, The first affiliated hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Wenhao Suo
- Department of Pathology, The first affiliated hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Weixi Guo
- Department of Thoracic Surgery, The first affiliated hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Aiping Ma
- Department of Respiratory and Critical Medicine, The first affiliated hospital, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
24
|
PPARδ is a regulator of autophagy by its phosphorylation. Oncogene 2020; 39:4844-4853. [PMID: 32439863 DOI: 10.1038/s41388-020-1329-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
Abstract
In response to nutrient deficiency, autophagy degrades cytoplasmic materials and organelles in lysosomes, which is nutrient recycling, whereas activation of EGFR mediates autophagy suppression in response to growth factors. It is unclear whether PPARδ could be the regulator of autophagy in response to active EGFR. Here we found that EGFR induced PPARδ phosphorylation at tyrosine-108 leading to increased binding of LC3 to PPARδ by its LIR (LC3 interacting region) motif, consequently, inhibited autophagic flux. Conversely, EGFR inhibitor treatment reversed this event. Furthermore, EGFR-mediated PPARδ phosphorylation at tyrosine-108 led to autophagy inhibition and tumor growth. These findings suggest that PPARδ serves as a regulator of autophagy by its phosphorylation.
Collapse
|
25
|
Singh S, Shukla R. Key Signaling Pathways Engaged in Cancer Management: Current Update. CURRENT CANCER THERAPY REVIEWS 2020. [DOI: 10.2174/1573394714666180904122412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
<P>Background: Till today cancer is still challenging to treat and needs more active therapeutic approaches. Participation of complex multi-pathway cell propagation instrument is a noteworthy issue in creating active anticancer therapeutic methodologies. Immune evasions, metabolic modifications, imperfect apoptotic component, modification in upstream or downstream RAS signaling, altered nuclear factor kappa B actions, imbalanced autophagy design and distortedly controlled angiogenesis are distinguishing features of cancer. </P><P> Methods: On the basis of systemic research and analysis of the current online available database, we analyzed and reported about the key signaling pathway engaged with cancer development outlining the effectiveness of different therapeutic measures and targets that have been created or are being researched to obstruct the cancer development. </P><P> Results: A number of signaling pathways, for example, resistant, metabolism, apoptosis, RAS protein, nuclear factor kappa B, autophagy, and angiogenesis have been perceived as targets for drug treatment to control the advancement, development and administration of cancer. </P><P> Conclusion: A noteworthy challenge for future medication advancement is to detail a synthesis treatment influencing distinctive targets to enhance the treatment of cancer.</P>
Collapse
Affiliation(s)
- Sanjiv Singh
- National Institute of Pharmaceutical Science and Education, Shree Bhawani Paper Mill Road, ITI Compound, Raebareli-229010 (U.P.), India
| | - Rahul Shukla
- National Institute of Pharmaceutical Science and Education, Shree Bhawani Paper Mill Road, ITI Compound, Raebareli-229010 (U.P.), India
| |
Collapse
|
26
|
Wu M, Zhang P. EGFR-mediated autophagy in tumourigenesis and therapeutic resistance. Cancer Lett 2020; 469:207-216. [DOI: 10.1016/j.canlet.2019.10.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022]
|
27
|
Ho CJ, Gorski SM. Molecular Mechanisms Underlying Autophagy-Mediated Treatment Resistance in Cancer. Cancers (Basel) 2019; 11:E1775. [PMID: 31717997 PMCID: PMC6896088 DOI: 10.3390/cancers11111775] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Despite advances in diagnostic tools and therapeutic options, treatment resistance remains a challenge for many cancer patients. Recent studies have found evidence that autophagy, a cellular pathway that delivers cytoplasmic components to lysosomes for degradation and recycling, contributes to treatment resistance in different cancer types. A role for autophagy in resistance to chemotherapies and targeted therapies has been described based largely on associations with various signaling pathways, including MAPK and PI3K/AKT signaling. However, our current understanding of the molecular mechanisms underlying the role of autophagy in facilitating treatment resistance remains limited. Here we provide a comprehensive summary of the evidence linking autophagy to major signaling pathways in the context of treatment resistance and tumor progression, and then highlight recently emerged molecular mechanisms underlying autophagy and the p62/KEAP1/NRF2 and FOXO3A/PUMA axes in chemoresistance.
Collapse
Affiliation(s)
- Cally J. Ho
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Sharon M. Gorski
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
28
|
Kwon Y, Kim M, Jung HS, Kim Y, Jeoung D. Targeting Autophagy for Overcoming Resistance to Anti-EGFR Treatments. Cancers (Basel) 2019; 11:cancers11091374. [PMID: 31527477 PMCID: PMC6769649 DOI: 10.3390/cancers11091374] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/30/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) plays critical roles in cell proliferation, tumorigenesis, and anti-cancer drug resistance. Overexpression and somatic mutations of EGFR result in enhanced cancer cell survival. Therefore, EGFR can be a target for the development of anti-cancer therapy. Patients with cancers, including non-small cell lung cancers (NSCLC), have been shown to response to EGFR-tyrosine kinase inhibitors (EGFR-TKIs) and anti-EGFR antibodies. However, resistance to these anti-EGFR treatments has developed. Autophagy has emerged as a potential mechanism involved in the acquired resistance to anti-EGFR treatments. Anti-EGFR treatments can induce autophagy and result in resistance to anti-EGFR treatments. Autophagy is a programmed catabolic process stimulated by various stimuli. It promotes cellular survival under these stress conditions. Under normal conditions, EGFR-activated phosphoinositide 3-kinase (PI3K)/AKT serine/threonine kinase (AKT)/mammalian target of rapamycin (mTOR) signaling inhibits autophagy while EGFR/rat sarcoma viral oncogene homolog (RAS)/mitogen-activated protein kinase kinase (MEK)/mitogen-activated protein kinase (MAPK) signaling promotes autophagy. Thus, targeting autophagy may overcome resistance to anti-EGFR treatments. Inhibitors targeting autophagy and EGFR signaling have been under development. In this review, we discuss crosstalk between EGFR signaling and autophagy. We also assess whether autophagy inhibition, along with anti-EGFR treatments, might represent a promising approach to overcome resistance to anti-EGFR treatments in various cancers. In addition, we discuss new developments concerning anti-autophagy therapeutics for overcoming resistance to anti-EGFR treatments in various cancers.
Collapse
Affiliation(s)
- Yoojung Kwon
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea.
| | - Misun Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea.
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea.
| | - Youngmi Kim
- Institute of New Frontier Research, College of Medicine, Hallym University, Chunchon 24251, Korea.
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea.
| |
Collapse
|
29
|
Meng L, Liu S, Ding P, Chang S, Sang M. Circular RNA ciRS-7 inhibits autophagy of ESCC cells by functioning as miR-1299 sponge to target EGFR signaling. J Cell Biochem 2019; 121:1039-1049. [PMID: 31490018 DOI: 10.1002/jcb.29339] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/05/2019] [Indexed: 01/01/2023]
Abstract
Autophagy is a kind of intracellular degradation pathway which could be regulated by many noncoding RNAs. ciRS-7, also called CDR1as, is a circular RNA that is relatively well studied at present. In our recent study, we have found that the expression of ciRS-7 is abnormally increased in the esophageal squamous cell carcinoma (ESCC), and may function as an oncogene to accelerate ESCC progression through sponging miR-876-5p. Meanwhile, another study showed that ciRS-7 is highly expressed in the triple-negative breast cancer (TNBC) and may function as a competing endogenous RNA of miR-1299 to maintain the high migration and invasive capacity of TNBC cells. Of interest, in the present work, we observed that ciRS-7 could inhibit starvation or rapamycin-induced autophagy of ESCC cells and miR-1299 promotes starvation or rapamycin-induced autophagy of ESCC cells. Mechanically, miR-1299 could directly bind to the 3'-untranslated region of epidermal growth factor receptor (EGFR) and then affects its downstream Akt-mTOR pathway in ESCC cells. Consistent with our past findings, ciRS-7 could also sponge miR-1299 in ESCC cells. Taken together, this study has shed light on that circular RNA ciRS-7 inhibits autophagy of ESCC cells by functioning as miR-1299 sponge to target EGFR signaling.
Collapse
Affiliation(s)
- Lingjiao Meng
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Sihua Liu
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Pingan Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Sheng Chang
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Meixiang Sang
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
30
|
Fong W, To KKW. Drug repurposing to overcome resistance to various therapies for colorectal cancer. Cell Mol Life Sci 2019; 76:3383-3406. [PMID: 31087119 PMCID: PMC11105507 DOI: 10.1007/s00018-019-03134-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/06/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023]
Abstract
Emergence of novel treatment modalities provides effective therapeutic options, apart from conventional cytotoxic chemotherapy, to fight against colorectal cancer. Unfortunately, drug resistance remains a huge challenge in clinics, leading to invariable occurrence of disease progression after treatment initiation. While novel drug development is unfavorable in terms of time frame and costs, drug repurposing is one of the promising strategies to combat resistance. This approach refers to the application of clinically available drugs to treat a different disease. With the well-established safety profile and optimal dosing of these approved drugs, their combination with current cancer therapy is suggested to provide an economical, safe and efficacious approach to overcome drug resistance and prolong patient survival. Here, we review both preclinical and clinical efficacy, as well as cellular mechanisms, of some extensively studied repurposed drugs, including non-steroidal anti-inflammatory drugs, statins, metformin, chloroquine, disulfiram, niclosamide, zoledronic acid and angiotensin receptor blockers. The three major treatment modalities in the management of colorectal cancer, namely classical cytotoxic chemotherapy, molecular targeted therapy and immunotherapy, are covered in this review.
Collapse
Affiliation(s)
- Winnie Fong
- Faculty of Medicine, School of Pharmacy, Room 801N, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Area 39, Shatin, New Territories, Hong Kong SAR, China
| | - Kenneth K W To
- Faculty of Medicine, School of Pharmacy, Room 801N, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Area 39, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
31
|
Yang L, Ying S, Hu S, Zhao X, Li M, Chen M, Zhu Y, Song P, Zhu L, Jiang T, An H, Yousafzai NA, Xu W, Zhang Z, Wang X, Feng L, Jin H. EGFR TKIs impair lysosome-dependent degradation of SQSTM1 to compromise the effectiveness in lung cancer. Signal Transduct Target Ther 2019; 4:25. [PMID: 31637005 PMCID: PMC6799834 DOI: 10.1038/s41392-019-0059-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 01/07/2023] Open
Abstract
Tyrosine kinase inhibitors for epidermal growth factor receptor (EGFR TKIs) greatly improved clinical outcomes of patients with non-small cell lung cancer (NSCLC). Unfortunately, primary and acquired resistance limits their clinical benefits. To overcome such resistance, new generations of EGFR TKIs have been developed by targeting newly identified mutations in EGFR. However, much less effort has been put into alternative strategies, such as targeting the intrinsic protective responses to EGFR TKIs. In this study, we found that EGFR TKIs, including gefitinib and AZD9291, impaired lysosome-dependent degradation of SQSTM1, thus compromising their anti-cancer efficiency. By accumulating in the lysosome lumen, gefitinib and AZD9291 attenuated lysosomal acidification and impaired autolysosomal degradation of SQSTM1 owing to their intrinsic alkalinity. As a result, SQSTM1 protein was stabilized in response to gefitinib and AZD9291 treatment and conferred EGFR TKI resistance. Depleting SQSTM1 significantly increased the sensitivity of NSCLC cells to gefitinib and AZD9291 both in vitro and in vivo. Furthermore, a chemically modified gefitinib analog lacking alkalinity displayed stronger inhibitory effects on NSCLC cells. Therefore, targeting accumulated SQSTM1 or chemically modified EGFR TKIs may represent new strategies to increase the effectiveness of EGFR targeted therapy.
Collapse
Affiliation(s)
- Lixian Yang
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Shilong Ying
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Shiman Hu
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Xiangtong Zhao
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Muchun Li
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Miaoqin Chen
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Yiran Zhu
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Ping Song
- Department of Medical Oncology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Liyuan Zhu
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Tingting Jiang
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Huimin An
- Department of Pathology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Neelum Aziz Yousafzai
- Department of Medical Oncology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Wenxia Xu
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Xian Wang
- Department of Medical Oncology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Lifeng Feng
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Leve F, Bonfim DP, Fontes G, Morgado-Díaz JA. Gold nanoparticles regulate tight junctions and improve cetuximab effect in colon cancer cells. Nanomedicine (Lond) 2019; 14:1565-1578. [PMID: 31215349 DOI: 10.2217/nnm-2019-0023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aim: Colon cancer (CC) is the second cause of cancer death worldwide. The use of nanoparticles for drug delivery has been increasing in cancer clinical trials over recent years. Materials & methods: We evaluated cytotoxicity of citrate-capped gold nanoparticles (GNPs) and the role they play on cell-cell adhesion. We also used GNP for delivery of cetuximab into different CC cell lines. Results: CC cells with well-formed tight junctions impair GNP uptake. Noncytotoxic concentration of GNP increases paracellular permeability in Caco-2 cells in a reversible way, concomitantly to tight junctions proteins CLDN1 and ZO-1 redistribution. GNP functionalized with cetuximab increases death of invasive HCT-116 CC cells. Conclusion: GNP can be used for drug delivery and can improve efficiency of CC therapy.
Collapse
Affiliation(s)
- Fernanda Leve
- Tissue Bioengineering Laboratory (Labio), Division of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality & Technology (Inmetro), Duque de Caxias, Brazil
| | - Daniella P Bonfim
- Tissue Bioengineering Laboratory (Labio), Division of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality & Technology (Inmetro), Duque de Caxias, Brazil
| | - Giselle Fontes
- Cellular & Molecular Oncobiology Program, National Institute of Cancer (INCa), Rio de Janeiro, Brazil
| | - José A Morgado-Díaz
- Microscopy Applied to Life Sciences Laboratory (Lamav), Division of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality & Technology (Inmetro), Duque de Caxias, Brazil
| |
Collapse
|
33
|
Guo GF, Wang YX, Zhang YJ, Chen XX, Lu JB, Wang HH, Jiang C, Qiu HQ, Xia LP. Predictive and prognostic implications of 4E-BP1, Beclin-1, and LC3 for cetuximab treatment combined with chemotherapy in advanced colorectal cancer with wild-type KRAS: Analysis from real-world data. World J Gastroenterol 2019; 25:1840-1853. [PMID: 31057298 PMCID: PMC6478617 DOI: 10.3748/wjg.v25.i15.1840] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the main causes of cancer-related deaths in China and around the world. Advanced CRC (ACRC) patients suffer from a low cure rate though treated with targeted therapies. The response rate is about 50% to chemotherapy and cetuximab, a monoclonal antibody targeting epidermal growth factor receptor (EGFR) and used for ACRC with wild-type KRAS. It is important to identify more predictors of cetuximab efficacy to further improve precise treatment. Autophagy, showing a key role in the cancer progression, is influenced by the EGFR pathway. Whether autophagy can predict cetuximab efficacy in ACRC is an interesting topic.
AIM To investigate the effect of autophagy on the efficacy of cetuximab in colon cancer cells and ACRC patients with wild-type KRAS.
METHODS ACRC patients treated with cetuximab plus chemotherapy, with detailed data and tumor tissue, at Sun Yat-sen University Cancer Center from January 1, 2005, to October 1, 2015, were studied. Expression of autophagy-related proteins [Beclin1, microtubule-associated protein 1A/B-light chain 3 (LC3), and 4E-binding protein 1 (4E-BP1)] was examined by Western blot in CRC cells and by immunohistochemistry in cancerous and normal tissues. The effect of autophagy on cetuximab-treated cancer cells was confirmed by MTT assay. The associations between Beclin1, LC3, and 4E-BP1 expression in tumor tissue and the efficacy of cetuximab-based therapy were analyzed.
RESULTS In CACO-2 cells exposed to cetuximab, LC3 and 4E-BP1 were upregulated, and P62 was downregulated. Autophagosome formation was observed, and autophagy increased the efficacy of cetuximab. In 68 ACRC patients, immunohistochemistry showed that Beclin1 levels were significantly correlated with those of LC3 (0.657, P < 0.001) and 4E-BP1 (0.211, P = 0.042) in ACRC tissues. LC3 was significantly overexpressed in tumor tissues compared to normal tissues (P < 0.001). In 45 patients with wild-type KRAS, the expression levels of these three proteins were not related to progression-free survival; however, the expression levels of Beclin1 (P = 0.010) and 4E-BP1 (P = 0.005), pathological grade (P = 0.002), and T stage (P = 0.004) were independent prognostic factors for overall survival (OS).
CONCLUSION The effect of cetuximab on colon cancer cells might be improved by autophagy. LC3 is overexpressed in tumor tissues, and Beclin1 and 4E-BP1 could be significant predictors of OS in ACRC patients treated with cetuximab.
Collapse
Affiliation(s)
- Gui-Fang Guo
- VIP Department, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong Province, China
| | - Yi-Xing Wang
- VIP Department, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong Province, China
| | - Yi-Jun Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong Province, China
- Pathology Department, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Xiu-Xing Chen
- VIP Department, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong Province, China
| | - Jia-Bin Lu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong Province, China
- Pathology Department, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Hao-Hua Wang
- VIP Department, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong Province, China
| | - Chang Jiang
- VIP Department, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong Province, China
| | - Hui-Quan Qiu
- VIP Department, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong Province, China
| | - Liang-Ping Xia
- VIP Department, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong Province, China
| |
Collapse
|
34
|
Antonaci G, Cossa LG, Muscella A, Vetrugno C, De Pascali SA, Fanizzi FP, Marsigliante S. [Pt( O,O'-acac)(γ-acac)(DMS)] Induces Autophagy in Caki-1 Renal Cancer Cells. Biomolecules 2019; 9:biom9030092. [PMID: 30845773 PMCID: PMC6468382 DOI: 10.3390/biom9030092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/23/2019] [Accepted: 02/26/2019] [Indexed: 01/12/2023] Open
Abstract
We have demonstrated the cytotoxic effects of [Pt(O,O′-acac)(γ-acac)(dimethyl sulfide (DMS))] on various immortalized cell lines, in primary cultures, and in murine xenograft models in vivo. Recently, we also showed that [Pt(O,O′-acac)(γ-acac)(DMS)] is able to kill Caki-1 renal cells both in vivo and in vitro. In the present paper, apoptotic and autophagic effects of [Pt(O,O′-acac)(γ-acac)(DMS)] and cisplatin were studied and compared using Caki-1 cancerous renal cells. The effects of cisplatin include activation of caspases, proteolysis of enzyme poly ADP ribose polymerase (PARP), control of apoptosis modulators B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), and BH3-interacting domain death agonist (Bid), and cell cycle arrest in G2/M phase. Conversely, [Pt(O,O′-acac)(γ-acac)(DMS)] did not induce caspase activation, nor chromatin condensation or DNA fragmentation. The effects of [Pt(O,O′-acac)(γ-acac)(DMS)] include microtubule-associated proteins 1A/1B light chain 3B (LC3)-I to LC3-II conversion, Beclin-1 and Atg-3, -4, and -5 increase, Bcl-2 decrease, and monodansylcadaverine accumulation in autophagic vacuoles. [Pt(O,O′-acac)(γ-acac)(DMS)] also modulated various kinases involved in intracellular transduction regulating cell fate. [Pt(O,O′-acac)(γ-acac)(DMS)] inhibited the phosphorylation of mammalian target of rapmycin (mTOR), p70S6K, and AKT, and increased the phosphorylation of c-Jun N-terminal kinase (JNK1/2), a kinase activity pattern consistent with autophagy induction. In conclusion, while in past reports the high cytotoxicity of [Pt(O,O′-acac)(γ-acac)(DMS)] was always attributed to its ability to trigger an apoptotic process, in this paper we show that Caki-1 cells die as a result of the induction of a strong autophagic process.
Collapse
Affiliation(s)
- Giovanna Antonaci
- Laboratory of Cell Physiology, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy.
| | - Luca Giulio Cossa
- Laboratory of Cell Physiology, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy.
| | - Antonella Muscella
- Laboratory of Cell Pathology, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy.
| | - Carla Vetrugno
- Laboratory of Cell Pathology, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy.
| | - Sandra Angelica De Pascali
- Laboratory of General Inorganic Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy.
| | - Francesco Paolo Fanizzi
- Laboratory of General Inorganic Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy.
| | - Santo Marsigliante
- Laboratory of Cell Physiology, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy.
| |
Collapse
|
35
|
Chen CF, Lu CC, Chiang JH, Chiu HY, Yang JS, Lee CY, Way TD, Huang HJ. Synergistic inhibitory effects of cetuximab and curcumin on human cisplatin-resistant oral cancer CAR cells through intrinsic apoptotic process. Oncol Lett 2018; 16:6323-6330. [PMID: 30333889 PMCID: PMC6176463 DOI: 10.3892/ol.2018.9418] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 08/01/2018] [Indexed: 12/19/2022] Open
Abstract
Cetuximab, an epidermal growth factor receptor (EGFR)-targeting monoclonal antibody (mAb), is a novel targeted therapy for the treatment of patients with oral cancer. Cetuximab can be used in combination with chemotherapeutic agents to prolong the overall survival rates of patients with oral cancer. Curcumin is a traditional Chinese medicine, and it has been demonstrated to have growth-inhibiting effects on oral cancer cells. However, information regarding the combination of cetuximab and curcumin in drug-resistant oral cancer cells is lacking, and its underlying mechanism remains unclear. The purpose of the present study was to explore the oral anticancer effects of cetuximab combined with curcumin on cisplatin-resistant oral cancer CAR cell apoptosis in vitro. The results demonstrated that combination treatment synergistically potentiated the effect of cetuximab and curcumin on the suppression of cell viability and induction of apoptosis in CAR cells. Cetuximab and curcumin combination induced apoptosis and dramatically increased caspase-3 and caspase-9 activities compared with singular treatment. Combination treatment also markedly suppressed the protein expression levels of EGFR and mitogen-activated protein kinases (MAPKs) signaling (phosphorylation of ERK, JNK and p38). The results demonstrated that co-treatment with cetuximab and curcumin exerts synergistic oral anticancer effects on CAR cells through the suppression of the EGFR signaling by regulation of the MAPK pathway.
Collapse
Affiliation(s)
- Chin-Fu Chen
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| | - Chi-Cheng Lu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, R.O.C
| | - Jo-Hua Chiang
- Department of Nursing, Chung Jen Catholic Junior College, Chiayi County 622, Taiwan, R.O.C
| | - Hong-Yi Chiu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, R.O.C
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Chao-Ying Lee
- Department of Pharmacy, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Tzong-Der Way
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Hao-Jen Huang
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan, R.O.C.,Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| |
Collapse
|
36
|
Kucharewicz K, Dudkowska M, Zawadzka A, Ogrodnik M, Szczepankiewicz AA, Czarnocki Z, Sikora E. Simultaneous induction and blockade of autophagy by a single agent. Cell Death Dis 2018; 9:353. [PMID: 29500364 PMCID: PMC5834631 DOI: 10.1038/s41419-018-0383-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 11/10/2022]
Abstract
Besides cell death, autophagy and cell senescence are the main outcomes of anticancer treatment. We demonstrate that tacrine-melatonin heterodimer C10, a potent anti-Alzheimer’s disease drug, has an antiproliferative effect on MCF-7 breast cancer cells. The main cell response to a 24 h-treatment with C10 was autophagy enhancement accompanied by inhibition of mTOR and AKT pathways. Significantly increased autophagy markers, such as LC3B- and ATG16L-positive vesicles, confirmed autophagy induction by C10. However, analysis of autophagic flux using mCherry-GFP-LC3B construct revealed inhibition of autophagy by C10 at the late-stage. Moreover, electron microscopy and analysis of colocalization of LC3B and LAMP-1 proteins provided evidence of autophagosome-lysosome fusion with concomitant inhibition of autolysosomal degradation function. After transient treatment with IC50 dose of C10 followed by cell culture without the drug, 20% of MCF-7 cells displayed markers of senescence. On the other hand, permanent cell treatment with C10 resulted in massive cell death on the 5th or 6th day. Recently, an approach whereby autophagy is induced by one compound and simultaneously blocked by the use of another one has been proposed as a novel anticancer strategy. We demonstrate that the same effect may be achieved using a single agent, C10. Our findings offer a new, promising strategy for anticancer treatment.
Collapse
Affiliation(s)
- Karolina Kucharewicz
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Magdalena Dudkowska
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Anna Zawadzka
- Laboratory of Natural Products Chemistry, Faculty of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093, Warsaw, Poland
| | - Mikolaj Ogrodnik
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.,Newcastle University Institute for Ageing, Institute for Cell and Molecular Biosciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Andrzej A Szczepankiewicz
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Zbigniew Czarnocki
- Laboratory of Natural Products Chemistry, Faculty of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093, Warsaw, Poland
| | - Ewa Sikora
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| |
Collapse
|
37
|
Wechman SL, Pradhan AK, DeSalle R, Das SK, Emdad L, Sarkar D, Fisher PB. New Insights Into Beclin-1: Evolution and Pan-Malignancy Inhibitor Activity. Adv Cancer Res 2017; 137:77-114. [PMID: 29405978 DOI: 10.1016/bs.acr.2017.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy is a functionally conserved self-degradation process that facilitates the survival of eukaryotic life via the management of cellular bioenergetics and maintenance of the fidelity of genomic DNA. The first known autophagy inducer was Beclin-1. Beclin-1 is expressed in multicellular eukaryotes ranging throughout plants to animals, comprising a nonmonophyllic group, as shown in this report via aggressive BLAST searches. In humans, Beclin-1 is a haploinsuffient tumor suppressor as biallelic deletions have not been observed in patient tumors clinically. Therefore, Beclin-1 fails the Knudson hypothesis, implicating expression of at least one Beclin-1 allele is essential for cancer cell survival. However, Beclin-1 is frequently monoallelically deleted in advanced human cancers and the expression of two Beclin-1 allelles is associated with greater anticancer effects. Overall, experimental evidence suggests that Beclin-1 inhibits tumor formation, angiogenesis, and metastasis alone and in cooperation with the tumor suppressive molecules UVRAG, Bif-1, Ambra1, and MDA-7/IL-24 via diverse mechanisms of action. Conversely, Beclin-1 is upregulated in cancer stem cells (CSCs), portending a role in cancer recurrence, and highlighting this molecule as an intriguing molecular target for the treatment of CSCs. Many aspects of Beclin-1's biological effects remain to be studied. The consequences of these BLAST searches on the molecular evolution of Beclin-1, and the eukaryotic branches of the tree of life, are discussed here in greater detail with future inquiry focused upon protist taxa. Also in this review, the effects of Beclin-1 on tumor suppression and cancer malignancy are discussed. Beclin-1 holds significant promise for the development of novel targeted cancer therapeutics and is anticipated to lead to a many advances in our understanding of eukaryotic evolution, multicellularity, and even the treatment of CSCs in the coming decades.
Collapse
Affiliation(s)
- Stephen L Wechman
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Anjan K Pradhan
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Rob DeSalle
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, United States
| | - Swadesh K Das
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Devanand Sarkar
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
38
|
Fraser J, Cabodevilla AG, Simpson J, Gammoh N. Interplay of autophagy, receptor tyrosine kinase signalling and endocytic trafficking. Essays Biochem 2017; 61:597-607. [PMID: 29233871 PMCID: PMC5869858 DOI: 10.1042/ebc20170091] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/30/2017] [Accepted: 11/03/2017] [Indexed: 01/15/2023]
Abstract
Vesicular trafficking events play key roles in the compartmentalization and proper sorting of cellular components. These events have crucial roles in sensing external signals, regulating protein activities and stimulating cell growth or death decisions. Although mutations in vesicle trafficking players are not direct drivers of cellular transformation, their activities are important in facilitating oncogenic pathways. One such pathway is the sensing of external stimuli and signalling through receptor tyrosine kinases (RTKs). The regulation of RTK activity by the endocytic pathway has been extensively studied. Compelling recent studies have begun to highlight the association between autophagy and RTK signalling. The influence of this interplay on cellular status and its relevance in disease settings will be discussed here.
Collapse
Affiliation(s)
- Jane Fraser
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K
| | - Ainara G Cabodevilla
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K
| | - Joanne Simpson
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K
| | - Noor Gammoh
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
| |
Collapse
|
39
|
Lei Y, Wang S, Ren B, Wang J, Chen J, Lu J, Zhan S, Fu Y, Huang L, Tan J. CHOP favors endoplasmic reticulum stress-induced apoptosis in hepatocellular carcinoma cells via inhibition of autophagy. PLoS One 2017; 12:e0183680. [PMID: 28841673 PMCID: PMC5571976 DOI: 10.1371/journal.pone.0183680] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 08/09/2017] [Indexed: 12/19/2022] Open
Abstract
C/EBP-homologous protein (CHOP) is an important component of the endoplasmic reticulum (ER) stress response. We demonstrated the induction of ER stress in response to tunicamycin stimulation, as evidenced by increased expression of chaperone proteins Grp78, Grp94, and enhanced eukaryotic initiation factor 2 subunit 1 (eIF2α) phosphorylation in hepatocellular carcinoma cells. Tunicamycin-induced ER stress resulted in apoptosis and autophagy simultaneously. While inhibition of autophagy mediated by 3-methyladenine pretreatment or direct knockdown of LC3B promoted cell apoptosis, activation of autophagy with rapamycin decreased tunicamycin- induced apoptosis in HCC cells. Furthermore, CHOP was shown to be significantly upregulated upon treatment with tunicamycin in HCC cells. Specific knockdown of CHOP not only enhanced tunicamycin-induced autophagy, but also significantly attenuated ER stress-induced apoptosis in HCC cells. Accordingly, simultaneous inhibition of autophagy in HCC cells with CHOP-knockdown could partially resensitize ER stress-induced apoptosis. Taken together, our data indicate that CHOP may favor ER stress-induced apoptosis in HCC cells via inhibition of autophagy in vitro.
Collapse
Affiliation(s)
- Yan Lei
- Department of Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Shuiliang Wang
- Department of Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Bingshuang Ren
- Department of Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Jin Wang
- Department of Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Jin Chen
- Department of Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Jun Lu
- Department of Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Shihuai Zhan
- Department of Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Yunfeng Fu
- Department of Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Lianghu Huang
- Department of Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
- * E-mail: (LH); (JT)
| | - Jianming Tan
- Department of Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
- * E-mail: (LH); (JT)
| |
Collapse
|
40
|
Lampada A, O'Prey J, Szabadkai G, Ryan KM, Hochhauser D, Salomoni P. mTORC1-independent autophagy regulates receptor tyrosine kinase phosphorylation in colorectal cancer cells via an mTORC2-mediated mechanism. Cell Death Differ 2017; 24:1045-1062. [PMID: 28475179 PMCID: PMC5442471 DOI: 10.1038/cdd.2017.41] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 01/01/2023] Open
Abstract
The intracellular autophagic degradative pathway can have a tumour suppressive or tumour-promoting role depending on the stage of tumour development. Upon starvation or targeting of oncogenic receptor tyrosine kinases (RTKs), autophagy is activated owing to the inhibition of PI3K/AKT/mTORC1 signalling pathway and promotes survival, suggesting that autophagy is a relevant therapeutic target in these settings. However, the role of autophagy in cancer cells where the PI3K/AKT/mTORC1 pathway is constitutively active remains partially understood. Here we report a role for mTORC1-independent basal autophagy in regulation of RTK activation and cell migration in colorectal cancer (CRC) cells. PI3K and RAS-mutant CRC cells display basal autophagy levels despite constitutive mTORC1 signalling, but fail to increase autophagic flux upon RTK inhibition. Inhibition of basal autophagy via knockdown of ATG7 or ATG5 leads to decreased phosphorylation of several RTKs, in particular c-MET. Internalised c-MET colocalised with LAMP1-negative, LC3-positive vesicles. Finally, autophagy regulates c-MET phosphorylation via an mTORC2-dependent mechanism. Overall, our findings reveal a previously unappreciated role of autophagy and mTORC2 in regulation of oncogenic RTK activation, with implications for understanding of cancer cell signalling.
Collapse
Affiliation(s)
- Aikaterini Lampada
- UCL Cancer Institute, Department of Cancer Biology, London, UK
- UCL Cancer Institute, Department of Oncology, London, UK
| | | | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, UCL, London, UK
| | | | | | - Paolo Salomoni
- UCL Cancer Institute, Department of Cancer Biology, London, UK
| |
Collapse
|
41
|
Tang F, Hu P, Yang Z, Xue C, Gong J, Sun S, Shi L, Zhang S, Li Z, Yang C, Zhang J, Xie C. SBI0206965, a novel inhibitor of Ulk1, suppresses non-small cell lung cancer cell growth by modulating both autophagy and apoptosis pathways. Oncol Rep 2017; 37:3449-3458. [PMID: 28498429 DOI: 10.3892/or.2017.5635] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 05/02/2017] [Indexed: 11/05/2022] Open
Abstract
Lung cancer is a major public health problem worldwide. Non-small cell lung cancer (NSCLC) accounts for 85% of lung cancer cases. Autophagy has recently sparked great interest, and it is thought to participate in a variety of diseases, including lung cancer. Uncoordinated (Unc) 51-like kinase 1 (Ulk1), a serine/threonine kinase, plays a central role in the autophagy pathway. However, the role of Ulk1 in NSCLC remains unclear. We report that NSCLC cell lines exhibited high expression of Ulk1 and that Ulk1 was negatively correlated with prognosis in lung cancer patients. Knockdown of Ulk1 or the inhibition of Ulk1 by the selective inhibitor SBI0206965, inhibited cell proliferation, induced cell apoptosis and enhanced the sensitivity of cisplatin against NSCLC cells. Moreover, we demonstrated that Ulk1 exerted oncogenic activity in NSCLC by modulating both autophagy and apoptosis pathways. Inhibition of autophagy by SBI0206965 sensitized NSCLC cells to cisplatin by inhibiting cisplatin induced cell-protective autophagy to promote apoptosis. Furthermore, SBI0206965 promoted apoptosis in NSCLC cells independent of autophagy, which was partly mediated by destabilization of Bcl2/Bclxl. In summary, our results show that inhibition of Ulk1 suppresses NSCLC cell growth and sensitizes NSCLC cells to cisplatin by modulating both autophagy and apoptosis pathways, and that Ulk1 might be a promising target for NSCLC treatment.
Collapse
Affiliation(s)
- Fang Tang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Pengchao Hu
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zetian Yang
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Chao Xue
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jun Gong
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Shaoxing Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Liu Shi
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Shimin Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zhenzhen Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Chunxu Yang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Junhong Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
42
|
Zhang M, Kim HS, Jin T, Moon WK. Near-infrared photothermal therapy using EGFR-targeted gold nanoparticles increases autophagic cell death in breast cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 170:58-64. [DOI: 10.1016/j.jphotobiol.2017.03.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/29/2017] [Indexed: 01/28/2023]
|
43
|
Li H, You L, Xie J, Pan H, Han W. The roles of subcellularly located EGFR in autophagy. Cell Signal 2017; 35:223-230. [PMID: 28428083 DOI: 10.1016/j.cellsig.2017.04.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/14/2017] [Accepted: 04/15/2017] [Indexed: 12/11/2022]
Abstract
The epidermal growth factor receptor (EGFR) is a well-studied receptor-tyrosine kinase that serves vital roles in regulation of organ development and cancer progression. EGFR not only exists on the plasma membrane, but also widely expressed in the nucleus, endosomes, and mitochondria. Most recently, several lines of evidences indicated that autophagy is regulated by EGFR in kinase-active and -independent manners. In this review, we summarized recent advances in our understanding of the functions of different subcellularly located EGFR on autophagy. Specifically, plasma membrane- and cytoplasm-located EGFR (pcEGFR) acts as a tyrosine kinase to regulate autophagy via the PI3K/AKT1/mTOR, RAS/MAPK1/3, and STAT3 signaling pathways. The kinase-independent function of pcEGFR inhibits autophagy by maintaining SLC5A1-regulated intracellular glucose level. Endosome-located EGFR phosphorylates and inhibits Beclin1 to suppress autophagy, while kinase-independent endosome-located EGFR releases Beclin1 from the Rubicon-Beclin1 complex to increase autophagy. Additionally, the nuclear EGFR activates PRKDC/PNPase/MYC signaling to inhibit autophagy. Although the role of mitochondria-located EGFR in autophagy is largely unexplored, the production of ATP and reactive oxygen species mediated by mitochondrial dynamics is most likely to influence autophagy.
Collapse
Affiliation(s)
- Hongsen Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liangkun You
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiansheng Xie
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
44
|
Wu DW, Lin PL, Wang L, Huang CC, Lee H. The YAP1/SIX2 axis is required for DDX3-mediated tumor aggressiveness and cetuximab resistance in KRAS-wild-type colorectal cancer. Am J Cancer Res 2017; 7:1114-1132. [PMID: 28435452 PMCID: PMC5399580 DOI: 10.7150/thno.18175] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022] Open
Abstract
The mechanism underlying tumor aggressiveness and cetuximab (CTX) resistance in KRAS-wild-type (KRAS -WT) colorectal cancer remains obscure. We here provide evidence that DDX3 promoted soft agar growth and invasiveness of KRAS-WT cells, as already confirmed in KRAS-mutated cells. Mechanistically, increased KRAS expression induced ROS production, which elevated HIF-1α and YAP1 expression. Increased HIF-1α persistently promoted DDX3 expression via a KRAS/ROS/HIF-1α feedback loop. DDX3-mediated aggressiveness and CTX resistance were regulated by the YAP1/SIX2 axis in KRAS-WT cells and further confirmed in animal models. Kaplan-Meier and Cox regression analysis indicated that DDX3, KRAS, and YAP1 expression had prognostic value for OS and RFS in KRAS-WT and KRAS-mutated tumors, but SIX2 and YAP1/SIX2 were prognostic value only in KRAS-WT patients. The observation from patients seemed to support the mechanistic action of cell and animal models. We therefore suggest that combining YAP1 inhibitors with CTX may therefore suppress DDX3-mediated tumor aggressiveness and enhance CTX sensitivity in KRAS-WT colorectal cancer.
Collapse
|
45
|
You L, Shou J, Deng D, Jiang L, Jing Z, Yao J, Li H, Xie J, Wang Z, Pan Q, Pan H, Huang W, Han W. Crizotinib induces autophagy through inhibition of the STAT3 pathway in multiple lung cancer cell lines. Oncotarget 2016; 6:40268-82. [PMID: 26384345 PMCID: PMC4741894 DOI: 10.18632/oncotarget.5592] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/19/2015] [Indexed: 12/14/2022] Open
Abstract
Autophagy is an evolutionarily conserved survival pathway in eukaryote and is frequently upregulated in cancer cells after chemotherapy or targeted therapy. Thus induction of autophagy has emerged as a drug resistance mechanism. In this study, we found that crizotinib induced a high level of autophagy in lung cancer cells through inhibition of STAT3. Ectopic expression of wild-type or constitutive activated STAT3 significantly suppressed the effect of crizotinib on autophagy. Interestingly, crizotinib-mediated inhibition of STAT3 is in a step-wise manner. Firstly it inhibited cytoplasmic STAT3, which leads to the phosphorylation of EIF2A, then inhibited nuclear STAT3, which leads to the downregulation of BCL-2. Cell death induced by crizotinib was greatly enhanced after the inhibition of autophagy by the pharmacological inhibitors or shRNAs against Beclin-1. Moreover, the autophagy inhibitor HCQ significantly augmented the anti-tumor effect of crizotinib in a mouse xenograft model. In conclusion, crizotinib can induce cytoprotective autophagy by suppression of STAT3 in lung cancer cells. Thus, autophagy inhibition represents a promising approach to improve the efficacy of crizotinib in the treatment of targeted lung cancer patients.
Collapse
Affiliation(s)
- Liangkun You
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiawei Shou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Danchen Deng
- Department of Gynaecology and Obstetrics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liming Jiang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhao Jing
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junlin Yao
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongsen Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiansheng Xie
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhanggui Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qin Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wendong Huang
- Division of Molecular Diabetes Research, Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
46
|
Song M, Wang Y, Shang ZF, Liu XD, Xie DF, Wang Q, Guan H, Zhou PK. Bystander autophagy mediated by radiation-induced exosomal miR-7-5p in non-targeted human bronchial epithelial cells. Sci Rep 2016; 6:30165. [PMID: 27417393 PMCID: PMC4945935 DOI: 10.1038/srep30165] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/29/2016] [Indexed: 12/20/2022] Open
Abstract
Radiation-induced bystander effect (RIBE) describes a set of biological effects in non-targeted cells that receive bystander signals from the irradiated cells. RIBE brings potential hazards to adjacent normal tissues in radiotherapy, and imparts a higher risk than previously thought. Excessive release of some substances from irradiated cells into extracellular microenvironment has a deleterious effect. For example, cytokines and reactive oxygen species have been confirmed to be involved in RIBE process via extracellular medium or gap junctions. However, RIBE-mediating signals and intercellular communication pathways are incompletely characterized. Here, we first identified a set of differentially expressed miRNAs in the exosomes collected from 2 Gy irradiated human bronchial epithelial BEP2D cells, from which miR-7-5p was found to induce autophagy in recipient cells. This exosome-mediated autophagy was significantly attenuated by miR-7-5p inhibitor. Moreover, our data demonstrated that autophagy induced by exosomal miR-7-5p was associated with EGFR/Akt/mTOR signaling pathway. Together, our results support the involvement of secretive exosomes in propagation of RIBE signals to bystander cells. The exosomes-containing miR-7-5p is a crucial mediator of bystander autophagy.
Collapse
Affiliation(s)
- Man Song
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu 215123, P R China.,Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P R China
| | - Yu Wang
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P R China
| | - Zeng-Fu Shang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu 215123, P R China
| | - Xiao-Dan Liu
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P R China
| | - Da-Fei Xie
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P R China
| | - Qi Wang
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P R China
| | - Hua Guan
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P R China
| | - Ping-Kun Zhou
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu 215123, P R China.,Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P R China
| |
Collapse
|
47
|
Tan X, Lambert PF, Rapraeger AC, Anderson RA. Stress-Induced EGFR Trafficking: Mechanisms, Functions, and Therapeutic Implications. Trends Cell Biol 2016; 26:352-366. [PMID: 26827089 PMCID: PMC5120732 DOI: 10.1016/j.tcb.2015.12.006] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/27/2015] [Accepted: 12/31/2015] [Indexed: 12/13/2022]
Abstract
Epidermal growth factor receptor (EGFR) has fundamental roles in normal physiology and cancer, making it a rational target for cancer therapy. Surprisingly, however, inhibitors that target canonical, ligand-stimulated EGFR signaling have proven to be largely ineffective in treating many EGFR-dependent cancers. Recent evidence indicates that both intrinsic and therapy-induced cellular stress triggers robust, noncanonical pathways of ligand-independent EGFR trafficking and signaling, which provides cancer cells with a survival advantage and resistance to therapeutics. Here, we review the mechanistic regulation of noncanonical EGFR trafficking and signaling, and the pathological and therapeutic stresses that activate it. We also discuss the implications of this pathway in clinical treatment of EGFR-overexpressing cancers.
Collapse
Affiliation(s)
- Xiaojun Tan
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Paul F Lambert
- Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA; McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Alan C Rapraeger
- Department of Human Oncology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Richard A Anderson
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
48
|
Li X, Lu Y, Lu H, Luo J, Hong Y, Fan Z. AMPK-mediated energy homeostasis and associated metabolic effects on cancer cell response and resistance to cetuximab. Oncotarget 2016; 6:11507-18. [PMID: 25871473 PMCID: PMC4484472 DOI: 10.18632/oncotarget.3432] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/23/2015] [Indexed: 12/31/2022] Open
Abstract
We previously reported that cetuximab, an EGFR-blocking antibody, inhibits cancer metabolism via downregulation of HIF-1α and reverses the Warburg effect in cancer cells. Here, we report that inhibition of HIF-1 transcriptional activity by cetuximab does not necessarily lead to successful inhibition of cell proliferation. In several head and neck squamous cell carcinoma (HNSCC) cell lines, we observed a pattern of oscillating decrease and increase of intracellular ATP level after cetuximab treatment, and the magnitude and kinetics of which varied by cell line and appeared to be linked to the extent of cellular response to cetuximab. In HNSCC cells with low basal level of AMPK activity and that responded to cetuximab-induced growth inhibition, there was a transient, LKB1-dependent activation of AMPK. In contrast, HNSCC cells that had a high basal level of AMPK activity were less sensitive to cetuximab-induced growth inhibition despite effective inhibition of EGFR downstream signaling by cetuximab. Knockdown or inhibition of AMPK markedly enhanced response to cetuximab via induction of apoptosis. These findings indicate that a transient activation of AMPK is an early metabolic marker of cellular response to cetuximab and that high and sustained AMPK activity is an important mechanism by which cancer cells survive cetuximab treatment.
Collapse
Affiliation(s)
- Xinqun Li
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haiquan Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jingtao Luo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Head and Neck Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Yun Hong
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Oral Medicine, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhen Fan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
49
|
Dash S, Chava S, Chandra PK, Aydin Y, Balart LA, Wu T. Autophagy in hepatocellular carcinomas: from pathophysiology to therapeutic response. Hepat Med 2016; 8:9-20. [PMID: 26955295 PMCID: PMC4772942 DOI: 10.2147/hmer.s63700] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Autophagy is an intracellular lysosomal degradation process performed by the cells to maintain energy balance. The autophagy response plays an important role in the progression of liver disease due to hepatitis virus infection, alcoholic liver disease, nonalcoholic fatty liver disease, liver cirrhosis, and hepatocellular carcinoma (HCC). An increased autophagy response also contributes to the pathogenesis of liver disease through modulation of innate and adaptive immune responses; a defective cellular autophagy response leads to the development of HCC. Recent progress in the field indicates that autophagy modulation provides a novel targeted therapy for human liver cancer. The purpose of this review is to update our understanding of how the cellular autophagy response impacts the pathophysiology of liver disease and HCC treatment.
Collapse
Affiliation(s)
- Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA; Department of Gastroenterology and Hepatology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Srinivas Chava
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Partha K Chandra
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Yucel Aydin
- Department of Gastroenterology and Hepatology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Luis A Balart
- Department of Gastroenterology and Hepatology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
50
|
Mukhopadhyay S, Sinha N, Das DN, Panda PK, Naik PP, Bhutia SK. Clinical relevance of autophagic therapy in cancer: Investigating the current trends, challenges, and future prospects. Crit Rev Clin Lab Sci 2016; 53:228-52. [PMID: 26743568 DOI: 10.3109/10408363.2015.1135103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oncophagy (cancer-related autophagy) has a complex dual character at different stages of tumor progression. It remains an important clinical problem to unravel the reasons that propel the shift in the role of oncophagy from tumor inhibition to a protective mechanism that shields full-blown malignancy. Most treatment strategies emphasize curbing protective oncophagy while triggering the oncophagy that is lethal to tumor cells. In this review, we focus on the trends in current therapeutics as well as various challenges in clinical trials to address the oncophagic dilemma and evaluate the potential of these developing therapies. A detailed analysis of the clinical and pre-clinical scenario of the anticancer medicines highlights the various inducers and inhibitors of autophagy. The ways in which tumor stage, the microenvironment and combination drug treatment continue to play an important tactical role are discussed. Moreover, autophagy targets also play a crucial role in developing the best possible solution to this oncophagy paradox. In this review, we provide a comprehensive update on the current clinical impact of autophagy-based cancer therapeutic drugs and try to lessen the gap between translational medicine and clinical science.
Collapse
Affiliation(s)
- Subhadip Mukhopadhyay
- a Department of Life Science , National Institute of Technology , Rourkela , Odisha , India
| | - Niharika Sinha
- a Department of Life Science , National Institute of Technology , Rourkela , Odisha , India
| | - Durgesh Nandini Das
- a Department of Life Science , National Institute of Technology , Rourkela , Odisha , India
| | - Prashanta Kumar Panda
- a Department of Life Science , National Institute of Technology , Rourkela , Odisha , India
| | - Prajna Paramita Naik
- a Department of Life Science , National Institute of Technology , Rourkela , Odisha , India
| | - Sujit Kumar Bhutia
- a Department of Life Science , National Institute of Technology , Rourkela , Odisha , India
| |
Collapse
|