1
|
Polsani N, Yung T, Thomas E, Phung-Rojas M, Gupta I, Denker J, Lau K, Feng X, Ibarra B, Hopyan S, Atit RP. Mesenchymal Wnts are required for morphogenetic movements of calvarial osteoblasts during apical expansion. Development 2024; 151:dev202596. [PMID: 38814743 PMCID: PMC11234264 DOI: 10.1242/dev.202596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
Apical expansion of calvarial osteoblast progenitors from the cranial mesenchyme (CM) above the eye is integral to calvarial growth and enclosure of the brain. The cellular behaviors and signals underlying the morphogenetic process of calvarial expansion are unknown. Time-lapse light-sheet imaging of mouse embryos revealed calvarial progenitors intercalate in 3D in the CM above the eye, and exhibit protrusive and crawling activity more apically. CM cells express non-canonical Wnt/planar cell polarity (PCP) core components and calvarial osteoblasts are bidirectionally polarized. We found non-canonical ligand Wnt5a-/- mutants have less dynamic cell rearrangements and protrusive activity. Loss of CM-restricted Wntless (CM-Wls), a gene required for secretion of all Wnt ligands, led to diminished apical expansion of Osx+ calvarial osteoblasts in the frontal bone primordia in a non-cell autonomous manner without perturbing proliferation or survival. Calvarial osteoblast polarization, progressive cell elongation and enrichment for actin along the baso-apical axis were dependent on CM-Wnts. Thus, CM-Wnts regulate cellular behaviors during calvarial morphogenesis for efficient apical expansion of calvarial osteoblasts. These findings also offer potential insights into the etiologies of calvarial dysplasias.
Collapse
Affiliation(s)
- Nikaya Polsani
- Department of Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Theodora Yung
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Evan Thomas
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Melissa Phung-Rojas
- Department of Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Isha Gupta
- Department of Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Julie Denker
- Department of Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Kimberly Lau
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xiaotian Feng
- Department of Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Beatriz Ibarra
- Department of Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Division of Orthopedics, The Hospital for Sick Children and Departments of Molecular Genetics and Surgery, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Radhika P. Atit
- Department of Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Dermatology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Genetics and Genome Sciences, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
2
|
Van Haver S, Fan Y, Bekaert SL, Everaert C, Van Loocke W, Zanzani V, Deschildre J, Maestre IF, Amaro A, Vermeirssen V, De Preter K, Zhou T, Kentsis A, Studer L, Speleman F, Roberts SS. Human iPSC modeling recapitulates in vivo sympathoadrenal development and reveals an aberrant developmental subpopulation in familial neuroblastoma. iScience 2024; 27:108096. [PMID: 38222111 PMCID: PMC10784699 DOI: 10.1016/j.isci.2023.108096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/12/2023] [Accepted: 09/26/2023] [Indexed: 01/16/2024] Open
Abstract
Studies defining normal and disrupted human neural crest cell development have been challenging given its early timing and intricacy of development. Consequently, insight into the early disruptive events causing a neural crest related disease such as pediatric cancer neuroblastoma is limited. To overcome this problem, we developed an in vitro differentiation model to recapitulate the normal in vivo developmental process of the sympathoadrenal lineage which gives rise to neuroblastoma. We used human in vitro pluripotent stem cells and single-cell RNA sequencing to recapitulate the molecular events during sympathoadrenal development. We provide a detailed map of dynamically regulated transcriptomes during sympathoblast formation and illustrate the power of this model to study early events of the development of human neuroblastoma, identifying a distinct subpopulation of cell marked by SOX2 expression in developing sympathoblast obtained from patient derived iPSC cells harboring a germline activating mutation in the anaplastic lymphoma kinase (ALK) gene.
Collapse
Affiliation(s)
- Stéphane Van Haver
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Yujie Fan
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
- Developmental Biology Program, MSKCC, New York, NY 10065, USA
- Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
| | - Sarah-Lee Bekaert
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Celine Everaert
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Wouter Van Loocke
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Vittorio Zanzani
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Joke Deschildre
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Inés Fernandez Maestre
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adrianna Amaro
- Department of Pediatrics, MSKCC, New York, NY 10065, USA
| | - Vanessa Vermeirssen
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Katleen De Preter
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Ting Zhou
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Alex Kentsis
- Department of Pediatrics, MSKCC, New York, NY 10065, USA
- Molecular Pharmacology Program, MSKCC, New York, NY, USA
- Tow Center for Developmental Oncology, MSKCC, New York, NY 10065, USA
- Departments of Pediatrics, Pharmacology and Physiology & Biophysics, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
- Developmental Biology Program, MSKCC, New York, NY 10065, USA
| | - Frank Speleman
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | | |
Collapse
|
3
|
Polsani N, Yung T, Thomas E, Phung-Rojas M, Gupta I, Denker J, Feng X, Ibarra B, Hopyan S, Atit RP. Mesenchymal Wnts are required for morphogenetic movements of calvarial osteoblasts during apical expansion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570300. [PMID: 38106005 PMCID: PMC10723314 DOI: 10.1101/2023.12.05.570300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Apical expansion of calvarial osteoblast progenitors from the cranial mesenchyme (CM) above the eye is integral for calvarial growth and enclosure of the brain. The cellular behaviors and signals underlying the morphogenetic process of calvarial expansion are unknown. During apical expansion, we found that mouse calvarial primordia have consistent cellular proliferation, density, and survival with complex tissue scale deformations, raising the possibility that morphogenetic movements underlie expansion. Time lapse light sheet imaging of mouse embryos revealed that calvarial progenitors intercalate in 3D to converge supraorbital arch mesenchyme mediolaterally and extend it apically. In contrast, progenitors located further apically exhibited protrusive and crawling activity. CM cells express non-canonical Wnt/Planar Cell Polarity (PCP) core components and calvarial osteoblasts are bidirectionally polarized. We found non-canonical ligand, Wnt5a-/- mutants have less dynamic cell rearrangements, protrusive activity, and a flattened head shape. Loss of cranial mesenchyme-restricted Wntless (CM-Wls), a gene required for secretion of all Wnt ligands, led to diminished apical expansion of OSX+ calvarial osteoblasts in the frontal bone primordia in a non-cell autonomous manner without perturbing proliferation or survival. Calvarial osteoblast polarization, progressive cell elongation and enrichment for actin cytoskeleton protein along the baso-apical axis were dependent on CM-Wnts. Thus, CM-Wnts regulate cellular behaviors during calvarial morphogenesis and provide tissue level cues for efficient apical expansion of calvarial osteoblasts. These findings also offer potential insights into the etiologies of calvarial dysplasias.
Collapse
Affiliation(s)
- Nikaya Polsani
- Department of Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Theodora Yung
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Evan Thomas
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Melissa Phung-Rojas
- Department of Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Isha Gupta
- Department of Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Julie Denker
- Department of Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xiaotian Feng
- Department of Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Beatriz Ibarra
- Department of Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Division of Orthopedics, The Hospital for Sick Children and Departments of Molecular Genetics and Surgery, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Radhika P. Atit
- Department of Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Dermatology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Genetics and Genome Sciences, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
4
|
Sharma M, Mukherjee S, Shaw AK, Mondal A, Behera A, Das J, Bose A, Sinha B, Sarma JD. Connexin 43 mediated collective cell migration is independent of Golgi orientation. Biol Open 2023; 12:bio060006. [PMID: 37815438 PMCID: PMC10629497 DOI: 10.1242/bio.060006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
Cell migration is vital for multiple physiological functions and is involved in the metastatic dissemination of tumour cells in various cancers. For effective directional migration, cells often reorient their Golgi apparatus and, therefore, the secretory traffic towards the leading edge. However, not much is understood about the regulation of Golgi's reorientation. Herein, we address the role of gap junction protein Connexin 43 (Cx43), which connects cells, allowing the direct exchange of molecules. We utilized HeLa WT cells lacking Cx43 and HeLa 43 cells, stably expressing Cx43, and found that functional Cx43 channels affected Golgi morphology and reduced the reorientation of Golgi during cell migration. Although the migration velocity of the front was reduced in HeLa 43, the front displayed enhanced coherence in movement, implying an augmented collective nature of migration. On BFA treatment, Golgi was dispersed and the high heterogeneity in inter-regional front velocity of HeLa WT cells was reduced to resemble the HeLa 43. HeLa 43 had higher vimentin expression and stronger basal F-actin. Furthermore, non-invasive measurement of basal membrane height fluctuations revealed a lower membrane tension. We, therefore, propose that reorientation of Golgi is not the major determinant of migration in the presence of Cx43, which induces collective-like coherent migration in cells.
Collapse
Affiliation(s)
- Madhav Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | - Suvam Mukherjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | - Archana Kumari Shaw
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | - Anushka Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | - Amrutamaya Behera
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | - Jibitesh Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | - Abhishek Bose
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | - Bidisha Sinha
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| |
Collapse
|
5
|
Motealleh A, Kehr NS. Step‐Gradient Composite Hydrogels for Local Drug Delivery and Directed Cell Migration. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Andisheh Motealleh
- Physikalisches Institute and Center for Soft Nanoscience Westfälische Wilhelms-Universität Münster Busso-Peus-Strasse 10 Münster 48149 Germany
| | - Nermin S. Kehr
- Physikalisches Institute and Center for Soft Nanoscience Westfälische Wilhelms-Universität Münster Busso-Peus-Strasse 10 Münster 48149 Germany
| |
Collapse
|
6
|
Le Maout E, Lo Vecchio S, Kumar Korla P, Jinn-Chyuan Sheu J, Riveline D. Ratchetaxis in Channels: Entry Point and Local Asymmetry Set Cell Directions in Confinement. Biophys J 2021; 119:1301-1308. [PMID: 33027610 DOI: 10.1016/j.bpj.2020.08.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 01/02/2023] Open
Abstract
Cell motility is essential in a variety of biological phenomena ranging from early development to organ homeostasis and diseases. This phenomenon has mainly been studied and characterized on flat surfaces in vitro, whereas such conditions are rarely observed in vivo. Recently, cell motion in three-dimensional microfabricated channels was reported to be possible, and it was shown that confined cells push on walls. However, rules setting cell directions in this context have not yet been characterized. Here, we show by using assays that ratchetaxis operates in three-dimensional ratchets in fibroblasts and epithelial cancerous cells. Open ratchets rectify cell motion, whereas closed ratchets impose direct cell migration along channels set by the cell orientation at the channel entry point. We also show that nuclei are pressed in constriction zones through mechanisms involving dynamic asymmetries of focal contacts, stress fibers, and intermediate filaments. Interestingly, cells do not pass these constricting zones when they contain a defective keratin fusion protein implicated in squamous cancer. By combining ratchetaxis with chemical gradients, we finally report that cells are sensitive to local asymmetries in confinement and that topological and chemical cues may be encoded differently by cells. Overall, our ratchet channels could mimic small blood vessels in which cells such as circulating tumor cells are confined; cells can probe local asymmetries that determine their entry into tissues and their subsequent direction. Our results shed light on invasion mechanisms in cancer.
Collapse
Affiliation(s)
- Emilie Le Maout
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Simon Lo Vecchio
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Praveen Kumar Korla
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Jim Jinn-Chyuan Sheu
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Daniel Riveline
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France; Université de Strasbourg, Illkirch, France.
| |
Collapse
|
7
|
Espina JA, Marchant CL, Barriga EH. Durotaxis: the mechanical control of directed cell migration. FEBS J 2021; 289:2736-2754. [PMID: 33811732 PMCID: PMC9292038 DOI: 10.1111/febs.15862] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/23/2021] [Accepted: 04/01/2021] [Indexed: 11/28/2022]
Abstract
Directed cell migration is essential for cells to efficiently migrate in physiological and pathological processes. While migrating in their native environment, cells interact with multiple types of cues, such as mechanical and chemical signals. The role of chemical guidance via chemotaxis has been studied in the past, the understanding of mechanical guidance of cell migration via durotaxis remained unclear until very recently. Nonetheless, durotaxis has become a topic of intensive research and several advances have been made in the study of mechanically guided cell migration across multiple fields. Thus, in this article we provide a state of the art about durotaxis by discussing in silico, in vitro and in vivo data. We also present insights on the general mechanisms by which cells sense, transduce and respond to environmental mechanics, to then contextualize these mechanisms in the process of durotaxis and explain how cells bias their migration in anisotropic substrates. Furthermore, we discuss what is known about durotaxis in vivo and we comment on how haptotaxis could arise from integrating durotaxis and chemotaxis in native environments.
Collapse
Affiliation(s)
- Jaime A Espina
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| | - Cristian L Marchant
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| | - Elias H Barriga
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| |
Collapse
|
8
|
Calderon-Aparicio A, Bode AM. Roles of regulator of chromosome condensation 2 in cancer: Beyond its regulatory function in cell cycle. Oncol Rev 2021; 15:525. [PMID: 33824700 PMCID: PMC8018209 DOI: 10.4081/oncol.2021.525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/02/2021] [Indexed: 11/22/2022] Open
Abstract
Regulator of chromosome condensation 2 (RCC2) is an essential protein in order for mitosis to proceed properly. It localizes in the centrosome of chromosomes where is involved in chromosome segregation and cytokinesis. Furthermore, RCC2 associates with integrin networks at the plasma membrane where participates in the control of cell movement. Because of its known role in cell cycle, RCC2 has been linked with cancer progression. Several reports show that RCC2 induces cancer hallmarks, but the mechanisms explaining how RCC2 exerts these roles are widely unknown. Here, we aim to summarize the main findings explaining the roles and mechanisms of RCC2 in cancer promotion. RCC2 is overexpressed in different cancers, including glioblastoma, lung, ovarian, and esophageal which is related to proliferation, migration, invasion promotion in vitro and tumor progression and metastasis in vivo. Besides, RCC2 overexpression induces epithelial-mesenchymal transition and causes poorer prognosis in cancer patients. RCC2 overexpression has also been linked with resistance development to chemotherapy and radiotherapy by inhibiting apoptosis and activating cancer-promoting transcription factors. Unfortunately, not RCC2 inhibitors are currently available for further pre-clinical and clinical assays. Therefore, these findings emphasize the potential use of RCC2 as a targetable biomarker in cancer and highlight the importance for designing RCC2 chemical inhibitors to evaluate its efficacy in animal studies and clinical trials.
Collapse
Affiliation(s)
- Ali Calderon-Aparicio
- The Hormel Institute, University of Minnesota, Austin, MN.,Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN
| |
Collapse
|
9
|
Chen BJ, Wu JS, Tang YJ, Tang YL, Liang XH. What makes leader cells arise: Intrinsic properties and support from neighboring cells. J Cell Physiol 2020; 235:8983-8995. [PMID: 32572948 DOI: 10.1002/jcp.29828] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/16/2020] [Indexed: 02/05/2023]
Abstract
Cancer cells collectively invading as a cohesive and polarized group is termed collective invasion, which is a fundamental property of many types of cancers. In this multicellular unit, cancer cells are heterogeneous, consisting of two morphologically and functionally distinct subpopulations, leader cells and follower cells. Leader cells at the invasive front are responsible for exploring the microenvironment, paving the way, and transmitting information to follower cells. Here, in this review, we will describe the important role of leader cells in collective invasion and the emerging underlying mechanisms of leader cell formation including intrinsic properties and the support from neighboring cells. It will help us to elucidate the essence of collective invasion and provide new anticancer therapeutic clues.
Collapse
Affiliation(s)
- Bing-Jun Chen
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jia-Shun Wu
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases, Department of Oral Pathology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Lo Vecchio S, Thiagarajan R, Caballero D, Vigon V, Navoret L, Voituriez R, Riveline D. Collective Dynamics of Focal Adhesions Regulate Direction of Cell Motion. Cell Syst 2020; 10:535-542.e4. [DOI: 10.1016/j.cels.2020.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/20/2020] [Accepted: 05/19/2020] [Indexed: 01/14/2023]
|
11
|
Myoblast Migration and Directional Persistence Affected by Syndecan-4-Mediated Tiam-1 Expression and Distribution. Int J Mol Sci 2020; 21:ijms21030823. [PMID: 32012800 PMCID: PMC7037462 DOI: 10.3390/ijms21030823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle is constantly renewed in response to injury, exercise, or muscle diseases. Muscle stem cells, also known as satellite cells, are stimulated by local damage to proliferate extensively and form myoblasts that then migrate, differentiate, and fuse to form muscle fibers. The transmembrane heparan sulfate proteoglycan syndecan-4 plays multiple roles in signal transduction processes, such as regulating the activity of the small GTPase Rac1 (Ras-related C3 botulinum toxin substrate 1) by binding and inhibiting the activity of Tiam1 (T-lymphoma invasion and metastasis-1), a guanine nucleotide exchange factor for Rac1. The Rac1-mediated actin remodeling is required for cell migration. Syndecan-4 knockout mice cannot regenerate injured muscle; however, the detailed underlying mechanism is unknown. Here, we demonstrate that shRNA-mediated knockdown of syndecan-4 decreases the random migration of mouse myoblasts during live-cell microscopy. Treatment with the Rac1 inhibitor NSC23766 did not restore the migration capacity of syndecan-4 silenced cells; in fact, it was further reduced. Syndecan-4 knockdown decreased the directional persistence of migration, abrogated the polarized, asymmetric distribution of Tiam1, and reduced the total Tiam1 level of the cells. Syndecan-4 affects myoblast migration via its role in expression and localization of Tiam1; this finding may facilitate greater understanding of the essential role of syndecan-4 in the development and regeneration of skeletal muscle.
Collapse
|
12
|
Motealleh A, Kehr NS. Directed vertical cell migration via bifunctionalized nanomaterials in 3D step-gradient nanocomposite hydrogels. Biomater Sci 2020; 8:5628-5637. [DOI: 10.1039/d0bm01133a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Step-gradient scaffolds promote healthy cell migration, while inhibit the migration of cancerous cells in the XZ plane of the 2GradNS.
Collapse
Affiliation(s)
- Andisheh Motealleh
- Physikalisches Institute and Center for Soft Nanoscience
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Nermin S. Kehr
- Physikalisches Institute and Center for Soft Nanoscience
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| |
Collapse
|
13
|
Abstract
Neural crest cells are the embryonic precursors of most neurons and all glia of the peripheral nervous system, pigment cells, some endocrine components, and connective tissue of the head, face, neck, and heart. Following induction, crest cells undergo an epithelial to mesenchymal transition that enables them to migrate along specific pathways culminating in their phenotypic differentiation. Researching this unique embryonic population has revealed important understandings of basic biological and developmental principles. These principles are likely to assist in clarifying the etiology and help in finding strategies for the treatment of neural crest diseases, collectively termed neurocristopathies. The progress achieved in neural crest research is made feasible thanks to the continuous development of species-specific in vivo and in vitro paradigms and more recently the possibility to produce neural crest cells and specific derivatives from embryonic or induced pluripotent stem cells. All of the above assist us in elucidating mechanisms that regulate neural crest development using state-of-the art cellular, molecular, and imaging approaches.
Collapse
Affiliation(s)
- Chaya Kalcheim
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel.
- Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
14
|
Hutchins EJ, Bronner ME. Draxin acts as a molecular rheostat of canonical Wnt signaling to control cranial neural crest EMT. J Cell Biol 2018; 217:3683-3697. [PMID: 30026247 PMCID: PMC6168252 DOI: 10.1083/jcb.201709149] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 05/24/2018] [Accepted: 07/05/2018] [Indexed: 01/17/2023] Open
Abstract
Neural crest cells undergo a spatiotemporally regulated epithelial-to-mesenchymal transition (EMT) that proceeds head to tailward to exit from the neural tube. In this study, we show that the secreted molecule Draxin is expressed in a transient rostrocaudal wave that mirrors this emigration pattern, initiating after neural crest specification and being down-regulated just before delamination. Functional experiments reveal that Draxin regulates the timing of cranial neural crest EMT by transiently inhibiting canonical Wnt signaling. Ectopic maintenance of Draxin in the cranial neural tube blocks full EMT; while cells delaminate, they fail to become mesenchymal and migratory. Loss of Draxin results in premature delamination but also in failure to mesenchymalize. These results suggest that a pulse of intermediate Wnt signaling triggers EMT and is necessary for its completion. Taken together, these data show that transient secreted Draxin mediates proper levels of canonical Wnt signaling required to regulate the precise timing of initiation and completion of cranial neural crest EMT.
Collapse
Affiliation(s)
- Erica J Hutchins
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Marianne E Bronner
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
15
|
Sivakumar A, Kurpios NA. Transcriptional regulation of cell shape during organ morphogenesis. J Cell Biol 2018; 217:2987-3005. [PMID: 30061107 PMCID: PMC6122985 DOI: 10.1083/jcb.201612115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/11/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023] Open
Abstract
The emerging field of transcriptional regulation of cell shape changes aims to address the critical question of how gene expression programs produce a change in cell shape. Together with cell growth, division, and death, changes in cell shape are essential for organ morphogenesis. Whereas most studies of cell shape focus on posttranslational events involved in protein organization and distribution, cell shape changes can be genetically programmed. This review highlights the essential role of transcriptional regulation of cell shape during morphogenesis of the heart, lungs, gastrointestinal tract, and kidneys. We emphasize the evolutionary conservation of these processes across different model organisms and discuss perspectives on open questions and research avenues that may provide mechanistic insights toward understanding birth defects.
Collapse
Affiliation(s)
- Aravind Sivakumar
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Natasza A Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
16
|
Cousin H. Cadherins function during the collective cell migration of Xenopus Cranial Neural Crest cells: revisiting the role of E-cadherin. Mech Dev 2017; 148:79-88. [PMID: 28467887 PMCID: PMC5662486 DOI: 10.1016/j.mod.2017.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/21/2017] [Accepted: 04/28/2017] [Indexed: 12/20/2022]
Abstract
Collective cell migration is a process whereby cells move while keeping contact with other cells. The Xenopus Cranial Neural Crest (CNC) is a population of cells that emerge during early embryogenesis and undergo extensive migration from the dorsal to ventral part of the embryo's head. These cells migrate collectively and require cadherin mediated cell-cell contact. In this review, we will describe the key features of Xenopus CNC migration including the key molecules driving their migration. We will also review the role of the various cadherins during Xenopus CNC emergence and migration. Lastly, we will discuss the recent and seemingly controversial findings showing that E-cadherin presence is essential for CNC migration.
Collapse
Affiliation(s)
- Hélène Cousin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
17
|
Toro-Tapia G, Villaseca S, Leal JI, Beyer A, Fuentealba J, Torrejón M. Xenopus as a model organism to study heterotrimeric G-protein pathway during collective cell migration of neural crest. Genesis 2017; 55. [PMID: 28095644 DOI: 10.1002/dvg.23008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 01/03/2023]
Abstract
Collective cell migration is essential in many fundamental aspects of normal development, like morphogenesis, organ formation, wound healing, and immune responses, as well as in the etiology of severe pathologies, like cancer metastasis. In spite of the huge amount of data accumulated on cell migration, such a complex process involves many molecular actors, some of which still remain to be functionally characterized. One of these signals is the heterotrimeric G-protein pathway that has been studied mainly in gastrulation movements. Recently we have reported that Ric-8A, a GEF for Gα proteins, plays an important role in neural crest migration in Xenopus development. Xenopus neural crest cells, a highly migratory embryonic cell population induced at the border of the neural plate that migrates extensively in order to differentiate in other tissues during development, have become a good model to understand the dynamics that regulate cell migration. In this review, we aim to provide sufficient evidence supporting how useful Xenopus model with its different tools, such as explants and transplants, paired with improved in vivo imaging techniques, will allow us to tackle the multiple signaling mechanisms involved in neural crest cell migration.
Collapse
Affiliation(s)
- G Toro-Tapia
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - S Villaseca
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - J I Leal
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - A Beyer
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - J Fuentealba
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - M Torrejón
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| |
Collapse
|
18
|
Bahm I, Barriga EH, Frolov A, Theveneau E, Frankel P, Mayor R. PDGF controls contact inhibition of locomotion by regulating N-cadherin during neural crest migration. Development 2017; 144:2456-2468. [PMID: 28526750 PMCID: PMC5536867 DOI: 10.1242/dev.147926] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/15/2017] [Indexed: 12/20/2022]
Abstract
A fundamental property of neural crest (NC) migration is contact inhibition of locomotion (CIL), a process by which cells change their direction of migration upon cell contact. CIL has been proven to be essential for NC migration in amphibians and zebrafish by controlling cell polarity in a cell contact-dependent manner. Cell contact during CIL requires the participation of the cell adhesion molecule N-cadherin, which starts to be expressed by NC cells as a consequence of the switch between E- and N-cadherins during epithelial-to-mesenchymal transition (EMT). However, the mechanism that controls the upregulation of N-cadherin remains unknown. Here, we show that platelet-derived growth factor receptor alpha (PDGFRα) and its ligand platelet-derived growth factor A (PDGF-A) are co-expressed in migrating cranial NC. Inhibition of PDGF-A/PDGFRα blocks NC migration by inhibiting N-cadherin and, consequently, impairing CIL. Moreover, we identify phosphatidylinositol-3-kinase (PI3K)/AKT as a downstream effector of the PDGFRα cellular response during CIL. Our results lead us to propose PDGF-A/PDGFRα signalling as a tissue-autonomous regulator of CIL by controlling N-cadherin upregulation during EMT. Finally, we show that once NC cells have undergone EMT, the same PDGF-A/PDGFRα works as an NC chemoattractant, guiding their directional migration. Summary: PDGF-A and its receptor control Xenopus neural crest migration by promoting EMT and contact inhibition of locomotion, acting via N-cadherin regulation at early stages of development and working as chemoattractant later.
Collapse
Affiliation(s)
- Isabel Bahm
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Elias H Barriga
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK.,London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
| | - Antonina Frolov
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, University College London, London WC1E 6JJ, UK
| | - Eric Theveneau
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Paul Frankel
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, University College London, London WC1E 6JJ, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
19
|
Rutherford EL, Lowery LA. Exploring the developmental mechanisms underlying Wolf-Hirschhorn Syndrome: Evidence for defects in neural crest cell migration. Dev Biol 2016; 420:1-10. [PMID: 27777068 PMCID: PMC5193094 DOI: 10.1016/j.ydbio.2016.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/03/2016] [Accepted: 10/18/2016] [Indexed: 01/20/2023]
Abstract
Wolf-Hirschhorn Syndrome (WHS) is a neurodevelopmental disorder characterized by mental retardation, craniofacial malformation, and defects in skeletal and heart development. The syndrome is associated with irregularities on the short arm of chromosome 4, including deletions of varying sizes and microduplications. Many of these genotypic aberrations in humans have been correlated with the classic WHS phenotype, and animal models have provided a context for mapping these genetic irregularities to specific phenotypes; however, there remains a significant knowledge gap concerning the cell biological mechanisms underlying these phenotypes. This review summarizes literature that has made recent contributions to this topic, drawing from the vast body of knowledge detailing the genetic particularities of the disorder and the more limited pool of information on its cell biology. Finally, we propose a novel characterization for WHS as a pathophysiology owing in part to defects in neural crest cell motility and migration during development.
Collapse
Affiliation(s)
- Erin L Rutherford
- Boston College, Department of Biology, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, United States
| | - Laura Anne Lowery
- Boston College, Department of Biology, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, United States.
| |
Collapse
|
20
|
Caballero D, Comelles J, Piel M, Voituriez R, Riveline D. Ratchetaxis: Long-Range Directed Cell Migration by Local Cues. Trends Cell Biol 2016; 25:815-827. [PMID: 26615123 DOI: 10.1016/j.tcb.2015.10.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/07/2015] [Accepted: 10/12/2015] [Indexed: 01/22/2023]
Abstract
Directed cell migration is usually thought to depend on the presence of long-range gradients of either chemoattractants or physical properties such as stiffness or adhesion. However, in vivo, chemical or mechanical gradients have not systematically been observed. Here we review recent in vitro experiments, which show that other types of spatial guidance cues can bias cell motility. Introducing local geometrical or mechanical anisotropy in the cell environment, such as adhesive/topographical microratchets or tilted micropillars, show that local and periodic external cues can direct cell motion. Together with modeling, these experiments suggest that cell motility can be viewed as a stochastic phenomenon, which can be biased by various types of local cues, leading to directional migration.
Collapse
Affiliation(s)
- David Caballero
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Development and Stem Cells Program, IGBMC, CNRS, INSERM and University of Strasbourg, Illkirch, France
| | - Jordi Comelles
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Development and Stem Cells Program, IGBMC, CNRS, INSERM and University of Strasbourg, Illkirch, France
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS, UMR 144, Bio6, F-75005, Paris, France.
| | - Raphaël Voituriez
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600, Université Pierre et Marie Curie, Paris, France; Laboratoire Jean Perrin, CNRS UMR 8237, Université Pierre et Marie Curie, Paris, France.
| | - Daniel Riveline
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Development and Stem Cells Program, IGBMC, CNRS, INSERM and University of Strasbourg, Illkirch, France.
| |
Collapse
|
21
|
Fuentealba J, Toro-Tapia G, Rodriguez M, Arriagada C, Maureira A, Beyer A, Villaseca S, Leal JI, Hinrichs MV, Olate J, Caprile T, Torrejón M. Expression profiles of the Gα subunits during Xenopus tropicalis embryonic development. Gene Expr Patterns 2016; 22:15-25. [PMID: 27613600 DOI: 10.1016/j.gep.2016.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/31/2016] [Accepted: 09/04/2016] [Indexed: 10/21/2022]
Abstract
Heterotrimeric G protein signaling plays major roles during different cellular events. However, there is a limited understanding of the molecular mechanisms underlying G protein control during embryogenesis. G proteins are highly conserved and can be grouped into four subfamilies according to sequence homology and function. To further studies on G protein function during embryogenesis, the present analysis identified four Gα subunits representative of the different subfamilies and determined their spatiotemporal expression patterns during Xenopus tropicalis embryogenesis. Each of the Gα subunit transcripts was maternally and zygotically expressed, and, as development progressed, dynamic expression patterns were observed. In the early developmental stages, the Gα subunits were expressed in the animal hemisphere and dorsal marginal zone. While expression was observed at the somite boundaries, in vascular structures, in the eye, and in the otic vesicle during the later stages, expression was mainly found in neural tissues, such as the neural tube and, especially, in the cephalic vesicles, neural crest region, and neural crest-derived structures. Together, these results support the pleiotropism and complexity of G protein subfamily functions in different cellular events. The present study constitutes the most comprehensive description to date of the spatiotemporal expression patterns of Gα subunits during vertebrate development.
Collapse
Affiliation(s)
- Jaime Fuentealba
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Gabriela Toro-Tapia
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Marion Rodriguez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Cecilia Arriagada
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Alejandro Maureira
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Andrea Beyer
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Soraya Villaseca
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Juan I Leal
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Maria V Hinrichs
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Juan Olate
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Teresa Caprile
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Marcela Torrejón
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
| |
Collapse
|
22
|
Chemotaxis during neural crest migration. Semin Cell Dev Biol 2016; 55:111-8. [DOI: 10.1016/j.semcdb.2016.01.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/22/2016] [Indexed: 01/12/2023]
|
23
|
Rabadán MA, Herrera A, Fanlo L, Usieto S, Carmona-Fontaine C, Barriga EH, Mayor R, Pons S, Martí E. Delamination of neural crest cells requires transient and reversible Wnt inhibition mediated by Dact1/2. Development 2016; 143:2194-205. [PMID: 27122165 DOI: 10.1242/dev.134981] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/18/2016] [Indexed: 02/06/2023]
Abstract
Delamination of neural crest (NC) cells is a bona fide physiological model of epithelial-to-mesenchymal transition (EMT), a process that is influenced by Wnt/β-catenin signalling. Using two in vivo models, we show that Wnt/β-catenin signalling is transiently inhibited at the time of NC delamination. In attempting to define the mechanism underlying this inhibition, we found that the scaffold proteins Dact1 and Dact2, which are expressed in pre-migratory NC cells, are required for NC delamination in Xenopus and chick embryos, whereas they do not affect the motile properties of migratory NC cells. Dact1/2 inhibit Wnt/β-catenin signalling upstream of the transcriptional activity of T cell factor (TCF), which is required for EMT to proceed. Dact1/2 regulate the subcellular distribution of β-catenin, preventing β-catenin from acting as a transcriptional co-activator to TCF, yet without affecting its stability. Together, these data identify a novel yet important regulatory element that inhibits β-catenin signalling, which then affects NC delamination.
Collapse
Affiliation(s)
- M Angeles Rabadán
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/ Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Antonio Herrera
- Department of Cell Biology, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Lucia Fanlo
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/ Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Susana Usieto
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/ Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Carlos Carmona-Fontaine
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Elias H Barriga
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Sebastián Pons
- Department of Cell Biology, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Elisa Martí
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/ Baldiri i Reixac 20, Barcelona 08028, Spain
| |
Collapse
|
24
|
Mayor R, Etienne-Manneville S. The front and rear of collective cell migration. Nat Rev Mol Cell Biol 2016; 17:97-109. [PMID: 26726037 DOI: 10.1038/nrm.2015.14] [Citation(s) in RCA: 566] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Collective cell migration has a key role during morphogenesis and during wound healing and tissue renewal in the adult, and it is involved in cancer spreading. In addition to displaying a coordinated migratory behaviour, collectively migrating cells move more efficiently than if they migrated separately, which indicates that a cellular interplay occurs during collective cell migration. In recent years, evidence has accumulated confirming the importance of such intercellular communication and exploring the molecular mechanisms involved. These mechanisms are based both on direct physical interactions, which coordinate the cellular responses, and on the collective cell behaviour that generates an optimal environment for efficient directed migration. The recent studies have described how leader cells at the front of cell groups drive migration and have highlighted the importance of follower cells and cell-cell communication, both between followers and between follower and leader cells, to improve the efficiency of collective movement.
Collapse
Affiliation(s)
- Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Sandrine Etienne-Manneville
- Institut Pasteur, CNRS UMR 3691, Cell Polarity, Migration and Cancer Unit, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
25
|
Caballero D, Voituriez R, Riveline D. The cell ratchet: interplay between efficient protrusions and adhesion determines cell motion. Cell Adh Migr 2015; 9:327-34. [PMID: 26313125 DOI: 10.1080/19336918.2015.1061865] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Many physiological and pathological processes involve directed cell motion. In general, migrating cells are represented with a polarized morphology with extending and retracting protrusions at the leading edge. However, cell motion is a more complex phenomenon. Cells show heterogeneous morphologies and high protrusive dynamics is not always related to cell shape. This prevents the quantitative prediction of cell motion and the identification of cellular mechanisms setting directionality. Here we discuss the importance of protrusion fluctuations in directed cell motion. We show how their spatiotemporal distribution and dynamics determine the fluctuations and directions of cell motion for NIH3T3 fibroblasts plated on micro-patterned adhesive ratchets. (1) We introduce efficient protrusions and direction index which capture short-term cell motility over hours: these new read-outs allow the prediction of parameters characteristic for the long-term motion of cells over days. The results may have important implications for the study of biological phenomena where directed cell migration is involved, in morphogenesis and in cancer.
Collapse
Affiliation(s)
- David Caballero
- a Laboratory of Cell Physics; ISIS/IGBMC; Université de Strasbourg and CNRS (UMR 7006) ; Strasbourg , France.,b Development and Stem Cells Program; IGBMC; CNRS (UMR 7104); INSERM (U964); Université de Strasbourg ; Illkirch , France
| | - Raphaël Voituriez
- c Laboratoire de Physique Théorique de la Matière Condensée; CNRS UMR 7600; Université Pierre et Marie Curie ; Paris , France.,d Laboratoire Jean Perrin; CNRS FRE 3231; Université Pierre et Marie Curie ; Paris , France
| | - Daniel Riveline
- a Laboratory of Cell Physics; ISIS/IGBMC; Université de Strasbourg and CNRS (UMR 7006) ; Strasbourg , France.,b Development and Stem Cells Program; IGBMC; CNRS (UMR 7104); INSERM (U964); Université de Strasbourg ; Illkirch , France
| |
Collapse
|
26
|
Caballero D, Voituriez R, Riveline D. Protrusion fluctuations direct cell motion. Biophys J 2015; 107:34-42. [PMID: 24988339 DOI: 10.1016/j.bpj.2014.05.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 05/01/2014] [Accepted: 05/05/2014] [Indexed: 10/25/2022] Open
Abstract
Many physiological phenomena involve directional cell migration. It is usually attributed to chemical gradients in vivo. Recently, other cues have been shown to guide cells in vitro, including stiffness/adhesion gradients or micropatterned adhesive motifs. However, the cellular mechanism leading to these biased migrations remains unknown, and, often, even the direction of motion is unpredictable. In this study, we show the key role of fluctuating protrusions on ratchet-like structures in driving NIH3T3 cell migration. We identified the concept of efficient protrusion and an associated direction index. Our analysis of the protrusion statistics facilitated the quantitative prediction of cell trajectories in all investigated conditions. We varied the external cues by changing the adhesive patterns. We also modified the internal cues using drug treatments, which modified the protrusion activity. Stochasticity affects the short- and long-term steps. We developed a theoretical model showing that an asymmetry in the protrusion fluctuations is sufficient for predicting all measures associated with the long-term motion, which can be described as a biased persistent random walk.
Collapse
Affiliation(s)
- David Caballero
- Laboratory of Cell Physics, Institut de Science et d'Ingénierie Supramoléculaires/Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg and Centre National de la Recherche Scientifique UMR 7006, Strasbourg, France; Development and Stem Cells Program, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR 7104, Institut National de la Santé et de la Recherche Médicale (U964),Université de Strasbourg, Illkirch, France
| | - Raphaël Voituriez
- Laboratoire de Physique Théorique de la Matière Condensée, Centre National de la Recherche Scientifique UMR 7600; Laboratoire Jean Perrin, Centre National de la Recherche Scientifique UMR 823, Université Pierre et Marie Curie, Paris, France
| | - Daniel Riveline
- Laboratory of Cell Physics, Institut de Science et d'Ingénierie Supramoléculaires/Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg and Centre National de la Recherche Scientifique UMR 7006, Strasbourg, France; Development and Stem Cells Program, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR 7104, Institut National de la Santé et de la Recherche Médicale (U964),Université de Strasbourg, Illkirch, France.
| |
Collapse
|
27
|
Hartin SN, Hudson ML, Yingling C, Ackley BD. A Synthetic Lethal Screen Identifies a Role for Lin-44/Wnt in C. elegans Embryogenesis. PLoS One 2015; 10:e0121397. [PMID: 25938228 PMCID: PMC4418752 DOI: 10.1371/journal.pone.0121397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/31/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The C. elegans proteins PTP-3/LAR-RPTP and SDN-1/Syndecan are conserved cell adhesion molecules. Loss-of-function (LOF) mutations in either ptp-3 or sdn-1 result in low penetrance embryonic developmental defects. Work from other systems has shown that syndecans can function as ligands for LAR receptors in vivo. We used double mutant analysis to test whether ptp-3 and sdn-1 function in a linear genetic pathway during C. elegans embryogenesis. RESULTS We found animals with LOF in both sdn-1 and ptp-3 exhibited a highly penetrant synthetic lethality (SynLet), with only a small percentage of animals surviving to adulthood. Analysis of the survivors demonstrated that these animals had a synergistic increase in the penetrance of embryonic developmental defects. Together, these data strongly suggested PTP-3 and SDN-1 function in parallel during embryogenesis. We subsequently used RNAi to knockdown ~3,600 genes predicted to encode secreted and/or transmembrane molecules to identify genes that interacted with ptp-3 or sdn-1. We found that the Wnt ligand, lin-44, was SynLet with sdn-1, but not ptp-3. We used 4-dimensional time-lapse analysis to characterize the interaction between lin-44 and sdn-1. We found evidence that loss of lin-44 caused defects in the polarization and migration of endodermal precursors during gastrulation, a previously undescribed role for lin-44 that is strongly enhanced by the loss of sdn-1. CONCLUSIONS PTP-3 and SDN-1 function in compensatory pathways during C. elegans embryonic and larval development, as simultaneous loss of both genes has dire consequences for organismal survival. The Wnt ligand lin-44 contributes to the early stages of gastrulation in parallel to sdn-1, but in a genetic pathway with ptp-3. Overall, the SynLet phenotype provides a robust platform to identify ptp-3 and sdn-1 interacting genes, as well as other genes that function in development, yet might be missed in traditional forward genetic screens.
Collapse
Affiliation(s)
- Samantha N. Hartin
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States of America
| | - Martin L. Hudson
- Department of Biology and Physics, Kennesaw State University, Kennesaw, GA, United States of America
| | - Curtis Yingling
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States of America
| | - Brian D. Ackley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States of America
- * E-mail:
| |
Collapse
|
28
|
Bradshaw M, Clemons TD, Ho D, Gutiérrez L, Lázaro FJ, House MJ, St Pierre TG, Fear MW, Wood FM, Iyer KS. Manipulating directional cell motility using intracellular superparamagnetic nanoparticles. NANOSCALE 2015; 7:4884-4889. [PMID: 25695187 DOI: 10.1039/c4nr06594h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This study investigated the ability for magnetic nanoparticles to influence cellular migration in the presence of an external magnetic field. We found that the direction of migrating keratinocytes can be controlled and the migration speed of fibroblasts can be increased with the internalisation of these nanoparticles in the presence of a magnetic field. The possibility of shepherding cells towards a region of interest through the use of internalized nanoparticles is an attractive prospect for cell tracking, cell therapies, and tissue engineering applications.
Collapse
Affiliation(s)
- Michael Bradshaw
- School of Chemistry and Biochemistry, M313, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Barriga EH, Mayor R. Embryonic cell-cell adhesion: a key player in collective neural crest migration. Curr Top Dev Biol 2015; 112:301-23. [PMID: 25733144 DOI: 10.1016/bs.ctdb.2014.11.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell migration is essential for morphogenesis, adult tissue remodeling, wound healing, and cancer cell migration. Cells can migrate as individuals or groups. When cells migrate in groups, cell-cell interactions are crucial in order to promote the coordinated behavior, essential for collective migration. Interestingly, recent evidence has shown that cell-cell interactions are also important for establishing and maintaining the directionality of these migratory events. We focus on neural crest cells, as they possess extraordinary migratory capabilities that allow them to migrate and colonize tissues all over the embryo. Neural crest cells undergo an epithelial-to-mesenchymal transition at the same time than perform directional collective migration. Cell-cell adhesion has been shown to be an important source of planar cell polarity and cell coordination during collective movement. We also review molecular mechanisms underlying cadherin turnover, showing how the modulation and dynamics of cell-cell adhesions are crucial in order to maintain tissue integrity and collective migration in vivo. We conclude that cell-cell adhesion during embryo development cannot be considered as simple passive resistance to force, but rather participates in signaling events that determine important cell behaviors required for cell migration.
Collapse
Affiliation(s)
- Elias H Barriga
- Cell and Developmental Biology Department, University College London, London, United Kingdom
| | - Roberto Mayor
- Cell and Developmental Biology Department, University College London, London, United Kingdom.
| |
Collapse
|
30
|
Newbern JM. Molecular control of the neural crest and peripheral nervous system development. Curr Top Dev Biol 2015; 111:201-31. [PMID: 25662262 DOI: 10.1016/bs.ctdb.2014.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A transient and unique population of multipotent stem cells, known as neural crest cells (NCCs), generate a bewildering array of cell types during vertebrate development. An attractive model among developmental biologists, the study of NCC biology has provided a wealth of knowledge regarding the cellular and molecular mechanisms important for embryogenesis. Studies in numerous species have defined how distinct phases of NCC specification, proliferation, migration, and survival contribute to the formation of multiple functionally distinct organ systems. NCC contributions to the peripheral nervous system (PNS) are well known. Critical developmental processes have been defined that provide outstanding models for understanding how extracellular stimuli, cell-cell interactions, and transcriptional networks cooperate to direct cellular diversification and PNS morphogenesis. Dissecting the complex extracellular and intracellular mechanisms that mediate the formation of the PNS from NCCs may have important therapeutic implications for neurocristopathies, neuropathies, and certain forms of cancer.
Collapse
Affiliation(s)
- Jason M Newbern
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA.
| |
Collapse
|
31
|
Zhan YH, Lin Y, Tong SJ, Ma QL, Lu CX, Fang L, Wei W, Cai B, Wang N. The CELSR1 polymorphisms rs6007897 and rs4044210 are associated with ischaemic stroke in Chinese Han population. Ann Hum Biol 2014; 42:26-30. [PMID: 25117632 DOI: 10.3109/03014460.2014.944214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Recently, CELSR1 was identified by genome-wide association studies (GWAS) as a susceptibility gene for ischaemic stroke (IS) in Japanese individuals. AIM The goal was to examine whether CELSR1 variants are associated with IS in the Chinese Han population. SUBJECTS AND METHODS This study genotyped two single nucleotide polymorphisms (SNPs) of CELSR1, rs6007897 and rs4044210, in a Chinese sample of 569 IS cases and 581 controls and assessed their genotype and allele associations with IS. RESULTS The results showed that rs6007897 and rs4044210 variants of CELSR1 were significantly (p < 0.01) associated with IS. These associations remained after adjustment for age, gender, smoking status, hypertension, diabetes mellitus and hypercholesterolemia. In addition, a significant association was observed of rs6007897 and rs4044210 of CELSR1 with large artery atherosclerosis (LAA), a sub-type of IS (p < 0.01). CONCLUSION Taken together, the present study has proven for the first time that CELSR1 is a susceptibility gene for IS in the Chinese Han population, especially for LAA.
Collapse
Affiliation(s)
- Yi-Hong Zhan
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Center of Neuroscience, Fujian Medical University , Fuzhou , PR China and
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
The role of the non-canonical Wnt-planar cell polarity pathway in neural crest migration. Biochem J 2014; 457:19-26. [PMID: 24325550 DOI: 10.1042/bj20131182] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The neural crest is an embryonic stem cell population whose migratory behaviour has been likened to malignant invasion. The neural crest, as does cancer, undergoes an epithelial-to-mesenchymal transition and migrates to colonize almost all the tissues of the embryo. Neural crest cells exhibit collective cell migration, moving in streams of high directionality. The migratory neural crest streams are kept in shape by the presence of negative signals in their vicinity. The directionality of the migrating neural crest is achieved by contact-dependent cell polarization, in a phenomenon called contact inhibition of locomotion. Two cells experiencing contact inhibition of locomotion move away from each other after collision. However, if the cell density is high only cells exposed to a free edge can migrate away from the cluster leading to the directional migration of the whole group. Recent work performed in chicks, zebrafish and frogs has shown that the non-canonical Wnt-PCP (planar cell polarity) pathway plays a major role in neural crest migration. PCP signalling controls contact inhibition of locomotion between neural crest cells by localizing different PCP proteins at the site of cell contact during collision and locally regulating the activity of Rho GTPases. Upon collision RhoA (ras homologue family member A) is activated, whereas Rac1 is inhibited at the contact between two migrating neural crest cells, leading to the collapse of protrusions and the migration of cells away from one another. The present review summarizes the mechanisms that control neural crest migration and focuses on the role of non-canonical Wnt or PCP signalling in this process.
Collapse
|
33
|
Theveneau E, Mayor R. Collective cell migration of epithelial and mesenchymal cells. Cell Mol Life Sci 2013; 70:3481-92. [PMID: 23314710 PMCID: PMC11113167 DOI: 10.1007/s00018-012-1251-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/13/2012] [Accepted: 12/20/2012] [Indexed: 12/14/2022]
Abstract
Directional cell migration is required for proper embryogenesis, immunity, and healing, and its underpinning regulatory mechanisms are often hijacked during diseases such as chronic inflammations and cancer metastasis. Studies on migratory epithelial tissues have revealed that cells can move as a collective group with shared responsibilities. First thought to be restricted to proper epithelial cell types able to maintain stable cell-cell junctions, the field of collective cell migration is now widening to include cooperative behavior of mesenchymal cells. In this review, we give an overview of the mechanisms driving collective cell migration in epithelial tissues and discuss how mesenchymal cells can cooperate to behave as a collective in the absence of bona fide cell-cell adhesions.
Collapse
Affiliation(s)
- Eric Theveneau
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London, UK
| |
Collapse
|
34
|
Theveneau E, Steventon B, Scarpa E, Garcia S, Trepat X, Streit A, Mayor R. Chase-and-run between adjacent cell populations promotes directional collective migration. Nat Cell Biol 2013; 15:763-72. [PMID: 23770678 PMCID: PMC4910871 DOI: 10.1038/ncb2772] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/30/2013] [Indexed: 12/03/2022]
Abstract
Collective cell migration in morphogenesis and cancer progression often involves the coordination of multiple cell types. How reciprocal interactions between adjacent cell populations lead to new emergent behaviours remains unknown. Here we studied the interaction between Neural Crest (NC) cells, a highly migratory cell population, and placodal cells, an epithelial tissue that contributes to sensory organs. We found that NC cells “chase” placodal cells by chemotaxis, while placodal cells “run” when contacted by NC. Chemotaxis to Sdf1 underlies the chase, while repulsion involving PCP and N-Cadherin signalling is responsible for the run. This “chase-and-run” requires the generation of asymmetric forces, which depend on local inhibition of focal adhesions. The cell interactions described here are essential for correct NC migration and for segregation of placodes in vivo and are likely to represent a general mechanism of coordinated migration.
Collapse
Affiliation(s)
- Eric Theveneau
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | | | | | | | | | | | | |
Collapse
|
35
|
Muñoz-Soriano V, Belacortu Y, Paricio N. Planar cell polarity signaling in collective cell movements during morphogenesis and disease. Curr Genomics 2013; 13:609-22. [PMID: 23730201 PMCID: PMC3492801 DOI: 10.2174/138920212803759721] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/14/2012] [Accepted: 09/17/2012] [Indexed: 01/01/2023] Open
Abstract
Collective and directed cell movements are crucial for diverse developmental processes in the animal kingdom, but they are also involved in wound repair and disease. During these processes groups of cells are oriented within the tissue plane, which is referred to as planar cell polarity (PCP). This requires a tight regulation that is in part conducted by the PCP pathway. Although this pathway was initially characterized in flies, subsequent studies in vertebrates revealed a set of conserved core factors but also effector molecules and signal modulators, which build the fundamental PCP machinery. The PCP pathway in Drosophila regulates several developmental processes involving collective cell movements such as border cell migration during oogenesis, ommatidial rotation during eye development, and embryonic dorsal closure. During vertebrate embryogenesis, PCP signaling also controls collective and directed cell movements including convergent extension during gastrulation, neural tube closure, neural crest cell migration, or heart morphogenesis. Similarly, PCP signaling is linked to processes such as wound repair, and cancer invasion and metastasis in adults. As a consequence, disruption of PCP signaling leads to pathological conditions. In this review, we will summarize recent findings about the role of PCP signaling in collective cell movements in flies and vertebrates. In addition, we will focus on how studies in Drosophila have been relevant to our understanding of the PCP molecular machinery and will describe several developmental defects and human disorders in which PCP signaling is compromised. Therefore, new discoveries about the contribution of this pathway to collective cell movements could provide new potential diagnostic and therapeutic targets for these disorders.
Collapse
Affiliation(s)
- Verónica Muñoz-Soriano
- Departamento de Genética, Facultad de CC Biológicas, Universidad de Valencia, Burjassot 46100, Valencia, Spain
| | | | | |
Collapse
|
36
|
Fuentealba J, Toro-Tapia G, Arriagada C, Riquelme L, Beyer A, Henriquez JP, Caprile T, Mayor R, Marcellini S, Hinrichs MV, Olate J, Torrejón M. Ric-8A, a guanine nucleotide exchange factor for heterotrimeric G proteins, is critical for cranial neural crest cell migration. Dev Biol 2013; 378:74-82. [PMID: 23588098 DOI: 10.1016/j.ydbio.2013.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/05/2013] [Accepted: 04/05/2013] [Indexed: 01/02/2023]
Abstract
The neural crest (NC) is a transient embryonic structure induced at the border of the neural plate. NC cells extensively migrate towards diverse regions of the embryo, where they differentiate into various derivatives, including most of the craniofacial skeleton and the peripheral nervous system. The Ric-8A protein acts as a guanine nucleotide exchange factor for several Gα subunits, and thus behaves as an activator of signaling pathways mediated by heterotrimeric G proteins. Using in vivo transplantation assays, we demonstrate that Ric-8A levels are critical for the migration of cranial NC cells and their subsequent differentiation into craniofacial cartilage during Xenopus development. NC cells explanted from Ric-8A morphant embryos are unable to migrate directionally towards a source of the Sdf1 peptide, a potent chemoattractant for NC cells. Consistently, Ric-8A knock-down showed anomalous radial migratory behavior, displaying a strong reduction in cell spreading and focal adhesion formation. We further show that during in vivo and in vitro neural crest migration, Ric-8A localizes to the cell membrane, in agreement with its role as a G protein activator. We propose that Ric-8A plays essential roles during the migration of cranial NC cells, possibly by regulating cell adhesion and spreading.
Collapse
Affiliation(s)
- Jaime Fuentealba
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepcion, Chile
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ulmer B, Hagenlocher C, Schmalholz S, Kurz S, Schweickert A, Kohl A, Roth L, Sela-Donenfeld D, Blum M. Calponin 2 acts as an effector of noncanonical Wnt-mediated cell polarization during neural crest cell migration. Cell Rep 2013; 3:615-21. [PMID: 23499442 DOI: 10.1016/j.celrep.2013.02.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 01/17/2013] [Accepted: 02/11/2013] [Indexed: 12/19/2022] Open
Abstract
Neural crest cells (NCCs) migrate throughout the embryo to differentiate into cell types of all germ layers. Initial directed NCC emigration relies on planar cell polarity (PCP), which through the activity of the small GTPases RhoA and Rac governs the actin-driven formation of polarized cell protrusions. We found that the actin binding protein calponin 2 (Cnn2) was expressed in protrusions at the leading edge of migratory NCCs in chicks and frogs. Cnn2 knockdown resulted in NCC migration defects in frogs and chicks and randomized outgrowth of cell protrusions in NCC explants. Morphant cells showed central stress fibers at the expense of the peripheral actin network. Cnn2 acted downstream of Wnt/PCP, as migration defects induced by dominant-negative Wnt11 or inhibition of RhoA function were rescued by Cnn2 knockdown. These results suggest that Cnn2 modulates actin dynamics during NCC migration as an effector of noncanonical Wnt/PCP signaling.
Collapse
Affiliation(s)
- Bärbel Ulmer
- Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Shoval I, Kalcheim C. Antagonistic activities of Rho and Rac GTPases underlie the transition from neural crest delamination to migration. Dev Dyn 2012; 241:1155-68. [PMID: 22553120 DOI: 10.1002/dvdy.23799] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2012] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Neural crest progenitors arise as epithelial cells and then undergo a transition into mesenchyme that generates motility. Previously, we showed that active Rho maintains crest cells in the epithelial conformation by keeping stress fibers and membrane-bound N-cadherin. RESULTS While Rho disappears from cell membranes upon delamination, active Rac1 becomes apparent in lamellipodia of mesenchymal cells. Loss of Rac1 function at trunk levels inhibited NC migration but did not prevent cell emigration that is associated with N-cadherin downregulation and G1/S transition. Furthermore, inhibition of Rho stimulated premature Rac1 activity and consequent formation of lamellipodia, leading to NC migration. To examine whether timely migration influences cell fate, Rac1 activity was transiently inhibited to delay dispersion of early NC cells that generate neural derivatives, and its activity was restored by the time of melanoblast migration. Even if confronted with a melanocytic environment, late-dispersing progenitors colonized sensory ganglia where they generated neurons and glia. CONCLUSIONS In the context of crest delamination and migration, activities of Rho and Rac are differential, sequential, and antagonistic. Furthermore, transient inhibition of Rac1 that delays the onset of crest dispersion raises the possibility that the fate of trunk neural progenitors might be restricted prior to migration.
Collapse
Affiliation(s)
- Irit Shoval
- Department of Medical Neurobiology, Hebrew University-Hadassah Medical School, IMRIC and ELSC, Jerusalem, Israel
| | | |
Collapse
|
39
|
Theveneau E, Mayor R. Can mesenchymal cells undergo collective cell migration? The case of the neural crest. Cell Adh Migr 2012; 5:490-8. [PMID: 22274714 DOI: 10.4161/cam.5.6.18623] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cell migration is critical for proper development of the embryo and is also used by many cell types to perform their physiological function. For instance, cell migration is essential for immune cells to monitor the body and for epithelial cells to heal a wound whereas, in cancer cells, acquisition of migratory capabilities is a critical step towards malignancy. Migratory cells are often categorized into two groups: mesenchymal cells, produced by an epithelium-to-mesenchyme transition, that undergo solitary migration and epithelial-like cells which migrate collectively. However, on some occasions, mesenchymal cells may travel in large, dense groups and exhibit key features of collectively migrating cells such as coordination and cooperation. Here, using data published on Neural Crest cells, a highly invasive mesenchymal cell population that extensively migrate throughout the embryo, we explore the idea that other mesenchymal cells, including cancer cells, might be able to undergo collective cell migration under certain conditions and discuss how they could do so.
Collapse
Affiliation(s)
- Eric Theveneau
- Department of Cell and Developmental Biology, University College London, London, UK
| | | |
Collapse
|
40
|
Abstract
In mammals, the skin can form complex global and local patterns to meet diverse functional requirements in different parts of the body. To date, the fundamental principles that underlie skin patterning remain poorly understood because of the involvement of multiple interacting processes. Genes involved in the planar cell polarity (PCP) signalling pathway, which is capable of polarizing cells within the planar plane of an epithelium, can control the orientation and differentiation of hair follicles, underlining their involvement in skin pattern formation. Here, we summarize recent progress that has been made to understand the PCP signalling pathway and its function in mammalian skin, including its role in hair follicle morphogenesis, ciliogenesis and wound healing. We argue that dissecting PCP signalling in the context of hair follicle formation might reveal many as-yet-undiscovered functions for PCP in the development, homeostasis and regeneration of skin.
Collapse
Affiliation(s)
- Jiang Chen
- Department of Dermatology, Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | |
Collapse
|
41
|
Theveneau E, Mayor R. Neural crest migration: interplay between chemorepellents, chemoattractants, contact inhibition, epithelial-mesenchymal transition, and collective cell migration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:435-45. [PMID: 23801492 DOI: 10.1002/wdev.28] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neural crest (NC) cells are induced at the border of the neural plate and subsequently leave the neuroepithelium during a delamination phase. This delamination involves either a complete or partial epithelium-to-mesenchyme transition, which is directly followed by an extensive cell migration. During migration, NC cells are exposed to a wide variety of signals controlling their polarity and directionality, allowing them to colonize specific areas or preventing them from invading forbidden zones. For instance, NC cells are restricted to very precise pathways by the presence of inhibitory signals at the borders of each route, such as Semaphorins, Ephrins, and Slit/Robo. Although specific NC chemoattractants have been recently identified, there is evidence that repulsive interactions between the cells, in a process called contact inhibition of locomotion, is one of the major driving forces behind directional migration. Interestingly, in cellular and molecular terms, the invasive behavior of NC is similar to the invasion of cancer cells during metastasis. NC cells eventually settle in various places and make an immense contribution to the vertebrate body. They form the major constituents of the skull, the peripheral nervous system, and the pigment cells among others, which show the remarkable diversity and importance of this embryonic-stem cell like cell population. Consequently, several birth defects and craniofacial disorders, such as Treacher Collins syndrome, are due to improper NC cell migration.
Collapse
Affiliation(s)
- Eric Theveneau
- Cell and Developmental Biology Department, University College London, London, UK
| | | |
Collapse
|
42
|
Theveneau E, Mayor R. Neural crest delamination and migration: from epithelium-to-mesenchyme transition to collective cell migration. Dev Biol 2012; 366:34-54. [PMID: 22261150 DOI: 10.1016/j.ydbio.2011.12.041] [Citation(s) in RCA: 374] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 12/26/2011] [Indexed: 10/25/2022]
Abstract
After induction and specification in the ectoderm, at the border of the neural plate, the neural crest (NC) population leaves its original territory through a delamination process. Soon afterwards, the NC cells migrate throughout the embryo and colonize a myriad of tissues and organs where they settle and differentiate. The delamination involves a partial or complete epithelium-to-mesenchyme transition (EMT) regulated by a complex network of transcription factors including several proto-oncogenes. Studying the relationship between these genes at the time of emigration, and their individual or collective impact on cell behavior, provides valuable information about their role in EMT in other contexts such as cancer metastasis. During migration, NC cells are exposed to large number of positive and negative regulators that control where they go by generating permissive and restricted areas and by modulating their motility and directionality. In addition, as most NC cells migrate collectively, cell-cell interactions play a crucial role in polarizing the cells and interpreting external cues. Cell cooperation eventually generates an overall polarity to the population, leading to directional collective cell migration. This review will summarize our current knowledge on delamination, EMT and migration of NC cells using key examples from chicken, Xenopus, zebrafish and mouse embryos. Given the similarities between neural crest migration and cancer invasion, these cells may represent a useful model for understanding the mechanisms of metastasis.
Collapse
Affiliation(s)
- Eric Theveneau
- Department of Cell and Developmental Biology, University College London, UK
| | | |
Collapse
|
43
|
Clay MR, Halloran MC. Control of neural crest cell behavior and migration: Insights from live imaging. Cell Adh Migr 2011; 4:586-94. [PMID: 20671421 DOI: 10.4161/cam.4.4.12902] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neural crest cells (NCCs) are a remarkable, dynamic group of cells that travel long distances in the embryo to reach their target sites. They are responsible for the formation of craniofacial bones and cartilage, neurons and glia in the peripheral nervous system, and pigment cells. Live imaging of NCCs as they traverse the embryo has been critical to increasing our knowledge of their biology. NCCs exhibit multiple behaviors and communicate with each other and their environment along each step of their journey. Imaging combined with molecular manipulations has led to insights into the mechanisms controlling these behaviors. In this review, we highlight studies that have used live imaging to provide novel insight into NCC migration and discuss how continued use of such techniques can advance our understanding of NCC biology.
Collapse
Affiliation(s)
- Matthew R Clay
- Department of Zoology, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
44
|
Härmä V, Virtanen J, Mäkelä R, Happonen A, Mpindi JP, Knuuttila M, Kohonen P, Lötjönen J, Kallioniemi O, Nees M. A comprehensive panel of three-dimensional models for studies of prostate cancer growth, invasion and drug responses. PLoS One 2010; 5:e10431. [PMID: 20454659 PMCID: PMC2862707 DOI: 10.1371/journal.pone.0010431] [Citation(s) in RCA: 269] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Accepted: 03/31/2010] [Indexed: 01/06/2023] Open
Abstract
Prostate epithelial cells from both normal and cancer tissues, grown in three-dimensional (3D) culture as spheroids, represent promising in vitro models for the study of normal and cancer-relevant patterns of epithelial differentiation. We have developed the most comprehensive panel of miniaturized prostate cell culture models in 3D to date (n = 29), including many non-transformed and most currently available classic prostate cancer (PrCa) cell lines. The purpose of this study was to analyze morphogenetic properties of PrCa models in 3D, to compare phenotypes, gene expression and metabolism between 2D and 3D cultures, and to evaluate their relevance for pre-clinical drug discovery, disease modeling and basic research. Primary and non-transformed prostate epithelial cells, but also several PrCa lines, formed well-differentiated round spheroids. These showed strong cell-cell contacts, epithelial polarization, a hollow lumen and were covered by a complete basal lamina (BL). Most PrCa lines, however, formed large, poorly differentiated spheroids, or aggressively invading structures. In PC-3 and PC-3M cells, well-differentiated spheroids formed, which were then spontaneously transformed into highly invasive cells. These cell lines may have previously undergone an epithelial-to-mesenchymal transition (EMT), which is temporarily suppressed in favor of epithelial maturation by signals from the extracellular matrix (ECM). The induction of lipid and steroid metabolism, epigenetic reprogramming, and ECM remodeling represents a general adaptation to 3D culture, regardless of transformation and phenotype. In contrast, PI3-Kinase, AKT, STAT/interferon and integrin signaling pathways were particularly activated in invasive cells. Specific small molecule inhibitors targeted against PI3-Kinase blocked invasive cell growth more effectively in 3D than in 2D monolayer culture, or the growth of normal cells. Our panel of cell models, spanning a wide spectrum of phenotypic plasticity, supports the investigation of different modes of cell migration and tumor morphologies, and will be useful for predictive testing of anti-cancer and anti-metastatic compounds.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cell Proliferation/drug effects
- Cell Shape/drug effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Collagen/pharmacology
- Drug Combinations
- Epithelial Cells/drug effects
- Epithelial Cells/pathology
- Epithelium/drug effects
- Epithelium/pathology
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Intracellular Signaling Peptides and Proteins/antagonists & inhibitors
- Laminin/pharmacology
- Male
- Mesoderm/drug effects
- Mesoderm/pathology
- Models, Biological
- Neoplasm Invasiveness
- Neoplasm Proteins/metabolism
- Phenotype
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Principal Component Analysis
- Prostate/drug effects
- Prostate/pathology
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/enzymology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/pathology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Proteoglycans/pharmacology
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction/drug effects
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/enzymology
- Spheroids, Cellular/pathology
- TOR Serine-Threonine Kinases
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Ville Härmä
- Medical Biotechnology Knowledge Centre, VTT Technical Research Centre of Finland, Turku, Finland
| | | | - Rami Mäkelä
- Medical Biotechnology Knowledge Centre, VTT Technical Research Centre of Finland, Turku, Finland
| | - Antti Happonen
- Knowledge Intensive Services, VTT Technical Research Centre of Finland, Tampere, Finland
| | | | | | - Pekka Kohonen
- Biotechnology Centre, University of Turku, Turku, Finland
| | - Jyrki Lötjönen
- Knowledge Intensive Services, VTT Technical Research Centre of Finland, Tampere, Finland
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Matthias Nees
- Medical Biotechnology Knowledge Centre, VTT Technical Research Centre of Finland, Turku, Finland
- * E-mail:
| |
Collapse
|
45
|
Mythreye K, Blobe GC. Proteoglycan signaling co-receptors: roles in cell adhesion, migration and invasion. Cell Signal 2009; 21:1548-58. [PMID: 19427900 PMCID: PMC2735586 DOI: 10.1016/j.cellsig.2009.05.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 05/04/2009] [Indexed: 12/17/2022]
Abstract
Signaling co-receptors are diverse, multifunctional components of most major signaling pathways, with roles in mediating and regulating signaling in both physiological and pathophysiological circumstances. Many of these signaling co-receptors, including CD44, glypicans, neuropilins, syndecans and TssRIII/betaglycan are also proteoglycans. Like other co-receptors, these proteoglycan signaling co-receptors can bind multiple ligands, promoting the formation of receptor signaling complexes and regulating signaling at the cell surface. The proteoglycan signaling co-receptors can also function as structural molecules to regulate adhesion, cell migration, morphogenesis and differentiation. Through a balance of these signaling and structural roles, proteoglycan signaling co-receptors can have either tumor promoting or tumor suppressing functions. Defining the role and mechanism of action of these proteoglycan signaling co-receptors should enable more effective targeting of these co-receptors and their respective pathways for the treatment of human disease.
Collapse
Affiliation(s)
| | - Gerard C. Blobe
- Department of Medicine, Duke University Medical Center, Durham NC 27708
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham NC 27708
| |
Collapse
|
46
|
|
47
|
Kulesa PM, Lefcort F, Kasemeier-Kulesa JC. The migration of autonomic precursor cells in the embryo. Auton Neurosci 2009; 151:3-9. [PMID: 19783486 DOI: 10.1016/j.autneu.2009.08.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The neural crest is an excellent model system to study cell fate and cell guidance signaling. Neural crest cells emerge from a common multipotent subpopulation and follow stereotypical migratory pathways to contribute to many diverse peripheral structures throughout the vertebrate embryo. The neural tube and diverse embryonic microenvironments from which the neural crest originate and migrate through are important sources of signals, yet it is still unclear how a common pool of neural crest stem and progenitor cells diversify and become distributed along specific stereotypical migratory paths. In the post-otic hindbrain and trunk, the neural crest emerge and contribute to the autonomic nervous system, and failure of proper cell navigation and differentiation often leads to congenital disorders that include dysautonomias, Hirschprung's disease, and neuroblastoma cancer. Recent exciting studies of neural crest cell behaviors have revealed the interplay of several molecular signaling pathways that guide and shape autonomic precursor cells to and into proper target structures, suggesting further work may help to better understand autonomic nervous system assembly, derived from a convergence of time-lapse imaging and molecular analyses. In this mini-review, we summarize recent fluorescent cell labeling strategies and cell behavior analyses that elucidate the role of molecular signals on the migration of autonomic precursor cells. We highlight advances in our understanding of the autonomic precursor cell behaviors and fate determination studied within the embryonic microenvironment.
Collapse
Affiliation(s)
- Paul M Kulesa
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| | | | | |
Collapse
|