1
|
Bhasker A, Veleri S. Fundamental origins of neural tube defects with a basis in genetics and nutrition. Exp Brain Res 2025; 243:79. [PMID: 40025180 DOI: 10.1007/s00221-025-07016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/30/2025] [Indexed: 03/04/2025]
Abstract
Neural tube defects (NTDs) are leading congenital malformations. Its global prevalence is one in 1000 pregnancies and it has high morbidity and mortality. It has multiple risk factors like genetic errors and environmental stressors like maternal malnutrition and in utero exposure to pollutants like chemicals. The genetic program determines neural tube development based on timely expression of many genes involved in developmental signaling pathways like BMP, PCP and SHH. BMP expression defines ectoderm. SOX represses BMP in ectoderm and convertes to the neuroectoderm. Subsequently, PCP molecules define the tissue patterning for convergent-extension, a critical step in neural tube genesis. Further, SHH sets spatial patterning of the neural tube. Nutrients are the essential major environmental input for embryogenesis. But it may also carry risk factors. Malnutrition, especially folate deficiency, during embryogenesis is a major cause for NTDs. Folate is integral in the One Carbon metabolic pathway. Its deficiency and error in the pathway are implicated in NTDs. Folate supplementation alone is insufficient to prevent NTDs. Thus, a comprehensive understanding of the various risk factors is necessary to strategize reduction of NTDs. We review the current knowledge of various risk factors, like genetic, metabolic, nutritional, and drugs causing NTDs and discuss the steps required to identify them in the early embryogenesis to avoid NTDs.
Collapse
Affiliation(s)
- Anjusha Bhasker
- Drug Safety Division, ICMR-National Institute of Nutrition, Department of Health Research, Ministry of Health & Family Welfare, Govt. of India, Hyderabad, 500007, India
| | - Shobi Veleri
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Stein WD. Orthologs at the Base of the Olfactores Clade. Genes (Basel) 2024; 15:657. [PMID: 38927593 PMCID: PMC11203038 DOI: 10.3390/genes15060657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Tunicate orthologs in the human genome comprise just 84 genes of the 19,872 protein-coding genes and 23 of the 16,528 non-coding genes, yet they stand at the base of the Olfactores clade, which radiated to generate thousands of tunicate and vertebrate species. What were the powerful drivers among these genes that enabled this process? Many of these orthologs are present in gene families. We discuss the biological role of each family and the orthologs' quantitative contribution to the family. Most important was the evolution of a second type of cadherin. This, a Type II cadherin, had the property of detaching the cell containing that cadherin from cells that expressed the Type I class. The set of such Type II cadherins could now detach and move away from their Type I neighbours, a process which would eventually evolve into the formation of the neural crest, "the fourth germ layer", providing a wide range of possibilities for further evolutionary invention. A second important contribution were key additions to the broad development of the muscle and nerve protein and visual perception toolkits. These developments in mobility and vision provided the basis for the development of the efficient predatory capabilities of the Vertebrata.
Collapse
Affiliation(s)
- Wilfred D Stein
- Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
3
|
Chatzi D, Kyriakoudi SA, Dermitzakis I, Manthou ME, Meditskou S, Theotokis P. Clinical and Genetic Correlation in Neurocristopathies: Bridging a Precision Medicine Gap. J Clin Med 2024; 13:2223. [PMID: 38673496 PMCID: PMC11050951 DOI: 10.3390/jcm13082223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Neurocristopathies (NCPs) encompass a spectrum of disorders arising from issues during the formation and migration of neural crest cells (NCCs). NCCs undergo epithelial-mesenchymal transition (EMT) and upon key developmental gene deregulation, fetuses and neonates are prone to exhibit diverse manifestations depending on the affected area. These conditions are generally rare and often have a genetic basis, with many following Mendelian inheritance patterns, thus making them perfect candidates for precision medicine. Examples include cranial NCPs, like Goldenhar syndrome and Axenfeld-Rieger syndrome; cardiac-vagal NCPs, such as DiGeorge syndrome; truncal NCPs, like congenital central hypoventilation syndrome and Waardenburg syndrome; and enteric NCPs, such as Hirschsprung disease. Additionally, NCCs' migratory and differentiating nature makes their derivatives prone to tumors, with various cancer types categorized based on their NCC origin. Representative examples include schwannomas and pheochromocytomas. This review summarizes current knowledge of diseases arising from defects in NCCs' specification and highlights the potential of precision medicine to remedy a clinical phenotype by targeting the genotype, particularly important given that those affected are primarily infants and young children.
Collapse
Affiliation(s)
| | | | | | | | | | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.C.); (S.A.K.); (I.D.); (M.E.M.); (S.M.)
| |
Collapse
|
4
|
Lee S, Ahn H, Kim H, Lee K, Kim S, Lee JH. Identification of potential key variants in mandibular premolar hypodontia through whole-exome sequencing. Front Genet 2023; 14:1248326. [PMID: 37745851 PMCID: PMC10514915 DOI: 10.3389/fgene.2023.1248326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Determining genotype-phenotype correlations in patients with hypodontia is important for understanding disease pathogenesis, although only a few studies have elucidated it. We aimed to identify genetic variants linked to non-syndromic bilateral mandibular second premolar hypodontia in a Korean population for the first time by specifying the phenotype of hypodontia. Twenty unrelated individuals with non-syndromic bilateral mandibular second premolar hypodontia were enrolled for whole-exome sequencing. Using a tooth agenesis gene set panel consisting of 112 genes based on literature, potential candidate variants were screened through variant filtering and prioritization. We identified 13 candidate variants in 12 genes, including a stop-gain variant (c.4750C>T) in LAMA3. Through the functional enrichment analysis of the prioritized genes, several terms related to tooth development were enriched in a protein-protein interaction network of candidate genes for mandibular premolar hypodontia. The hypodontia group also had approximately 2-fold as many mutated variants in all four genes related to these key terms, which are CDH1, ITGB4, LAMA3, LAMB3, as those in the 100 healthy control group individuals. The relationship between enriched terms and pathways and mandibular premolar hypodontia was also investigated. In addition, we identified some known oligodontia variants in patients with hypodontia, strengthening the possibility of synergistic effects in other genes. This genetic investigation may be a worthwhile preliminary attempt to reveal the pathogenesis of tooth agenesis and sets a background for future studies.
Collapse
Affiliation(s)
- Shinyeop Lee
- Department of Prosthodontics, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Hyunsoo Ahn
- Graduate School of Artificial Intelligence, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hyeonhye Kim
- Tufts University School of Medicine, Boston, MA, United States
| | - Kwanghwan Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sanguk Kim
- Graduate School of Artificial Intelligence, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jae Hoon Lee
- Department of Prosthodontics, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Functional interaction between Vangl2 and N-cadherin regulates planar cell polarization of the developing neural tube and cochlear sensory epithelium. Sci Rep 2023; 13:3905. [PMID: 36890135 PMCID: PMC9995352 DOI: 10.1038/s41598-023-30213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/17/2023] [Indexed: 03/10/2023] Open
Abstract
Although the core constituents of the Wnt/planar cell polarity (PCP) signaling have been extensively studied, their downstream molecules and protein-protein interactions have not yet been fully elucidated. Here, we show genetic and molecular evidence that the PCP factor, Vangl2, functionally interacts with the cell-cell adhesion molecule, N-cadherin (also known as Cdh2), for typical PCP-dependent neural development. Vangl2 and N-cadherin physically interact in the neural plates undergoing convergent extension. Unlike monogenic heterozygotes, digenic heterozygous mice with Vangl2 and Cdh2 mutants exhibited defects in neural tube closure and cochlear hair cell orientation. Despite this genetic interaction, neuroepithelial cells derived from the digenic heterozygotes did not show additive changes from the monogenic heterozygotes of Vangl2 in the RhoA-ROCK-Mypt1 and c-Jun N-terminal kinase (JNK)-Jun pathways of Wnt/PCP signaling. Thus, cooperation between Vangl2 and N-cadherin is at least partly via direct molecular interaction; it is essential for the planar polarized development of neural tissues but not significantly associated with RhoA or JNK pathways.
Collapse
|
6
|
Dalvand A, da Silva Rosa SC, Ghavami S, Marzban H. Potential role of TGFΒ and autophagy in early crebellum development. Biochem Biophys Rep 2022; 32:101358. [PMID: 36213145 PMCID: PMC9535406 DOI: 10.1016/j.bbrep.2022.101358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
During development, the interconnected generation of various neural cell types within the cerebellar primordium is essential. Over embryonic (E) days E9-E13, Purkinje cells (PCs), and cerebellar nuclei (CN) neurons are among the created primordial neurons. The molecular and cellular mechanisms fundamental for the early cerebellar neurogenesis, migration/differentiation, and connectivity are not clear yet. Autophagy has a vital role in controlling cellular phenotypes, such as epithelial-to-mesenchymal transition (EMT) and endothelial to mesenchymal transition (EndMT). Transforming growth factor-beta 1 (TGF-β1) is the main player in pre-and postnatal development and controlling cellular morphological type via various mechanisms, such as autophagy. Thus, we hypothesized that TGF-β1 may regulate early cerebellar development by modifying the levels of cell adhesion molecules (CAMs) and consequently autophagy pathway in the mouse cerebellar primordium. We demonstrated the stimulation of the canonical TGF-β1 signaling pathway at the point that concurs with the generation of the nuclear transitory zone and PC plate in mice. Furthermore, our data show that the stimulated TGF-β1 signaling pathway progressively and chronologically could upregulate the expression of β-catenin (CTNNB1) and N-cadherin (CDH2) with the most expression at E11 and E12, leading to upregulation of chromodomain helicase DNA binding protein 8 (CDH8) and neural cell adhesion molecule 1 (NCAM1) expression, at E12 and E13. Finally, we demonstrated that the stimulated TGF-β signaling pathway may impede the autophagic flux at E11/E12. Nevertheless, basal autophagy flux happens at earlier developmental phases from E9-E10. Our study determined potential role of the TGF-β signaling and its regulatory impacts on autophagic flux during cerebellar development and cadherin expression, which can facilitate the proliferation, migration/differentiation, and placement of PCs and the CN neurons in their designated areas.
Collapse
|
7
|
Yang Y, Laterza C, Stuart HT, Michielin F, Gagliano O, Urciuolo A, Elvassore N. Human Pluripotent Stem Cell-Derived Micropatterned Ectoderm Allows Cell Sorting of Meso-Endoderm Lineages. Front Bioeng Biotechnol 2022; 10:907159. [PMID: 35935488 PMCID: PMC9354750 DOI: 10.3389/fbioe.2022.907159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
The human developmental processes during the early post-implantation stage instruct the specification and organization of the lineage progenitors into a body plan. These processes, which include patterning, cell sorting, and establishment of the three germ layers, have been classically studied in non-human model organisms and only recently, through micropatterning technology, in a human-specific context. Micropatterning technology has unveiled mechanisms during patterning and germ layer specification; however, cell sorting and their segregation in specific germ layer combinations have not been investigated yet in a human-specific in vitro system. Here, we developed an in vitro model of human ectodermal patterning, in which human pluripotent stem cells (hPSCs) self-organize to form a radially regionalized neural and non-central nervous system (CNS) ectoderm. We showed that by using micropatterning technology and by modulating BMP and WNT signals, we can regulate the appearance and spatial distribution of the different ectodermal populations. This pre-patterned ectoderm can be used to investigate the cell sorting behavior of hPSC-derived meso-endoderm cells, with an endoderm that segregates from the neural ectoderm. Thus, the combination of micro-technology with germ layer cross-mixing enables the study of cell sorting of different germ layers in a human context.
Collapse
Affiliation(s)
- Yang Yang
- Department of Industrial Engineering (DII), University of Padova, Padova, Italy
- Fondazione Ricerca Biomedica Avanzata Onlus, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Cecilia Laterza
- Department of Industrial Engineering (DII), University of Padova, Padova, Italy
- Fondazione Ricerca Biomedica Avanzata Onlus, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Hannah T. Stuart
- Department of Industrial Engineering (DII), University of Padova, Padova, Italy
- Fondazione Ricerca Biomedica Avanzata Onlus, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Federica Michielin
- Fondazione Ricerca Biomedica Avanzata Onlus, Veneto Institute of Molecular Medicine, Padova, Italy
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Onelia Gagliano
- Department of Industrial Engineering (DII), University of Padova, Padova, Italy
- Fondazione Ricerca Biomedica Avanzata Onlus, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Anna Urciuolo
- Fondazione Ricerca Biomedica Avanzata Onlus, Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Molecular Medicine, University of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica, Città della Speranza, Padova, Italy
| | - Nicola Elvassore
- Department of Industrial Engineering (DII), University of Padova, Padova, Italy
- Fondazione Ricerca Biomedica Avanzata Onlus, Veneto Institute of Molecular Medicine, Padova, Italy
- Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
8
|
Zhao R, Trainor PA. Epithelial to mesenchymal transition during mammalian neural crest cell delamination. Semin Cell Dev Biol 2022; 138:54-67. [PMID: 35277330 DOI: 10.1016/j.semcdb.2022.02.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 11/18/2022]
Abstract
Epithelial to mesenchymal transition (EMT) is a well-defined cellular process that was discovered in chicken embryos and described as "epithelial to mesenchymal transformation" [1]. During EMT, epithelial cells lose their epithelial features and acquire mesenchymal character with migratory potential. EMT has subsequently been shown to be essential for both developmental and pathological processes including embryo morphogenesis, wound healing, tissue fibrosis and cancer [2]. During the past 5 years, interest and study of EMT especially in cancer biology have increased exponentially due to the implied role of EMT in multiple aspects of malignancy such as cell invasion, survival, stemness, metastasis, therapeutic resistance and tumor heterogeneity [3]. Since the process of EMT in embryogenesis and cancer progression shares similar phenotypic changes, core transcription factors and molecular mechanisms, it has been proposed that the initiation and development of carcinoma could be attributed to abnormal activation of EMT factors usually required for normal embryo development. Therefore, developmental EMT mechanisms, whose timing, location, and tissue origin are strictly regulated, could prove useful for uncovering new insights into the phenotypic changes and corresponding gene regulatory control of EMT under pathological conditions. In this review, we initially provide an overview of the phenotypic and molecular mechanisms involved in EMT and discuss the newly emerging concept of epithelial to mesenchymal plasticity (EMP). Then we focus on our current knowledge of a classic developmental EMT event, neural crest cell (NCC) delamination, highlighting key differences in our understanding of NCC EMT between mammalian and non-mammalian species. Lastly, we highlight available tools and future directions to advance our understanding of mammalian NCC EMT.
Collapse
Affiliation(s)
- Ruonan Zhao
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
9
|
Matos-Nieves A, Manivannan S, Majumdar U, McBride KL, White P, Garg V. A Multi-Omics Approach Using a Mouse Model of Cardiac Malformations for Prioritization of Human Congenital Heart Disease Contributing Genes. Front Cardiovasc Med 2021; 8:683074. [PMID: 34504875 PMCID: PMC8421733 DOI: 10.3389/fcvm.2021.683074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/22/2021] [Indexed: 01/22/2023] Open
Abstract
Congenital heart disease (CHD) is the most common type of birth defect, affecting ~1% of all live births. Malformations of the cardiac outflow tract (OFT) account for ~30% of all CHD and include a range of CHDs from bicuspid aortic valve (BAV) to tetralogy of Fallot (TOF). We hypothesized that transcriptomic profiling of a mouse model of CHD would highlight disease-contributing genes implicated in congenital cardiac malformations in humans. To test this hypothesis, we utilized global transcriptional profiling differences from a mouse model of OFT malformations to prioritize damaging, de novo variants identified from exome sequencing datasets from published cohorts of CHD patients. Notch1 +/- ; Nos3 -/- mice display a spectrum of cardiac OFT malformations ranging from BAV, semilunar valve (SLV) stenosis to TOF. Global transcriptional profiling of the E13.5 Notch1 +/- ; Nos3 -/- mutant mouse OFTs and wildtype controls was performed by RNA sequencing (RNA-Seq). Analysis of the RNA-Seq dataset demonstrated genes belonging to the Hif1α, Tgf-β, Hippo, and Wnt signaling pathways were differentially expressed in the mutant OFT. Mouse to human comparative analysis was then performed to determine if patients with TOF and SLV stenosis display an increased burden of damaging, genetic variants in gene homologs that were dysregulated in Notch1 +/- ; Nos3 -/- OFT. We found an enrichment of de novo variants in the TOF population among the 1,352 significantly differentially expressed genes in Notch1 +/- ; Nos3 -/- mouse OFT but not the SLV population. This association was not significant when comparing only highly expressed genes in the murine OFT to de novo variants in the TOF population. These results suggest that transcriptomic datasets generated from the appropriate temporal, anatomic and cellular tissues from murine models of CHD may provide a novel approach for the prioritization of disease-contributing genes in patients with CHD.
Collapse
Affiliation(s)
- Adrianna Matos-Nieves
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
| | - Sathiyanarayanan Manivannan
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
| | - Uddalak Majumdar
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
| | - Kim L. McBride
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pediatrics, Ohio State University, Columbus, OH, United States
| | - Peter White
- Department of Pediatrics, Ohio State University, Columbus, OH, United States
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Vidu Garg
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pediatrics, Ohio State University, Columbus, OH, United States
- Department of Molecular Genetics, Ohio State University, Columbus, OH, United States
| |
Collapse
|
10
|
Keratinocyte growth factor signaling promotes stem/progenitor cell proliferation under p63 expression during middle ear cholesteatoma formation. Curr Opin Otolaryngol Head Neck Surg 2021; 28:291-295. [PMID: 32796271 DOI: 10.1097/moo.0000000000000655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Middle ear cholesteatoma is an epithelial lesion that expands into the middle ear, resulting in bone destruction. However, the pathogenesis of this has been unknown. The purpose of this review is to understand the role of keratinocyte growth factor (KGF) during epithelial stem and/or progenitor cell proliferation in middle ear cholesteatoma. RECENT FINDINGS Many researchers have investigated the molecular mechanism of middle ear cholesteatoma to establish a conservative treatment. Recently, some studies have focused on the stem cells of middle ear cholesteatoma and their detection, but the key molecules for stem cell formation were not shown. SUMMARY We established an animal model for middle ear cholesteatoma and are showing the results of our studies. KGF expression accelerates the proliferation of stem/progenitor cells through the induction of transcription factor p63 expression in the epithelium of the tympanic membrane and mucosal epithelium overlying the promontory of the cochlea and within the attic. This is typical in middle ear cholesteatoma. Moreover, the partial epithelial-mesenchymal transition under the p63 signaling pathway plays an essential role in epithelial cell growth in middle ear cholesteatoma formation. Understanding p63 expression following KGF expression and associated signaling events can improve therapeutic outcomes in patients with middle ear cholesteatoma.
Collapse
|
11
|
Li D, March ME, Fortugno P, Cox LL, Matsuoka LS, Monetta R, Seiler C, Pyle LC, Bedoukian EC, Sánchez-Soler MJ, Caluseriu O, Grand K, Tam A, Aycinena ARP, Camerota L, Guo Y, Sleiman P, Callewaert B, Kumps C, Dheedene A, Buckley M, Kirk EP, Turner A, Kamien B, Patel C, Wilson M, Roscioli T, Christodoulou J, Cox TC, Zackai EH, Brancati F, Hakonarson H, Bhoj EJ. Pathogenic variants in CDH11 impair cell adhesion and cause Teebi hypertelorism syndrome. Hum Genet 2021; 140:1061-1076. [PMID: 33811546 DOI: 10.1007/s00439-021-02274-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/04/2021] [Indexed: 11/28/2022]
Abstract
Teebi hypertelorism syndrome (THS; OMIM 145420) is a rare craniofacial disorder characterized by hypertelorism, prominent forehead, short nose with broad or depressed nasal root. Some cases of THS have been attributed to SPECC1L variants. Homozygous variants in CDH11 truncating the transmembrane and intracellular domains have been implicated in Elsahy-Waters syndrome (EWS; OMIM 211380) with hypertelorism. We report THS due to CDH11 heterozygous missense variants on 19 subjects from 9 families. All affected residues in the extracellular region of Cadherin-11 (CHD11) are highly conserved across vertebrate species and classical cadherins. Six of the variants that cluster around the EC2-EC3 and EC3-EC4 linker regions are predicted to affect Ca2+ binding that is required for cadherin stability. Two of the additional variants [c.164G > C, p.(Trp55Ser) and c.418G > A, p.(Glu140Lys)] are also notable as they are predicted to directly affect trans-homodimer formation. Immunohistochemical study demonstrates that CDH11 is strongly expressed in human facial mesenchyme. Using multiple functional assays, we show that five variants from the EC1, EC2-EC3 linker, and EC3 regions significantly reduced the cell-substrate trans adhesion activity and one variant from EC3-EC4 linker results in changes in cell morphology, focal adhesion, and migration, suggesting dominant negative effect. Characteristic features in this cohort included depressed nasal root, cardiac and umbilical defects. These features distinguished this phenotype from that seen in SPECC1L-related hypertelorism syndrome and CDH11-related EWS. Our results demonstrate heterozygous variants in CDH11, which decrease cell-cell adhesion and increase cell migratory behavior, cause a form of THS, as termed CDH11-related THS.
Collapse
Affiliation(s)
- Dong Li
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Michael E March
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Paola Fortugno
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy.,Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Liza L Cox
- Departments of Oral and Craniofacial Sciences and Pediatrics, University of Missouri-Kansas City School of Dentistry, Kansas City, MO, 64108, USA
| | - Leticia S Matsuoka
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rosanna Monetta
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy.,Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Christoph Seiler
- Zebrafish Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Louise C Pyle
- Individualized Medical Genetics Center, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Emma C Bedoukian
- Individualized Medical Genetics Center, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - María José Sánchez-Soler
- Sección de Genética Médica, Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, España
| | - Oana Caluseriu
- Department of Medical Genetics, University of Alberta, Edmonton, AB, T6G 2H7, Canada.,The Stollery Pediatric Hospital, Edmonton, AB, T6G 2H7, Canada
| | - Katheryn Grand
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Allison Tam
- Division of Medical Genetics, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Alicia R P Aycinena
- Division of Medical Genetics, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Letizia Camerota
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Yiran Guo
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Patrick Sleiman
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Candy Kumps
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Annelies Dheedene
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Michael Buckley
- NSW Health Pathology Genomics Laboratory, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Edwin P Kirk
- NSW Health Pathology Genomics Laboratory, Prince of Wales Hospital, Randwick, NSW, Australia.,Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Anne Turner
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Benjamin Kamien
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, Australia
| | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Meredith Wilson
- Department of Clinical Genetics, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Tony Roscioli
- NSW Health Pathology Genomics Laboratory, Prince of Wales Hospital, Randwick, NSW, Australia.,Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, NSW, Australia.,Neuroscience Research Australia and Prince of Wales Clinical School, University of New South Wales, Kensington, NSW, Australia
| | - John Christodoulou
- Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Timothy C Cox
- Departments of Oral and Craniofacial Sciences and Pediatrics, University of Missouri-Kansas City School of Dentistry, Kansas City, MO, 64108, USA
| | - Elaine H Zackai
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Francesco Brancati
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Institute of Translational Pharmacology, National Research Council, Rome, Italy.,IRCCS San Raffaele Pisana, Rome, Italy
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth J Bhoj
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Heusinkveld HJ, Staal YCM, Baker NC, Daston G, Knudsen TB, Piersma A. An ontology for developmental processes and toxicities of neural tube closure. Reprod Toxicol 2020; 99:160-167. [PMID: 32926990 PMCID: PMC10083840 DOI: 10.1016/j.reprotox.2020.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/12/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023]
Abstract
In recent years, the development and implementation of animal-free approaches to chemical and pharmaceutical hazard and risk assessment has taken off. Alternative approaches are being developed starting from the perspective of human biology and physiology. Neural tube closure is a vital step that occurs early in human development. Correct closure of the neural tube depends on a complex interplay between proteins along a number of protein concentration gradients. The sensitivity of neural tube closure to chemical disturbance of signalling pathways such as the retinoid pathway, is well known. To map the pathways underlying neural tube closure, literature data on the molecular regulation of neural tube closure were collected. As the process of neural tube closure is highly conserved in vertebrates, the extensive literature available for the mouse was used whilst considering its relevance for humans. Thus, important cell compartments, regulatory pathways, and protein interactions essential for neural tube closure under physiological circumstances were identified and mapped. An understanding of aberrant processes leading to neural tube defects (NTDs) requires detailed maps of neural tube embryology, including the complex genetic signals and responses underlying critical cellular dynamical and biomechanical processes. The retinoid signaling pathway serves as a case study for this ontology because of well-defined crosstalk with the genetic control of neural tube patterning and morphogenesis. It is a known target for mechanistically-diverse chemical structures that disrupt neural tube closure The data presented in this manuscript will set the stage for constructing mathematical models and computer simulation of neural tube closure for human-relevant AOPs and predictive toxicology.
Collapse
Affiliation(s)
- Harm J Heusinkveld
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | - Yvonne C M Staal
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | | | - George Daston
- Global Product Stewardship, The Procter & Gamble Company, Cincinnati, OH USA
| | - Thomas B Knudsen
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park NC 27711, USA
| | - Aldert Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
13
|
Pieters T, Sanders E, Tian H, van Hengel J, van Roy F. Neural defects caused by total and Wnt1-Cre mediated ablation of p120ctn in mice. BMC DEVELOPMENTAL BIOLOGY 2020; 20:17. [PMID: 32741376 PMCID: PMC7398255 DOI: 10.1186/s12861-020-00222-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/20/2020] [Indexed: 03/11/2023]
Abstract
Background p120 catenin (p120ctn) is an important component in the cadherin-catenin cell adhesion complex because it stabilizes cadherin-mediated intercellular junctions. Outside these junctions, p120ctn is actively involved in the regulation of small GTPases of the Rho family, in actomyosin dynamics and in transcription regulation. We and others reported that loss of p120ctn in mouse embryos results in an embryonic lethal phenotype, but the exact developmental role of p120ctn during brain formation has not been reported. Results We combined floxed p120ctn mice with Del-Cre or Wnt1-Cre mice to deplete p120ctn from either all cells or specific brain and neural crest cells. Complete loss of p120ctn in mid-gestation embryos resulted in an aberrant morphology, including growth retardation, failure to switch from lordotic to fetal posture, and defective neural tube formation and neurogenesis. By expressing a wild-type p120ctn from the ROSA26 locus in p120ctn-null mouse embryonic stem cells, we could partially rescue neurogenesis. To further investigate the developmental role of p120ctn in neural tube formation, we generated conditional p120ctnfl/fl;Wnt1Cre knockout mice. p120ctn deletion in Wnt1-expressing cells resulted in neural tube closure defects (NTDs) and craniofacial abnormalities. These defects could not be correlated with misregulation of brain marker genes or cell proliferation. In contrast, we found that p120ctn is required for proper expression of the cell adhesion components N-cadherin, E-cadherin and β-catenin, and of actin-binding proteins cortactin and Shroom3 at the apical side of neural folds. This region is of critical importance for closure of neural folds. Surprisingly, the lateral side of mutant neural folds showed loss of p120ctn, but not of N-cadherin, β-catenin or cortactin. Conclusions These results indicate that p120ctn is required for neurogenesis and neurulation. Elimination of p120ctn in cells expressing Wnt1 affects neural tube closure by hampering correct formation of specific adhesion and actomyosin complexes at the apical side of neural folds. Collectively, our results demonstrate the crucial role of p120ctn during brain morphogenesis.
Collapse
Affiliation(s)
- Tim Pieters
- Molecular Cell Biology Unit, Center for Inflammation Research, VIB, Technologiepark 71, B-9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium.,Present address: Faculty of Medicine and Health Sciences, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Ellen Sanders
- Molecular Cell Biology Unit, Center for Inflammation Research, VIB, Technologiepark 71, B-9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium.,Present address: Faculty of Medicine and Health Sciences, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Huiyu Tian
- Molecular Cell Biology Unit, Center for Inflammation Research, VIB, Technologiepark 71, B-9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium.,Present address: Ministry of Education, College of Life Sciences, Shandong University, Jinan, People's Republic of China
| | - Jolanda van Hengel
- Molecular Cell Biology Unit, Center for Inflammation Research, VIB, Technologiepark 71, B-9052, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium.,Present address: Faculty of Medicine and Health Sciences, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Frans van Roy
- Molecular Cell Biology Unit, Center for Inflammation Research, VIB, Technologiepark 71, B-9052, Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium.
| |
Collapse
|
14
|
Wood KA, Rowlands CF, Thomas HB, Woods S, O’Flaherty J, Douzgou S, Kimber SJ, Newman WG, O’Keefe RT. Modelling the developmental spliceosomal craniofacial disorder Burn-McKeown syndrome using induced pluripotent stem cells. PLoS One 2020; 15:e0233582. [PMID: 32735620 PMCID: PMC7394406 DOI: 10.1371/journal.pone.0233582] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
The craniofacial developmental disorder Burn-McKeown Syndrome (BMKS) is caused by biallelic variants in the pre-messenger RNA splicing factor gene TXNL4A/DIB1. The majority of affected individuals with BMKS have a 34 base pair deletion in the promoter region of one allele of TXNL4A combined with a loss-of-function variant on the other allele, resulting in reduced TXNL4A expression. However, it is unclear how reduced expression of this ubiquitously expressed spliceosome protein results in craniofacial defects during development. Here we reprogrammed peripheral mononuclear blood cells from a BMKS patient and her unaffected mother into induced pluripotent stem cells (iPSCs) and differentiated the iPSCs into induced neural crest cells (iNCCs), the key cell type required for correct craniofacial development. BMKS patient-derived iPSCs proliferated more slowly than both mother- and unrelated control-derived iPSCs, and RNA-Seq analysis revealed significant differences in gene expression and alternative splicing. Patient iPSCs displayed defective differentiation into iNCCs compared to maternal and unrelated control iPSCs, in particular a delay in undergoing an epithelial-to-mesenchymal transition (EMT). RNA-Seq analysis of differentiated iNCCs revealed widespread gene expression changes and mis-splicing in genes relevant to craniofacial and embryonic development that highlight a dampened response to WNT signalling, the key pathway activated during iNCC differentiation. Furthermore, we identified the mis-splicing of TCF7L2 exon 4, a key gene in the WNT pathway, as a potential cause of the downregulated WNT response in patient cells. Additionally, mis-spliced genes shared common sequence properties such as length, branch point to 3’ splice site (BPS-3’SS) distance and splice site strengths, suggesting that splicing of particular subsets of genes is particularly sensitive to changes in TXNL4A expression. Together, these data provide the first insight into how reduced TXNL4A expression in BMKS patients might compromise splicing and NCC function, resulting in defective craniofacial development in the embryo.
Collapse
Affiliation(s)
- Katherine A. Wood
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Charlie F. Rowlands
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Huw B. Thomas
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Steven Woods
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Julieta O’Flaherty
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Sofia Douzgou
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Susan J. Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - William G. Newman
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Raymond T. O’Keefe
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Partial Epithelial-Mesenchymal Transition Was Observed Under p63 Expression in Acquired Middle Ear Cholesteatoma and Congenital Cholesteatoma. Otol Neurotol 2020; 40:e803-e811. [PMID: 31348131 DOI: 10.1097/mao.0000000000002328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Partial epithelial-mesenchymal transition (p-EMT) is a process by which epithelial cells partially lose their intercellular adhesion and change to obtain migration ability. The transcription factor p63 regulates the expression of cadherin family and induces epithelial cell proliferation. In this study, we hypothesized that p-EMT under p63 expression may be a key factor in epithelial cell growth in middle ear cholesteatoma. METHODS Specimens were surgically excised from patients with congenital cholesteatoma (CC) (n = 48), acquired middle ear cholesteatoma (AC) (n = 120), and normal skin tissue (n = 34). We analyzed immunohistochemically for the EMT marker (N-cadherin), adherence junction marker (E-cadherin), and tight junction marker (claudin-1, claudin-4, occludin). We also examined the labeling index (LI) of p63 and Proliferating cell nuclear antigen (PCNA) (late S phase marker), and Snail expression as a mobility marker. RESULTS The expression of p63 (CC 51.0 ± 7.4%, AC 50.0 ± 5.9%) was significantly higher in the thickened epithelium of CC and AC compared with normal skin tissue (p < 0.0001). The loss of E-cadherin was observed (CC 50.0%, AC 55.8%) but the expression patterns in the tight junction were almost normal. N-cadherin was partially detected in the basal and upper layer of epithelium in CC and AC. In contrast to that of normal skin tissue, the LI of PCNA was significantly higher in AC (p < 0.0001). The positive rate of Snail was significantly higher in CC (p < 0.0001). CONCLUSION This study indicates that p-EMT via the p63 signaling pathway might plays an essential role in epithelial growth in AC and CC formation, although tight junction formation and terminal differentiation were not affected in those processes.
Collapse
|
16
|
Kalev-Altman R, Hanael E, Zelinger E, Blum M, Monsonego-Ornan E, Sela-Donenfeld D. Conserved role of matrix metalloproteases 2 and 9 in promoting the migration of neural crest cells in avian and mammalian embryos. FASEB J 2020; 34:5240-5261. [PMID: 32067275 DOI: 10.1096/fj.201901217rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 01/28/2020] [Accepted: 02/02/2020] [Indexed: 01/10/2023]
Abstract
Neural crest cells (NCCs) are a unique embryonic cell population that initially reside at the dorsal neural tube but later migrate in the embryo and differentiate into multiple types of derivatives. To acquire motility, NCCs undergo epithelial-to-mesenchymal transition and invade the surrounding extracellular matrix (ECM). Matrix metalloproteases (MMPs) are a large family of proteases which regulate migration of various embryonic and adult cells via ECM remodeling. The gelatinase's subgroup of MMPs is the most studied one due to its key role in metastasis. As it is composed of only two proteases, MMP2 and MMP9, it is important to understand whether each is indispensable or redundant in its biological function. Here we explored the role of the gelatinases in executing NCC migration, by determining whether MMP2 and/or MMP9 regulate migration across species in singular, combined, or redundant manners. Chick and mouse embryos were utilized to compare expression and activity of both MMPs using genetic and pharmacological approaches in multiple in vivo and ex vivo assays. Both MMPs were found to be expressed and active in mouse and chick NCCs. Inhibition of each MMP was sufficient to prevent NCC migration in both species. Yet, NCC migration was maintained in MMP2-/- or MMP9-/- mouse mutants due to compensation between the gelatinases, but reciprocal pharmacological inhibition in each mutant prevented NCC migration. This study reveals for the first time that both gelatinases are expressed in avian and mammalian NCCs, and demonstrates their fundamental and conserved role in promoting embryonic cell migration.
Collapse
Affiliation(s)
- Rotem Kalev-Altman
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University, Rehovot, Israel.,The Institute of Biochemistry and Nutrition, Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University, Rehovot, Israel
| | - Erez Hanael
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University, Rehovot, Israel
| | - Einat Zelinger
- Core Facility Unit, Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University, Rehovot, Israel
| | - Martin Blum
- Institute of Zoology, University of Hohenheim, Stuttgart, Germany
| | - Efrat Monsonego-Ornan
- The Institute of Biochemistry and Nutrition, Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University, Rehovot, Israel
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University, Rehovot, Israel
| |
Collapse
|
17
|
D'Occhio MJ, Campanile G, Zicarelli L, Visintin JA, Baruselli PS. Adhesion molecules in gamete transport, fertilization, early embryonic development, and implantation-role in establishing a pregnancy in cattle: A review. Mol Reprod Dev 2020; 87:206-222. [PMID: 31944459 DOI: 10.1002/mrd.23312] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
Cell-cell adhesion molecules have critically important roles in the early events of reproduction including gamete transport, sperm-oocyte interaction, embryonic development, and implantation. Major adhesion molecules involved in reproduction include cadherins, integrins, and disintegrin and metalloprotease domain-containing (ADAM) proteins. ADAMs on the surface of sperm adhere to integrins on the oocyte in the initial stages of sperm-oocyte interaction and fusion. Cadherins act in early embryos to organize the inner cell mass and trophectoderm. The trophoblast and uterine endometrial epithelium variously express cadherins, integrins, trophinin, and selectin, which achieve apposition and attachment between the elongating conceptus and uterine epithelium before implantation. An overview of the major cell-cell adhesion molecules is presented and this is followed by examples of how adhesion molecules help shape early reproductive events. The argument is made that a deeper understanding of adhesion molecules and reproduction will inform new strategies that improve embryo survival and increase the efficiency of natural mating and assisted breeding in cattle.
Collapse
Affiliation(s)
- Michael J D'Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Luigi Zicarelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - José A Visintin
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Pietro S Baruselli
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
18
|
Logan SM, Ruest LB, Benson MD, Svoboda KKH. Extracellular Matrix in Secondary Palate Development. Anat Rec (Hoboken) 2019; 303:1543-1556. [PMID: 31513730 DOI: 10.1002/ar.24263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/14/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022]
Abstract
The secondary palate arises from outgrowths of epithelia-covered embryonic mesenchyme that grow from the maxillary prominence, remodel to meet over the tongue, and fuse at the midline. These events require the coordination of cell proliferation, migration, and gene expression, all of which take place in the context of the extracellular matrix (ECM). Palatal cells generate their ECM, and then stiffen, degrade, or otherwise modify its properties to achieve the required cell movement and organization during palatogenesis. The ECM, in turn, acts on the cells through their matrix receptors to change their gene expression and thus their phenotype. The number of ECM-related gene mutations that cause cleft palate in mice and humans is a testament to the crucial role the matrix plays in palate development and a reminder that understanding that role is vital to our progress in treating palate deformities. This article will review the known ECM constituents at each stage of palatogenesis, the mechanisms of tissue reorganization and cell migration through the palatal ECM, the reciprocal relationship between the ECM and gene expression, and human syndromes with cleft palate that arise from mutations of ECM proteins and their regulators. Anat Rec, 2019. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Shaun M Logan
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas
| | - L Bruno Ruest
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas
| | - M Douglas Benson
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas
| | - Kathy K H Svoboda
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas
| |
Collapse
|
19
|
Endo T, Kadoya K, Kawamura D, Iwasaki N. Evidence for cell-contact factor involvement in neurite outgrowth of dorsal root ganglion neurons stimulated by Schwann cells. Exp Physiol 2019; 104:1447-1454. [PMID: 31294871 DOI: 10.1113/ep087634] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/08/2019] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the central question of this study? Although the factors secreted from Schwann cells that promote axonal growth in the peripheral nervous system have been well studied, the effect of cell-contact factors on Schwann cells remains to be determined. What is the main finding and its importance? This study demonstrates that Schwann cells stimulate neurite outgrowth by direct contact with neurites and by secreting factors. Notably, the effect of cell-contact factors in neurite outgrowth is comparable to that of secreted factors, indicating that the identification of cell surface molecules on Schwann cells that promote neurite outgrowth could lead to development of a new therapy for peripheral nervous system injury. ABSTRACT Schwann cells (SCs) play a variety of roles in the regeneration process after injury to the peripheral nervous system. The factors secreted from SCs that promote axonal growth have been well studied. However, the involvement of cell-contact factors on SCs remains to be determined. Here, we demonstrate a significant contribution of a cell-contact mechanism in the effect of SCs on promotion of neuronal outgrowth. Neurite outgrowth of adult sensory neurons from dorsal root ganglia was quantified during co-culture with adult SCs. Direct contact of SCs with neurons was eliminated by culturing SCs on an insert placed in the same well; this resulted in a 51% reduction in the length of neurite outgrowth. In addition, when dorsal root ganglion neurons were cultured on sparsely seeded SCs, neurons that made contact with SCs on their neurites had 118% longer neurites than neurons that lacked contacts with SCs. Collectively, these findings provide evidence that SCs stimulate neurite outgrowth via direct contact with neurites in addition to secreting factors. The identification of cell surface molecules on SCs that promote neurite outgrowth could lead to development of a new therapy for peripheral nervous system injury.
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Orthopaedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Ken Kadoya
- Department of Orthopaedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Daisuke Kawamura
- Department of Orthopaedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
20
|
Wang P, Wang Y, Fan X, Liu Y, Fan Y, Liu T, Chen C, Zhang S, Chen X. Identification of sequence variants associated with severe microtia-astresia by targeted sequencing. BMC Med Genomics 2019; 12:28. [PMID: 30691450 PMCID: PMC6348636 DOI: 10.1186/s12920-019-0475-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 01/14/2019] [Indexed: 12/31/2022] Open
Abstract
Background Microtia-atresia is characterized by abnormalities of the auricle (microtia) and aplasia or hypoplasia of the external auditory canal, often associated with middle ear abnormalities. To date, no causal genetic mutations or genes have been identified in microtia-atresia patients. Methods We designed a panel of 131 genes associated with external/middle or inner ear deformity. Targeted genomic capturing combined with next-generation sequencing (NGS) was utilized to screen for mutations in 40 severe microtia-atresia patients. Mutations detected by NGS were filtered and validated. And then mutations were divided into three categories—rare or novel variants, low-frequency variants and common variants—based on their frequency in the public database. The rare or novel mutations were prioritized by pathogenicity analysis. For the low-frequency variants and common variants, we used association studies to explore risk factors of severe microtia-atresia. Results Sixty-five rare heterozygous mutations of 42 genes were identified in 27 (67.5%) severe microtia-atresia patients. Association studies to determine genes that were potentially pathogenic found that PLEC, USH2A, FREM2, DCHS1, GLI3, POMT1 and GBA genes were significantly associated with severe microtia-atresia. Of these, DCHS1 was strongly suggested to cause severe microtia-atresia as it was identified by both low-frequency and common variants association studies. A rare mutation (c.481C > T, p.R161C) in DCHS1 identified in one individual may be deleterious and may cause severe microtia-atresia. Conclusion We identified several genes that were significantly associated with severe microtia-atresia. The findings provide new insights into genetic background of external ear deformities. Electronic supplementary material The online version of this article (10.1186/s12920-019-0475-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pu Wang
- Department of Otolaryngology, Peking Union Medical College Hospital, Beijing, China
| | - Yibei Wang
- Department of Otolaryngology, Peking Union Medical College Hospital, Beijing, China
| | - Xinmiao Fan
- Department of Otolaryngology, Peking Union Medical College Hospital, Beijing, China
| | - Yaping Liu
- Department of Medical Genetics, School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Fan
- Department of Otolaryngology, Peking Union Medical College Hospital, Beijing, China
| | - Tao Liu
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Chongjian Chen
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| | - Xiaowei Chen
- Department of Otolaryngology, Peking Union Medical College Hospital, Beijing, China.
| |
Collapse
|
21
|
Tiwari P, Mrigwani A, Kaur H, Kaila P, Kumar R, Guptasarma P. Structural-Mechanical and Biochemical Functions of Classical Cadherins at Cellular Junctions: A Review and Some Hypotheses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1112:107-138. [DOI: 10.1007/978-981-13-3065-0_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Role of FGF signalling in neural crest cell migration during early chick embryo development. ZYGOTE 2018; 26:457-464. [DOI: 10.1017/s096719941800045x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummaryFibroblast growth factor (FGF) signalling acts as one of modulators that control neural crest cell (NCC) migration, but how this is achieved is still unclear. In this study, we investigated the effects of FGF signalling on NCC migration by blocking this process. Constructs that were capable of inducing Sprouty2 (Spry2) or dominant-negative FGFR1 (Dn-FGFR1) expression were transfected into the cells making up the neural tubes. Our results revealed that blocking FGF signalling at stage HH10 (neurulation stage) could enhance NCC migration at both the cranial and trunk levels in the developing embryos. It was established that FGF-mediated NCC migration was not due to altering the expression of N-cadherin in the neural tube. Instead, we determined that cyclin D1 was overexpressed in the cranial and trunk levels when Sprouty2 was upregulated in the dorsal neural tube. These results imply that the cell cycle was a target of FGF signalling through which it regulates NCC migration at the neurulation stage.
Collapse
|
23
|
Vieceli FM, Bronner ME. Leukocyte receptor tyrosine kinase interacts with secreted midkine to promote survival of migrating neural crest cells. Development 2018; 145:dev.164046. [PMID: 30228102 DOI: 10.1242/dev.164046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 09/13/2018] [Indexed: 12/25/2022]
Abstract
Neural crest cells migrate long distances throughout the embryo and rely on extracellular signals that attract, repel and/or stimulate survival to ensure proper contribution to target derivatives. Here, we show that leukocyte receptor tyrosine kinase (LTK), an ALK-type receptor tyrosine kinase, is expressed by neural crest cells during early migratory stages in chicken embryos. Loss of LTK in the cranial neural crest impairs migration and results in increased levels of apoptosis. Conversely, midkine, previously proposed as a ligand for ALK, is secreted by the non-neural ectoderm during early neural crest migratory stages and internalized by neural crest cells in vivo Similar to loss of LTK, loss of midkine reduces survival of the migratory neural crest. Moreover, we show by proximity ligation and co-immunoprecipitation assays that midkine binds to LTK. Taken together, these results suggest that LTK in neural crest cells interacts with midkine emanating from the non-neural ectoderm to promote cell survival, revealing a new signaling pathway that is essential for neural crest development.
Collapse
Affiliation(s)
- Felipe Monteleone Vieceli
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
24
|
Campbell K. Contribution of epithelial-mesenchymal transitions to organogenesis and cancer metastasis. Curr Opin Cell Biol 2018; 55:30-35. [PMID: 30006053 PMCID: PMC6284102 DOI: 10.1016/j.ceb.2018.06.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/10/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
Abstract
The epithelial-to-mesenchymal transition (EMT) plays crucial roles during development, and inappropriate activation of EMTs are associated with tumor progression and promoting metastasis. In recent years, increasing studies have identified developmental contexts where cells undergo an EMT and transition to a partial-state, downregulating just a subset of epithelial characteristics and increasing only some mesenchymal traits, such as invasive motility. In parallel, recent studies have shown that EMTs are rarely fully activated in tumor cells, generating a diverse array of transition states. As our appreciation of the full spectrum of intermediate phenotypes and the huge diversity in underlying mechanisms grows, cross-disciplinary collaborations investigating developmental-EMTs and cancer-EMTs will be fundamental in order to achieve a full mechanistic understanding of this complex cell process.
Collapse
Affiliation(s)
- Kyra Campbell
- Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, UK; Department of Biomedical Science, Firth Court, University of Sheffield, Western Bank, Sheffield, UK.
| |
Collapse
|
25
|
Martinez D, Zuhdi N, Reyes M, Ortega B, Giovannone D, Lee VM, de Bellard ME. Screen for Slit/Robo signaling in trunk neural cells reveals new players. Gene Expr Patterns 2018; 28:22-33. [PMID: 29427758 PMCID: PMC5980643 DOI: 10.1016/j.gep.2018.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/19/2018] [Accepted: 01/20/2018] [Indexed: 01/15/2023]
Abstract
Slits ligands and their Robo receptors are involved in quite disparate cell signaling pathways that include axon guidance, cell proliferation, cell motility and angiogenesis. Neural crest cells emerge by delamination from neural cells in the dorsal neural tube, and give rise to various components of the peripheral nervous system in vertebrates. It is well established that these cells change from a non-migratory to a highly migratory state allowing them to reach distant regions before they differentiate. However, but the mechanism controlling this delamination and subsequent migration are still not fully understood. The repulsive Slit ligand family members, have been classified also as true tumor suppressor molecules. The present study explored in further detail what possible Slit/Robo signals are at play in the trunk neural cells and neural crest cells by carrying out a microarray after Slit2 gain of function in trunk neural tubes. We found that in addition to molecules known to be downstream of Slit/Robo signaling, there were a large set of molecules known to be important in maintaining cells in non-motile, epithelia phenotype. Furthermore, we found new molecules previously not associated with Slit/Robo signaling: cell proliferation markers, Ankyrins and RAB intracellular transporters. Our findings suggest that neural crest cells use and array of different Slit/Robo pathways during their transformation from non-motile to highly motile cells.
Collapse
Affiliation(s)
- Darwin Martinez
- California State University Northridge, Biology Dept., MC 8303, 18111 Nordhoff Street, Northridge, CA, 91330, United States
| | - Nora Zuhdi
- California State University Northridge, Biology Dept., MC 8303, 18111 Nordhoff Street, Northridge, CA, 91330, United States
| | - Michelle Reyes
- California State University Northridge, Biology Dept., MC 8303, 18111 Nordhoff Street, Northridge, CA, 91330, United States
| | - Blanca Ortega
- California State University Northridge, Biology Dept., MC 8303, 18111 Nordhoff Street, Northridge, CA, 91330, United States
| | - Dion Giovannone
- California State University Northridge, Biology Dept., MC 8303, 18111 Nordhoff Street, Northridge, CA, 91330, United States
| | - Vivian M Lee
- California State University Northridge, Biology Dept., MC 8303, 18111 Nordhoff Street, Northridge, CA, 91330, United States
| | - Maria Elena de Bellard
- California State University Northridge, Biology Dept., MC 8303, 18111 Nordhoff Street, Northridge, CA, 91330, United States.
| |
Collapse
|
26
|
Pasiliao CC, Hopyan S. Cell ingression: Relevance to limb development and for adaptive evolution. Genesis 2017; 56. [PMID: 29280270 DOI: 10.1002/dvg.23086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/16/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022]
Abstract
Cell ingression is an out-of-plane type of cell intercalation that is essential for the formation of multiple embryonic structures including the limbs. In particular, cell ingression underlies epithelial-to-mesenchymal transition of lateral plate cells to initiate limb bud growth, delamination of neural crest cells to generate peripheral nerve sheaths, and emigration of myoblasts from somites to assemble muscles. Individual cells that ingress undergo apical constriction to generate bottle shaped cells, diminish adhesion to their epithelial cell neighbors, and generate protrusive blebs that likely facilitate their ingression into a subepithelial tissue layer. How signaling pathways regulate the progression of delamination is important for understanding numerous developmental events. In this review, we focus on cellular and molecular mechanisms that drive cell ingression and draw comparisons between different morphogenetic contexts in various model organisms. We speculate that cell behaviors that facilitated tissue invagination among diploblasts subsequently drove individual cell ingression and epithelial-to-mesenchymal transition. Future insights that link signalling pathways to biophysical mechanisms will likely advance our comprehension of this phenomenon.
Collapse
Affiliation(s)
- Clarissa C Pasiliao
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, M5S 1A8, Canada
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, M5S 1A8, Canada.,Division of Orthopaedic Surgery, Hospital for Sick Children and University of, Toronto, M5G 1X8, Canada
| |
Collapse
|
27
|
Münst S, Koch P, Kesavan J, Alexander-Mays M, Münst B, Blaess S, Brüstle O. In vitro segregation and isolation of human pluripotent stem cell-derived neural crest cells. Methods 2017; 133:65-80. [PMID: 29037816 DOI: 10.1016/j.ymeth.2017.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/24/2017] [Accepted: 09/27/2017] [Indexed: 01/17/2023] Open
Abstract
The neural crest (NC) is a transient embryonic cell population with remarkable characteristics. After delaminating from the neural tube, NC cells (NCCs) migrate extensively, populate nearly every tissue of the body and differentiate into highly diverse cell types such as peripheral neurons and glia, but also mesenchymal cells including chondrocytes, osteocytes, and adipocytes. While the NC has been extensively studied in several animal models, little is known about human NC development. A number of methods have been established to derive NCCs in vitro from human pluripotent stem cells (hPSC). Typically, these protocols comprise several cell culture steps to enrich for NCCs in the neural derivatives of the differentiating hPSCs. Here we report on a remarkable and hitherto unnoticed in vitro segregation phenomenon that enables direct extraction of virtually pure NCCs during the earliest stages of hPSC differentiation. Upon aggregation to embryoid bodies (EB) and replating, differentiating hPSCs give rise to a population of NCCs, which spontaneously segregate from the EB outgrowth to form conspicuous, macroscopically visible atoll-shaped clusters in the periphery of the EB outgrowth. Isolation of these NC clusters yields p75NTR(+)/SOXE(+) NCCs, which differentiate to peripheral neurons and glia as well as mesenchymal derivatives. Our data indicate that differentiating hPSC cultures recapitulate, in a simplified manner, the physical segregation of central nervous system (CNS) tissue and NCCs. This phenomenon may be exploited for NCC purification and for studying segregation and differentiation processes observed during early human NC development in vitro.
Collapse
Affiliation(s)
- Sabine Münst
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Faculty, 53127 Bonn, Germany
| | - Philipp Koch
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Faculty, 53127 Bonn, Germany
| | - Jaideep Kesavan
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Faculty, 53127 Bonn, Germany
| | - Michael Alexander-Mays
- Institute of Human Genetics, Life & Brain Center, University of Bonn Medical Faculty, 53127 Bonn, Germany
| | - Bernhard Münst
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Faculty, 53127 Bonn, Germany
| | - Sandra Blaess
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Faculty, 53127 Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Faculty, 53127 Bonn, Germany.
| |
Collapse
|
28
|
York JR, Yuan T, Zehnder K, McCauley DW. Lamprey neural crest migration is Snail-dependent and occurs without a differential shift in cadherin expression. Dev Biol 2017. [PMID: 28624345 DOI: 10.1016/j.ydbio.2017.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The acquisition of neural crest cells was a key step in the origin of the vertebrate body plan. An outstanding question is how neural crest cells acquired their ability to undergo an epithelial-mesenchymal transition (EMT) and migrate extensively throughout the vertebrate embryo. We tested if differential regulation of classical cadherins-a highly conserved feature of neural crest EMT and migration in jawed vertebrates-mediates these cellular behaviors in lamprey, a basal jawless vertebrate. Lamprey has single copies of the type I and type II classical cadherins (CadIA and CadIIA). CadIIA is expressed in premigratory neural crest, and requires the transcription factor Snail for proper expression, yet CadIA is never expressed in the neural tube during neural crest development, suggesting that differential regulation of classical cadherin expression is not required to initiate neural crest migration in basal vertebrates. We hypothesize that neural crest cells evolved by retention of regulatory programs linking distinct mesenchymal and multipotency properties, and emigrated from the neural tube without differentially regulating type I/type II cadherins. Our results point to the coupling of mesenchymal state and multipotency as a key event facilitating the origin of migratory neural crest cells.
Collapse
Affiliation(s)
- Joshua R York
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - Tian Yuan
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - Kevin Zehnder
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - David W McCauley
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA.
| |
Collapse
|
29
|
Dady A, Duband JL. Cadherin interplay during neural crest segregation from the non-neural ectoderm and neural tube in the early chick embryo. Dev Dyn 2017; 246:550-565. [PMID: 28474787 DOI: 10.1002/dvdy.24517] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/19/2017] [Accepted: 04/26/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND In the avian embryo, neural crest (NC) progenitors arise in the neuroectoderm during gastrulation, long before their dissemination. Although the gene regulatory network involved in NC specification has been deciphered, the mechanisms involved in their segregation from the other neuroectoderm-derived progenitors, notably the epidermis and neural tube, are unknown. Because cadherins mediate cell recognition and sorting, we scrutinized their expression profiles during NC specification and delamination. RESULTS We found that the NC territory is defined precociously by the robust expression of Cadherin-6B in cells initially scattered among other cells uniformly expressing E-cadherin, and that NC progenitors are progressively sorted and regrouped into a discrete domain between the prospective epidermis and neural tube. At completion of NC specification, the epidermis, NC, and neural tube are fully segregated in contiguous compartments characterized by distinct cadherin repertoires. We also found that Cadherin-6B down-regulation constitutes a major event during NC delamination and that, with the exception of the caudal part of the embryo, N-cadherin is unlikely to control NC emigration. CONCLUSIONS Our results indicate that partition of the neuroectoderm is mediated by cadherin interplays and ascribes a key role to Cadherin-6B in the specification and delamination of the NC population. Developmental Dynamics 246:550-565, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alwyn Dady
- Laboratoire de Biologie du Développement, Centre National de la Recherche Scientifique, Paris, France.,Laboratoire de Biologie du Développement, Université Pierre et Marie Curie, Paris, France
| | - Jean-Loup Duband
- Laboratoire de Biologie du Développement, Centre National de la Recherche Scientifique, Paris, France.,Laboratoire de Biologie du Développement, Université Pierre et Marie Curie, Paris, France.,Institut Mondor de Recherches Biomédicales, Institut National de la Santé et de la Recherche Médicale, Créteil, France.,Institut Mondor de Recherches Biomédicales, Université Paris-Est Créteil, Créteil, France
| |
Collapse
|
30
|
Campbell K, Casanova J. A common framework for EMT and collective cell migration. Development 2016; 143:4291-4300. [DOI: 10.1242/dev.139071] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During development, cells often switch between static and migratory behaviours. Such transitions are fundamental events in development and are linked to harmful consequences in pathology. It has long been considered that epithelial cells either migrate collectively as epithelial cells, or undergo an epithelial-to-mesenchymal transition and migrate as individual mesenchymal cells. Here, we assess what is currently known about in vivo cell migratory phenomena and hypothesise that such migratory behaviours do not fit into alternative and mutually exclusive categories. Rather, we propose that these categories can be viewed as the most extreme cases of a general continuum of morphological variety, with cells harbouring different degrees or combinations of epithelial and mesenchymal features and displaying an array of migratory behaviours.
Collapse
Affiliation(s)
- Kyra Campbell
- Institut de Biologia Molecular de Barcelona (CSIC), C/Baldiri Reixac 10, Barcelona, Catalonia 08028, Spain
- Institut de Recerca Biomèdica de Barcelona, C/Baldiri Reixac 10, Barcelona, Catalonia 08028, Spain
| | - Jordi Casanova
- Institut de Biologia Molecular de Barcelona (CSIC), C/Baldiri Reixac 10, Barcelona, Catalonia 08028, Spain
- Institut de Recerca Biomèdica de Barcelona, C/Baldiri Reixac 10, Barcelona, Catalonia 08028, Spain
| |
Collapse
|
31
|
Niibe K, Zhang M, Nakazawa K, Morikawa S, Nakagawa T, Matsuzaki Y, Egusa H. The potential of enriched mesenchymal stem cells with neural crest cell phenotypes as a cell source for regenerative dentistry. JAPANESE DENTAL SCIENCE REVIEW 2016; 53:25-33. [PMID: 28479933 PMCID: PMC5405184 DOI: 10.1016/j.jdsr.2016.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/30/2016] [Accepted: 09/16/2016] [Indexed: 01/14/2023] Open
Abstract
Effective regenerative treatments for periodontal tissue defects have recently been demonstrated using mesenchymal stromal/stem cells (MSCs). Furthermore, current bioengineering techniques have enabled de novo fabrication of tooth-perio dental units in mice. These cutting-edge technologies are expected to address unmet needs within regenerative dentistry. However, to achieve efficient and stable treatment outcomes, preparation of an appropriate stem cell source is essential. Many researchers are investigating the use of adult stem cells for regenerative dentistry; bone marrow-derived MSCs (BM-MSCs) are particularly promising and presently used clinically. However, current BM-MSC isolation techniques result in a heterogeneous, non-reproducible cell population because of a lack of identified distinct BM-MSC surface markers. Recently, specific subsets of cell surface markers for BM-MSCs have been reported in mice (PDGFRα+ and Sca-1+) and humans (LNGFR+, THY-1+ and VCAM-1+), facilitating the isolation of unique enriched BM-MSCs (so-called “purified MSCs”). Notably, the enriched BM-MSC population contains neural crest-derived cells, which can differentiate into cells of neural crest- and mesenchymal lineages. In this review, characteristics of the enriched BM-MSCs are outlined with a focus on their potential application within future regenerative dentistry.
Collapse
Affiliation(s)
- Kunimichi Niibe
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Maolin Zhang
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Kosuke Nakazawa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Satoru Morikawa
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Taneaki Nakagawa
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yumi Matsuzaki
- Department of Cancer Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho Izumo, Shimane 693-8501, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.,Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
32
|
Tooth agenesis and orofacial clefting: genetic brothers in arms? Hum Genet 2016; 135:1299-1327. [PMID: 27699475 PMCID: PMC5065589 DOI: 10.1007/s00439-016-1733-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/21/2016] [Indexed: 12/16/2022]
Abstract
Tooth agenesis and orofacial clefts represent the most common developmental anomalies and their co-occurrence is often reported in patients as well in animal models. The aim of the present systematic review is to thoroughly investigate the current literature (PubMed, EMBASE) to identify the genes and genomic loci contributing to syndromic or non-syndromic co-occurrence of tooth agenesis and orofacial clefts, to gain insight into the molecular mechanisms underlying their dual involvement in the development of teeth and facial primordia. Altogether, 84 articles including phenotype and genotype description provided 9 genomic loci and 26 gene candidates underlying the co-occurrence of the two congenital defects: MSX1, PAX9, IRF6, TP63, KMT2D, KDM6A, SATB2, TBX22, TGFα, TGFβ3, TGFβR1, TGFβR2, FGF8, FGFR1, KISS1R, WNT3, WNT5A, CDH1, CHD7, AXIN2, TWIST1, BCOR, OFD1, PTCH1, PITX2, and PVRL1. The molecular pathways, cellular functions, tissue-specific expression and disease association were investigated using publicly accessible databases (EntrezGene, UniProt, OMIM). The Gene Ontology terms of the biological processes mediated by the candidate genes were used to cluster them using the GOTermMapper (Lewis-Sigler Institute, Princeton University), speculating on six super-clusters: (a) anatomical development, (b) cell division, growth and motility, (c) cell metabolism and catabolism, (d) cell transport, (e) cell structure organization and (f) organ/system-specific processes. This review aims to increase the knowledge on the mechanisms underlying the co-occurrence of tooth agenesis and orofacial clefts, to pave the way for improving targeted (prenatal) molecular diagnosis and finally to reflect on therapeutic or ultimately preventive strategies for these disabling conditions in the future.
Collapse
|
33
|
Chemotaxis during neural crest migration. Semin Cell Dev Biol 2016; 55:111-8. [DOI: 10.1016/j.semcdb.2016.01.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/22/2016] [Indexed: 01/12/2023]
|
34
|
Wilson NR, Olm-Shipman AJ, Acevedo DS, Palaniyandi K, Hall EG, Kosa E, Stumpff KM, Smith GJ, Pitstick L, Liao EC, Bjork BC, Czirok A, Saadi I. SPECC1L deficiency results in increased adherens junction stability and reduced cranial neural crest cell delamination. Sci Rep 2016; 6:17735. [PMID: 26787558 PMCID: PMC4726231 DOI: 10.1038/srep17735] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/05/2015] [Indexed: 11/16/2022] Open
Abstract
Cranial neural crest cells (CNCCs) delaminate from embryonic neural folds and migrate to pharyngeal arches, which give rise to most mid-facial structures. CNCC dysfunction plays a prominent role in the etiology of orofacial clefts, a frequent birth malformation. Heterozygous mutations in SPECC1L have been identified in patients with atypical and syndromic clefts. Here, we report that in SPECC1L-knockdown cultured cells, staining of canonical adherens junction (AJ) components, β-catenin and E-cadherin, was increased, and electron micrographs revealed an apico-basal diffusion of AJs. To understand the role of SPECC1L in craniofacial morphogenesis, we generated a mouse model of Specc1l deficiency. Homozygous mutants were embryonic lethal and showed impaired neural tube closure and CNCC delamination. Staining of AJ proteins was increased in the mutant neural folds. This AJ defect is consistent with impaired CNCC delamination, which requires AJ dissolution. Further, PI3K-AKT signaling was reduced and apoptosis was increased in Specc1l mutants. In vitro, moderate inhibition of PI3K-AKT signaling in wildtype cells was sufficient to cause AJ alterations. Importantly, AJ changes induced by SPECC1L-knockdown were rescued by activating the PI3K-AKT pathway. Together, these data indicate SPECC1L as a novel modulator of PI3K-AKT signaling and AJ biology, required for neural tube closure and CNCC delamination.
Collapse
Affiliation(s)
- Nathan R Wilson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Adam J Olm-Shipman
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Diana S Acevedo
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kanagaraj Palaniyandi
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Everett G Hall
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Edina Kosa
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kelly M Stumpff
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Guerin J Smith
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lenore Pitstick
- Department of Biochemistry, Midwestern University, Downers Grove, IL, USA
| | - Eric C Liao
- Center for Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bryan C Bjork
- Department of Biochemistry, Midwestern University, Downers Grove, IL, USA
| | - Andras Czirok
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Irfan Saadi
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
35
|
Kim K, Ossipova O, Sokol SY. Neural crest specification by inhibition of the ROCK/Myosin II pathway. Stem Cells 2015; 33:674-85. [PMID: 25346532 DOI: 10.1002/stem.1877] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 08/13/2014] [Accepted: 09/13/2014] [Indexed: 01/14/2023]
Abstract
Neural crest is a population of multipotent progenitor cells that form at the border of neural and non-neural ectoderm in vertebrate embryos, and undergo epithelial-mesenchymal transition and migration. According to the traditional view, the neural crest is specified in early embryos by signaling molecules including BMP, FGF, and Wnt proteins. Here, we identify a novel signaling pathway leading to neural crest specification, which involves Rho-associated kinase (ROCK) and its downstream target nonmuscle Myosin II. We show that ROCK inhibitors promote differentiation of human embryonic stem cells (hESCs) into neural crest-like progenitors (NCPs) that are characterized by specific molecular markers and ability to differentiate into multiple cell types, including neurons, chondrocytes, osteocytes, and smooth muscle cells. Moreover, inhibition of Myosin II was sufficient for generating NCPs at high efficiency. Whereas Myosin II has been previously implicated in the self-renewal and survival of hESCs, we demonstrate its role in neural crest development during ESC differentiation. Inhibition of this pathway in Xenopus embryos expanded neural crest in vivo, further indicating that neural crest specification is controlled by ROCK-dependent Myosin II activity. We propose that changes in cell morphology in response to ROCK and Myosin II inhibition initiate mechanical signaling leading to neural crest fates.
Collapse
Affiliation(s)
- Kyeongmi Kim
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | |
Collapse
|
36
|
Shao M, Liu C, Song Y, Ye W, He W, Yuan G, Gu S, Lin C, Ma L, Zhang Y, Tian W, Hu T, Chen Y. FGF8 signaling sustains progenitor status and multipotency of cranial neural crest-derived mesenchymal cells in vivo and in vitro. J Mol Cell Biol 2015; 7:441-454. [PMID: 26243590 PMCID: PMC4589951 DOI: 10.1093/jmcb/mjv052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 04/19/2015] [Accepted: 04/27/2015] [Indexed: 02/05/2023] Open
Abstract
The cranial neural crest (CNC) cells play a vital role in craniofacial development and regeneration. They are multi-potent progenitors, being able to differentiate into various types of tissues. Both pre-migratory and post-migratory CNC cells are plastic, taking on diverse fates by responding to different inductive signals. However, what sustains the multipotency of CNC cells and derivatives remains largely unknown. In this study, we present evidence that FGF8 signaling is able to sustain progenitor status and multipotency of CNC-derived mesenchymal cells both in vivo and in vitro. We show that augmented FGF8 signaling in pre-migratory CNC cells prevents cell differentiation and organogenesis in the craniofacial region by maintaining their progenitor status. CNC-derived mesenchymal cells with Fgf8 overexpression or control cells in the presence of exogenous FGF8 exhibit prolonged survival, proliferation, and multi-potent differentiation capability in cell cultures. Remarkably, exogenous FGF8 also sustains the capability of CNC-derived mesenchymal cells to participate in organogenesis such as odontogenesis. Furthermore, FGF8-mediated signaling strongly promotes adipogenesis but inhibits osteogenesis of CNC-derived mesenchymal cells in vitro. Our results reveal a specific role for FGF8 in the maintenance of progenitor status and in fate determination of CNC cells, implicating a potential application in expansion and fate manipulation of CNC-derived cells in stem cell-based craniofacial regeneration.
Collapse
Affiliation(s)
- Meiying Shao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA College of Life Sciences, Sichuan University, Chengdu 610041, China
| | - Chao Liu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Yingnan Song
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA Southern Center for Biomedical Research, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou 350108, China
| | - Wenduo Ye
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Wei He
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Guohua Yuan
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA Hubei-MOST KLOS and KLOBM School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Shuping Gu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Congxin Lin
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Liang Ma
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yanding Zhang
- Southern Center for Biomedical Research, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou 350108, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Tao Hu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA Southern Center for Biomedical Research, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou 350108, China
| |
Collapse
|
37
|
Padmanabhan R, Taneyhill LA. Cadherin-6B undergoes macropinocytosis and clathrin-mediated endocytosis during cranial neural crest cell EMT. J Cell Sci 2015; 128:1773-86. [PMID: 25795298 PMCID: PMC4446736 DOI: 10.1242/jcs.164426] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/16/2015] [Indexed: 02/03/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is important for the formation of migratory neural crest cells during development and is co-opted in human diseases such as cancer metastasis. Chick premigratory cranial neural crest cells lose intercellular contacts, mediated in part by Cadherin-6B (Cad6B), migrate extensively, and later form a variety of adult derivatives. Importantly, modulation of Cad6B is crucial for proper neural crest cell EMT. Although Cad6B possesses a long half-life, it is rapidly lost from premigratory neural crest cell membranes, suggesting the existence of post-translational mechanisms during EMT. We have identified a motif in the Cad6B cytoplasmic tail that enhances Cad6B internalization and reduces the stability of Cad6B upon its mutation. Furthermore, we demonstrate for the first time that Cad6B is removed from premigratory neural crest cells through cell surface internalization events that include clathrin-mediated endocytosis and macropinocytosis. Both of these processes are dependent upon the function of dynamin, and inhibition of Cad6B internalization abrogates neural crest cell EMT and migration. Collectively, our findings reveal the significance of post-translational events in controlling cadherins during neural crest cell EMT and migration.
Collapse
Affiliation(s)
| | - Lisa A Taneyhill
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
38
|
Shyamala K, Yanduri S, Girish HC, Murgod S. Neural crest: The fourth germ layer. J Oral Maxillofac Pathol 2015; 19:221-9. [PMID: 26604500 PMCID: PMC4611932 DOI: 10.4103/0973-029x.164536] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/01/2015] [Indexed: 12/14/2022] Open
Abstract
The neural crest cells (NCCs), a transient group of cells that emerges from the dorsal aspect of the neural tube during early vertebrate development has been a fascinating group of cells because of its multipotency, long range migration through embryo and its capacity to generate a prodigious number of differentiated cell types. For these reasons, although derived from the ectoderm, the neural crest (NC) has been called the fourth germ layer. The non neural ectoderm, the neural plate and the underlying mesoderm are needed for the induction and formation of NC cells. Once formed, NC cells start migrating as a wave of cells, moving away from the neuroepithelium and quickly splitting into distinct streams. These migrating NCCs home in to different regions and give rise to plethora of tissues. Umpteen number of signaling molecules are essential for formation, epithelial mesenchymal transition, delamination, migration and localization of NCC. Authors believe that a clear understanding of steps and signals involved in NC formation, migration, etc., may help in understanding the pathogenesis behind cancer metastasis and many other diseases. Hence, we have taken this review to discuss the various aspects of the NC cells.
Collapse
Affiliation(s)
- K Shyamala
- Department of Oral and Maxillofacial Pathology, Rajarajeswari Dental College and Hospital No. 14, Ramohally Cross, Kumbalgodu, Mysore Road, Bengaluru - 560 060, Karnataka, India
| | - Sarita Yanduri
- Department of Oral and Maxillofacial Pathology, DAPMRV Dental College and Hospital, J P Nagar, Bengaluru, Karnataka, India
| | - HC Girish
- Department of Oral and Maxillofacial Pathology, Rajarajeswari Dental College and Hospital No. 14, Ramohally Cross, Kumbalgodu, Mysore Road, Bengaluru - 560 060, Karnataka, India
| | - Sanjay Murgod
- Department of Oral and Maxillofacial Pathology, Rajarajeswari Dental College and Hospital No. 14, Ramohally Cross, Kumbalgodu, Mysore Road, Bengaluru - 560 060, Karnataka, India
| |
Collapse
|
39
|
Barriga EH, Mayor R. Embryonic cell-cell adhesion: a key player in collective neural crest migration. Curr Top Dev Biol 2015; 112:301-23. [PMID: 25733144 DOI: 10.1016/bs.ctdb.2014.11.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell migration is essential for morphogenesis, adult tissue remodeling, wound healing, and cancer cell migration. Cells can migrate as individuals or groups. When cells migrate in groups, cell-cell interactions are crucial in order to promote the coordinated behavior, essential for collective migration. Interestingly, recent evidence has shown that cell-cell interactions are also important for establishing and maintaining the directionality of these migratory events. We focus on neural crest cells, as they possess extraordinary migratory capabilities that allow them to migrate and colonize tissues all over the embryo. Neural crest cells undergo an epithelial-to-mesenchymal transition at the same time than perform directional collective migration. Cell-cell adhesion has been shown to be an important source of planar cell polarity and cell coordination during collective movement. We also review molecular mechanisms underlying cadherin turnover, showing how the modulation and dynamics of cell-cell adhesions are crucial in order to maintain tissue integrity and collective migration in vivo. We conclude that cell-cell adhesion during embryo development cannot be considered as simple passive resistance to force, but rather participates in signaling events that determine important cell behaviors required for cell migration.
Collapse
Affiliation(s)
- Elias H Barriga
- Cell and Developmental Biology Department, University College London, London, United Kingdom
| | - Roberto Mayor
- Cell and Developmental Biology Department, University College London, London, United Kingdom.
| |
Collapse
|
40
|
Maguire LH, Thomas AR, Goldstein AM. Tumors of the neural crest: Common themes in development and cancer. Dev Dyn 2014; 244:311-22. [PMID: 25382669 DOI: 10.1002/dvdy.24226] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 12/17/2022] Open
Abstract
The neural crest (NC) is a remarkable transient structure in the vertebrate embryo that gives rise to a highly versatile population of pluripotent cells that contribute to the formation of multiple tissues and organs throughout the body. In order to achieve their task, NC-derived cells have developed specialized mechanisms to promote (1) their transition from an epithelial to a mesenchymal phenotype, (2) their capacity for extensive migration and cell proliferation, and (3) their ability to produce diverse cell types largely depending on the microenvironment encountered during and after their migratory path. Following embryogenesis, these same features of cellular motility, invasion, and proliferation can become a liability by contributing to tumorigenesis and metastasis. Ample evidence has shown that cancer cells have cleverly co-opted many of the genetic and molecular features used by developing NC cells. This review focuses on tumors that arise from NC-derived tissues and examines mechanistic themes shared during their oncogenic and metastatic development with embryonic NC cell ontogeny.
Collapse
Affiliation(s)
- Lillias H Maguire
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | |
Collapse
|
41
|
Delaney SP, Julian LM, Stanford WL. The neural crest lineage as a driver of disease heterogeneity in Tuberous Sclerosis Complex and Lymphangioleiomyomatosis. Front Cell Dev Biol 2014; 2:69. [PMID: 25505789 PMCID: PMC4243694 DOI: 10.3389/fcell.2014.00069] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/02/2014] [Indexed: 12/20/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a rare neoplastic disease, best characterized by the formation of proliferative nodules that express smooth muscle and melanocytic antigens within the lung parenchyma, leading to progressive destruction of lung tissue and function. The pathological basis of LAM is associated with Tuberous Sclerosis Complex (TSC), a multi-system disorder marked by low-grade tumors in the brain, kidneys, heart, eyes, lung and skin, arising from inherited or spontaneous germ-line mutations in either of the TSC1 or TSC2 genes. LAM can develop either in a patient with TSC (TSC-LAM) or spontaneously (S-LAM), and it is clear that the majority of LAM lesions of both forms are characterized by an inactivating mutation in either TSC1 or TSC2, as in TSC. Despite this genetic commonality, there is considerable heterogeneity in the tumor spectrum of TSC and LAM patients, the basis for which is currently unknown. There is extensive clinical evidence to suggest that the cell of origin for LAM, as well as many of the TSC-associated tumors, is a neural crest cell, a highly migratory cell type with extensive multi-lineage potential. Here we explore the hypothesis that the types of tumors that develop and the tissues that are affected in TSC and LAM are dictated by the developmental timing of TSC gene mutations, which determines the identities of the affected cell types and the size of downstream populations that acquire a mutation. We further discuss the evidence to support a neural crest origin for LAM and TSC tumors, and propose approaches for generating humanized models of TSC and LAM that will allow cell of origin theories to be experimentally tested. Identifying the cell of origin and developing appropriate humanized models is necessary to truly understand LAM and TSC pathology and to establish effective and long-lasting therapeutic approaches for these patients.
Collapse
Affiliation(s)
- Sean P Delaney
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute Ottawa, ON, Canada ; Faculty of Graduate and Postdoctoral Studies, University of Ottawa Ottawa, ON, Canada ; Department of Cellular and Molecular Medicine, University of Ottawa Ottawa, ON, Canada
| | - Lisa M Julian
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute Ottawa, ON, Canada ; Faculty of Graduate and Postdoctoral Studies, University of Ottawa Ottawa, ON, Canada
| | - William L Stanford
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute Ottawa, ON, Canada ; Faculty of Graduate and Postdoctoral Studies, University of Ottawa Ottawa, ON, Canada ; Department of Cellular and Molecular Medicine, University of Ottawa Ottawa, ON, Canada ; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa Ottawa, ON, Canada
| |
Collapse
|
42
|
Gao H, Wu X, Simon L, Fossett N. Antioxidants maintain E-cadherin levels to limit Drosophila prohemocyte differentiation. PLoS One 2014; 9:e107768. [PMID: 25226030 PMCID: PMC4167200 DOI: 10.1371/journal.pone.0107768] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/12/2014] [Indexed: 01/01/2023] Open
Abstract
Mitochondrial reactive oxygen species (ROS) regulate a variety of biological processes by networking with signal transduction pathways to maintain homeostasis and support adaptation to stress. In this capacity, ROS have been shown to promote the differentiation of progenitor cells, including mammalian embryonic and hematopoietic stem cells and Drosophila hematopoietic progenitors (prohemocytes). However, many questions remain about how ROS alter the regulatory machinery to promote progenitor differentiation. Here, we provide evidence for the hypothesis that ROS reduce E-cadherin levels to promote Drosophila prohemocyte differentiation. Specifically, we show that knockdown of the antioxidants, Superoxide dismutatase 2 and Catalase reduce E-cadherin protein levels prior to the loss of Odd-skipped-expressing prohemocytes. Additionally, over-expression of E-cadherin limits prohemocyte differentiation resulting from paraquat-induced oxidative stress. Furthermore, two established targets of ROS, Enhancer of Polycomb and FOS, control the level of E-cadherin protein expression. Finally, we show that knockdown of either Superoxide dismutatase 2 or Catalase leads to an increase in the E-cadherin repressor, Serpent. As a result, antioxidants and targets of ROS can control E-cadherin protein levels, and over-expression of E-cadherin can ameliorate the prohemocyte response to oxidative stress. Collectively, these data strongly suggest that ROS promote differentiation by reducing E-cadherin levels. In mammalian systems, ROS promote embryonic stem cell differentiation, whereas E-cadherin blocks differentiation. However, it is not known if elevated ROS reduce E-cadherin to promote embryonic stem cell differentiation. Thus, our findings may have identified an important mechanism by which ROS promote stem/progenitor cell differentiation.
Collapse
Affiliation(s)
- Hongjuan Gao
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Xiaorong Wu
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - LaTonya Simon
- Department of Chemical and Biochemical Engineering, University of Maryland Baltimore County, Baltimore, MD, United States of America
| | - Nancy Fossett
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
43
|
Mandalos N, Rhinn M, Granchi Z, Karampelas I, Mitsiadis T, Economides AN, Dollé P, Remboutsika E. Sox2 acts as a rheostat of epithelial to mesenchymal transition during neural crest development. Front Physiol 2014; 5:345. [PMID: 25309446 PMCID: PMC4162359 DOI: 10.3389/fphys.2014.00345] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/22/2014] [Indexed: 12/19/2022] Open
Abstract
Precise control of self-renewal and differentiation of progenitor cells into the cranial neural crest (CNC) pool ensures proper head development, guided by signaling pathways such as BMPs, FGFs, Shh and Notch. Here, we show that murine Sox2 plays an essential role in controlling progenitor cell behavior during craniofacial development. A “Conditional by Inversion” Sox2 allele (Sox2COIN) has been employed to generate an epiblast ablation of Sox2 function (Sox2EpINV). Sox2EpINV/+(H) haploinsufficient and conditional (Sox2EpINV/mosaic) mutant embryos proceed beyond gastrulation and die around E11. These mutant embryos exhibit severe anterior malformations, with hydrocephaly and frontonasal truncations, which could be attributed to the deregulation of CNC progenitor cells during their epithelial to mesenchymal transition. This irregularity results in an exacerbated and aberrant migration of Sox10+ NCC in the branchial arches and frontonasal process of the Sox2 mutant embryos. These results suggest a novel role for Sox2 as a regulator of the epithelial to mesenchymal transitions (EMT) that are important for the cell flow in the developing head.
Collapse
Affiliation(s)
- Nikolaos Mandalos
- Stem Cell Biology Laboratory, Division of Molecular Biology and Genetics, Biomedical Sciences Research Centre "Alexander Fleming" Vari-Attica, Greece
| | - Muriel Rhinn
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U964, CNRS, UMR7104, Université de Strasbourg Illkirch, France
| | - Zoraide Granchi
- Orofacial Development and Regeneration Unit, Faculty of Medicine, Institute of Oral Biology, University of Zurich, ZZM Zurich, Switzerland
| | - Ioannis Karampelas
- Stem Cell Biology Laboratory, Division of Molecular Biology and Genetics, Biomedical Sciences Research Centre "Alexander Fleming" Vari-Attica, Greece ; Department of Neurosurgery, University Hospitals Case Medical Center Cleveland, OH, USA
| | - Thimios Mitsiadis
- Orofacial Development and Regeneration Unit, Faculty of Medicine, Institute of Oral Biology, University of Zurich, ZZM Zurich, Switzerland
| | | | - Pascal Dollé
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U964, CNRS, UMR7104, Université de Strasbourg Illkirch, France
| | - Eumorphia Remboutsika
- Stem Cell Biology Laboratory, Division of Molecular Biology and Genetics, Biomedical Sciences Research Centre "Alexander Fleming" Vari-Attica, Greece
| |
Collapse
|
44
|
Benedetto A, Accetta G, Fujita Y, Charras G. Spatiotemporal control of gene expression using microfluidics. LAB ON A CHIP 2014; 14:1336-1347. [PMID: 24531367 DOI: 10.1039/c3lc51281a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Accurate spatiotemporal regulation of genetic expression and cell microenvironment are both essential to epithelial morphogenesis during development, wound healing and cancer. In vivo, this is achieved through the interplay between intrinsic cellular properties and extrinsic signals. Amongst these, morphogen gradients induce specific concentration- and time-dependent gene expression changes that influence a target cell's fate. As systems biology attempts to understand the complex mechanisms underlying morphogenesis, the lack of experimental setup to recapitulate morphogen-induced patterning in vitro has become limiting. For this reason, we developed a versatile microfluidic-based platform to control the spatiotemporal delivery of chemical gradients to tissues grown in Petri dishes. Using this setup combined with a synthetic inducible gene expression system, we were able to restrict a target gene's expression within a confluent epithelium to bands of cells as narrow as four cell diameters with a one cell diameter accuracy. Applied to the targeted delivery of growth factor gradients to a confluent epithelium, this method further enabled the localized induction of epithelial-mesenchymal transitions and associated morphogenetic changes. Our approach paves the way for replicating in vitro the morphogen gradients observed in vivo to determine the relative contributions of known intrinsic and extrinsic factors in differential tissue patterning, during development and cancer. It could also be readily used to spatiotemporally control cell differentiation in ES/iPS cell cultures for re-engineering of complex tissues. Finally, the reversibility of the microfluidic chip assembly allows for pre- and post-treatment sample manipulations and extends the range of patternable samples to animal explants.
Collapse
|
45
|
Nissimov JN, Das Chaudhuri AB. Hair curvature: a natural dialectic and review. Biol Rev Camb Philos Soc 2014; 89:723-66. [PMID: 24617997 DOI: 10.1111/brv.12081] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 12/18/2013] [Accepted: 01/01/2014] [Indexed: 12/19/2022]
Abstract
Although hair forms (straight, curly, wavy, etc.) are present in apparently infinite variations, each fibre can be reduced to a finite sequence of tandem segments of just three types: straight, bent/curly, or twisted. Hair forms can thus be regarded as resulting from genetic pathways that induce, reverse or modulate these basic curvature modes. However, physical interconversions between twists and curls demonstrate that strict one-to-one correspondences between them and their genetic causes do not exist. Current hair-curvature theories do not distinguish between bending and twisting mechanisms. We here introduce a multiple papillary centres (MPC) model which is particularly suitable to explain twisting. The model combines previously known features of hair cross-sectional morphology with partially/completely separated dermal papillae within single follicles, and requires such papillae to induce differential growth rates of hair cortical material in their immediate neighbourhoods. The MPC model can further help to explain other, poorly understood, aspects of hair growth and morphology. Separate bending and twisting mechanisms would be preferentially affected at the major or minor ellipsoidal sides of fibres, respectively, and together they exhaust the possibilities for influencing hair-form phenotypes. As such they suggest dialectic for hair-curvature development. We define a natural-dialectic (ND) which could take advantage of speculative aspects of dialectic, but would verify its input data and results by experimental methods. We use this as a top-down approach to first define routes by which hair bending or twisting may be brought about and then review evidence in support of such routes. In particular we consider the wingless (Wnt) and mammalian target of rapamycin (mTOR) pathways as paradigm pathways for molecular hair bending and twisting mechanisms, respectively. In addition to the Wnt canonical pathway, the Wnt/Ca(2+) and planar cell polarity (PCP) pathways, and others, can explain many alternatives and specific variations of hair bending phenotypes. Mechanisms for hair papilla budding or its division by bisection or fission can explain MPC formation. Epithelial-to-mesenchymal (EMT) and mesenchymal-to-epithelial (MET) transitions, acting in collaboration with epithelial-mesenchymal communications are also considered as mechanisms affecting hair growth and its bending and twisting. These may be treated as sub-mechanisms of an overall development from neural-crest stem cell (NCSC) lineages to differentiated hair follicle (HF) cell types, thus providing a unified framework for hair growth and development.
Collapse
|
46
|
Agarwal T, Lalwani MK, Kumar S, Roy S, Chakraborty TK, Sivasubbu S, Maiti S. Morphological Effects of G-Quadruplex Stabilization Using a Small Molecule in Zebrafish. Biochemistry 2014; 53:1117-24. [DOI: 10.1021/bi4009352] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tani Agarwal
- CSIR-Institute of Genomics and Integrative
Biology, , Mall Road, New Delhi 110 007, India
| | - Mukesh Kumar Lalwani
- CSIR-Institute of Genomics and Integrative
Biology, , Mall Road, New Delhi 110 007, India
| | - Santosh Kumar
- CSIR-Institute of Genomics and Integrative
Biology, , Mall Road, New Delhi 110 007, India
| | - Saumya Roy
- CSIR-Indian Institute of Chemical
Technology, , Hyderabad 500 007, India
| | - Tushar Kanti Chakraborty
- CSIR-Indian Institute of Chemical
Technology, , Hyderabad 500 007, India
- Department
of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Sridhar Sivasubbu
- CSIR-Institute of Genomics and Integrative
Biology, , Mall Road, New Delhi 110 007, India
| | - Souvik Maiti
- CSIR-Institute of Genomics and Integrative
Biology, , Mall Road, New Delhi 110 007, India
- CSIR-National Chemical Laboratory, Pune 411008, India
| |
Collapse
|
47
|
Tondeleir D, Noelanders R, Bakkali K, Ampe C. Beta-actin is required for proper mouse neural crest ontogeny. PLoS One 2014; 9:e85608. [PMID: 24409333 PMCID: PMC3883714 DOI: 10.1371/journal.pone.0085608] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/05/2013] [Indexed: 02/06/2023] Open
Abstract
The mouse genome consists of six functional actin genes of which the expression patterns are temporally and spatially regulated during development and in the adult organism. Deletion of beta-actin in mouse is lethal during embryonic development, although there is compensatory expression of other actin isoforms. This suggests different isoform specific functions and, more in particular, an important function for beta-actin during early mammalian development. We here report a role for beta-actin during neural crest ontogeny. Although beta-actin null neural crest cells show expression of neural crest markers, less cells delaminate and their migration arrests shortly after. These phenotypes were associated with elevated apoptosis levels in neural crest cells, whereas proliferation levels were unchanged. Specifically the pre-migratory neural crest cells displayed higher levels of apoptosis, suggesting increased apoptosis in the neural tube accounts for the decreased amount of migrating neural crest cells seen in the beta-actin null embryos. These cells additionally displayed a lack of membrane bound N-cadherin and dramatic decrease in cadherin-11 expression which was more pronounced in the pre-migratory neural crest population, potentially indicating linkage between the cadherin-11 expression and apoptosis. By inhibiting ROCK ex vivo, the knockout neural crest cells regained migratory capacity and cadherin-11 expression was upregulated. We conclude that the presence of beta-actin is vital for survival, specifically of pre-migratory neural crest cells, their proper emigration from the neural tube and their subsequent migration. Furthermore, the absence of beta-actin affects cadherin-11 and N-cadherin function, which could partly be alleviated by ROCK inhibition, situating the Rho-ROCK signaling in a feedback loop with cadherin-11.
Collapse
Affiliation(s)
- Davina Tondeleir
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Rivka Noelanders
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Karima Bakkali
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Christophe Ampe
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
48
|
Kerosuo L, Bronner ME. Biphasic influence of Miz1 on neural crest development by regulating cell survival and apical adhesion complex formation in the developing neural tube. Mol Biol Cell 2013; 25:347-55. [PMID: 24307680 PMCID: PMC3907275 DOI: 10.1091/mbc.e13-06-0327] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Myc interacting zinc finger protein-1 (Miz1) is a transcription factor known to regulate cell cycle- and cell adhesion-related genes in cancer. Here we show that Miz1 also plays a critical role in neural crest development. In the chick, Miz1 is expressed throughout the neural plate and closing neural tube. Its morpholino-mediated knockdown affects neural crest precursor survival, leading to reduction of neural plate border and neural crest specifier genes Msx-1, Pax7, FoxD3, and Sox10. Of interest, Miz1 loss also causes marked reduction of adhesion molecules (N-cadherin, cadherin6B, and α1-catenin) with a concomitant increase of E-cadherin in the neural folds, likely leading to delayed and decreased neural crest emigration. Conversely, Miz1 overexpression results in up-regulation of cadherin6B and FoxD3 expression in the neural folds/neural tube, leading to premature neural crest emigration and increased number of migratory crest cells. Although Miz1 loss effects cell survival and proliferation throughout the neural plate, the neural progenitor marker Sox2 was unaffected, suggesting a neural crest-selective effect. The results suggest that Miz1 is important not only for survival of neural crest precursors, but also for maintenance of integrity of the neural folds and tube, via correct formation of the apical adhesion complex therein.
Collapse
Affiliation(s)
- Laura Kerosuo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | | |
Collapse
|
49
|
Schiffmacher AT, Padmanabhan R, Jhingory S, Taneyhill LA. Cadherin-6B is proteolytically processed during epithelial-to-mesenchymal transitions of the cranial neural crest. Mol Biol Cell 2013; 25:41-54. [PMID: 24196837 PMCID: PMC3873892 DOI: 10.1091/mbc.e13-08-0459] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a highly coordinated process underlying both development and disease. Premigratory neural crest cells undergo EMT, migrate away from the neural tube, and differentiate into diverse cell types during vertebrate embryogenesis. Adherens junction disassembly within premigratory neural crest cells is one component of EMT and, in chick cranial neural crest cells, involves cadherin-6B (Cad6B) down-regulation. Whereas Cad6B transcription is repressed by Snail2, the rapid loss of Cad6B protein during EMT is suggestive of posttranslational mechanisms that promote Cad6B turnover. For the first time in vivo, we demonstrate Cad6B proteolysis during neural crest cell EMT, which generates a Cad6B N-terminal fragment (NTF) and two C-terminal fragments (CTF1/2). Coexpression of relevant proteases with Cad6B in vitro shows that a disintegrin and metalloproteinases (ADAMs) ADAM10 and ADAM19, together with γ-secretase, cleave Cad6B to produce the NTF and CTFs previously observed in vivo. Of importance, both ADAMs and γ-secretase are expressed in the appropriate spatiotemporal pattern in vivo to proteolytically process Cad6B. Overexpression or depletion of either ADAM within premigratory neural crest cells prematurely reduces or maintains Cad6B, respectively. Collectively these results suggest a dual mechanism for Cad6B proteolysis involving two ADAMs, along with γ-secretase, during cranial neural crest cell EMT.
Collapse
Affiliation(s)
- Andrew T Schiffmacher
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742
| | | | | | | |
Collapse
|
50
|
Cobrinik D, Ostrovnaya I, Hassimi M, Tickoo SK, Cheung IY, Cheung NKV. Recurrent pre-existing and acquired DNA copy number alterations, including focal TERT gains, in neuroblastoma central nervous system metastases. Genes Chromosomes Cancer 2013; 52:1150-66. [PMID: 24123354 DOI: 10.1002/gcc.22110] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 08/14/2013] [Indexed: 12/13/2022] Open
Abstract
Stage 4 neuroblastomas have a high rate of local and metastatic relapse and associated disease mortality. The central nervous system (CNS) is currently one of the most common isolated relapse sites, yet the genomic alterations that contribute to these metastases are unknown. This study sought to identify recurrent DNA copy number alterations (CNAs) and target genes relating to neuroblastoma CNS metastases by studying 19 pre-CNS primary tumors and 27 CNS metastases, including 12 matched pairs. SNP microarray analyses revealed that MYCN amplified (MYCNA) tumors had recurrent CNAs different from non-MYCNA cohorts. Several CNAs known to be prevalent among primary neuroblastomas occurred more frequently in CNS metastases, including 4p-, 7q+, 12q+, and 19q- in non-MYCNA metastases, and 9p- and 14q- irrespective of MYCNA status. In addition, novel CNS metastases-related CNAs included 18q22.1 gains in non-MYCNA pre-CNS primaries and 5p15.33 gains and 15q26.1→tel losses in non-MYCNA CNS metastases. Based on minimal common regions, gene expression, and biological properties, TERT (5p), NR2F2 (15q), ALDH1A3 (15q), CDKN2A (9p), and possibly CDH7 and CDH19 (18q) were candidate genes associated with the CNS metastatic process. Notably, the 5p15 minimal common region contained only TERT, and non-MYCNA CNS metastases with focal 5p15 gains had increased TERT expression, similar to MYCNA tumors. These findings suggest that a specific genomic lesion (18q22.1 gain) predisposes to CNS metastases and that distinct lesions are recurrently acquired during metastatic progression. Among the acquired lesions, increased TERT copy number and expression appears likely to function in lieu of MYCNA to promote CNS metastasis.
Collapse
Affiliation(s)
- David Cobrinik
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065
| | | | | | | | | | | |
Collapse
|