1
|
Santos F, Melkani S, Oliveira-Paiva C, Bini D, Pavuluri K, Gatiboni L, Mahmud A, Torres M, McLamore E, Bhadha JH. Biofertilizer use in the United States: definition, regulation, and prospects. Appl Microbiol Biotechnol 2024; 108:511. [PMID: 39531072 PMCID: PMC11557716 DOI: 10.1007/s00253-024-13347-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
The increasing demand for sustainable food production has driven a surge in the use and commercialization of biological inputs, including biofertilizers. In this context, biofertilizers offer potential benefits for nutrient use efficiency, crop yield and sustainability. However, inconsistent definition of the term "biofertilizer" and regulations, particularly in the USA, hinder market growth and consumer confidence. While the European Union, and countries like Brazil, India, and China have made progress in this area, the USA market, projected to exceed $1 billion by 2029, lacks clear guidelines for biofertilizer production and sale. The USA market is dominated by Rhizobium genus, Mycorrhizae fungi, and Azospirillum species and based products targeting various crops. Although there is a growing and promising market for the use of biofertilizers, there are still many challenges to overcome, and to fully realize the potential of biofertilizers, future research should focus on modes of action, specific claims, and robust regulations that must be established. KEY POINTS: • The term "biofertilizer" lacks a universally accepted definition • It is necessary establishing a national regulation for biofertilizers in the USA • The biofertilizer market is growing fast and the biggest one is in America.
Collapse
Affiliation(s)
- Flavia Santos
- Soil, Water & Ecosystem Sciences Department, University of Florida, Belle Glade, FL, USA
- Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, Brazil
| | - Suraj Melkani
- Soil, Water & Ecosystem Sciences Department, University of Florida, Belle Glade, FL, USA
| | | | - Daniel Bini
- Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, Brazil
| | - Kiran Pavuluri
- International Fertilizer Development Center, Muscle Shoals, AL, USA
| | - Luke Gatiboni
- North Carolina State Extension, North Carolina State University, Raleigh, NC, USA
| | - Anik Mahmud
- Soil, Water & Ecosystem Sciences Department, University of Florida, Belle Glade, FL, USA
| | - Maria Torres
- Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Eric McLamore
- Agricultural Sciences, Clemson University, Clemson, SC, USA
- Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, USA
| | - Jehangir H Bhadha
- Soil, Water & Ecosystem Sciences Department, University of Florida, Belle Glade, FL, USA.
| |
Collapse
|
2
|
Dobrange E, Porras-Domínguez JR, Van den Ende W. The Complex GH32 Enzyme Orchestra from Priestia megaterium Holds the Key to Better Discriminate Sucrose-6-phosphate Hydrolases from Other β-Fructofuranosidases in Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1302-1320. [PMID: 38175162 DOI: 10.1021/acs.jafc.3c06874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Inulin is widely used as a prebiotic and emerging as a priming compound to counteract plant diseases. We isolated inulin-degrading strains from the lettuce phyllosphere, identified as Bacillus subtilis and Priestia megaterium, species hosting well-known biocontrol organisms. To better understand their varying inulin degradation strategies, three intracellular β-fructofuranosidases from P. megaterium NBRC15308 were characterized after expression in Escherichia coli: a predicted sucrose-6-phosphate (Suc6P) hydrolase (SacAP1, supported by molecular docking), an exofructanase (SacAP2), and an invertase (SacAP3). Based on protein multiple sequence and structure alignments of bacterial glycoside hydrolase family 32 enzymes, we identified conserved residues predicted to be involved in binding phosphorylated (Suc6P hydrolases) or nonphosphorylated substrates (invertases and fructanases). Suc6P hydrolases feature positively charged residues near the structural catalytic pocket (histidine, arginine, or lysine), whereas other β-fructofuranosidases contain tryptophans. This correlates with our phylogenetic tree, grouping all predicted Suc6P hydrolases in a clan associated with genomic regions coding for transporters involved in substrate phosphorylation. These results will help to discriminate between Suc6P hydrolases and other β-fructofuranosidases in future studies and to better understand the interaction of B. subtilis and P. megaterium endophytes with sucrose and/or fructans, sugars naturally present in plants or exogenously applied in the context of defense priming.
Collapse
Affiliation(s)
- Erin Dobrange
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, Leuven 3001, Belgium
| | | | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, Leuven 3001, Belgium
| |
Collapse
|
3
|
Metabolic Engineering of Bacillus megaterium for the Production of β-alanine. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0077-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Nasser H, Eikmanns BJ, Tolba MM, El-Azizi M, Abou-Aisha K. The Superiority of Bacillus megaterium over Escherichia coli as a Recombinant Bacterial Host for Hyaluronic Acid Production. Microorganisms 2022; 10:microorganisms10122347. [PMID: 36557601 PMCID: PMC9787986 DOI: 10.3390/microorganisms10122347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
(1) Background: Hyaluronic acid (HA) is a polyanionic mucopolysaccharide extensively used in biomedical and cosmetic industries due to its unique rheological properties. Recombinant HA production using other microbial platforms has received increasing interest to avoid potential toxin contamination associated with its production by streptococcal fermentation. In this study, the Gram-negative strains Escherichia coli (pLysY/Iq), E. coli Rosetta2, E. coli Rosetta (DE3) pLysS, E. coli Rosetta2 (DE3), E. coli Rosetta gammiB(DE3)pLysS, and the Gram-positive Bacillus megaterium (MS941) were investigated as new platforms for the heterologous production of HA. (2) Results: The HA biosynthesis gene hasA, cloned from Streptococcus equi subsp. zoopedemicus, was ligated into plasmid pMM1522 (MoBiTec), resulting in pMM1522 hasA, which was introduced into E. coli Rosetta-2(DE3) and B. megaterium (MS941). The initial HA titer by the two hosts in the LB medium was 5 mg/L and 50 mg/L, respectively. Streptococcal hasABC and hasABCDE genes were ligated into plasmid pPT7 (MoBiTec) and different E. coli host strains were then transformed with the resulting plasmids pPT7hasABC and pPT7hasABCDE. For E. coli Rosetta-gamiB(DE3)pLysS transformed with pPT7hasABC, HA production was 500 ± 11.4 mg/L in terrific broth (TB) medium. Productivity was slightly higher (585 ± 2.9 mg/L) when the same host was transformed with pPT7 carrying the entire HA operon. We also transformed B. megaterium (MS941) protoplasts carrying T7-RNAP with pPT7hasABC and pPT7hasABCDE. In comparison, the former plasmid resulted in HA titers of 2116.7 ± 44 and 1988.3 ± 19.6 mg/L in LB media supplemented with 5% sucrose and A5 medium + MOPSO, respectively; the latter plasmid boosted the titer final concentration further to reach 2476.7 ± 14.5 mg/L and 2350 ± 28.8 mg/L in the two media, respectively. The molecular mass of representative HA samples ranged from 105 − 106 Daltons (Da), and the polydispersity index (PDI) was <2. Fourier transform infrared spectroscopy (FTIR) spectra of the HA product were identical to those obtained for commercially available standard polymers. Finally, scanning electron microscopic examination revealed the presence of extensive HA capsules in E. coli Rosetta-gamiB(DE3)pLysS, while no HA capsules were produced by B. megaterium. (3) Conclusions: Our results suggested that Gram-positive bacteria are probably superior host strains for recombinant HA production over their Gram-negative counters. The titers and the molecular weight (MW) of HA produced by B. megaterium were significantly higher than those obtained by different E. coli host strains used in this study.
Collapse
Affiliation(s)
- HebaT’Allah Nasser
- Department of Microbiology, Immunology, and Biotechnology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11435, Egypt
- Institute of Microbiology and Biotechnology, Ulm University, 89081 Ulm, Germany
- Correspondence:
| | | | - Mahmoud M. Tolba
- Pharmaceutical Division, Ministry of Health and Population, Faiyum City 63723, Egypt
| | - Mohamed El-Azizi
- Department of Microbiology, Immunology, and Biotechnology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11435, Egypt
| | - Khaled Abou-Aisha
- Department of Microbiology, Immunology, and Biotechnology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11435, Egypt
| |
Collapse
|
5
|
Khan T, Alzahrani OM, Sohail M, Hasan KA, Gulzar S, Rehman AU, Mahmoud SF, Alswat AS, Abdel-Gawad SA. Enzyme Profiling and Identification of Endophytic and Rhizospheric Bacteria Isolated from Arthrocnemum macrostachyum. Microorganisms 2022; 10:microorganisms10112112. [PMID: 36363704 PMCID: PMC9698051 DOI: 10.3390/microorganisms10112112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022] Open
Abstract
Endophytic and rhizospheric bacteria isolated from halophytic plants support their host to survive in hyper-saline soil. These bacteria are also known to produce various enzymes with potential industrial applications. In this study, the endophytic and rhizospheric bacteria were isolated from Arthrocnemum macrostachyum collected from Karachi, Pakistan, and their ability to produce various extracellular enzymes was assessed using commercial and natural substrates. In total, 11 bacterial strains were isolated (four endophytic; seven rhizospheric). Bacillus was found to be the most abundant genus (73%), followed by Glutamicibacter (27%). The isolates including Glutamicibacter endophyticus and Bacillus licheniformis are reported for the first time from A. macrostachyum. All of the isolates were capable of producing at least two of the five industrially important hydrolytic enzymes tested, i.e., xylanase, cellulase, amylase, pectinase, and lipase. Lipase production was found to be highest among the isolates, i.e., up to 18 IU mL−1. Although most of the isolates could grow at a wide range of temperatures (4–55 °C), pH (1–11), and salt concentrations (2–12%), under extreme conditions, very little growth was observed and the optimal growth was recorded between 2% and 6% NaCl, 25 and 45 °C, and 7 and 9 pH. Our results suggest that these isolates could be potential producers of enzymes with several biotechnological applications.
Collapse
Affiliation(s)
- Tooba Khan
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
| | - Othman M. Alzahrani
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
- Correspondence:
| | - Khwaja Ali Hasan
- Molecular and Structural Biology Research Unit, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan
| | - Salman Gulzar
- Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan
| | - Ammad Ur Rehman
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
| | - Samy F. Mahmoud
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amal S. Alswat
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Shebl Abdallah Abdel-Gawad
- Agriculture Microbiology Department Soil, Water and Environment Institute Agriculture Research Center, Giza 12112, Egypt
| |
Collapse
|
6
|
A Plant Endophytic Bacterium Priestia megaterium StrainBP-R2 Isolated from the Halophyte Bolboschoenus planiculmis Enhances Plant Growth under Salt and Drought Stresses. Microorganisms 2022; 10:microorganisms10102047. [PMID: 36296323 PMCID: PMC9610499 DOI: 10.3390/microorganisms10102047] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Global warming and climate change have contributed to the rise of weather extremes. Severe drought and soil salinization increase because of rising temperatures. Economically important crop production and plant growth and development are hindered when facing various abiotic stresses. Plant endophytic bacteria live inside host plants without causing visible harm and can be isolated from surface-sterilized plant tissues. Using plant endophytic bacteria to stimulate plant growth and increase environmental stress tolerance has become an alternative approach besides using the traditional breeding and genetically modifying approaches to select or create new crop types resistant to different environmental stresses. The plant endophytic bacterium, Priestia megaterium (previously known as Bacillus megaterium) strain BP-R2, was isolated from the surface-sterilized root tissues of the salt marsh halophyte Bolboschoenus planiculmis. The bacteria strain BP-R2 showed high tolerance to different sodium chloride (NaCl) concentrations and produced the auxin plant hormone, indole acetic acid (IAA), under various tested growth conditions. Inoculation of Arabidopsis and pak choi (Brassica rapa L. R. Chinensis Group) plants with the strain BP-R2 greatly enhanced different growth parameters of the host plants under normal and salt and drought stress conditions compared to that of the mock-inoculated plants. Furthermore, the hydrogen peroxide (H2O2) content, electrolyte leakage (EL), and malondialdehyde (MDA) concentration accumulated less in the BP-R2-inoculated plants than in the mock-inoculated control plants under salt and drought stresses. In summary, the plant endophytic bacterium strain BP-R2 increased host plant growth and stress tolerance to salt and drought conditions.
Collapse
|
7
|
Sáez Moreno D, Udi Q, Azeredo J, Domingues L. Towards T7 RNA polymerase (T7RNAP)-based expression system in yeast: challenges and opportunities. Bioengineered 2022; 13:14947-14959. [PMID: 37105766 DOI: 10.1080/21655979.2023.2180579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
During the last decades, we have witnessed unprecedented advances in biological engineering and synthetic biology. These disciplines aim to take advantage of gene pathway regulation and gene expression in different organisms, to enable cells to perform desired functions. Yeast has been widely utilized as a model for the study of eukaryotic protein expression while bacteriophage T7RNAP and its promoter constitute the preferred system for prokaryotic protein expression (such as pET-based expression systems). The ability to integrate a T7RNAP-based expression system in yeast could allow for a better understanding of gene regulation in eukaryotic cells, and potentially increase the efficiency and processivity of yeast as an expression system. However, the attempts for the creation of such a system have been unsuccessful to date. This review aims to: (i) summarize the efforts that, for many years, have been devoted to the creation of a T7RNAP-based yeast expression system and ii) provide an overview of the latest advances in knowledge of eukaryotic transcription and translation that could lead to the construction of a successful T7RNAP expression system in yeast. The completion of this new expression system would allow to further expand the toolkit of yeast in synthetic biology and ultimately contribute to boost yeast usage as a key cell factory in sustainable biorefinery and circular economy.
Collapse
Affiliation(s)
- David Sáez Moreno
- CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, 4835-198, Guimarães, Braga, Portugal
| | - Qimron Udi
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joana Azeredo
- CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, 4835-198, Guimarães, Braga, Portugal
| | - Lucília Domingues
- CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, 4835-198, Guimarães, Braga, Portugal
| |
Collapse
|
8
|
Mayer J, Knuuti T, Baumgarten L, Menke E, Bischoff L, Bunk B, Biedendieck R. Construction and Application of a Plasmid-Based Signal Peptide Library for Improved Secretion of Recombinant Proteins with Priestia megaterium. Microorganisms 2022; 10:microorganisms10040777. [PMID: 35456829 PMCID: PMC9032162 DOI: 10.3390/microorganisms10040777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
The secretion of recombinant proteins plays an important role in their economic production and purification. The secretion efficiency depends on the responsible signal peptide (SP) in combination with the target protein and the given host and cannot be predicted so far. Due to its high plasmid stability, the lack of alkaline extracellular proteases and only few contaminating extracellular host proteins, Priestia megaterium provides a promising alternative to common Bacillus species. For the development of an easy and fast cloning and screening system to identify the SP best suited to a distinct protein, a plasmid-based SP library containing all predicted 182 Sec-dependent SPs from P. megaterium was established. The splitting of the SPs into 10 groups of individual multi-SP plasmids (pMSPs) allows their grouped amplification and application in screening approaches. The functionality of the whole library was demonstrated by enhancing the amount of the already well-secreted α-amylase AmyE by 1.6-fold. The secretion of a novel penicillin G acylase, which remained as insoluble protein inside the cells, as its native SP is unsuitable for secretion in P. megaterium, could be enhanced even up to 29-fold. Overall, only around 170 recombinant P. megaterium clones based on 50 inserted SPs had to be screened to achieve sufficient amounts for further enzyme characterizations. Thus, this newly developed plasmid-based genetic tool applicable for P. megaterium and also other Bacillus species facilitates the identification of suitable SPs for secretion of recombinant proteins.
Collapse
Affiliation(s)
- Janine Mayer
- Institute of Microbiology and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; (J.M.); (T.K.); (L.B.); (E.M.); (L.B.)
| | - Tobias Knuuti
- Institute of Microbiology and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; (J.M.); (T.K.); (L.B.); (E.M.); (L.B.)
| | - Lisa Baumgarten
- Institute of Microbiology and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; (J.M.); (T.K.); (L.B.); (E.M.); (L.B.)
| | - Elise Menke
- Institute of Microbiology and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; (J.M.); (T.K.); (L.B.); (E.M.); (L.B.)
| | - Lena Bischoff
- Institute of Microbiology and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; (J.M.); (T.K.); (L.B.); (E.M.); (L.B.)
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7, 38124 Braunschweig, Germany;
| | - Rebekka Biedendieck
- Institute of Microbiology and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; (J.M.); (T.K.); (L.B.); (E.M.); (L.B.)
- Correspondence: ; Tel.: +49-531-391-55291
| |
Collapse
|
9
|
Tadi SRR, Nehru G, Sivaprakasam S. One-Pot Biosynthesis of 3-Aminopropionic Acid from Fumaric Acid Using Recombinant Bacillus megaterium Containing a Linear Dual-Enzyme Cascade. Appl Biochem Biotechnol 2022; 194:1740-1754. [DOI: 10.1007/s12010-021-03783-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 01/12/2023]
|
10
|
Kaji T, Yano Y, Matsuzaki K. In-Cell FRET Indicates Magainin Peptide Induced Permeabilization of Bacterial Cell Membranes at Lower Peptide-to-Lipid Ratios Relevant to Liposomal Studies. ACS Infect Dis 2021; 7:2941-2945. [PMID: 34514779 DOI: 10.1021/acsinfecdis.1c00423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antimicrobial peptides (AMPs) are promising candidates for anti-infective drugs. The majority of AMPs are considered to disrupt the lipid matrix of bacterial membranes, exerting bactericidal activity. A number of biophysical studies have been carried out to elucidate the underlying molecular mechanisms. However, the fact that the number of peptide molecules bound to a bacterial cell under bactericidal conditions is much larger than that expected from liposomal studies raises the question of whether membrane permeabilization mechanisms proposed by liposomal studies are relevant to bacteria. In this study, the peptide-to-lipid molar ratio needed for an antimicrobial magainin peptide to permeabilize the cell membrane of the Gram-positive bacterium Bacillus megaterium was estimated by random fluorescence resonance energy transfer from a BODIPY FL-labeled lipid to a Texas Red-labeled peptide. The comparison of the observed energy transfer efficiency with the two-dimensional energy transfer theory estimated that the leakage of the calcein dye from bacterial cells occurred at a peptide-to-lipid molar ratio of 0.025. At this ratio, the peptide induced dye leakage from liposomes mimicking the bacterial membrane, indicating that the lipid matrix is a target of membrane-acting AMPs and that liposomes are a useful model system to investigate their mechanisms of action. Furthermore, a binding assay suggested that most peptide molecules were bound to cellular components other than cell membranes.
Collapse
Affiliation(s)
- Takumi Kaji
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yoshiaki Yano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
11
|
Tadi SRR, Nehru G, Sivaprakasam S. Combinatorial approach for improved production of whole-cell 3-aminopropionic acid in recombinant Bacillus megaterium: codon optimization, gene duplication and process optimization. 3 Biotech 2021; 11:333. [PMID: 34221804 DOI: 10.1007/s13205-021-02885-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/06/2021] [Indexed: 12/22/2022] Open
Abstract
In this study, we aimed to develop a Bacillus megaterium based whole-cell biocatalyst for the bio-production of 3-aminopropionic acid (3-APA). l-aspartate-α-decarboxylases (ADC) (EC: 4.1.1.11) from Escherichia coli, B. megaterium, Corynebacterium glutamicum, and Bacillus subtilis were expressed in B. megaterium. B. subtilis derived ADC (panD Bs ) exhibited the highest ADC activity of 0.9 ± 0.02 U/mL in recombinant B. megaterium. Combination of codon optimization and gene duplication strategies resulted in 415.56% enhancement of ADC activity compared to panD Bs . The culture growth conditions of B. megaterium (BMD-7) for 3-APA production were optimized as follows: inducer concentration, 0.5% (w/v); time of induction, 3 h; induction temperature, 37 °C and post-induction incubation time, 8 h. Improvement of the whole-cell biocatalytic process efficiency, was dealt by optimization of reaction temperature, reaction pH, metal ion additives and l-aspartic acid concentration. Shake flask level experiments yielded an enhanced 3-APA titer (16.18 ± 0.26 g/L) and a yield of 0.89 g/g under optimized conditions viz., 45 °C, pH 6.0 and 20 g/L of l-aspartic acid. This study demonstrates the potential of B. megaterium for 3-APA production and paves the scope for the development of 3-APA producing strains in near future. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02885-7.
Collapse
|
12
|
Bocchi MB, Cianni L, Perna A, Vitiello R, Greco T, Maccauro G, Perisano C. A rare case of Bacillus megaterium soft tissues infection. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020013. [PMID: 33559642 PMCID: PMC7944702 DOI: 10.23750/abm.v91i14-s.10849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIM OF THE WORK To report the history and clinical presentation of a 60-year-old male who developed a rare soft tissue infection of the right leg caused by Bacillus megaterium and to perform a Literature review focusing on clinical manifestations and diagnostic difficulties of the aforementioned bacterium. METHODS Medical history and clinical presentation suggested the infectious etiology, which led to the surgical procedure of fistulectomy and to further histological and microbiological investigations with bacterial cultures. RESULTS The histological report tested negative for osteomyelitis. Bacterial cultures revealed Bacillus megaterium, which was sensitive to all antibiotics against which it was tested. The oral antibiotic therapy was set for 12 days with benefits. The patient has always been apyretic, inflammation indexes and white cells count have been within normal limits. Conclusions: This was a rare case of soft tissue infection caused by Bacillus megaterium known to be a "non-pathogenic" bacterium. The infection was likely acquired by the penetration through the injury wound. The combination of surgical and antibiotic therapy lead to complete skin healing and infection resolution at the 6-months follow up.
Collapse
Affiliation(s)
| | - Luigi Cianni
- Fondazione Policlinico Universitario Agostino Gemelli IRCSS, Rome.
| | - Andrea Perna
- Fondazione Policlinico Universitario Agostino Gemelli IRCSS, Rome.
| | | | - Tommaso Greco
- Fondazione Policlinico Universitario Agostino Gemelli IRCSS, Rome.
| | - Giulio Maccauro
- Fondazione Policlinico Universitario Agostino Gemelli IRCSS, Rome.
| | - Carlo Perisano
- Fondazione Policlinico Universitario Agostino Gemelli IRCSS, Rome.
| |
Collapse
|
13
|
Akdoğan M, Çelik E. Enhanced production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biopolymer by recombinant Bacillus megaterium in fed-batch bioreactors. Bioprocess Biosyst Eng 2020; 44:403-416. [PMID: 32995978 DOI: 10.1007/s00449-020-02452-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/17/2020] [Indexed: 12/28/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable polyesters accumulated in a wide variety of microorganisms as intracellular carbon and energy storage compounds. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is one of the most valuable biopolymers because of its superior mechanical properties. Here, we developed a bioprocess utilizing recombinant Bacillus megaterium strain for PHBV over-production from glucose, without any precursor addition. PHA production was performed in a controlled bioreactor by batch and fed-batch modes using wild-type B. megaterium and rec-B. megaterium cells overexpressing the native phaC gene. The effect of oxygen transfer rate on biomass formation and PHA accumulation was also investigated, under different dissolved oxygen levels. Structural and thermal properties of PHA were characterized by GC-FID, 1H-NMR, TGA and DSC analyses. Significantly, the copolymer produced from glucose as the carbon source in rec-B. megaterium was composed of 58 mol% of 3-hydroxyvalerate monomers. After 66 h, rec-B. megaterium cells in fed-batch fermentation with a pre-determined growth rate µ0 = 0.1 h-1 produced the highest CDW (7.7 g L-1) and PHA concentration (6.1 g L-1). Moreover, an exponential glucose feeding profile resulted in 2.2-fold increase in PHA yield compared to batch cultivation. Overall, this study paves the way to an enhanced biopolymer production process in B. megaterium cells, where the highest product yield on cell was obtained as YP/X = 0.8 g g-1.
Collapse
Affiliation(s)
- Murat Akdoğan
- Department of Chemical Engineering, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| | - Eda Çelik
- Department of Chemical Engineering, Hacettepe University, Beytepe, 06800, Ankara, Turkey. .,Institute of Science, Bioengineering Division, Hacettepe University, Beytepe, 06800, Ankara, Turkey.
| |
Collapse
|
14
|
González B, Monroe L, Li K, Yan R, Wright E, Walter T, Kihara D, Weintraub ST, Thomas JA, Serwer P, Jiang W. Phage G Structure at 6.1 Å Resolution, Condensed DNA, and Host Identity Revision to a Lysinibacillus. J Mol Biol 2020; 432:4139-4153. [PMID: 32454153 DOI: 10.1016/j.jmb.2020.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 11/16/2022]
Abstract
Phage G has the largest capsid and genome of any known propagated phage. Many aspects of its structure, assembly, and replication have not been elucidated. Herein, we present the dsDNA-packed and empty phage G capsid at 6.1 and 9 Å resolution, respectively, using cryo-EM for structure determination and mass spectrometry for protein identification. The major capsid protein, gp27, is identified and found to share the HK97-fold universally conserved in all previously solved dsDNA phages. Trimers of the decoration protein, gp26, sit on the 3-fold axes and are thought to enhance the interactions of the hexameric capsomeres of gp27, for other phages encoding decoration proteins. Phage G's decoration protein is longer than what has been reported in other phages, and we suspect the extra interaction surface area helps stabilize the capsid. We identified several additional capsid proteins, including a candidate for the prohead protease responsible for processing gp27. Furthermore, cryo-EM reveals a range of partially full, condensed DNA densities that appear to have no contact with capsid shell. Three analyses confirm that the phage G host is a Lysinibacillus, and not Bacillus megaterium: identity of host proteins in our mass spectrometry analyses, genome sequence of the phage G host, and host range of phage G.
Collapse
Affiliation(s)
- Brenda González
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, 240 South Martin Jischke Drive, West Lafayette, IN 47907-1971, USA
| | - Lyman Monroe
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, 240 South Martin Jischke Drive, West Lafayette, IN 47907-1971, USA
| | - Kunpeng Li
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, 240 South Martin Jischke Drive, West Lafayette, IN 47907-1971, USA
| | - Rui Yan
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, 240 South Martin Jischke Drive, West Lafayette, IN 47907-1971, USA
| | - Elena Wright
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Thomas Walter
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, 240 South Martin Jischke Drive, West Lafayette, IN 47907-1971, USA
| | - Daisuke Kihara
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, 240 South Martin Jischke Drive, West Lafayette, IN 47907-1971, USA; Department of Computer Science, Purdue University, 305 North University Street, West Lafayette, IN 47907-2107, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Julie A Thomas
- Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623, USA
| | - Philip Serwer
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Wen Jiang
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, 240 South Martin Jischke Drive, West Lafayette, IN 47907-1971, USA; Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA; Purdue Cryo-EM Facility, Purdue University, Hockmeyer Hall of Structural Biology, 240 South Martin Jischke Drive, West Lafayette, IN 47907-1971, USA; Purdue Center for Cancer Research, Purdue University, 201 South University Street, West Lafayette, IN 47907, USA; Purdue Institute for Infectious, Immunology and Inflammatory Diseases, Purdue University, 207 South Martin Jischke Drive, West Lafayette, IN 47907, USA; Purdue Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47097, USA.
| |
Collapse
|
15
|
Ferreira CMH, Soares HMVM, Soares EV. Promising bacterial genera for agricultural practices: An insight on plant growth-promoting properties and microbial safety aspects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 682:779-799. [PMID: 31146074 DOI: 10.1016/j.scitotenv.2019.04.225] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 05/20/2023]
Abstract
In order to address the ever-increasing problem of the world's population food needs, the optimization of farming crops yield, the combat of iron deficiency in plants (chlorosis) and the elimination/reduction of crop pathogens are of key challenges to solve. Traditional ways of solving these problems are either unpractical on a large scale (e.g. use of manure) or are not environmental friendly (e.g. application of iron-synthetic fertilizers or indiscriminate use of pesticides). Therefore, the search for greener substitutes, such as the application of siderophores of bacterial source or the use of plant-growth promoting bacteria (PGPB), is presented as a very promising alternative to enhance yield of crops and performance. However, the use of microorganisms is not a risk-free solution and the potential biohazards associated with the utilization of bacteria in agriculture should be considered. The present work gives a current overview of the main mechanisms associated with the use of bacteria in the promotion of plant growth. The potentiality of several bacterial genera (Azotobacter, Azospirillum, Bacillus, Pantoea, Pseudomonas and Rhizobium) regarding to siderophore production capacity and other plant growth-promoting properties are presented. In addition, the field performance of these bacteria genera as well as the biosafety aspects related with their use for agricultural proposes are reviewed and discussed.
Collapse
Affiliation(s)
- Carlos M H Ferreira
- REQUIMTE/LAQV, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Bioengineering Laboratory, Chemical Engineering Department, ISEP-School of Engineering of Polytechnic Institute of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Helena M V M Soares
- REQUIMTE/LAQV, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Eduardo V Soares
- Bioengineering Laboratory, Chemical Engineering Department, ISEP-School of Engineering of Polytechnic Institute of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
16
|
Boock JT, Freedman AJE, Tompsett GA, Muse SK, Allen AJ, Jackson LA, Castro-Dominguez B, Timko MT, Prather KLJ, Thompson JR. Engineered microbial biofuel production and recovery under supercritical carbon dioxide. Nat Commun 2019; 10:587. [PMID: 30718495 PMCID: PMC6361901 DOI: 10.1038/s41467-019-08486-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 01/11/2019] [Indexed: 12/16/2022] Open
Abstract
Culture contamination, end-product toxicity, and energy efficient product recovery are long-standing bioprocess challenges. To solve these problems, we propose a high-pressure fermentation strategy, coupled with in situ extraction using the abundant and renewable solvent supercritical carbon dioxide (scCO2), which is also known for its broad microbial lethality. Towards this goal, we report the domestication and engineering of a scCO2-tolerant strain of Bacillus megaterium, previously isolated from formation waters from the McElmo Dome CO2 field, to produce branched alcohols that have potential use as biofuels. After establishing induced-expression under scCO2, isobutanol production from 2-ketoisovalerate is observed with greater than 40% yield with co-produced isopentanol. Finally, we present a process model to compare the energy required for our process to other in situ extraction methods, such as gas stripping, finding scCO2 extraction to be potentially competitive, if not superior.
Collapse
Affiliation(s)
- Jason T Boock
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, OH, 45056, USA
| | - Adam J E Freedman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Geoffrey A Tompsett
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Sarah K Muse
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Audrey J Allen
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Luke A Jackson
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Bernardo Castro-Dominguez
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
- Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Michael T Timko
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Kristala L J Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Janelle R Thompson
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
17
|
Serwer P, Hunter B, Wright ET. Cell-gel interactions of in-gel propagating bacteria. BMC Res Notes 2018; 11:699. [PMID: 30286794 PMCID: PMC6172759 DOI: 10.1186/s13104-018-3811-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/30/2018] [Indexed: 11/17/2022] Open
Abstract
Objective Our immediate objective is to test the data-suggested possibility that in-agarose gel bacterial propagation causes gel fiber dislocation and alteration of cell distribution. We also test the further effect of lowering water activity. We perform these tests with both Gram-negative and Gram-positive bacteria. Data are obtained via electron microscopy of thin sections, which provides the first images of both bacteria and gel fibers in gel-supported bacterial lawns. The long-term objective is analysis of the effects of in-gel propagation on the DNA packaging of phages. Results We find that agarose gel-supported cells in lawns of Escherichia coli and Lysinibacillus (1) are primarily in clusters that increase in size with time and are surrounded by gel fibers, and (2) sometimes undergo gel-induced, post-duplication rotation and translation. Bacterial growth-induced dislocation of gel fibers is observed. One reason for clustering is that clustering promotes growth by increasing the growth-derived force applied to the gel fibers. Reactive force exerted by gel on cells explains cell movement. Finally, addition to growth medium of 0.94 M sucrose causes cluster-associated E. coli cells to become more densely packed and polymorphic. Shape is determined, in part, by neighboring cells, a novel observation to our knowledge.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| | - Barbara Hunter
- Department of Pathology, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Elena T Wright
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| |
Collapse
|
18
|
Freedman AJE, Peet KC, Boock JT, Penn K, Prather KLJ, Thompson JR. Isolation, Development, and Genomic Analysis of Bacillus megaterium SR7 for Growth and Metabolite Production Under Supercritical Carbon Dioxide. Front Microbiol 2018; 9:2152. [PMID: 30319556 PMCID: PMC6167967 DOI: 10.3389/fmicb.2018.02152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 08/22/2018] [Indexed: 12/27/2022] Open
Abstract
Supercritical carbon dioxide (scCO2) is an attractive substitute for conventional organic solvents due to its unique transport and thermodynamic properties, its renewability and labile nature, and its high solubility for compounds such as alcohols, ketones, and aldehydes. However, biological systems that use scCO2 are mainly limited to in vitro processes due to its strong inhibition of cell viability and growth. To solve this problem, we used a bioprospecting approach to isolate a microbial strain with the natural ability to grow while exposed to scCO2. Enrichment culture and serial passaging of deep subsurface fluids from the McElmo Dome scCO2 reservoir in aqueous media under scCO2 headspace enabled the isolation of spore-forming strain Bacillus megaterium SR7. Sequencing and analysis of the complete 5.51 Mbp genome and physiological characterization revealed the capacity for facultative anaerobic metabolism, including fermentative growth on a diverse range of organic substrates. Supplementation of growth medium with L-alanine for chemical induction of spore germination significantly improved growth frequencies and biomass accumulation under scCO2 headspace. Detection of endogenous fermentative compounds in cultures grown under scCO2 represents the first observation of bioproduct generation and accumulation under this condition. Culturing development and metabolic characterization of B. megaterium SR7 represent initial advancements in the effort toward enabling exploitation of scCO2 as a sustainable solvent for in vivo bioprocessing.
Collapse
Affiliation(s)
- Adam J. E. Freedman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Kyle C. Peet
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jason T. Boock
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Kevin Penn
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Kristala L. J. Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Janelle R. Thompson
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
19
|
Lopes R, Tsui S, Gonçalves PJRO, de Queiroz MV. A look into a multifunctional toolbox: endophytic Bacillus species provide broad and underexploited benefits for plants. World J Microbiol Biotechnol 2018; 34:94. [PMID: 29900507 DOI: 10.1007/s11274-018-2479-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022]
Abstract
One of the major challenges of agriculture currently is to obtain higher crop yield. Environmental conditions, cultivar quality, and plant diseases greatly affect plant productivity. On the other hand, several endophytic Bacillus species have emerged as a complementary, efficient, and safe alternative to current crop management practices. The ability of Bacillus species to form spores, which resist adverse conditions, is an advantage of the genus for use in formulations. Endophytic Bacillus species provide plants with a wide range of benefits, including protection against phytopathogenic microorganisms, insects, and nematodes, eliciting resistance, and promoting plant growth, without causing damage to the environment. Bacillus thuringiensis, B. subtilis, B. amyloliquefaciens, B. velezensis, B. cereus, B. pumilus, and B. licheniformis are the most studied Bacillus species for application in agriculture, although other species within the genus have also shown great potential. Due to the increasing number of whole-genome sequenced endophytic Bacillus spp. strains, various bioactive compounds have been predicted. These data reveal endophytic Bacillus species as an underexploited source of novel molecules of biotechnological interest. In this review, we discuss how endophytic Bacillus species are a valuable multifunctional toolbox to be integrated with crop management practices for achieving higher crop yield.
Collapse
Affiliation(s)
- Ralf Lopes
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, 1374 Professor Lineu Prestes Avenue, São Paulo, SP, 05508-000, Brazil
| | - Sarina Tsui
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, 1374 Professor Lineu Prestes Avenue, São Paulo, SP, 05508-000, Brazil
| | - Priscila J R O Gonçalves
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, 1374 Professor Lineu Prestes Avenue, São Paulo, SP, 05508-000, Brazil
| | - Marisa Vieira de Queiroz
- Department of Microbiology, Institute of Biotechnology Applied to Agriculture, Universidade Federal de Viçosa, P. H. Rolfs Avenue, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
20
|
Al Rubaiee Z, Al-Murayati H, Møller AP. Recapture probability, flight morphology, and microorganisms. Curr Zool 2018; 64:277-283. [PMID: 30402068 PMCID: PMC6007672 DOI: 10.1093/cz/zox030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/29/2017] [Indexed: 11/13/2022] Open
Abstract
Microorganisms on and within organisms are ubiquitous and interactions with their hosts range from mutualistic over commensal, to pathogenic. We hypothesized that microorganisms might affect the ability of barn swallows Hirundo rustica to escape from potential predators, with positive associations between the abundance of microorganisms and escape ability implying mutualistic effects, while negative associations would imply antagonistic effects. We quantified escape behavior as the ability to avoid capture in a mist net and hence as a small number of recaptures. Because recapture probability may also depend on timing of reproduction and reproductive success, we also tested whether the association between recapture and microorganisms was mediated by an association between recapture and life history. We found intermediate to strong positive relationships between recapture probability and abundance of Bacillus megaterium, but not abundance of other bacteria or fungi. The abundance of B. megaterium was associated with an advance in laying date and an increase in reproductive success. However, these effects were independent of the number of recaptures. This interpretation is supported by the fact that there was no direct correlation between laying date and reproductive success on one hand and the number of recaptures on the other. These findings have implications not only for predator-prey interactions, but also for capture-mark-recapture analyses of vital rates such as survival and dispersal.
Collapse
Affiliation(s)
- Zaid Al Rubaiee
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91405 Orsay Cedex, France
| | - Haider Al-Murayati
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91405 Orsay Cedex, France
| | - Anders Pape Møller
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91405 Orsay Cedex, France
| |
Collapse
|
21
|
Abdulmughni A, Jóźwik IK, Brill E, Hannemann F, Thunnissen AMWH, Bernhardt R. Biochemical and structural characterization of CYP109A2, a vitamin D 3 25-hydroxylase from Bacillus megaterium. FEBS J 2017; 284:3881-3894. [PMID: 28940959 DOI: 10.1111/febs.14276] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/07/2017] [Accepted: 09/19/2017] [Indexed: 12/26/2022]
Abstract
Cytochrome P450 enzymes are increasingly investigated due to their potential application as biocatalysts with high regio- and/or stereo-selectivity and under mild conditions. Vitamin D3 (VD3 ) metabolites are of pharmaceutical importance and are applied for the treatment of VD3 deficiency and other disorders. However, the chemical synthesis of VD3 derivatives shows low specificity and low yields. In this study, cytochrome P450 CYP109A2 from Bacillus megaterium DSM319 was expressed, purified, and shown to oxidize VD3 with high regio-selectivity. The in vitro conversion, using cytochrome P450 reductase (BmCPR) and ferredoxin (Fdx2) from the same strain, showed typical Michaelis-Menten reaction kinetics. A whole-cell system in B. megaterium overexpressing CYP109A2 reached 76 ± 5% conversion after 24 h and allowed to identify the main product by NMR analysis as 25-hydroxylated VD3 . Product yield amounted to 54.9 mg·L-1 ·day-1 , rendering the established whole-cell system as a highly promising biocatalytic route for the production of this valuable metabolite. The crystal structure of substrate-free CYP109A2 was determined at 2.7 Å resolution, displaying an open conformation. Structural analysis predicts that CYP109A2 uses a highly similar set of residues for VD3 binding as the related VD3 hydroxylases CYP109E1 from B. megaterium and CYP107BR1 (Vdh) from Pseudonocardia autotrophica. However, the folds and sequences of the BC loops in these three P450s are highly divergent, leading to differences in the shape and apolar/polar surface distribution of their active site pockets, which may account for the observed differences in substrate specificity and the regio-selectivity of VD3 hydroxylation. DATABASE The atomic coordinates and structure factors have been deposited in the Protein Data Bank with accession code 5OFQ (substrate-free CYP109A2). ENZYMES Cytochrome P450 monooxygenase CYP109A2, EC 1.14.14.1, UniProt ID: D5DF88, Ferredoxin, UniProt ID: D5DFQ0, cytochrome P450 reductase, EC 1.8.1.2, UniProt ID: D5DGX1.
Collapse
Affiliation(s)
- Ammar Abdulmughni
- Department of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Ilona K Jóźwik
- Laboratory of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Elisa Brill
- Department of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Frank Hannemann
- Department of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Andy-Mark W H Thunnissen
- Laboratory of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Rita Bernhardt
- Department of Biochemistry, Saarland University, Saarbrücken, Germany
| |
Collapse
|
22
|
Fernandez RE, Rohani A, Farmehini V, Swami NS. Review: Microbial analysis in dielectrophoretic microfluidic systems. Anal Chim Acta 2017; 966:11-33. [PMID: 28372723 PMCID: PMC5424535 DOI: 10.1016/j.aca.2017.02.024] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/03/2017] [Accepted: 02/20/2017] [Indexed: 12/13/2022]
Abstract
Infections caused by various known and emerging pathogenic microorganisms, including antibiotic-resistant strains, are a major threat to global health and well-being. This highlights the urgent need for detection systems for microbial identification, quantification and characterization towards assessing infections, prescribing therapies and understanding the dynamic cellular modifications. Current state-of-the-art microbial detection systems exhibit a trade-off between sensitivity and assay time, which could be alleviated by selective and label-free microbial capture onto the sensor surface from dilute samples. AC electrokinetic methods, such as dielectrophoresis, enable frequency-selective capture of viable microbial cells and spores due to polarization based on their distinguishing size, shape and sub-cellular compositional characteristics, for downstream coupling to various detection modalities. Following elucidation of the polarization mechanisms that distinguish bacterial cells from each other, as well as from mammalian cells, this review compares the microfluidic platforms for dielectrophoretic manipulation of microbials and their coupling to various detection modalities, including immuno-capture, impedance measurement, Raman spectroscopy and nucleic acid amplification methods, as well as for phenotypic assessment of microbial viability and antibiotic susceptibility. Based on the urgent need within point-of-care diagnostics towards reducing assay times and enhancing capture of the target organism, as well as the emerging interest in isolating intact microbials based on their phenotype and subcellular features, we envision widespread adoption of these label-free and selective electrokinetic techniques.
Collapse
Affiliation(s)
- Renny E Fernandez
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Ali Rohani
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Vahid Farmehini
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Nathan S Swami
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
23
|
Liu T, Yamashita K, Fukumoto Y, Tachibana T, Azuma M. Flocculation of Real Sewage Sludge Using Poly-γ-glutamic Acid Produced by Bacillus sp. Isolated from Soil. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2017. [DOI: 10.1252/jcej.16we158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tao Liu
- Department of Applied Chemistry and Bioengineering, Osaka City University
| | - Kyouhei Yamashita
- Department of Applied Chemistry and Bioengineering, Osaka City University
| | | | - Taro Tachibana
- Department of Applied Chemistry and Bioengineering, Osaka City University
| | - Masayuki Azuma
- Department of Applied Chemistry and Bioengineering, Osaka City University
| |
Collapse
|
24
|
Milhim M, Putkaradze N, Abdulmughni A, Kern F, Hartz P, Bernhardt R. Identification of a new plasmid-encoded cytochrome P450 CYP107DY1 from Bacillus megaterium with a catalytic activity towards mevastatin. J Biotechnol 2016; 240:68-75. [DOI: 10.1016/j.jbiotec.2016.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 11/26/2022]
|
25
|
Fan P, Chen D, He Y, Zhou Q, Tian Y, Gao L. Alleviating salt stress in tomato seedlings using Arthrobacter and Bacillus megaterium isolated from the rhizosphere of wild plants grown on saline-alkaline lands. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:1113-21. [PMID: 27196364 DOI: 10.1080/15226514.2016.1183583] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Salt-induced soil degradation is common in farmlands and limits the growth and development of numerous crop plants in the world. In this study, we isolated salt-tolerant bacteria from the rhizosphere of Tamarix chinensis, Suaeda salsa and Zoysia sinica, which are common wild plants grown on a saline-alkaline land, to test these bacteria's efficiency in alleviating salt stress in tomato plants. We screened out seven strains (TF1-7) that are efficient in reducing salt stress in tomato seedlings. The sequence data of 16S rRNA genes showed that these strains belong to Arthrobacter and Bacillus megaterium. All strains could hydrolyze casein and solubilize phosphate, and showed at least one plant growth promotion (PGP)-related gene, indicating their potential in promoting plant growth. The Arthrobacter strains TF1 and TF7 and the Bacillus megaterium strain TF2 and TF3 could produce indole acetic acid under salt stress, further demonstrating their PGP potential. Tomato seed germination, seedling length, vigor index, and plant fresh and dry weight were enhanced by inoculation of Arthrobacter and B. megaterium strains under salt stress. Our results demonstrated that salt-tolerant bacteria isolated from the rhizosphere of wild plants grown on saline-alkaline lands could be used for alleviating salt stress in crop plants.
Collapse
Affiliation(s)
- Pengfei Fan
- a Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops , Department of Vegetable Science , China Agricultural University , Beijing , China
| | - Daitao Chen
- a Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops , Department of Vegetable Science , China Agricultural University , Beijing , China
| | - Yanan He
- a Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops , Department of Vegetable Science , China Agricultural University , Beijing , China
| | - Qingxia Zhou
- a Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops , Department of Vegetable Science , China Agricultural University , Beijing , China
| | - Yongqiang Tian
- a Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops , Department of Vegetable Science , China Agricultural University , Beijing , China
| | - Lihong Gao
- a Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops , Department of Vegetable Science , China Agricultural University , Beijing , China
| |
Collapse
|
26
|
Milhim M, Gerber A, Neunzig J, Hannemann F, Bernhardt R. A Novel NADPH-dependent flavoprotein reductase from Bacillus megaterium acts as an efficient cytochrome P450 reductase. J Biotechnol 2016; 231:83-94. [DOI: 10.1016/j.jbiotec.2016.05.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/20/2016] [Accepted: 05/25/2016] [Indexed: 02/02/2023]
|
27
|
Debebe T, Holtze S, Morhart M, Hildebrandt TB, Rodewald S, Huse K, Platzer M, Wyohannes D, Yirga S, Lemma A, Thieme R, König B, Birkenmeier G. Analysis of cultivable microbiota and diet intake pattern of the long-lived naked mole-rat. Gut Pathog 2016; 8:25. [PMID: 27239229 PMCID: PMC4884373 DOI: 10.1186/s13099-016-0107-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 05/16/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND A variety of microbial communities exist throughout the human and animal body. Genetics, environmental factors and long-term dietary habit contribute to shaping the composition of the gut microbiota. For this reason the study of the gut microbiota of a mammal exhibiting an extraordinary life span is of great importance. The naked mole-rat (Heterocephalus glaber) is a eusocial mammal known for its longevity and cancer resistance. METHODS Here we analyzed its gut microbiota by cultivating the bacteria under aerobic and anaerobic conditions and identifying their species by mass spectrometry. RESULTS Altogether, 29 species of microbes were identified, predominantly belonging to Firmicutes, and Bacteroidetes. The most frequent species were Bacillus megaterium (45.2 %), followed by Bacteroides thetaiotaomicron (19.4 %), Bacteroides ovatus, Staphylococcus sciuri and Paenibacillus spp., each with a frequency of 16.1 %. CONCLUSION Overall, the gut of the naked mole-rat is colonized by diverse, but low numbers of cultivable microbes compared with humans and mice. The primary food plants of the rodents are rich in polyphenols and related compounds, possessing anti-microbial, anti-inflammatory, anti-oxidative as well as anti-cancer activity which may contribute to their exceptionally healthy life.
Collapse
Affiliation(s)
- Tewodros Debebe
- Medical Faculty, Institute of Biochemistry, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany ; Medical Faculty, Institute of Medical Microbiology, University of Leipzig, Leipzig, Germany ; College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Susanne Holtze
- Department of Reproduction Management, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Michaela Morhart
- Department of Reproduction Management, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Thomas Bernd Hildebrandt
- Department of Reproduction Management, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| | | | - Klaus Huse
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Matthias Platzer
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Dereje Wyohannes
- College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Salomon Yirga
- College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Alemayehu Lemma
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Addis Ababa, Ethiopia
| | - Rene Thieme
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Medical Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Brigitte König
- Medical Faculty, Institute of Medical Microbiology, University of Leipzig, Leipzig, Germany
| | - Gerd Birkenmeier
- Medical Faculty, Institute of Biochemistry, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| |
Collapse
|
28
|
Guo FP, Fan HW, Liu ZY, Yang QW, Li YJ, Li TS. Brain Abscess Caused by Bacillus megaterium in an Adult Patient. Chin Med J (Engl) 2016; 128:1552-4. [PMID: 26021516 PMCID: PMC4733773 DOI: 10.4103/0366-6999.157697] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
| | | | | | | | | | - Tai-Sheng Li
- Department of Infectious Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
29
|
Takano H. The regulatory mechanism underlying light-inducible production of carotenoids in nonphototrophic bacteria. Biosci Biotechnol Biochem 2016; 80:1264-73. [PMID: 26967471 DOI: 10.1080/09168451.2016.1156478] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Light is a ubiquitous environmental factor serving as an energy source and external stimulus. Here, I review the conserved molecular mechanism of light-inducible production of carotenoids in three nonphototrophic bacteria: Streptomyces coelicolor A3(2), Thermus thermophilus HB27, and Bacillus megaterium QM B1551. A MerR family transcriptional regulator, LitR, commonly plays a central role in their light-inducible carotenoid production. Genetic and biochemical studies on LitR proteins revealed a conserved function: LitR in complex with adenosyl B12 (AdoB12) has a light-sensitive DNA-binding activity and thus suppresses the expression of the Crt biosynthesis gene cluster. The in vitro DNA-binding and transcription assays showed that the LitR-AdoB12 complex serves as a repressor allowing transcription initiation by RNA polymerase in response to illumination. The existence of novel light-inducible genes and the unique role of the megaplasmid were revealed by the transcriptomic analysis of T. thermophilus. The findings suggest that LitR is a general regulator responsible for the light-inducible carotenoid production in the phylogenetically divergent nonphototrophic bacteria, and that LitR performs diverse physiological functions in bacteria.
Collapse
Affiliation(s)
- Hideaki Takano
- a Applied Biological Science and Life Science Research Center, College of Bioresource Sciences , Nihon University , Fujisawa , Japan
| |
Collapse
|
30
|
Complete Genome Sequence of Bacillus megaterium Siphophage Stills. GENOME ANNOUNCEMENTS 2015; 3:3/4/e00855-15. [PMID: 26251490 PMCID: PMC4541274 DOI: 10.1128/genomea.00855-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacillus megaterium is a soil-dwelling bacterium frequently used in research as a model organism and in industry in protein production applications. Bacteriophages may be used to enhance the use of this bacterium. Here, we describe the complete genome of B. megaterium siphophage Stills and its core features.
Collapse
|
31
|
Functionalized PHB granules provide the basis for the efficient side-chain cleavage of cholesterol and analogs in recombinant Bacillus megaterium. Microb Cell Fact 2015. [PMID: 26215140 PMCID: PMC4517628 DOI: 10.1186/s12934-015-0300-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Cholesterol, the precursor of all steroid hormones, is the most abundant steroid in vertebrates and exhibits highly hydrophobic properties, rendering it a difficult substrate for aqueous microbial biotransformations. In the present study, we developed a Bacillus megaterium based whole-cell system that allows the side-chain cleavage of this sterol and investigated the underlying physiological basis of the biocatalysis. Results CYP11A1, the side-chain cleaving cytochrome P450, was recombinantly expressed in the Gram-positive soil bacterium B. megaterium combined with the required electron transfer proteins. By applying a mixture of 2-hydroxypropyl-β-cyclodextrin and Quillaja saponin as solubilizing agents, the zoosterols cholesterol and 7-dehydrocholesterol, as well as the phytosterol β-sitosterol could be efficiently converted to pregnenolone or 7-dehydropregnenolone. Fluorescence-microscopic analysis revealed that cholesterol accumulates in the carbon and energy storage-serving poly(3-hydroxybutyrate) (PHB) bodies and that the membrane proteins CYP11A1 and its redox partner adrenodoxin reductase (AdR) are likewise localized to their surrounding phospholipid/protein monolayer. The capacity to store cholesterol was absent in a mutant strain devoid of the PHB-producing polymerase subunit PhaC, resulting in a drastically decreased cholesterol conversion rate, while no effect on the expression of the recombinant proteins could be observed. Conclusion We established a whole-cell system based on B. megaterium, which enables the conversion of the steroid hormone precursor cholesterol to pregnenolone in substantial quantities. We demonstrate that the microorganism’s PHB granules, aggregates of bioplastic coated with a protein/phospholipid monolayer, are crucial for the high conversion rate by serving as substrate storage. This microbial system opens the way for an industrial conversion of the abundantly available cholesterol to any type of steroid hormones, which represent one of the biggest groups of drugs for the treatment of a wide variety of diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0300-y) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Polar Fixation of Plasmids during Recombinant Protein Production in Bacillus megaterium Results in Population Heterogeneity. Appl Environ Microbiol 2015; 81:5976-86. [PMID: 26116677 DOI: 10.1128/aem.00807-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/17/2015] [Indexed: 11/20/2022] Open
Abstract
During the past 2 decades, Bacillus megaterium has been systematically developed for the gram-per-liter scale production of recombinant proteins. The plasmid-based expression systems employed use a xylose-controlled promoter. Protein production analyses at the single-cell level using green fluorescent protein as a model product revealed cell culture heterogeneity characterized by a significant proportion of less productive bacteria. Due to the enormous size of B. megaterium, such bistable behavior seen in subpopulations was readily analyzed by time lapse microscopy and flow cytometry. Cell culture heterogeneity was not caused simply by plasmid loss: instead, an asymmetric distribution of plasmids during cell division was detected during the exponential-growth phase. Multicopy plasmids are generally randomly distributed between daughter cells. However, in vivo and in vitro experiments demonstrated that under conditions of strong protein production, plasmids are retained at one of the cell poles. Furthermore, it was found that cells with accumulated plasmids and high protein production ceased cell division. As a consequence, the overall protein production of the culture was achieved mainly by the subpopulation with a sufficient plasmid copy number. Based on our experimental data, we propose a model whereby the distribution of multicopy plasmids is controlled by polar fixation under protein production conditions. Thereby, cell lines with fluctuating plasmid abundance arise, which results in population heterogeneity. Our results provide initial insights into the mechanism of cellular heterogeneity during plasmid-based recombinant protein production in a Bacillus species.
Collapse
|
33
|
Atanassov I, Stefanova K, Tomova I, Kamburova M. Seamless GFP and GFP-Amylase Cloning in Gateway Shuttle Vector, Expression of the Recombinant Proteins inE. ColiandBacillus Megateriumand Assessment of the GFP-Amylase Thermostability. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2013.0079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
34
|
Azim N, Deery E, Warren MJ, Wolfenden BAA, Erskine P, Cooper JB, Coker A, Wood SP, Akhtar M. Structural evidence for the partially oxidized dipyrromethene and dipyrromethanone forms of the cofactor of porphobilinogen deaminase: structures of the Bacillus megaterium enzyme at near-atomic resolution. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:744-51. [PMID: 24598743 PMCID: PMC3949521 DOI: 10.1107/s139900471303294x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/04/2013] [Indexed: 11/10/2022]
Abstract
The enzyme porphobilinogen deaminase (PBGD; hydroxymethylbilane synthase; EC 2.5.1.61) catalyses an early step of the tetrapyrrole-biosynthesis pathway in which four molecules of the monopyrrole porphobilinogen are condensed to form a linear tetrapyrrole. The enzyme possesses a dipyrromethane cofactor, which is covalently linked by a thioether bridge to an invariant cysteine residue (Cys241 in the Bacillus megaterium enzyme). The cofactor is extended during the reaction by the sequential addition of the four substrate molecules, which are released as a linear tetrapyrrole product. Expression in Escherichia coli of a His-tagged form of B. megaterium PBGD has permitted the X-ray analysis of the enzyme from this species at high resolution, showing that the cofactor becomes progressively oxidized to the dipyrromethene and dipyrromethanone forms. In previously solved PBGD structures, the oxidized cofactor is in the dipyromethenone form, in which both pyrrole rings are approximately coplanar. In contrast, the oxidized cofactor in the B. megaterium enzyme appears to be in the dipyrromethanone form, in which the C atom at the bridging α-position of the outer pyrrole ring is very clearly in a tetrahedral configuration. It is suggested that the pink colour of the freshly purified protein is owing to the presence of the dipyrromethene form of the cofactor which, in the structure reported here, adopts the same conformation as the fully reduced dipyrromethane form.
Collapse
Affiliation(s)
- N. Azim
- School of Biological Sciences, University of Punjab, New Campus, Lahore-54590, Pakistan
| | - E. Deery
- School of Biosciences, University of Kent, Stacey Building, Canterbury CT2 7NJ, England
| | - M. J. Warren
- School of Biosciences, University of Kent, Stacey Building, Canterbury CT2 7NJ, England
| | - B. A. A. Wolfenden
- Laboratory of Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Division of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF, England
| | - P. Erskine
- Laboratory of Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Division of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF, England
| | - J. B. Cooper
- Laboratory of Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Division of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF, England
| | - A. Coker
- Laboratory of Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Division of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF, England
| | - S. P. Wood
- Laboratory of Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Division of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF, England
| | - M. Akhtar
- School of Biological Sciences, University of Punjab, New Campus, Lahore-54590, Pakistan
| |
Collapse
|
35
|
Abstract
The complete annotated genome sequence of Bacillus megaterium bacteriophage Slash is described here. Several key features related to morphogenesis, replication/recombination, DNA metabolism, and lysis are described. Slash also encodes a homolog of SleB, a germination-specific cell wall amidase.
Collapse
|
36
|
Wehling J, Volkmann E, Grieb T, Rosenauer A, Maas M, Treccani L, Rezwan K. A critical study: assessment of the effect of silica particles from 15 to 500 nm on bacterial viability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 176:292-299. [PMID: 23455355 DOI: 10.1016/j.envpol.2013.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 01/29/2013] [Accepted: 02/01/2013] [Indexed: 06/01/2023]
Abstract
The current opinion on the toxicity of nanomaterials converges on a size-dependent phenomenon showing increasing toxicity with decreasing particle sizes. We demonstrate that SiO2 particles have no or only a mild effect on the viability of five bacterial strains, independently from the particle size. A two-hour exposure to 20 mg L(-1) of 15, 50 and 500 nm sized SiO2 particles neither alters bacterial adenosine triphosphate (ATP) levels nor reduces the number of colony forming units (CFU). Additionally, we tested the effect of Al2O3-coated LUDOX-CL (ACS 20) with a primary particle size of 20 nm. In contrast, these particles caused a significant reduction of ATP levels and CFU. Fluorescence microscopy revealed that ACS 20 induced a pronounced agglomeration of the bacteria, which led to underestimated counts in regard of CFU. Bactericide effects as indicated by decreased ATP levels can be explained by bactericide additives that are present in the ACS 20 suspension.
Collapse
Affiliation(s)
- Julia Wehling
- Advanced Ceramics, University of Bremen, Am Biologischen Garten 2, 28359 Bremen, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Williams BS, Isokpehi RD, Mbah AN, Hollman AL, Bernard CO, Simmons SS, Ayensu WK, Garner BL. Functional Annotation Analytics of Bacillus Genomes Reveals Stress Responsive Acetate Utilization and Sulfate Uptake in the Biotechnologically Relevant Bacillus megaterium. Bioinform Biol Insights 2012; 6:275-86. [PMID: 23226010 PMCID: PMC3511254 DOI: 10.4137/bbi.s7977] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacillus species form an heterogeneous group of Gram-positive bacteria that include members that are disease-causing, biotechnologically-relevant, and can serve as biological research tools. A common feature of Bacillus species is their ability to survive in harsh environmental conditions by formation of resistant endospores. Genes encoding the universal stress protein (USP) domain confer cellular and organismal survival during unfavorable conditions such as nutrient depletion. As of February 2012, the genome sequences and a variety of functional annotations for at least 123 Bacillus isolates including 45 Bacillus cereus isolates were available in public domain bioinformatics resources. Additionally, the genome sequencing status of 10 of the B. cereus isolates were annotated as finished with each genome encoded 3 USP genes. The conservation of gene neighborhood of the 140 aa universal stress protein in the B. cereus genomes led to the identification of a predicted plasmid-encoded transcriptional unit that includes a USP gene and a sulfate uptake gene in the soil-inhabiting Bacillus megaterium. Gene neighborhood analysis combined with visual analytics of chemical ligand binding sites data provided knowledge-building biological insights on possible cellular functions of B. megaterium universal stress proteins. These functions include sulfate and potassium uptake, acid extrusion, cellular energy-level sensing, survival in high oxygen conditions and acetate utilization. Of particular interest was a two-gene transcriptional unit that consisted of genes for a universal stress protein and a sirtuin Sir2 (deacetylase enzyme for NAD+-dependent acetate utilization). The predicted transcriptional units for stress responsive inorganic sulfate uptake and acetate utilization could explain biological mechanisms for survival of soil-inhabiting Bacillus species in sulfate and acetate limiting conditions. Considering the key role of sirtuins in mammalian physiology additional research on the USP-Sir2 transcriptional unit of B. megaterium could help explain mammalian acetate metabolism in glucose-limiting conditions such as caloric restriction. Finally, the deep-rooted position of B. megaterium in the phylogeny of Bacillus species makes the investigation of the functional coupling acetate utilization and stress response compelling.
Collapse
Affiliation(s)
- Baraka S Williams
- Center for Bioinformatics and Computational Biology, Department of Biology, Jackson State University, Jackson, MS, USA. ; Department of Biology, Division of Natural Science, Tougaloo College, 500 West County Line Road, Tougaloo, MS, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Korneli C, David F, Biedendieck R, Jahn D, Wittmann C. Getting the big beast to work--systems biotechnology of Bacillus megaterium for novel high-value proteins. J Biotechnol 2012; 163:87-96. [PMID: 22750448 DOI: 10.1016/j.jbiotec.2012.06.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 06/18/2012] [Accepted: 06/20/2012] [Indexed: 12/31/2022]
Abstract
The high industrial relevance of the soil bacterium Bacillus megaterium as host for recombinant proteins is driving systems-wide analyses of its metabolic and regulatory networks. The present review highlights novel systems biology tools available to unravel the various cellular components on the level of metabolic and regulatory networks. These provide a rational platform for systems metabolic engineering of B. megaterium. In line, a number of interesting studies have particularly focused on studying recombinant B. megaterium in its industrial bioprocess environment thus integrating systems metabolic engineering with systems biotechnology and providing the full picture toward optimal processes.
Collapse
Affiliation(s)
- Claudia Korneli
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
39
|
Eppinger M, Bunk B, Johns MA, Edirisinghe JN, Kutumbaka KK, Koenig SSK, Huot Creasy H, Rosovitz MJ, Riley DR, Daugherty S, Martin M, Elbourne LDH, Paulsen I, Biedendieck R, Braun C, Grayburn S, Dhingra S, Lukyanchuk V, Ball B, Ul-Qamar R, Seibel J, Bremer E, Jahn D, Ravel J, Vary PS. Genome sequences of the biotechnologically important Bacillus megaterium strains QM B1551 and DSM319. J Bacteriol 2011; 193:4199-213. [PMID: 21705586 PMCID: PMC3147683 DOI: 10.1128/jb.00449-11] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 06/10/2011] [Indexed: 11/20/2022] Open
Abstract
Bacillus megaterium is deep-rooted in the Bacillus phylogeny, making it an evolutionarily key species and of particular importance in understanding genome evolution, dynamics, and plasticity in the bacilli. B. megaterium is a commercially available, nonpathogenic host for the biotechnological production of several substances, including vitamin B(12), penicillin acylase, and amylases. Here, we report the analysis of the first complete genome sequences of two important B. megaterium strains, the plasmidless strain DSM319 and QM B1551, which harbors seven indigenous plasmids. The 5.1-Mbp chromosome carries approximately 5,300 genes, while QM B1551 plasmids represent a combined 417 kb and 523 genes, one of the largest plasmid arrays sequenced in a single bacterial strain. We have documented extensive gene transfer between the plasmids and the chromosome. Each strain carries roughly 300 strain-specific chromosomal genes that account for differences in their experimentally confirmed phenotypes. B. megaterium is able to synthesize vitamin B(12) through an oxygen-independent adenosylcobalamin pathway, which together with other key energetic and metabolic pathways has now been fully reconstructed. Other novel genes include a second ftsZ gene, which may be responsible for the large cell size of members of this species, as well as genes for gas vesicles, a second β-galactosidase gene, and most but not all of the genes needed for genetic competence. Comprehensive analyses of the global Bacillus gene pool showed that only an asymmetric region around the origin of replication was syntenic across the genus. This appears to be a characteristic feature of the Bacillus spp. genome architecture and may be key to their sporulating lifestyle.
Collapse
Affiliation(s)
- Mark Eppinger
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201
| | - Boyke Bunk
- German Collection for Microorganisms and Cell Cultures, Braunschweig 38124, Germany
| | - Mitrick A. Johns
- Northern Illinois University, Department of Biological Sciences, DeKalb, Illinois 60115
| | - Janaka N. Edirisinghe
- Northern Illinois University, Department of Biological Sciences, DeKalb, Illinois 60115
| | - Kirthi K. Kutumbaka
- Northern Illinois University, Department of Biological Sciences, DeKalb, Illinois 60115
| | - Sara S. K. Koenig
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201
| | - Heather Huot Creasy
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201
| | | | - David R. Riley
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201
| | - Sean Daugherty
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201
| | - Madeleine Martin
- Technische Universität Braunschweig, Institute of Microbiology, Braunschweig 38106, Germany
| | - Liam D. H. Elbourne
- Macquarie University, Department of Chemistry and Biomolecular Sciences, Sydney 2109, Australia
| | - Ian Paulsen
- Macquarie University, Department of Chemistry and Biomolecular Sciences, Sydney 2109, Australia
| | - Rebekka Biedendieck
- Technische Universität Braunschweig, Institute of Microbiology, Braunschweig 38106, Germany
| | - Christopher Braun
- Northern Illinois University, Department of Biological Sciences, DeKalb, Illinois 60115
| | - Scott Grayburn
- Northern Illinois University, Department of Biological Sciences, DeKalb, Illinois 60115
| | - Sourabh Dhingra
- Northern Illinois University, Department of Biological Sciences, DeKalb, Illinois 60115
| | - Vitaliy Lukyanchuk
- Northern Illinois University, Department of Biological Sciences, DeKalb, Illinois 60115
| | - Barbara Ball
- Northern Illinois University, Department of Biological Sciences, DeKalb, Illinois 60115
| | - Riaz Ul-Qamar
- Technische Universität Braunschweig, Institute of Microbiology, Braunschweig 38106, Germany
| | - Jürgen Seibel
- Julius-Maximilians-Universität Würzburg, Institute of Organic Chemistry, Würzburg 97074, Germany
| | - Erhard Bremer
- Philipps-Universität Marburg, Laboratory for Molecular Microbiology, Marburg 35043, Germany
| | - Dieter Jahn
- Technische Universität Braunschweig, Institute of Microbiology, Braunschweig 38106, Germany
| | - Jacques Ravel
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201
| | - Patricia S. Vary
- Northern Illinois University, Department of Biological Sciences, DeKalb, Illinois 60115
| |
Collapse
|