1
|
Gouveia F, Pérez MC, Bicker J, Silva A, Santos AE, Pereira CF, Camins A, Falcão A, Cruz T, Ettcheto M, Fortuna A. Protective effects of irbesartan against neurodegeneration in APP/PS1 mice: Unraveling its triple anti-apoptotic, anti-inflammatory and anti-oxidant action. Biomed Pharmacother 2025; 188:118167. [PMID: 40414000 DOI: 10.1016/j.biopha.2025.118167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/27/2025] Open
Abstract
Alzheimer's disease (AD) involves a complex interplay between amyloid-β plaques, oxidative stress, neuroinflammation and apoptosis, suggesting that multi-target therapies may be more effective than single-target treatments. Angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs) have shown protective effects against AD in hypertensive patients. However, those poor blood-brain barrier (BBB) permeability exhibit limited efficacy in neurodegenerative disorders. This study investigated the neuroprotective potential of three ARBs and one ACEI using a combined in vitro and in vivo approach. In N2a and N2a-APPswe cell lines, irbesartan showed the most robust effects, notably increasing p-AKT and HMOX1 levels. Based on these results, irbesartan was selected for the following in vivo studies and administered intranasally (40 mg/kg) to APP/PS1 male mice for 10 weeks. Treated animals showed significant improvements in memory performance, as measured by the novel object recognition test and the Morris water maze. Additionally, irbesartan enhanced dendritic spine density, restored mitochondrial bioenergetics and BBB integrity, and reduced apoptotic markers. These effects were accompanied by a marked reduction in oxidative stress and neuroinflammation. Overall, these results support the potential of intranasal irbesartan as a promising multi-target therapeutic strategy for AD, capable of modulating key pathological features, including synaptic dysfunction, mitochondrial dysfunction, oxidative stress, apoptosis, and neuroinflammation.
Collapse
Affiliation(s)
- Filipa Gouveia
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal; Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Marina Carrasco Pérez
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Ana Silva
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Armanda E Santos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Laboratory of Biochemistry and Biology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Cláudia Fragão Pereira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Teresa Cruz
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
2
|
Ranjbar S, Mohammadi P, Pashaei S, Sadeghi M, Mehrabi M, Shabani S, Ebrahimi A, Brühl AB, Khodarahmi R, Brand S. Effect of Aflatoxin B1 on the Nervous System: A Systematic Review and Network Analysis Highlighting Alzheimer's Disease. BIOLOGY 2025; 14:436. [PMID: 40282301 PMCID: PMC12024953 DOI: 10.3390/biology14040436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/13/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Exposure to aflatoxin (AF) triggers the production of inflammatory molecules and free radicals, leading to chronic inflammation, cancer, and neurodegenerative diseases. This systematic review evaluated the effects of AFB1 on the nervous system, particularly focusing on Alzheimer's disease (AD). A comprehensive search was conducted in Scopus, Cochrane Library, PubMed, and Web of Science databases up to 1 June 2024, without restrictions. From 993 records retrieved, 16 articles were included in the systematic review. AFB1 participates in various biochemical processes and pathological conditions. The study highlights that AFB1 contributes to AD by inducing DNA damage, oxidative stress, and endoplasmic reticulum (ER) stress, impairing DNA repair mechanisms. This results in neuronal damage, cognitive decline, and neurodegeneration. AFB1 also affects key signaling pathways, reduces sodium-potassium pump activity, and disrupts cell cycle regulation involving p53, leading to neurotoxicity, inflammation, and the formation of amyloid-beta (Aβ) plaques and neurofibrillary tangles. Additionally, network analysis revealed 309 genes associated with AD, inflammation, angiopathy, and aflatoxin B1 (AFB1). Among these, ESR1 exhibited the highest number of direct connections to other nodes within the network. The gene TP53 played a pivotal role in mediating communication among genes, while the EP300 gene significantly influenced the overall network structure. Additionally, KEGG enrichment analysis demonstrated that these 309 genes are substantially involved in pathways related to cancer, the FoxO signaling pathway, apoptosis, and AD. In summary, the study highlights that AFB1 causes DNA damage and stress, leading to cognitive decline and neurodegeneration. It disrupts signaling pathways, damages neurons, and affects DNA repair, contributing to neurotoxicity and inflammation. PROSPERO registration number: CRD420250651007.
Collapse
Affiliation(s)
- Samira Ranjbar
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran; (S.R.); (P.M.); (S.P.); (M.S.); (M.M.); (S.S.)
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran; (S.R.); (P.M.); (S.P.); (M.S.); (M.M.); (S.S.)
| | - Somayeh Pashaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran; (S.R.); (P.M.); (S.P.); (M.S.); (M.M.); (S.S.)
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Masoud Sadeghi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran; (S.R.); (P.M.); (S.P.); (M.S.); (M.M.); (S.S.)
| | - Masomeh Mehrabi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran; (S.R.); (P.M.); (S.P.); (M.S.); (M.M.); (S.S.)
| | - Sasan Shabani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran; (S.R.); (P.M.); (S.P.); (M.S.); (M.M.); (S.S.)
| | - Ali Ebrahimi
- Dermatology Department, Hajdaie Dermatology Clinic, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Annette B. Brühl
- Center for Affective, Stress and Sleep Disorders, Psychiatric Clinics, University of Basel, 4002 Basel, Switzerland;
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran; (S.R.); (P.M.); (S.P.); (M.S.); (M.M.); (S.S.)
- Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Serge Brand
- Center for Affective, Stress and Sleep Disorders, Psychiatric Clinics, University of Basel, 4002 Basel, Switzerland;
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Substance Abuse Prevention Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Division of Sport Science and Psychosocial Health, Department of Sport, Exercise and Health, University of Basel, 4002 Basel, Switzerland
- School of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
- Center for Disaster Psychiatry and Disaster Psychology, Center of Competence for Disaster Medicine, Swiss Armed Forces, 4002 Basel, Switzerland
| |
Collapse
|
3
|
Radermacher J, Erhardt VKJ, Walzer O, Haas EC, Kuppler KN, Zügner JSR, Lauer AA, Hartmann T, Grimm HS, Grimm MOW. Influence of Ibuprofen on glycerophospholipids and sphingolipids in context of Alzheimer´s Disease. Biomed Pharmacother 2025; 185:117969. [PMID: 40073745 DOI: 10.1016/j.biopha.2025.117969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/21/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Alzheimer's disease (AD) is a multifactorial disorder associated with neuroinflammation, elevated oxidative stress, lipid alterations as well as amyloid-deposits and the formation of neurofibrillary tangles. Ibuprofen, a globally used analgesic, is discussed to influence disease progression due to its anti-inflammatory effect. However, changes in lipid-homeostasis induced by Ibuprofen have not yet been analyzed. Here we investigate the effect of Ibuprofen on lipid classes known to be associated with AD. Ibuprofen treatment leads to a significant increase in phosphatidylcholine, sphingomyelin and triacylglyceride (TAG) species whereas plasmalogens, which are highly susceptible for oxidation, were significantly decreased. The observed alterations in phosphatidylcholine and sphingomyelin levels in presence of Ibuprofen might counteract the reduced phosphatidylcholine- and sphingomyelin-levels found in AD brain tissue with potential positive aspects on synaptic plasticity and ceramide-induced apoptotic effects. On the other hand, Ibuprofen leads to elevated TAG-level resulting in the formation of lipid droplets which are associated with neuroinflammation. Reduction of plasmalogen-levels might accelerate decreased plasmalogen-levels found in AD brains. Treatment of Ibuprofen in terms of lipid-homeostasis reveals both potentially positive and negative changes relevant to AD. Therefore, understanding the influence of Ibuprofen on lipid-homeostasis may help to understand the heterogeneous results of studies treating AD with Ibuprofen.
Collapse
Affiliation(s)
| | | | - Oliver Walzer
- Experimental Neurology, Saarland University, Homburg, Saar 66424, Germany.
| | | | | | | | - Anna Andrea Lauer
- Experimental Neurology, Saarland University, Homburg, Saar 66424, Germany; Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, Leverkusen 51377, Germany.
| | - Tobias Hartmann
- Experimental Neurology, Saarland University, Homburg, Saar 66424, Germany; Deutsches Institut für Demenzprävention (DIDP), Saarland University, Homburg, Saar 66424, Germany.
| | - Heike Sabine Grimm
- Experimental Neurology, Saarland University, Homburg, Saar 66424, Germany; Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, Leverkusen 51377, Germany; Deutsches Institut für Demenzprävention (DIDP), Saarland University, Homburg, Saar 66424, Germany.
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, Homburg, Saar 66424, Germany; Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, Leverkusen 51377, Germany; Deutsches Institut für Demenzprävention (DIDP), Saarland University, Homburg, Saar 66424, Germany.
| |
Collapse
|
4
|
Selvaraj NR, Nandan D, Nair BG, Nair VA, Venugopal P, Aradhya R. Oxidative Stress and Redox Imbalance: Common Mechanisms in Cancer Stem Cells and Neurodegenerative Diseases. Cells 2025; 14:511. [PMID: 40214466 PMCID: PMC11988017 DOI: 10.3390/cells14070511] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 04/14/2025] Open
Abstract
Oxidative stress (OS) is an established hallmark of cancer and neurodegenerative disorders (NDDs), which contributes to genomic instability and neuronal loss. This review explores the contrasting role of OS in cancer stem cells (CSCs) and NDDs. Elevated levels of reactive oxygen species (ROS) contribute to genomic instability and promote tumor initiation and progression in CSCs, while in NDDs such as Alzheimer's and Parkinson's disease, OS accelerates neuronal death and impairs cellular repair mechanisms. Both scenarios involve disruption of the delicate balance between pro-oxidant and antioxidant systems, which leads to chronic oxidative stress. Notably, CSCs and neurons display alterations in redox-sensitive signaling pathways, including Nrf2 and NF-κB, which influence cell survival, proliferation, and differentiation. Mitochondrial dynamics further illustrate these differences: enhanced function in CSCs supports adaptability and survival, whereas impairments in neurons heighten vulnerability. Understanding these common mechanisms of OS-induced redox imbalance may provide insights for developing interventions, addressing aging hallmarks, and potentially mitigating or preventing both cancer and NDDs.
Collapse
Affiliation(s)
| | | | | | | | - Parvathy Venugopal
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India; (N.R.S.); (D.N.); (B.G.N.); (V.A.N.)
| | - Rajaguru Aradhya
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India; (N.R.S.); (D.N.); (B.G.N.); (V.A.N.)
| |
Collapse
|
5
|
Ahmed G, Rahaman MS, Perez E, Khan KM. Associations of Environmental Exposure to Arsenic, Manganese, Lead, and Cadmium with Alzheimer's Disease: A Review of Recent Evidence from Mechanistic Studies. J Xenobiot 2025; 15:47. [PMID: 40278152 PMCID: PMC12029005 DOI: 10.3390/jox15020047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025] Open
Abstract
Numerous epidemiological studies indicate that populations exposed to environmental toxicants such as heavy metals have a higher likelihood of developing Alzheimer's disease (AD) compared to those unexposed, indicating a potential association between heavy metals exposure and AD. The aim of this review is to summarize contemporary mechanistic research exploring the associations of four important metals, arsenic (As), manganese (Mn), lead (Pb), and cadmium (Cd), with AD and possible pathways, processes, and molecular mechanisms on the basis of data from the most recent mechanistic studies. Primary research publications published during the last decade were identified via a search of the PubMed Database. A thorough literature search and final screening yielded 45 original research articles for this review. Of the 45 research articles, 6 pertain to As, 9 to Mn, 21 to Pb, and 9 to Cd exposures and AD pathobiology. Environmental exposure to these heavy metals induces a wide range of pathological processes that intersect with well-known mechanisms leading to AD, such as oxidative stress, mitochondrial dysfunction, protein aggregation, neuroinflammation, autophagy dysfunction, and tau hyperphosphorylation. While exposure to single metals shares some affected pathways, certain effects are unique to specific metals. For instance, Pb disrupts the blood-brain barrier (BBB) and mitochondrial functions and alters AD-related genes epigenetically. Cd triggers neuronal senescence via p53/p21/Rb. As disrupts nitric oxide (NO) signaling, cortical, and synaptic function. Mn causes glutamate excitotoxicity and dopamine neuron damage. Our review provides a deeper understanding of biological mechanisms showing how metals contribute to AD. Information regarding the potential metal-induced toxicity relevant to AD may help us develop effective therapeutic AD intervention, treatment, and prevention.
Collapse
Affiliation(s)
- Giasuddin Ahmed
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX 78041, USA;
| | - Md. Shiblur Rahaman
- Department of Public Health, College of Health Sciences, Sam Houston State University, Huntsville, TX 77341, USA;
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Enrique Perez
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX 78041, USA;
| | - Khalid M. Khan
- Department of Public Health, College of Health Sciences, Sam Houston State University, Huntsville, TX 77341, USA;
| |
Collapse
|
6
|
Amrutha S, Abhinand CS, Upadhyay SS, Parvaje R, Prasad TSK, Modi PK. Network pharmacology and metabolomics analysis of Tinospora cordifolia reveals BACE1 and MAOB as potential therapeutic targets for neuroprotection in Alzheimer's disease. Sci Rep 2025; 15:8103. [PMID: 40057579 PMCID: PMC11890609 DOI: 10.1038/s41598-025-92756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/03/2025] [Indexed: 05/13/2025] Open
Abstract
Tinospora cordifolia has been used for thousands of years to treat various health conditions, including neurodegenerative diseases. The study aimed to elucidate the mechanism of action and protein targets of T. cordifolia in the context of Alzheimer's disease through untargeted metabolomics and network pharmacology. LC-MS/MS analysis resulted in 1186 metabolites, including known bioactive compounds such as liquiritin, Plastoquinone 3, and Shoyuflavone A, to name a few. The network pharmacology analysis highlighted the metabolite-protein interaction with the enrichment of 591 human proteins, including neurotransmitter receptors and other regulatory proteins. Pathway analysis highlighted the enrichment of cAMP, mTOR, MAPK, and PI3K-Akt signaling pathways along with cholinergic, dopaminergic, serotonergic, glutamatergic synapse, and apoptosis. The docking results suggest that T. cordifolia metabolites could interact with key Alzheimer's disease targets BACE1 and MAO-B, suggesting its role in neuroprotection. These findings provide insights into the biochemical pathways underlying T. cordifolia's therapeutic effects and provides a foundation for future exploration of T. cordifolia in the context of translational research.
Collapse
Affiliation(s)
- S Amrutha
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Shubham Sukerndeo Upadhyay
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | | | | | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
7
|
Xie DF, Fang C, Crouzet C, Hung YH, Vallejo A, Lee D, Liu J, Liu H, Muvvala S, Paganini-Hill A, Lau WL, Cribbs DH, Choi B, Fisher M. Development of cerebral microhemorrhages in a mouse model of hypertension. J Neuroinflammation 2025; 22:67. [PMID: 40045320 PMCID: PMC11881401 DOI: 10.1186/s12974-025-03378-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/14/2025] [Indexed: 03/09/2025] Open
Abstract
Cerebral microhemorrhages (CMH) are the pathological substrate for MRI-demonstrable cerebral microbleeds, which are associated with cognitive impairment and stroke. Aging and hypertension are the main risk factors for CMH. In this study, we investigated the development of CMH in a mouse model of aging and hypertension. Hypertension was induced in aged (17-month-old) female and male C57BL/6J mice via angiotensin II (Ang II), a potent vasoconstrictor. We investigated the vascular origin of CMH using three-dimensional images of 1-mm thick brain sections. We examined Ang II-induced CMH formation with and without telmisartan, an Ang II type 1 receptor (AT1R) blocker. To evaluate the effect of microglia and perivascular macrophages on CMH formation, mice were treated with PLX3397, a selective colony-stimulating factor 1 receptor (CSF1R) inhibitor, to achieve microglial and macrophage depletion. Iba-1 and CD206 labeling were used to study the relative contributions of microglia and macrophages, respectively, on CMH formation. CMH quantification was performed with analysis of histological sections labeled with Prussian blue. Vessels surrounding CMH were primarily of capillary size range (< 10 μm in diameter). Ang II-infused mice exhibited elevated blood pressure (p < 0.0001) and CMH burden (p < 0.001). CMH burden was significantly correlated with mean arterial pressure in mice with and without Ang II (r = 0.52, p < 0.05). Ang II infusion significantly increased Iba-1 immunoreactivity (p < 0.0001), and CMH burden was significantly correlated with Iba-1 in mice with and without Ang II (r = 0.32, p < 0.05). Telmisartan prevented elevation of blood pressure due to Ang II infusion and blocked Ang II-induced CMH formation without affecting Iba-1 immunoreactivity. PLX3397 treatment reduced Iba-1 immunoreactivity in Ang II-infused mice (p < 0.001) and blocked Ang II-induced CMH (p < 0.0001). No significant association between CMH burden and CD206 reactivity was observed. Our findings demonstrate Ang II infusion increases CMH burden. CMH in this model appear to be capillary-derived and Ang II-induced CMH are largely mediated by blood pressure. In addition, microglial activation may represent an alternate pathway for CMH formation. These observations emphasize the continuing importance of blood pressure control and the role of microglia in hemorrhagic cerebral microvascular disease.
Collapse
Affiliation(s)
- Danny F Xie
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, USA
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Chuo Fang
- Department of Neurology, University of California, Irvine, CA, USA
| | - Christian Crouzet
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, USA
| | - Yu-Han Hung
- Department of Neurology, University of California, Irvine, CA, USA
| | - Adrian Vallejo
- Department of Neurology, University of California, Irvine, CA, USA
| | - Donghy Lee
- Department of Neurology, University of California, Irvine, CA, USA
| | - Jihua Liu
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Han Liu
- Department of Medicine, Division of Nephrology, University of California, Irvine, CA, USA
| | - Suhrith Muvvala
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, USA
| | - Annlia Paganini-Hill
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, USA
| | - Wei Ling Lau
- Department of Medicine, Division of Nephrology, University of California, Irvine, CA, USA
| | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Bernard Choi
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, CA, USA.
- Department of Surgery, University of California, Irvine, CA, USA.
- Edwards Lifesciences Foundation Cardiovascular Innovation Research Center, University of California, Irvine, CA, USA.
| | - Mark Fisher
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, USA.
- Department of Neurology, University of California, Irvine, CA, USA.
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
8
|
Bhattacharya RS, Singh R, Panghal A, Thakur A, Singh L, Verma RK, Singh C, Goyal M, Kumar J. Multi-Targeting Phytochemicals for Alzheimer's Disease. Phytother Res 2025; 39:1453-1483. [PMID: 39815655 DOI: 10.1002/ptr.8435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/23/2024] [Accepted: 12/28/2024] [Indexed: 01/18/2025]
Abstract
Alzheimer's disease (AD) is a type of neurodegenerative illness in which β-amyloid (Aβ) and tau protein accumulate in neurons in the form of tangles. The pathophysiological pathway of AD consists of Aβ-amyloid peptides, tau proteins, and oxidative stress in neurons and increased neuro-inflammatory response. Food and Drug Administration in the United States has authorized various drugs for the effective treatment of AD, which include galantamine, rivastigmine, donepezil, memantine, sodium oligomannate, lecanemab, and aducanumab. The major disadvantage of these drugs is that they only provide "symptomatic" relief. They are most effective in the early stages or for mild to moderate cases of the disease, but are not suitable for long-term use. Besides conventional therapies, phytochemicals have the potential to stop the progression of AD. According to research, the use of potential phytochemicals against AD has gained attention due to their potent anti-inflammatory, antioxidant, anti-hyperphosphorylation of the tau protein, metal chelation, and anti-amyloid properties. This study seeks to provide an up-to-date compilation of the most current and promising breakthroughs in AD therapy using phytochemicals. It could be concluded that phytochemicals light serve as an effective therapy for AD. However, more mechanistic investigations are needed to determine the clinical implications of phytochemicals in AD treatment.
Collapse
Affiliation(s)
- Radha Shree Bhattacharya
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand, India
| | - Raghuraj Singh
- Institute of Nano Science and Technology (INST), Mohali, Punjab, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Archna Panghal
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, Punjab, India
| | - Ashima Thakur
- Faculty of Pharmaceutical Sciences, Himachal Pradesh, India
| | - Lachhman Singh
- Faculty of Pharmacy, Government Pharmacy College, Seraj, V.P.O. Bagsaid, Mandi, Himachal Pradesh, India
| | - Rahul Kumar Verma
- Institute of Nano Science and Technology (INST), Mohali, Punjab, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand, India
| | - Manoj Goyal
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand, India
| | - Jayant Kumar
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand, India
| |
Collapse
|
9
|
Maji M, Khajanchi S. Mathematical models on Alzheimer's disease and its treatment: A review. Phys Life Rev 2025; 52:207-244. [PMID: 39813887 DOI: 10.1016/j.plrev.2025.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Alzheimer's disease is a gradually advancing neurodegenerative disease. According to the report by "World Health Organization (WHO)", there are over 55 million individuals currently living with Alzheimer's disease and other dementia globally, and the number of sufferers is increasing every day. In absence of effective cures and preventive measures, this number is predicted to triple by 2050. The disease's origin is still unclear, and also no such treatment is available for eradicating the disease. Based on the crucial factors that are connected to the disease's progression, the authors developed several types of mathematical models. We review such mathematical models that are utilized to better understand the pathophysiology of Alzheimer's disease. Section-wise, we categorize the mathematical models in terms of different components that might be responsible for Alzheimer's disease. We explain the mathematical models with their descriptions and respective conclusions. In addition to mathematical models, we concentrate on biological aspects of the disease and possible therapeutic targets. We explore the disease's biological basis primarily to understand how proteins, glial cells, cytokines, genes, calcium signaling and oxidative stress contribute to the disease. We go through several treatment targets that might stop the progression of the disease or at least slow it down. We present a table that summarizes the mathematical models in terms of their formalisms, highlighting key components and important remarks.
Collapse
Affiliation(s)
- Mitali Maji
- Department of Mathematics, Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Subhas Khajanchi
- Department of Mathematics, Presidency University, 86/1 College Street, Kolkata 700073, India.
| |
Collapse
|
10
|
Ebding J, Mazzone F, Kins S, Pielage J, Maritzen T. How neurons cope with oxidative stress. Biol Chem 2025:hsz-2024-0146. [PMID: 39988910 DOI: 10.1515/hsz-2024-0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/31/2025] [Indexed: 02/25/2025]
Abstract
Neurons are highly dependent on mitochondrial respiration for energy, rendering them vulnerable to oxidative stress. Reactive oxygen species (ROS), by-products of oxidative phosphorylation, can damage lipids, proteins, and DNA, potentially triggering cell death pathways. This review explores the neuronal vulnerability to ROS, highlighting metabolic adaptations and antioxidant systems that mitigate oxidative damage. Balancing metabolic needs and oxidative stress defenses is critical for neurons, as disruptions are implicated in neurodegenerative diseases. Neurons uniquely modulate metabolic pathways, favoring glycolysis over oxidative phosphorylation in cell bodies, to minimize harmful ROS production. Key antioxidants, including superoxide dismutases and glutathione peroxidases, play crucial roles in neuronal protection, as evident from genetic studies linking deficiencies to neurodegeneration. Notably, neurons have the ability to adapt to oxidative conditions in compartment-specific manners and also utilize ROS as a signaling molecule to promote adaptive synaptic plasticity. Future research should aim to elucidate differential ROS signaling and antioxidant responses across neuronal compartments for improved therapeutic strategies.
Collapse
Affiliation(s)
- Johannes Ebding
- Department for Neurobiology and Zoology, 2026562 RPTU University Kaiserslautern-Landau, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany
| | - Fiorella Mazzone
- Department for Nanophysiology, 2026562 RPTU University Kaiserslautern-Landau, Paul-Ehrlich-Straße 23, D-67663 Kaiserslautern, Germany
| | - Stefan Kins
- Department for Human Biology, 2026562 RPTU University Kaiserslautern-Landau, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany
| | - Jan Pielage
- Department for Neurobiology and Zoology, 2026562 RPTU University Kaiserslautern-Landau, Erwin-Schrödinger-Straße 13, D-67663 Kaiserslautern, Germany
| | - Tanja Maritzen
- Department for Nanophysiology, 2026562 RPTU University Kaiserslautern-Landau, Paul-Ehrlich-Straße 23, D-67663 Kaiserslautern, Germany
| |
Collapse
|
11
|
Jia C, Chai J, Zhang S, Sun Y, He L, Sang Z, Chen D, Zheng X. The Advancements of Marine Natural Products in the Treatment of Alzheimer's Disease: A Study Based on Cell and Animal Experiments. Mar Drugs 2025; 23:91. [PMID: 40137277 PMCID: PMC11943648 DOI: 10.3390/md23030091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
As life expectancy rises and the aging population grows, Alzheimer's disease (AD) has become a significant global health concern. AD is a complex neurodegenerative disorder with an unclear etiology. Current hypotheses primarily focus on β-amyloid (Aβ) aggregation, tau protein hyperphosphorylation, and neuroinflammation as key pathological processes. Given the limited efficacy of existing therapeutic strategies, there is an urgent need to explore novel treatment options. Marine natural products have garnered significant attention due to their unique chemical structures and diverse bioactivities, demonstrating potential for multi-target interventions in AD. This review systematically summarizes the roles of marine-derived compounds, including polysaccharides, carotenoids, and polyphenols, in modulating Aβ aggregation, mitigating tau protein pathology, and regulating gut-brain axis dysfunction. Furthermore, the challenges of current research are discussed, with an emphasis on improving blood-brain barrier permeability and optimizing drug delivery systems to facilitate clinical translation.
Collapse
Affiliation(s)
- Chunbo Jia
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Jiaxin Chai
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Shenyun Zhang
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Yining Sun
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Liheng He
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Zhipei Sang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Dapeng Chen
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xu Zheng
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
12
|
Fayed EA, El-Sebaey SA, Ebrahim MA, Abu-Elfotuh K, El-Sayed Mansour R, Mohamed EK, Hamdan AME, Al-Subaie FT, Albalawi GS, Albalawi TM, Hamdan AM, Mohammed AA, Ramsis TM. Discovery of novel bicyclic and tricyclic cyclohepta[b]thiophene derivatives as multipotent AChE and BChE inhibitors, in-Vivo and in-Vitro assays, ADMET and molecular docking simulation. Eur J Med Chem 2025; 284:117201. [PMID: 39731791 DOI: 10.1016/j.ejmech.2024.117201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/21/2024] [Accepted: 12/21/2024] [Indexed: 12/30/2024]
Abstract
Alzheimer's disease (AD) is primarily caused by oxidative stress, hyperphosphorylated τ-protein aggregation, and amyloid-β deposition. Changes in dopaminergic and serotoninergic neurotransmitter pathways are linked to certain symptoms of AD. Derivatives of bicyclic and tricyclic cyclohepta[b]thiophene were developed to identify new potential candidates as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors for the treatment of AD. All synthesized compounds exhibited AChE inhibition with IC50 values below 15 μM, while all compounds exhibited BChE inhibition with IC50 values below 25 μM. Compounds 9 and 12 exhibited AChE inhibitory activities with IC50 values of 0.51 μM and 0.55 μM, respectively. Compounds 5 and 9 demonstrated excellent inhibitory activity against BChE with IC50 values of 2.9 μM and 2.48 μM, respectively. Compounds 9, 13, and 14 were found to be the most active in terms of the decrease in the escape latency time, with values comparable to that of Donepezil. Compounds 10, 11, and 12 exhibited promising effects on learning and memory. Compounds 5, 10, 11, and 12 exhibited promising SAP values of 70.67 %, 71.5 %, 74.33 % and 73.83 %, respectively. Other biomarkers were evaluated in rat brains including TAC, MDA, SOD, BDNF, IL-β and TNF-α. Fundamental features of ADMET have been computed in-silico for synthesized compounds. Molecular docking was performed to confirm the binding of the novel compounds to the targets.
Collapse
Affiliation(s)
- Eman A Fayed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt.
| | - Samiha Ahmed El-Sebaey
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt
| | - Maha A Ebrahim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt
| | - Karema Abu-Elfotuh
- Department of Clinical Pharmacy, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt; College of Pharmacy, Al-Ayen Iraqi University, Thi-Qar, 64001, Iraq
| | - Reda El-Sayed Mansour
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt
| | - Ehsan Khedre Mohamed
- Department of Biochemistry, Egyptian DRUG AUTHORITY (EDA), Formerly National Organization of Drug Control and Research (NODCAR), Giza, Egypt
| | - Ahmed M E Hamdan
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia; Prince Fahad bin Sultan Chair for Biomedical Research, University of Tabuk, Saudi Arabia
| | | | | | | | - Amira M Hamdan
- Oceanography Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Asmaa A Mohammed
- Department Pharmacology and Toxicology, Faculty of Pharmacy Girls Al-Azhar University, Cairo, 11754, Egypt
| | - Triveena M Ramsis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University, Kantara Branch, Ismailia, 41636, Egypt
| |
Collapse
|
13
|
Akyuz E, Arulsamy A, Aslan FS, Sarisözen B, Guney B, Hekimoglu A, Yilmaz BN, Retinasamy T, Shaikh MF. An Expanded Narrative Review of Neurotransmitters on Alzheimer's Disease: The Role of Therapeutic Interventions on Neurotransmission. Mol Neurobiol 2025; 62:1631-1674. [PMID: 39012443 PMCID: PMC11772559 DOI: 10.1007/s12035-024-04333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease. The accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles are the key players responsible for the pathogenesis of the disease. The accumulation of Aβ plaques and tau affect the balance in chemical neurotransmitters in the brain. Thus, the current review examined the role of neurotransmitters in the pathogenesis of Alzheimer's disease and discusses the alterations in the neurochemical activity and cross talk with their receptors and transporters. In the presence of Aβ plaques and neurofibrillary tangles, changes may occur in the expression of neuronal receptors which in turn triggers excessive release of glutamate into the synaptic cleft contributing to cell death and neuronal damage. The GABAergic system may also be affected by AD pathology in a similar way. In addition, decreased receptors in the cholinergic system and dysfunction in the dopamine neurotransmission of AD pathology may also contribute to the damage to cognitive function. Moreover, the presence of deficiencies in noradrenergic neurons within the locus coeruleus in AD suggests that noradrenergic stimulation could be useful in addressing its pathophysiology. The regulation of melatonin, known for its effectiveness in enhancing cognitive function and preventing Aβ accumulation, along with the involvement of the serotonergic system and histaminergic system in cognition and memory, becomes remarkable for promoting neurotransmission in AD. Additionally, nitric oxide and adenosine-based therapeutic approaches play a protective role in AD by preventing neuroinflammation. Overall, neurotransmitter-based therapeutic strategies emerge as pivotal for addressing neurotransmitter homeostasis and neurotransmission in the context of AD. This review discussed the potential for neurotransmitter-based drugs to be effective in slowing and correcting the neurodegenerative processes in AD by targeting the neurochemical imbalance in the brain. Therefore, neurotransmitter-based drugs could serve as a future therapeutic strategy to tackle AD.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, International School of Medicine, University of Health Sciences, Istanbul, Turkey
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
| | | | - Bugra Sarisözen
- School of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Beyzanur Guney
- International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | | | - Beyza Nur Yilmaz
- International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Thaarvena Retinasamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, New South Wales, 2800, Australia.
| |
Collapse
|
14
|
Chunhui G, Yanqiu Y, Jibing C, Ning L, Fujun L. Exosomes and non-coding RNAs: bridging the gap in Alzheimer's pathogenesis and therapeutics. Metab Brain Dis 2025; 40:84. [PMID: 39754674 PMCID: PMC11700052 DOI: 10.1007/s11011-024-01520-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that primarily affects the elderly population and is the leading cause of dementia. Meanwhile, the vascular hypothesis suggests that vascular damage occurs in the early stages of the disease, leading to neurodegeneration and hindered waste clearance, which in turn triggers a series of events including the accumulation of amyloid plaques and Tau protein tangles. Non-coding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), have been found to be involved in the regulation of AD. Furthermore, lncRNAs and circRNAs can act as competitive endogenous RNAs to inhibit miRNAs, and their interactions can form a complex regulatory network. Exosomes, which are extracellular vesicles (EVs), are believed to be able to transfer ncRNAs between cells, thus playing a regulatory role in the brain by crossing the blood-brain barrier (BBB). Exosomes are part of the intercellular carrier system; therefore, utilizing exosomes to deliver drugs to recipient cells might not activate the immune system, making it a potential strategy to treat central nervous system diseases. In this review, we review that AD is a multifactorial neurological disease and that ncRNAs can regulate its multiple pathogenic mechanisms to improve our understanding of the etiology of AD and to simultaneously regulate multiple pathogenic mechanisms of AD through the binding of ncRNAs to exosomes to improve the treatment of AD.
Collapse
Affiliation(s)
- Guo Chunhui
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - You Yanqiu
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Chen Jibing
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China.
| | - Luo Ning
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China.
| | - Li Fujun
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China.
| |
Collapse
|
15
|
Afolabi F, Alabi BA, Badejo JA, Nsor OO, Lawal SK, Iwalewa EO. Scopolamine-induced memory impairment in mice: Soursop leaf extract and fractions protect the hippocampus and prefrontal cortex. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2025; 28:355-365. [PMID: 39906616 PMCID: PMC11790190 DOI: 10.22038/ijbms.2024.80289.17379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/30/2024] [Indexed: 02/06/2025]
Abstract
Objectives Annona muricata" (soursop) is a medicinal plant with diverse ornamental, consumptive, and pharmacological importance. This study was designed for its anti-amnesic potential in mice. Materials and Methods The crude extract was fractionated with n-hexane, ethyl acetate, and aqueous methanol. The crude and fractions were tested in vitro for the anti-oxidant radical scavenging activity (DPPH), total flavonoid and phenolic content, and their acetylcholinesterase inhibitory activity. Thin-layer chromatography was used to determine the phytochemicals contained in the fractions and their purity. Neurobehavioral models like the Open Field Test, Novel Object Recognition Test, Y-Maze, and Morris Water Maze were used to evaluate the action of AMME (Annona muricata methanol extract) and AMAMF (Annona muricata aqueous methanol fraction). Results The AMME and AMAMF significantly reduced the serum levels of myeloperoxidase and arginine (P<0.05). They also modulate the hippocampal and prefrontal acetylcholinesterase and glutamic acid decarboxylase activities (P<0.05). The 25 mg/kg AMAMF significantly affected short-term memory (P<0.05). The AMAMF and AMME significantly enhanced the prefrontal and hippocampal tissue levels of glutathione and superoxide dismutase. During the in vitro AchE assay on all fractions, the AMME and AMAMF consistently showed the greatest percentage of inhibitory activity. They inhibited 50% of the AchE enzymes with the lowest concentration. Conclusion The study showed the neuroprotective effects of AMME and AMAMF in memory impairment models. The extracts showed potent AChE inhibition and positive effects on memory and anti-oxidant enzyme levels.
Collapse
Affiliation(s)
- Faith Afolabi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University
| | - Babatunde Adebola Alabi
- of Ibadan, Ibadan, Oyo State, Nigeria
- Department of Pharmacology & Therapeutics, Faculty of Basic Clinical Sciences, Bowen University, Iwo, Nigeria
| | - Joseph Ayo Badejo
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University
| | - Okim Okim Nsor
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University
| | - Sodiq Kolawole Lawal
- Department of Pharmacology & Therapeutics, Faculty of Medicine and Pharmacy, Kampala International University in Tanzania, Dar Es Salaam
| | - Ezekiel Olugbenga Iwalewa
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University
| |
Collapse
|
16
|
Bandaru M, Sultana OF, Islam MA, Rainier A, Reddy PH. Rlip76 in ageing and Alzheimer's disease: Focus on oxidative stress and mitochondrial mechanisms. Ageing Res Rev 2025; 103:102600. [PMID: 39617058 DOI: 10.1016/j.arr.2024.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
RLIP76 (Rlip), a stress-responsive protein, plays a multifaceted role in cellular function. This protein acts primarily as a glutathione-electrophile conjugate (GS-E) transporter, crucial for detoxifying hazardous compounds and converting them into mercapturic acids. RLIP76 also modulates cytoskeletal motility and membrane plasticity through its role in the Ral-signaling pathway, interacting with RalA and RalB, key small GTPases involved in growth and metastasis. Beyond its ATP-dependent transport functions in various tissues, RLIP76 also demonstrates GTPase Activating Protein (GAP) activity towards Rac1 and Cdc42, with a preference for Ral-GTP over Ral-GDP. Its functions span critical physiological processes including membrane dynamics, oxidative stress response, and mitochondrial dynamics. The protein's widespread expression and evolutionary conservation underscore its significance. Our lab discovered that Rlip interacts with Alzheimer's disease (AD) proteins, amyloid beta and phosphorylated and induce oxidative stress, mitochondrial dysfnction and synaptic damage in AD. Our in vitro studies revealed that overexpression of Rlip reduces mitochondrial abnormalities. Further, our in vivo studies (Rlip+/- mice) revealed that a partial reduction of Rlip in mice (Rlip+/-), leads to mitochondrial abnormalities, elevated oxidative stress, and cognitive deficits resembling late-onset AD, emphasizing the protein's crucial role in neuronal health and disease. Finally, we discuss the experimental cross-breedings of overexpression of mice Rlip TG/TG or Rlip + /- mice with Alzheimer's disease models - earlyonset 5XFAD, late-onset APPKI and Tau transgenic mice, providing new insights into RLIP76's role in AD progression and development. This review summarizes RLIP76's structure, function, and cellular pathways, highlighting its implications in AD and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Madhuri Bandaru
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Alvir Rainier
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, United States; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA 5. Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
17
|
Anton PE, Maphis NM, Linsenbardt DN, Coleman LG. Excessive Alcohol Use as a Risk Factor for Alzheimer's Disease: Epidemiological and Preclinical Evidence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1473:211-242. [PMID: 40128481 DOI: 10.1007/978-3-031-81908-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Alcohol use has recently emerged as a modifiable risk factor for Alzheimer's disease (AD). However, the neurobiological mechanisms by which alcohol interacts with AD pathogenesis remain poorly understood. In this chapter, we review the epidemiological and preclinical support for the interaction between alcohol use and AD. We hypothesize that alcohol use increases the rate of accumulation of specific AD-relevant pathologies during the prodromal phase and exacerbates dementia onset and progression. We find that alcohol consumption rates are increasing in adolescence, middle age, and aging populations. In tandem, rates of AD are also on the rise, potentially as a result of this increased alcohol use throughout the lifespan. We then review the biological processes in common between alcohol use disorder and AD as a means to uncover potential mechanisms by which they interact; these include oxidative stress, neuroimmune function, metabolism, pathogenic tauopathy development and spread, and neuronal excitatory/inhibitory balance (EIB). Finally, we provide some forward-thinking suggestions we believe this field should consider. In particular, the inclusion of alcohol use assessments in longitudinal studies of AD and more preclinical studies on alcohol's impacts using better animal models of late-onset Alzheimer's disease (LOAD).
Collapse
Affiliation(s)
- Paige E Anton
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Nicole M Maphis
- Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - David N Linsenbardt
- Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Leon G Coleman
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
18
|
Dash UC, Bhol NK, Swain SK, Samal RR, Nayak PK, Raina V, Panda SK, Kerry RG, Duttaroy AK, Jena AB. Oxidative stress and inflammation in the pathogenesis of neurological disorders: Mechanisms and implications. Acta Pharm Sin B 2025; 15:15-34. [PMID: 40041912 PMCID: PMC11873663 DOI: 10.1016/j.apsb.2024.10.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 05/17/2025] Open
Abstract
Neuroprotection is a proactive approach to safeguarding the nervous system, including the brain, spinal cord, and peripheral nerves, by preventing or limiting damage to nerve cells and other components. It primarily defends the central nervous system against injury from acute and progressive neurodegenerative disorders. Oxidative stress, an imbalance between the body's natural defense mechanisms and the generation of reactive oxygen species, is crucial in developing neurological disorders. Due to its high metabolic rate and oxygen consumption, the brain is particularly vulnerable to oxidative stress. Excessive ROS damages the essential biomolecules, leading to cellular malfunction and neurodegeneration. Several neurological disorders, including Alzheimer's, Parkinson's, Amyotrophic lateral sclerosis, multiple sclerosis, and ischemic stroke, are associated with oxidative stress. Understanding the impact of oxidative stress in these conditions is crucial for developing new treatment methods. Researchers are exploring using antioxidants and other molecules to mitigate oxidative stress, aiming to prevent or slow down the progression of brain diseases. By understanding the intricate interplay between oxidative stress and neurological disorders, scientists hope to pave the way for innovative therapeutic and preventive approaches, ultimately improving individuals' living standards.
Collapse
Affiliation(s)
- Umesh Chandra Dash
- School of Biotechnology, Campus 11, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar 751024, Odisha, India
| | - Nitish Kumar Bhol
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Sandeep Kumar Swain
- ICMR-National Institute of Pathology, Sadarjang Hospital Campus, New Delhi 110029, Delhi, India
| | - Rashmi Rekha Samal
- CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Prabhat Kumar Nayak
- Bioanalytical Sciences, Research and Development, Enzene Biosciences Limited, Pune 410501, Maharashtra, India
| | - Vishakha Raina
- School of Biotechnology, Campus 11, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar 751024, Odisha, India
| | - Sandeep Kumar Panda
- School of Biotechnology, Campus 11, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar 751024, Odisha, India
| | - Rout George Kerry
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Oslo 0317, Norway
| | - Atala Bihari Jena
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune 411007, India
| |
Collapse
|
19
|
Trinh DQ, Mai NH, Pham TD. Insufficient Sleep and Alzheimer's Disease: Potential Approach for Therapeutic Treatment Methods. Brain Sci 2024; 15:21. [PMID: 39851389 PMCID: PMC11763454 DOI: 10.3390/brainsci15010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
The interaction between Alzheimer's disease (AD) and sleep deprivation has recently gained attention in the scientific literature, and recent advances suggest that AD epidemiology management should coincide with the management of sleeping disorders. This review focuses on the aspects of the mechanisms underlying the link between AD and insufficient sleep with progressing age. We also provide information which could serve as evidence for future treatments of AD from the early stages in connection with sleep disorder medication.
Collapse
Affiliation(s)
- Dieu Quynh Trinh
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| | - Nhu Huynh Mai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam;
| | - Toan Duc Pham
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
20
|
Yang CH, Li CW, Sie YY, Chen LC, Yuan YH, Hou WC. Antioxidant, anti-acetylcholinesterase, and anti-amyloid-β peptide aggregations of hispolon and its analogs in vitro and improved learning and memory functions in scopolamine-induced ICR mice. BOTANICAL STUDIES 2024; 65:38. [PMID: 39692936 DOI: 10.1186/s40529-024-00443-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/28/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Hispolon, one of bioactive phenolic compounds from a medicinal mushroom of sang-huang (Phellinus linteus) has been reported to exhibit anticancer and anti-inflammatory activities. The Alzheimer's disease (AD) is ranked one of the top ten leading causes of death worldwide. Little is known about the effects of hispolon on delaying AD progression. RESULTS The hispolon (No.1) and its six structural analogs (No.2 to No.7) were assayed by antioxidant, anti-acetylcholinesterase activities and anti-amyloid-β1-42-peptide aggregations. The No.1, No.6, and No.7 were selected for further molecular docking with acetylcholinesterase and core fragments of amyloid-β-peptide, and also showed capacities to recover cell viabilities in methylglyoxal-treated SH-SY5Y cells and also to enhance neurite outgrowths in PC12 cells. The daily pre-treatments of No.1, No.6, and No.7 for 10-days (40 mg/kg/day) showed to improve learning dysfunctions in scopolamine-induced ICR mice by passive avoidance tests. CONCLUSION The hispolon in the fungus sang-huang might be beneficial to develop functional foods or as lead compounds for treating degenerative disorders.
Collapse
Affiliation(s)
- Chang-Hang Yang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, 110, Taiwan
| | - Cai-Wei Li
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, 110, Taiwan
| | - Yi-Yan Sie
- Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Liang-Chieh Chen
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan
| | - Yu-Hsiang Yuan
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, 110, Taiwan
| | - Wen-Chi Hou
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, 110, Taiwan.
- Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
21
|
Shankar G, Praveen Kumar C, Yadav M, Ghosh A, Panda SR, Banerjee A, Tiwari A, Rai S, Kumar S, Garg P, Naidu VGM, Kulkarni O, Modi G. Discovery of novel substituted (Z)-N'-hydroxy-3-(3-phenylureido)benzimidamide derivatives as multifunctional molecules targeting pathological hallmarks of Alzheimer's disease. Eur J Med Chem 2024; 280:116959. [PMID: 39461036 DOI: 10.1016/j.ejmech.2024.116959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/30/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder marked by significant loss of central cholinergic neurons. This progressive deterioration leads to cognitive dysfunction and impaired motor activity, culminating in the brain cell's death at the later stages of the disease. The approved drugs for AD are limited to providing symptomatic relief for an initial period due to the multifaceted etiology of the disease. Several studies have demonstrated that rivastigmine (RIV) is a selectively potent inhibitor of butyrylcholinesterase and devoid of antioxidant, Aβ, and tau protein aggregation inhibition and anti-inflammatory properties. Therefore, to address these issues associated with RIV, novel rivastigmine-based molecules were rationally designed, synthesized, and evaluated in various in-vitro and in-vivo AD models. In in-vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition studies revealed that 3q & 6e as promising leads (AChE, IC50 1.72 ± 0.15, 0.91 ± 0.016 μM, BChE, IC50 6.69 ± 0.28 μM, 1.19 ± 0.026 μM, for 3q & 6e, respectively). The computational studies (molecular docking and dynamics) further corroborated the in-vitro studies. Further, 3q and 6e were found to be potent antioxidants in the DPPH assay (IC50 16.15 ± 1.05 & 15.17 ± 0.07 μM, for 3q & 6e, respectively). Interestingly, 3q, and 6e could effectively inhibit self-induced full-length tau and Aβ1-42 aggregation. Treatment with 3q & 6e inhibited microglial activation by attenuating ROS release and mitochondrial damage. Further, 3q & 6e also suppressed NLRP3 inflammasome and NF-κB expression levels in microglial cells and halted the release of pro-inflammatory cytokines in human microglial cells. Finally, 3q & 6e were found to be efficacious in reversing the scopolamine-induced memory impairment in the Morris water maze test. The expression of various neuroprotection markers, such as BDNF and TRKB, was significantly overexpressed compared to the disease control group.
Collapse
Affiliation(s)
- Gauri Shankar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, U.P., 221005, India
| | - C Praveen Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, U.P., 221005, India
| | - Meenu Yadav
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, U.P., 221005, India
| | - Aparajita Ghosh
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawaharnagar Shamirpet Mandal, 500078, Hyderabad, India
| | - Samir Ranjan Panda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, 781101, India
| | - Aritra Banerjee
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Ankit Tiwari
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, U.P., 221005, India
| | - Sanskriti Rai
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India; Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, 781101, India
| | - Onkar Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawaharnagar Shamirpet Mandal, 500078, Hyderabad, India
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, U.P., 221005, India.
| |
Collapse
|
22
|
Cheng R, Bai N, Liu S, Zhao X, Jiang B, Guo W, Cao S, Liu J, Li N, Li X, Wu X, Yi F, Wang Z, Guo Q, Wei J, Bai M, Jiang X, Song X, Wang Z, Miao Q, Wang D, Di Y, Liu H, Cao L. The deacetylase SIRT6 reduces amyloid pathology and supports cognition in mice by reducing the stability of APP in neurons. Sci Signal 2024; 17:eado1035. [PMID: 39656860 DOI: 10.1126/scisignal.ado1035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/10/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
Alzheimer's disease (AD) is an aging-related neurodegenerative disorder that results in progressively impaired memory and is often associated with amyloid plaques. Previous studies implicate the deacetylases SIRT1 and SIRT2 in regulating the processing of amyloid precursor protein (APP). Here, we investigated whether APP is regulated by the related deacetylase SIRT6, which shows aging-associated decreases in activity. We found that the abundance of SIRT6 was reduced in the cortex and hippocampus of aged and AD model mice and negatively correlated with that of APP. In mouse hippocampal neurons and transfected human cells, SIRT6 interacted with and deacetylated APP at three consecutive Lys residues (Lys649, Lys650, and Lys651). This deacetylation, in turn, increased the ubiquitylation of APP, leading to its proteasomal degradation. SIRT6 abundance in neurons was reduced by oxidative stress and DNA damage, both of which are implicated in neurodegenerative pathology. Systemic pharmacological activation of SIRT6 ameliorated both amyloid pathology and cognitive deficits in APP/PS1 mice, a mouse model of AD. The findings demonstrate that the activity of SIRT6 destabilizes APP and suggest that activating SIRT6 has therapeutic potential to reduce amyloid-associated pathology in patients with AD.
Collapse
Affiliation(s)
- Rong Cheng
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Ning Bai
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Shuhui Liu
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiong Zhao
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Bo Jiang
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Wendong Guo
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Sunrun Cao
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Jingwei Liu
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Na Li
- Department of Gerontology and Geriatrics, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, China
| | - Xiaoman Li
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Xuan Wu
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Fei Yi
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Zhuo Wang
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Qiqiang Guo
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Jiayi Wei
- Department of Developmental Cell Biology, School of Life Sciences; Key Laboratory of Cell Biology, Ministry of Public Health; Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Ming Bai
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiaoyou Jiang
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiaoyu Song
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Zhuo Wang
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
| | - Qi Miao
- Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Difei Wang
- Department of Gerontology and Geriatrics, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, China
| | - Yu Di
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Hua Liu
- Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Liu Cao
- College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning 110122, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning 110122, China
- Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| |
Collapse
|
23
|
Parate SS, Upadhyay SS, S A, Karthikkeyan G, Pervaje R, Abhinand CS, Modi PK, Prasad TSK. Comparative Metabolomics and Network Pharmacology Analysis Reveal Shared Neuroprotective Mechanisms of Bacopa monnieri (L.) Wettst and Centella asiatica (L.) Urb. Mol Neurobiol 2024; 61:10956-10978. [PMID: 38814535 DOI: 10.1007/s12035-024-04223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/03/2024] [Indexed: 05/31/2024]
Abstract
Bacopa monnieri (L.) Wettst and Centella asiatica (L.) Urb., two nootropics, are recognized in Indian Ayurvedic texts. Studies have attempted to understand their action as memory enhancers and neuroprotectants, but many molecular aspects remain unknown. We propose that Bacopa monnieri (L.) Wettst and Centella asiatica (L.) Urb. share common neuroprotective mechanisms. Mass spectrometry-based untargeted metabolomics and network pharmacology approach were used to identify potential protein targets for the metabolites from each extract. Phytochemical analyses and cell culture validation studies were also used to assess apoptosis and ROS activity using aqueous extracts prepared from both herbal powders. Further, docking studies were also performed using the LibDock protocol. Untargeted metabolomics and network pharmacology approach unveiled 2751 shared metabolites and 3439 and 2928 non-redundant metabolites from Bacopa monnieri and Centella asiatica extracts, respectively, suggesting a potential common neuroprotective mechanism among these extracts. Protein-target prediction highlighted 92.4% similarity among the proteins interacting with metabolites for these extracts. Among them, kinases mapped to MAPK, mTOR, and PI3K-AKT signaling pathways represented a predominant population. Our results highlight a significant similarity in the metabolome of Bacopa monnieri (L.) Wettst and Centella asiatica (L.) Urb., and their potential protein targets may be attributed to their common neuroprotective functions.
Collapse
Affiliation(s)
- Sakshi Sanjay Parate
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Shubham Sukerndeo Upadhyay
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Amrutha S
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Gayathree Karthikkeyan
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | | | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| | | |
Collapse
|
24
|
Singh R, Panghal A, Jadhav K, Thakur A, Verma RK, Singh C, Goyal M, Kumar J, Namdeo AG. Recent Advances in Targeting Transition Metals (Copper, Iron, and Zinc) in Alzheimer's Disease. Mol Neurobiol 2024; 61:10916-10940. [PMID: 38809370 DOI: 10.1007/s12035-024-04256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Changes in the transition metal homeostasis in the brain are closely linked with Alzheimer's disease (AD), including intraneuronal iron accumulation and extracellular copper and zinc pooling in the amyloid plague. The brain copper, zinc, and iron surplus are commonly acknowledged characteristics of AD, despite disagreements among some. This has led to the theory that oxidative stress resulting from abnormal homeostasis of these transition metals may be a causative explanation behind AD. In the nervous system, the interaction of metals with proteins appears to be an essential variable in the development or suppression of neurodegeneration. Chelation treatment may be an option for treating neurodegeneration induced by transition metal ion dyshomeostasis. Some clinicians even recommend using chelating agents as an adjunct therapy for AD. The current review also looks at the therapeutic strategies that have been attempted, primarily with metal-chelating drugs. Metal buildup in the nervous system, as reported in the AD, could be the result of compensatory mechanisms designed to improve metal availability for physiological functions.
Collapse
Affiliation(s)
- Raghuraj Singh
- Pharmaceutical Nanotechnology Lab, Institutes of Nano Science and Technology (INST), Sector 81. Mohali, Punjab, 140306, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Archna Panghal
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| | - Krishna Jadhav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Ashima Thakur
- Faculty of Pharmaceutical Sciences, ICFAI University, Baddi, Distt. Solan, Himachal Pradesh, 174103, India
| | - Rahul Kumar Verma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Charan Singh
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India
| | - Manoj Goyal
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India
| | - Jayant Kumar
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India.
| | - Ajay G Namdeo
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India
| |
Collapse
|
25
|
Dustin CM, Shiva SS, Vazquez A, Saeed A, Pascoal T, Cifuentes-Pagano E, Pagano PJ. NOX2 in Alzheimer's and Parkinson's disease. Redox Biol 2024; 78:103433. [PMID: 39616884 PMCID: PMC11647642 DOI: 10.1016/j.redox.2024.103433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024] Open
Abstract
Alzheimer's Disease (AD), and related dementias, represent a growing concern for the worldwide population given the increased numbers of people of advanced age. Marked by significant degradation of neurological tissues and critical processes, in addition to more specific factors such as the presence of amyloid plaques and neurofibrillary tangles in AD, robust discussion is ongoing regarding the precise mechanisms by which these diseases arise. One of the major interests in recent years has been the contribution of reactive oxygen species (ROS) and, particularly, the contribution of the ROS-generating NADPH Oxidase proteins. NADPH Oxidase 2 (NOX2), the prototypical member of the family, represents a particularly interesting target for study given its close association with vascular and inflammatory processes in all tissues, including the brain, and the association of these processes with AD development and progression. In this review, we discuss the most relevant and recent work regarding the contribution of NOX2 to AD progression in neuronal, microglial, and cerebrovascular signaling. Furthermore, we will discuss the most promising NOX2-targeted therapeutics for potential AD management and treatment.
Collapse
Affiliation(s)
- Christopher M Dustin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Sruti S Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Alberto Vazquez
- Department of Radiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 1526, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 1526, USA
| | - Anum Saeed
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Tharick Pascoal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Eugenia Cifuentes-Pagano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Patrick J Pagano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
26
|
Park HJ, Nam MH, Park JH, Lee JM, Hong HS, Kim TW, Lee IH, Shin CH, Lee SH, Seo YK. Comparison of Malondialdehyde, Acetylcholinesterase, and Apoptosis-Related Markers in the Cortex and Hippocampus of Cognitively Dysfunctional Mice Induced by Scopolamine. Biomedicines 2024; 12:2475. [PMID: 39595042 PMCID: PMC11592181 DOI: 10.3390/biomedicines12112475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Objectives: Until now, many researchers have conducted evaluations on hippocampi for analyses of cognitive dysfunction models using scopolamine. However, depending on the purposes of these analyses, there are differences in the experimental results for the hippocampi and cortexes. Therefore, this study intends to compare various analyses of cognitive dysfunction after scopolamine administration with each other in hippocampi and cortexes. Methods: Scopolamine was administered at three dosages in mice: 0.5, 1, and 3 mg/kg. And this study evaluates the differences in cognitive function and the expression of malondialdehyde (MDA), acetylcholinesterase (AChE), and brain-derived neurotrophic factor (BDNF) in mice's hippocampi and cortexes based on scopolamine dosages. Results: The Morris water maze test was conducted between 1 and 3 h after scopolamine injection to assess its duration. A significant decrease in behavioral ability was evaluated at 1 h, and we observed a similar recovery to the normal group at 3 h. And the Morris water maze escape latency showed differences depending on scopolamine concentration. While the escape waiting time in the control group and scop 0.5 administration group remained similar to that seen before administration, the administration of scop 1 and 3 increased it. In the experimental group administered scop 1 and 3, cerebral MDA levels in the cerebral cortex significantly increased. In the hippocampus, the MDA level in the scopolamine-administered groups slightly increased compared to the cortex. A Western blotting assay shows that Bax and Bcl-xl showed a tendency to increase or decrease depending on the concentration, but BDNF increased in scop 0.5, and scop 1 and 3 did not show a significant decrease compared to the control at the cerebral cortex. In the hippocampus, BDNF showed a concentration-dependent decrease in expression. Conclusions: This study's findings indicate that chemical analyses for MDA and AChE can be performed in the cerebral cortex, while the hippocampus is better suited for protein analysis of apoptosis and BDNF.
Collapse
Affiliation(s)
- Hee-Jung Park
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Myeong-Hyun Nam
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Ji-Hoon Park
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Ji-Min Lee
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Hye-Sun Hong
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Tae-Woo Kim
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - In-Ho Lee
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Chang-Ho Shin
- Department of AI Convergence Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
- AriBio Co., Ltd., Seongnam-si 13535, Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Young-Kwon Seo
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
- Department of AI Convergence Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| |
Collapse
|
27
|
Sadia H, Sumalatha G. Evaluation of <i>Saussurea lappa</i> on Oxidative Stress and Cognition in Aluminium-induced Alzheimer’s Disease Rats. JOURNAL OF NATURAL REMEDIES 2024:2015-2025. [DOI: 10.18311/jnr/2024/43482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/01/2024] [Indexed: 01/05/2025]
Abstract
Background: Oxidative stress and neurodegenerative illnesses, such as Alzheimer's disease (AD), are closely associated. There has been a lot of thought put into finding medicinal plants with nootropic properties to slow the onset and course of AD. Objective: The study aimed to evaluate the methanolic extract of Saussurea lappa clarke (MESC) on oxidative stress and cognitive ability induced by aluminium exposure. Methods: Wistar albino rats were chosen for the study. About 30 animals were selected and grouped into 5 with 6 animals in each group. Group I served as control, group II served as disease induced (Aluminium-induced), group III, IV and V were administered with standard drug – Donepezil Hcl, and MESC at two doses – 200 and 400 mg/kg. The behavioural studies were examined by using certain apparatus like Passive Avoidance (PA) test, Elevated Plus Maze, Y- Maze and Actophotometer. Determination of anti-oxidant enzymes – Catalase (CAT) and thiobarbituric acid reactive substances (TBARS) along with acetylcholinesterase (AChE) levels which was done in rat’s brain homogenate. Results: In the PA test, administration of MESC at doses of 200 and 400 mg/kg significantly (**p< 0.01) lengthened step-through latency (STL) in rats on day 30 compared to the positive control group. Animals at MESC (200 & 400 mg/kg) showed noticeably higher memory retention (MR) rates as compared to the disease-control group. Additionally, administration of MESC (200 and 400 mg/kg) significantly (**p< 0.01) raised CAT and declined the concentration of TBARS. AChE concentration was significantly (**p< 0.01) reduced at the dose of MESC at 200 and 400 mg/kg as compared to the positive control group. Conclusion: The present study showed that MESC had a strong nootropic effect on brain antioxidant indicators and cognitive function in rats exposed to aluminium-induced oxidative stress and cognitive impairment. These findings may be investigated in the treatment of neurodegenerative diseases, including AD.
Collapse
|
28
|
Wang HS, Karnik SJ, Margetts TJ, Plotkin LI, Movila A, Fehrenbacher JC, Kacena MA, Oblak AL. Mind Gaps and Bone Snaps: Exploring the Connection Between Alzheimer's Disease and Osteoporosis. Curr Osteoporos Rep 2024; 22:483-494. [PMID: 38236512 PMCID: PMC11420299 DOI: 10.1007/s11914-023-00851-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 01/19/2024]
Abstract
PURPOSE OF REVIEW This comprehensive review discusses the complex relationship between Alzheimer's disease (AD) and osteoporosis, two conditions that are prevalent in the aging population and result in adverse complications on quality of life. The purpose of this review is to succinctly elucidate the many commonalities between the two conditions, including shared pathways, inflammatory and oxidative mechanisms, and hormonal deficiencies. RECENT FINDINGS AD and osteoporosis share many aspects of their respective disease-defining pathophysiology. These commonalities include amyloid beta deposition, the Wnt/β-catenin signaling pathway, and estrogen deficiency. The shared mechanisms and risk factors associated with AD and osteoporosis result in a large percentage of patients that develop both diseases. Previous literature has established that the progression of AD increases the risk of sustaining a fracture. Recent findings demonstrate that the reverse may also be true, suggesting that a fracture early in the life course can predispose one to developing AD due to the activation of these shared mechanisms. The discovery of these commonalities further guides the development of novel therapeutics in which both conditions are targeted. This detailed review delves into the commonalities between AD and osteoporosis to uncover the shared players that bring these two seemingly unrelated conditions together. The discussion throughout this review ultimately posits that the occurrence of fractures and the mechanism behind fracture healing can predispose one to developing AD later on in life, similar to how AD patients are at an increased risk of developing fractures. By focusing on the shared mechanisms between AD and osteoporosis, one can better understand the conditions individually and as a unit, thus informing therapeutic approaches and further research. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.
Collapse
Affiliation(s)
- Hannah S Wang
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sonali J Karnik
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Tyler J Margetts
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Lilian I Plotkin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA
| | - Alexandru Movila
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA
| | - Jill C Fehrenbacher
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA.
| | - Adrian L Oblak
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Radiology & Imaging Sciences, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
29
|
Mineiro R, Rodrigues Cardoso M, Catarina Duarte A, Santos C, Cipolla-Neto J, Gaspar do Amaral F, Costa D, Quintela T. Melatonin and brain barriers: The protection conferred by melatonin to the blood-brain barrier and blood-cerebrospinal fluid barrier. Front Neuroendocrinol 2024; 75:101158. [PMID: 39395545 DOI: 10.1016/j.yfrne.2024.101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/29/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
The blood-brain barrier and the blood-cerebrospinal fluid barrier separate the blood from brain tissue and cerebrospinal fluid. These brain barriers are important to maintain homeostasis and complex functions by protecting the brain from xenobiotics and harmful endogenous compounds. The disruption of brain barriers is a characteristic of neurologic diseases. Melatonin is a lipophilic hormone that is mainly produced by the pineal gland. The blood-brain barrier and the blood-cerebrospinal fluid barriers are melatonin-binding sites. Among the several melatonin actions, the most characteristic one is the regulation of sleep-wake cycles, melatonin has anti-inflammatory and antioxidant properties. Since brain barriers disruption can arise from inflammation and oxidative stress, knowing the influence of melatonin on the integrity of brain barriers is extremely important. Therefore, the objective of this review is to gather and discuss the available literature about the regulation of brain barriers by melatonin.
Collapse
Affiliation(s)
- Rafael Mineiro
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Maria Rodrigues Cardoso
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana Catarina Duarte
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Cecília Santos
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Jose Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Diana Costa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal.
| |
Collapse
|
30
|
Gogna T, Housden BE, Houldsworth A. Exploring the Role of Reactive Oxygen Species in the Pathogenesis and Pathophysiology of Alzheimer's and Parkinson's Disease and the Efficacy of Antioxidant Treatment. Antioxidants (Basel) 2024; 13:1138. [PMID: 39334797 PMCID: PMC11429442 DOI: 10.3390/antiox13091138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Alzheimer's (AD) and Parkinson's Disease (PD) are life-altering diseases that are characterised by progressive memory loss and motor dysfunction. The prevalence of AD and PD is predicted to continuously increase. Symptoms of AD and PD are primarily mediated by progressive neuron death and dysfunction in the hippocampus and substantia nigra. Central features that drive neurodegeneration are caspase activation, DNA fragmentation, lipid peroxidation, protein carbonylation, amyloid-β, and/or α-synuclein formation. Reactive oxygen species (ROS) increase these central features. Currently, there are limited therapeutic options targeting these mechanisms. Antioxidants reduce ROS levels by the induction of antioxidant proteins and direct neutralisation of ROS. This review aims to assess the effectiveness of antioxidants in reducing ROS and neurodegeneration. Antioxidants enhance major endogenous defences against ROS including superoxide dismutase, catalase, and glutathione. Direct neutralisation of ROS by antioxidants protects against ROS-induced cytotoxicity. The combination of Indirect and direct protective mechanisms prevents ROS-induced α-synuclein and/or amyloid-β formation. Antioxidants ameliorate ROS-mediated oxidative stress and subsequent deleterious downstream effects that promote apoptosis. As a result, downstream harmful events including neuron death, dysfunction, and protein aggregation are decreased. The protective effects of antioxidants in human models have yet to directly replicate the success seen in cell and animal models. However, the lack of diversity in antioxidants for clinical trials prevents a definitive answer if antioxidants are protective. Taken together, antioxidant treatment is a promising avenue in neurodegenerative disease therapy and subsequent clinical trials are needed to provide a definitive answer on the protective effects of antioxidants. No current treatment strategies have significant impact in treating advanced AD and PD, but new mimetics of endogenous mitochondrial antioxidant enzymes (Avasopasem Manganese, GC4419 AVA) may be a promising innovative option for decelerating neurodegenerative progress in the future at the mitochondrial level of OS.
Collapse
Affiliation(s)
- Talin Gogna
- Neuroscience, Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter EX2 4TH, UK
| | - Benjamin E Housden
- Living Systems Institute, Clinical and Biomedical Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Annwyne Houldsworth
- Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter EX2 4TH, UK
| |
Collapse
|
31
|
Chen CH, Liang HH, Wang CC, Yang YT, Lin YH, Chen YL. Unlocking early detection of Alzheimer's disease: The emerging role of nanomaterial-based optical sensors. J Food Drug Anal 2024; 32:296-324. [PMID: 39636776 PMCID: PMC11464041 DOI: 10.38212/2224-6614.3520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/24/2024] [Indexed: 12/07/2024] Open
Abstract
Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disorder that affects millions of individuals worldwide. Researchers have conducted numerous studies to find accurate biomarkers for early AD diagnosis and develop more effective treatments. The main pathological hallmarks of AD are amyloid beta and Tau proteins. Other biomarkers, such as DNA, RNA, and proteins, can also be helpful in early AD diagnosis. To diagnose and treat AD promptly, it is essential to accurately measure the concentration of biomarkers in the cerebrospinal fluid or blood. However, due to the low concentrations of these biomarkers in the body, highly sensitive analytical techniques are required. To date, sensors have become increasingly important due to their high sensitivity, swift detection, and adaptable manipulation features. These qualities make them an excellent substitute for conventional instruments. Nanomaterials are commonly employed in sensors to amplify signals and improve sensitivity. This review paper summarized the integration of nanomaterials in optical sensor systems, including colorimetric, fluorescent, and surface-enhanced Raman scattering sensors for AD biomarkers detection.
Collapse
Affiliation(s)
- Chun-Hsien Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378,
Taiwan
| | - Hsin-Hua Liang
- School of Pharmacy, China Medical University, Taichung 406040,
Taiwan
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621301,
Taiwan
- Center for Nano Bio-Detection, National Chung Cheng University, Chiayi 621301,
Taiwan
| | - Chun-Chi Wang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378,
Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378,
Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807378,
Taiwan
| | - Yi-Ting Yang
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621301,
Taiwan
| | - Yi-Hui Lin
- School of Pharmacy, China Medical University, Taichung 406040,
Taiwan
| | - Yen-Ling Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378,
Taiwan
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621301,
Taiwan
- Center for Nano Bio-Detection, National Chung Cheng University, Chiayi 621301,
Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378,
Taiwan
| |
Collapse
|
32
|
Maqbool M, Solangi M, Khan KM, Özil M, Baltaş N, Salar U, Tariq SS, Haq ZU, Taha M. Imidazole-thiadiazole hybrids: A multitarget de novo drug design approach, in vitro evaluation, ADME/T, and in silico studies. Arch Pharm (Weinheim) 2024; 357:e2400325. [PMID: 38885529 DOI: 10.1002/ardp.202400325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024]
Abstract
A library of imidazole-thiadiazole compounds (1-24) was synthesized to explore their therapeutic applications. The compounds were subjected to meticulous in vitro evaluation against α-glucosidase, α-amylase, acetylcholinesterase (AChE), and butylcholinesterase (BChE) enzymes. Compounds were also investigated for antioxidant activities using cupric reducing antioxidant capacity (CUPRAC), ferric reducing antioxidant power (FRAP), and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays. Derivatives 5-7, 9-11, 18, and 19 displayed potent inhibitory activities with IC50 values of 1.4 ± 0.01 to 13.6 ± 0.01 and 0.9 ± 0.01 to 12.8 ± 0.02 µM against α-glucosidase, and α-amylase enzymes, respectively, compared to the standard acarbose (IC50 = 14.8 ± 0.01 µM). Compounds 11-13, 16, 20, and 21 exhibited potent activity IC50 = 8.6 ± 0.02 to 34.7 ± 0.03 µM against AChE enzyme, compared to donepezil chloride (IC50 = 39.2 ± 0.05 µM). Compound 21 demonstrated comparable inhibition IC50 = 45.1 ± 0.09 µM against BChE, compared to donepezil chloride (IC50 = 44.2 ± 0.05 µM). All compounds also demonstrated excellent antioxidant activities via CUPRAC, FRAP, and DPPH methods. Complementing the experimental studies, extensive kinetics, ADME/T, and molecular docking analysis were also conducted to unravel the pharmacokinetics and safety profiles of the designed compounds. These studies supported the experimental findings and facilitated the prioritization of hit candidates for subsequent stages of drug development.
Collapse
Affiliation(s)
- Maryam Maqbool
- H. E. J. Research, Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Mehwish Solangi
- H. E. J. Research, Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Khalid M Khan
- H. E. J. Research, Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Musa Özil
- Department of Chemistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Nimet Baltaş
- Department of Chemistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Uzma Salar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Syeda S Tariq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Zaheer Ul Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
33
|
Talebi S, Khodagholi F, Bahaeddin Z, Ansari Dezfouli M, Zeinaddini-Meymand A, Berchi Kankam S, Foolad F, Alijaniha F, Fayazi Piranghar F. Does hazelnut consumption affect brain health and function against neurodegenerative diseases? Nutr Neurosci 2024; 27:1008-1024. [PMID: 38151890 DOI: 10.1080/1028415x.2023.2296164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
INTRODUCTION A healthy daily diet and consuming certain nutrients, such as polyphenols, vitamins, and unsaturated fatty acids, may help neuronal health maintenance. Polyphenolic chemicals, which have antioxidant and anti-inflammatory properties, are involved in the neuroprotective pathway. Because of their nutritional value, nuts have been shown in recent research to be helpful in neuroprotection. OBJECTIVE Hazelnut is often consumed worldwide in various items, including processed foods, particularly in bakery, chocolate, and confectionery products. This nut is an excellent source of vitamins, amino acids, tocopherols, phytosterols, polyphenols, minerals, and unsaturated fatty acids. Consuming hazelnut may attenuate the risk of neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, and Huntington's disease due to its anti-inflammatory and anti-oxidant qualities. RESULTS Many documents introduce hazelnut as an excellent choice to provide neuroprotection against neurodegenerative disorders and there is some direct proof of its neuroprotective effects. DISCUSSION So hazelnut consumption in daily diet may reduce neurodegenerative disease risk and be advantageous in reducing the imposed costs of dealing with neurodegenerative diseases.
Collapse
Affiliation(s)
- Shadi Talebi
- Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Bahaeddin
- Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran
| | - Mitra Ansari Dezfouli
- Faculty of Medicine, Department of Neurology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | | | - Forough Foolad
- Faculty of Medical Sciences, Department of Physiology, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Alijaniha
- Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran
- School of Persian Medicine, Department of Traditional Persian Medicine, Shahed University, Tehran, Iran
| | | |
Collapse
|
34
|
Sushma, Sahu MR, Murugan NA, Mondal AC. Amelioration of Amyloid-β Induced Alzheimer's Disease by Bacopa monnieri through Modulation of Mitochondrial Dysfunction and GSK-3β/Wnt/β-Catenin Signaling. Mol Nutr Food Res 2024; 68:e2300245. [PMID: 38143280 DOI: 10.1002/mnfr.202300245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/21/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent dementia, affecting a large number of populations. Despite being under scrutiny for decades, an effective therapeutic option is still not available. METHODS AND RESULTS This study explores the therapeutic role of a nootropic herb Bacopa monnieri (BM) in AD-like pathological conditions produced by injecting preformed amyloid-β42 (Aβ42) fibril bilaterally into hippocampus of Wistar rats, and ethanolic extract of BM is orally administered for 4 weeks. Assessment of behavioral changes reveals that BM treatment ameliorates Aβ42-induced cognitive impairment and compromised explorative behavior. Supplementation of BM also reduces oxidative stress biomarkers, proinflammatory cytokines, and cholinesterase activity in the AD rats. Additionally, BM treatment restores Bcl-2-associated X protein (Bax)/ B-cell lymphoma 2 (Bcl-2) imbalance, increases neurotrophic factors expression, and prevents neurodegeneration validated by quantifying Nissl-positive hippocampal neurons. Interestingly, BM administration eliminates amyloid plaques in the hippocampal region and normalizes the Aβ42-induced increase in phospho-tau and total tau expression. Mechanistic investigations reveal that BM interacts with glycogen synthase kinase (GSK-3β) and restores Wnt/β-catenin signaling. CONCLUSION BM has been used in diet as a nootropic herb for several centuries. This study highlights the anti-Alzheimer activity of BM from the behavioral to the molecular level by modulating mitochondrial dysfunction, and GSK-3β mediates the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Sushma
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Manas Ranjan Sahu
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Natarajan Arul Murugan
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, 110067, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
35
|
Wang L, Wei Y, Sun Z, Tai W, Li H, Yin Y, Jiang LH, Wang JZ. Effectiveness and mechanisms of combined use of antioxidant nutrients in protecting against oxidative stress-induced neuronal loss and related neurological deficits. CNS Neurosci Ther 2024; 30:e14886. [PMID: 39072940 DOI: 10.1111/cns.14886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/04/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Oxidative stress is a well-known pathological factor driving neuronal loss and age-related neurodegenerative diseases. Melatonin, coenzyme Q10 and lecithin are three common nutrients with an antioxidative capacity. Here, we examined the effectiveness of them administrated individually and in combination in protecting against oxidative stress-induced neuronal death in vitro, and neurodegenerative conditions such as Alzheimer's disease and associated deficits in vivo. METHODS Mouse neuroblastoma Neuro-2a (N2a) cells were exposed with H2O2 for 6 h, and subsequently treated with melatonin, coenzyme Q10, and lecithin alone or in combination for further 24 h. Cell viability was assessed using the CCK-8 assay. Eight-week-old male mice were intraperitoneally injected with D-(+)-galactose for 10 weeks and administrated with melatonin, coenzyme Q10, lecithin, or in combination for 5 weeks starting from the sixth week, followed by behavioral tests to assess the effectiveness in mitigating neurological deficits, and biochemical assays to explore the underlying mechanisms. RESULTS Exposure to H2O2 significantly reduced the viability of N2a cells and increased oxidative stress and tau phosphorylation, all of which were alleviated by treatment with melatonin, coenzyme Q10, lecithin alone, and, most noticeably, by combined treatment. Administration of mice with D-(+)-galactose-induced oxidative stress and tau phosphorylation, brain aging, impairments in learning and memory, anxiety- and depression-like behaviors, and such detrimental effects were mitigated by melatonin, coenzyme Q10, lecithin alone, and, most consistently, by combined treatment. CONCLUSIONS These results suggest that targeting oxidative stress via supplementation of antioxidant nutrients, particularly in combination, is a better strategy to alleviate oxidative stress-mediated neuronal loss and brain dysfunction due to age-related neurodegenerative conditions.
Collapse
Affiliation(s)
- Lu Wang
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yingjuan Wei
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Department of Blood Transfusion, Xuchang Central Hospital, Xuchang, China
| | - Zhenzhou Sun
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wenya Tai
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Hui Li
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yaling Yin
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Lin-Hua Jiang
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- School of Biomedical Sciences, University of Leeds, Leeds, UK
- EA4245, Transplantation, Immunology and Inflammation, Faculty of Medicine, University of Tours, Tours, France
| | - Jian-Zhi Wang
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Lopes FBTP, Schlatzer D, Li M, Yilmaz S, Wang R, Qi X, Ayati M, Koyutürk M, Chance MR. Methionine Sulfoxide Speciation in Mouse Hippocampus Revealed by Global Proteomics Exhibits Age- and Alzheimer's Disease-Dependent Changes Targeted to Mitochondrial and Glycolytic Pathways. Int J Mol Sci 2024; 25:6516. [PMID: 38928221 PMCID: PMC11203694 DOI: 10.3390/ijms25126516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Methionine oxidation to the sulfoxide form (MSox) is a poorly understood post-translational modification of proteins associated with non-specific chemical oxidation from reactive oxygen species (ROS), whose chemistries are linked to various disease pathologies, including neurodegeneration. Emerging evidence shows MSox site occupancy is, in some cases, under enzymatic regulatory control, mediating cellular signaling, including phosphorylation and/or calcium signaling, and raising questions as to the speciation and functional nature of MSox across the proteome. The 5XFAD lineage of the C57BL/6 mouse has well-defined Alzheimer's and aging states. Using this model, we analyzed age-, sex-, and disease-dependent MSox speciation in the mouse hippocampus. In addition, we explored the chemical stability and statistical variance of oxidized peptide signals to understand the needed power for MSox-based proteome studies. Our results identify mitochondrial and glycolytic pathway targets with increases in MSox with age as well as neuroinflammatory targets accumulating MSox with AD in proteome studies of the mouse hippocampus. Further, this paper establishes a foundation for reproducible and rigorous experimental MSox-omics appropriate for novel target identification in biological discovery and for biomarker analysis in ROS and other oxidation-linked diseases.
Collapse
Affiliation(s)
- Filipa Blasco Tavares Pereira Lopes
- Center for Proteomics and Bioinformatics, Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (F.B.T.P.L.); (D.S.); (M.K.)
| | - Daniela Schlatzer
- Center for Proteomics and Bioinformatics, Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (F.B.T.P.L.); (D.S.); (M.K.)
| | - Mengzhen Li
- Department of Computer and Data Sciences, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (M.L.); (S.Y.)
| | - Serhan Yilmaz
- Department of Computer and Data Sciences, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (M.L.); (S.Y.)
| | - Rihua Wang
- Center for Mitochondrial Diseases, Department of Physiology & Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (R.W.); (X.Q.)
| | - Xin Qi
- Center for Mitochondrial Diseases, Department of Physiology & Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (R.W.); (X.Q.)
| | - Marzieh Ayati
- Department of Computer Science, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Mehmet Koyutürk
- Center for Proteomics and Bioinformatics, Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (F.B.T.P.L.); (D.S.); (M.K.)
- Department of Computer and Data Sciences, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (M.L.); (S.Y.)
| | - Mark R. Chance
- Center for Proteomics and Bioinformatics, Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (F.B.T.P.L.); (D.S.); (M.K.)
| |
Collapse
|
37
|
Dubey H, Ray A, Dubey A, Gulati K. S-Nitrosoglutathione Attenuates Oxidative Stress and Improves Retention Memory Dysfunctions in Intra-Cerebroventricular-Streptozotocin Rat Model of Sporadic Alzheimer's Disease via Activation of BDNF and Nuclear Factor Erythroid 2-Related Factor-2 Antioxidant Signaling Pathway. Neuropsychobiology 2024; 83:101-113. [PMID: 38744261 DOI: 10.1159/000538348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/05/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION The brain-derived neurotrophic factor (BDNF) and transcription nuclear factor erythroid 2-related factor-2 (NRF-2) play an important role in Alzheimer's disease (AD). However, the interactive involvement of BDNF and NRF-2 in respect to antioxidant mechanisms in different parts of the AD brain is still unclear. Considering the above condition, used S-nitrosoglutathione (GSNO) to examine whether it modulates the BDNF and NRF-2 levels to activate signaling pathway to promote antioxidant levels in AD brains. METHOD AD was induced by intracerebroventricular infusion of streptozotocin (ICV-STZ, 3 mg/kg) in Wistar rats. The effect of GSNO was analyzed by evaluating the retention of memory in months 1, 2, and 3. After the behavior study, rats were sacrificed and accessed the amyloid beta (Aβ)-40, Aβ42, glutathione (GSH), BDNF, and NRF-2 levels in the hippocampus, cortex, and amygdala tissue. RESULTS Pretreatment with GSNO (50 µg/kg/intraperitoneal/day) restored the BDNF, and NRF-2 levels toward normalcy as compared with ICV-STZ + saline-treated animals. Also, GSNO treatment reversed the oxidative stress and increased the GSH levels toward normal levels. Further, reduced Aβ levels and neuronal loss in different brain regions. As a result, GSNO treatment improved the cognitive deficits in ICV-STZ-treated rats. CONCLUSION The results showed that endogenous nitric oxide donor GSNO improved the cognitive deficits and ICV-STZ-induced AD pathological conditions, possibly via attenuating the oxidative stress. Hence, the above finding supported that GSNO treatment may activate BDNF and NRF-2 antioxidant signaling pathways in the AD brain to normalize oxidative stress, which is the main causative factor for ICV-STZ-induced AD pathogenesis.
Collapse
Affiliation(s)
- Harikesh Dubey
- Departments of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
- The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Arunabha Ray
- Departments of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
- Departments of Pharmacology, Hamdard Institute of Medical Sciences and Research (HIMSR), Hamdard University, New Delhi, India
| | - Anamika Dubey
- Departments of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
| | - Kavita Gulati
- Departments of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
| |
Collapse
|
38
|
Albadrani HM, Chauhan P, Ashique S, Babu MA, Iqbal D, Almutary AG, Abomughaid MM, Kamal M, Paiva-Santos AC, Alsaweed M, Hamed M, Sachdeva P, Dewanjee S, Jha SK, Ojha S, Slama P, Jha NK. Mechanistic insights into the potential role of dietary polyphenols and their nanoformulation in the management of Alzheimer's disease. Biomed Pharmacother 2024; 174:116376. [PMID: 38508080 DOI: 10.1016/j.biopha.2024.116376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/19/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Alzheimer's disease (AD) is a very common neurodegenerative disorder associated with memory loss and a progressive decline in cognitive activity. The two major pathophysiological factors responsible for AD are amyloid plaques (comprising amyloid-beta aggregates) and neurofibrillary tangles (consisting of hyperphosphorylated tau protein). Polyphenols, a class of naturally occurring compounds, are immensely beneficial for the treatment or management of various disorders and illnesses. Naturally occurring sources of polyphenols include plants and plant-based foods, such as fruits, herbs, tea, vegetables, coffee, red wine, and dark chocolate. Polyphenols have unique properties, such as being the major source of anti-oxidants and possessing anti-aging and anti-cancerous properties. Currently, dietary polyphenols have become a potential therapeutic approach for the management of AD, depending on various research findings. Dietary polyphenols can be an effective strategy to tackle multifactorial events that occur with AD. For instance, naturally occurring polyphenols have been reported to exhibit neuroprotection by modulating the Aβ biogenesis pathway in AD. Many nanoformulations have been established to enhance the bioavailability of polyphenols, with nanonization being the most promising. This review comprehensively provides mechanistic insights into the neuroprotective potential of dietary polyphenols in treating AD. It also reviews the usability of dietary polyphenol as nanoformulation for AD treatment.
Collapse
Affiliation(s)
- Hind Muteb Albadrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province 34212, Saudi Arabia
| | - Payal Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanad University, Rohtak, Haryana 124001, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Munerah Hamed
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | | | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura- 140401, Punjab, India.; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, India.
| |
Collapse
|
39
|
Kothandan D, Singh DS, Yerrakula G, D B, N P, Santhana Sophia B V, A R, Ramya Vg S, S K, M J. Advanced Glycation End Products-Induced Alzheimer's Disease and Its Novel Therapeutic Approaches: A Comprehensive Review. Cureus 2024; 16:e61373. [PMID: 38947632 PMCID: PMC11214645 DOI: 10.7759/cureus.61373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Abstract
Advanced glycation end products (AGEs) accumulate in the brain, leading to neurodegenerative conditions such as Alzheimer's disease (AD). The pathophysiology of AD is influenced by receptors for AGEs and toll-like receptor 4 (TLR4). Protein glycation results in irreversible AGEs through a complicated series of reactions involving the formation of Schiff's base, the Amadori reaction, followed by the Maillard reaction, which causes abnormal brain glucose metabolism, oxidative stress, malfunctioning mitochondria, plaque deposition, and neuronal death. Amyloid plaque and other stimuli activate macrophages, which are crucial immune cells in AD development, triggering the production of inflammatory molecules and contributing to the disease's pathogenesis. The risk of AD is doubled by risk factors for atherosclerosis, dementia, advanced age, and type 2 diabetic mellitus (DM). As individuals age, the prevalence of neurological illnesses such as AD increases due to a decrease in glyoxalase levels and an increase in AGE accumulation. Insulin's role in proteostasis influences hallmarks of AD-like tau phosphorylation and amyloid β peptide clearance, affecting lipid metabolism, inflammation, vasoreactivity, and vascular function. The high-mobility group box 1 (HMGB1) protein, a key initiator and activator of a neuroinflammatory response, has been linked to the development of neurodegenerative diseases such as AD. The TLR4 inhibitor was found to improve memory and learning impairment and decrease Aβ build-up. Therapeutic research into anti-glycation agents, receptor for advanced glycation end products (RAGE) inhibitors, and AGE breakers offers hope for intervention strategies. Dietary and lifestyle modifications can also slow AD progression. Newer therapeutic approaches targeting AGE-related pathways are needed.
Collapse
Affiliation(s)
- Dhivya Kothandan
- Department of Pharmacy Practice, C.L. Baid Metha College of Pharmacy, Chennai, IND
| | - Daniel S Singh
- Department of Pharmacy Practice, C.L. Baid Metha College of Pharmacy, Chennai, IND
| | - Goutham Yerrakula
- School of Pharmacy, Faculty of Health Sciences, JSS Academy of Higher Education and Research, Vacoas, MUS
| | - Backkiyashree D
- Department of Pharmacy Practice, C.L. Baid Metha College of Pharmacy, Chennai, IND
| | - Pratibha N
- Department of Pharmacy Practice, C.L. Baid Metha College of Pharmacy, Chennai, IND
| | | | - Ramya A
- Department of Pharmacy Practice, C.L. Baid Metha College of Pharmacy, Chennai, IND
| | - Sapthami Ramya Vg
- Department of Pharmacy Practice, C.L. Baid Metha College of Pharmacy, Chennai, IND
| | - Keshavini S
- Department of Pharmacy Practice, C.L. Baid Metha College of Pharmacy, Chennai, IND
| | - Jagadheeshwari M
- Department of Pharmacy Practice, C.L. Baid Metha College of Pharmacy, Chennai, IND
| |
Collapse
|
40
|
Iranpanah A, Fakhri S, Bahrami G, Majnooni MB, Gravandi MM, Taghavi S, Badrbani MA, Amirian R, Farzaei MH. Protective effect of a hydromethanolic extract from Fraxinus excelsior L. bark against a rat model of aluminum chloride-induced Alzheimer's disease: Relevance to its anti-inflammatory and antioxidant effects. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117708. [PMID: 38181932 DOI: 10.1016/j.jep.2024.117708] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fraxinus excelsior L. (FE), commonly known as the ash, belongs to the Oleaceae family and has shown several pharmacological and biological properties, such as antioxidant, immunomodulatory, neuroprotective, and anti-inflammatory effects. It has also attracted the most attention toward neuroinflammation. Moreover, FE bark and leaves have been used to treat neurological disorders, aging, neuropathic pain, urinary complaints, and articular pain in traditional and ethnomedicine. Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder resulting from the involvement of amyloid-beta, metal-induced oxidative stress, and neuroinflammation. AIM OF THE STUDY The objective of the current study was to assess the neuroprotective effects of hydromethanolic extract from FE bark in an AlCl3-induced rat model of AD. MATERIALS AND METHODS The maceration process was utilized to prepare the hydromethanolic extract of FE bark, and characterized by LC-MS/MS. To assess the anti-AD effects of the FE extract, rats were categorized into five different groups, AlCl3; normal control; FE-treated groups at 50, 100, and 200 mg/kg. Passive avoidance learning test, Y-maze, open field, and elevated plus maze behavioral tests were evaluated on days 7 and 14 to analyze the cognitive impairments. Zymography analysis, biochemical tests, and histopathological changes were also followed in different groups. RESULTS LC-MS/MS analysis indicated the presence of coumarins, including isofraxidin7-O-diglucoside in the methanolic extract of FE as a new isofraxidin derivative in this genus. FE significantly improved memory and cognitive function, maintained weight, prevented neuronal damages, and preserved the hippocampus's histological features, as demonstrated by behavioral tests and histopathological analysis. FE increased anti-inflammatory MMP-2 activity, whereas it decreased that of inflammatory MMP-9. Moreover, FE increased plasma antioxidant capacity by enhancing CAT and GSH while decreasing nitrite levels in the serum of treated groups. In comparison between the treated groups, the rats that received high doses of the FE extract (200 mg/kg) showed the highest therapeutic effect. CONCLUSION FE rich in coumarins could be an effective anti-AD adjunct agent, passing through antioxidant and anti-inflammatory pathways. These results encourage further studies for the development of this extract as a promising agent in preventing, managing, or treating AD and related diseases.
Collapse
Affiliation(s)
- Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamreza Bahrami
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Bagher Majnooni
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Sara Taghavi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Mehdi Azadi Badrbani
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roshanak Amirian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
41
|
Jain SK, Stevens CM, Margret JJ, Levine SN. Alzheimer's Disease: A Review of Pathology, Current Treatments, and the Potential Therapeutic Effect of Decreasing Oxidative Stress by Combined Vitamin D and l-Cysteine Supplementation. Antioxid Redox Signal 2024; 40:663-678. [PMID: 37756366 PMCID: PMC11001507 DOI: 10.1089/ars.2023.0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023]
Abstract
Significance: Excess oxidative stress and neuroinflammation are risk factors in the onset and progression of Alzheimer's disease (AD) and its association with amyloid-β plaque accumulation. Oxidative stress impairs acetylcholine (ACH) and N-methyl-d-aspartate receptor signaling in brain areas that function in memory and learning. Glutathione (GSH) antioxidant depletion positively correlates with the cognitive decline in AD subjects. Treatments that upregulate GSH and ACH levels, which simultaneously decrease oxidative stress and inflammation, may be beneficial for AD. Recent Advances: Some clinical trials have shown a benefit of monotherapy with vitamin D (VD), whose deficiency is linked to AD or with l-cysteine (LC), a precursor of GSH biosynthesis, in reducing mild cognitive impairment. Animal studies have shown a simultaneous decrease in ACH esterase (AChE) and increase in GSH; combined supplementation with VD and LC results in a greater decrease in oxidative stress and inflammation, and increase in GSH levels compared with monotherapy with VD or LC. Therefore, cosupplementation with VD and LC has the potential of increasing GSH, downregulation of oxidative stress, and decreased inflammation and AChE levels. Future Directions: Clinical trials are needed to determine whether safe low-cost dietary supplements, using combined VD+LC, have the potential to alleviate elevated AChE, oxidative stress, and inflammation levels, thereby halting the onset of AD. Goal of Review: The goal of this review is to highlight the pathological hallmarks and current Food and Drug Administration-approved treatments for AD, and discuss the potential therapeutic effect that cosupplementation with VD+LC could manifest by increasing GSH levels in patients. Antioxid. Redox Signal. 40, 663-678.
Collapse
Affiliation(s)
- Sushil K. Jain
- Department of Pediatrics and Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Christopher M. Stevens
- Department of Pediatrics and Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Jeffrey Justin Margret
- Department of Pediatrics and Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Steven N. Levine
- Department of Pediatrics and Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
42
|
Alam J, Kalash A, Hassan MI, Rahman SZ. Agents at the Peak of US FDA Approval for the Treatment of Alzheimer's Disease. Neurol Res 2024; 46:318-325. [PMID: 38197595 DOI: 10.1080/01616412.2024.2302271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024]
Abstract
Where Alzheimer's disease (AD) is becoming a global health issue, the present anti-AD medications have also been exposed to produce only symptomatic outcomes. The pathological factors, like neuronal transmission impairment, amyloidal-tau constituents, oxidative damage, neuro-inflammation, synaptic dysfunction, infectious agents, and impairment of gut microbiota and vitamins' levels; all favor the disease's progression and sustainability. The researchers have investigated several drugable molecules against these factors; however, no treatment could have been discovered yet to prevent the disease's progression rather than anti-amyloidal antibodies. After a comprehensive review of the literature and the clinical registry (clinicaltrials.gov), the authors of this manuscript have explored drug molecules that are under phase-3 of clinical trials and at the peak of getting approval for the management of AD. The inclusion and exclusion criteria for clinical trials were decided by considering the basis of a drug's approval. We included only the clinical trials were found in stages of Enrolling-by-Invitation, Recruiting, Not Recruiting (But active), and Not Recruiting (Not active) while excluding Completed, Terminated, Suspended, Withdrawn, or the trials of Unknown Status. We have found many potent drug molecules reached the clinical trials in phase-3 that could be futuristic anti-AD agents. This review article aims to provide an update on the prospective potential anti-AD medicines and to reveal the therapeutic targets of great significance for designing further a possible drug development strategy against AD pathology.
Collapse
Affiliation(s)
- Jahngeer Alam
- Department of Pharmacology, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Anushka Kalash
- Department of Pharmacology, School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Syed Ziaur Rahman
- Department of Pharmacology, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
43
|
Ravel-Godreuil C, Roy ER, Puttapaka SN, Li S, Wang Y, Yuan X, Eltzschig HK, Cao W. Transcriptional Responses of Different Brain Cell Types to Oxygen Decline. Brain Sci 2024; 14:341. [PMID: 38671993 PMCID: PMC11048388 DOI: 10.3390/brainsci14040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Brain hypoxia is associated with a wide range of physiological and clinical conditions. Although oxygen is an essential constituent of maintaining brain functions, our understanding of how specific brain cell types globally respond and adapt to decreasing oxygen conditions is incomplete. In this study, we exposed mouse primary neurons, astrocytes, and microglia to normoxia and two hypoxic conditions and obtained genome-wide transcriptional profiles of the treated cells. Analysis of differentially expressed genes under conditions of reduced oxygen revealed a canonical hypoxic response shared among different brain cell types. In addition, we observed a higher sensitivity of neurons to oxygen decline, and dissected cell type-specific biological processes affected by hypoxia. Importantly, this study establishes novel gene modules associated with brain cells responding to oxygen deprivation and reveals a state of profound stress incurred by hypoxia.
Collapse
Affiliation(s)
- Camille Ravel-Godreuil
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| | - Ethan R. Roy
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| | - Srinivas N. Puttapaka
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Sanming Li
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| | - Yanyu Wang
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| | - Xiaoyi Yuan
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| | - Holger K. Eltzschig
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| | - Wei Cao
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| |
Collapse
|
44
|
Amro Z, Collins-Praino L, Yool A. Protective roles of peroxiporins AQP0 and AQP11 in human astrocyte and neuronal cell lines in response to oxidative and inflammatory stressors. Biosci Rep 2024; 44:BSR20231725. [PMID: 38451099 PMCID: PMC10965398 DOI: 10.1042/bsr20231725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/08/2024] Open
Abstract
In addition to aquaporin (AQP) classes AQP1, AQP4 and AQP9 known to be expressed in mammalian brain, our recent transcriptomic analyses identified AQP0 and AQP11 in human cortex and hippocampus at levels correlated with age and Alzheimer's disease (AD) status; however, protein localization remained unknown. Roles of AQP0 and AQP11 in transporting hydrogen peroxide (H2O2) in lens and kidney prompted our hypothesis that up-regulation in brain might similarly be protective. Established cell lines for astroglia (1321N1) and neurons (SHSY5Y, differentiated with retinoic acid) were used to monitor changes in transcript levels for human AQPs (AQP0 to AQP12) in response to inflammation (simulated with 10-100 ng/ml lipopolysaccharide [LPS], 24 h), and hypoxia (5 min N2, followed by 0 to 24 h normoxia). AQP transcripts up-regulated in both 1321N1 and SHSY5Y included AQP0, AQP1 and AQP11. Immunocytochemistry in 1321N1 cells confirmed protein expression for AQP0 and AQP11 in plasma membrane and endoplasmic reticulum; AQP11 increased 10-fold after LPS and AQP0 increased 0.3-fold. In SHSY5Y cells, AQP0 expression increased 0.2-fold after 24 h LPS; AQP11 showed no appreciable change. Proposed peroxiporin roles were tested using melondialdehyde (MDA) assays to quantify lipid peroxidation levels after brief H2O2. Boosting peroxiporin expression by LPS pretreatment lowered subsequent H2O2-induced MDA responses (∼50%) compared with controls; conversely small interfering RNA knockdown of AQP0 in 1321N1 increased lipid peroxidation (∼17%) after H2O2, with a similar trend for AQP11 siRNA. Interventions that increase native brain peroxiporin activity are promising as new approaches to mitigate damage caused by aging and neurodegeneration.
Collapse
Affiliation(s)
- Zein Amro
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | | | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
45
|
Wen Q, Wittens MMJ, Engelborghs S, van Herwijnen MHM, Tsamou M, Roggen E, Smeets B, Krauskopf J, Briedé JJ. Beyond CSF and Neuroimaging Assessment: Evaluating Plasma miR-145-5p as a Potential Biomarker for Mild Cognitive Impairment and Alzheimer's Disease. ACS Chem Neurosci 2024; 15:1042-1054. [PMID: 38407050 PMCID: PMC10921410 DOI: 10.1021/acschemneuro.3c00740] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. New strategies for the early detection of MCI and sporadic AD are crucial for developing effective treatment options. Current techniques used for diagnosis of AD are invasive and/or expensive, so they are not suitable for population screening. Cerebrospinal fluid (CSF) biomarkers such as amyloid β1-42 (Aβ1-42), total tau (T-tau), and phosphorylated tau181 (P-tau181) levels are core biomarkers for early diagnosis of AD. Several studies have proposed the use of blood-circulating microRNAs (miRNAs) as potential novel early biomarkers for AD. We therefore applied a novel approach to identify blood-circulating miRNAs associated with CSF biomarkers and explored the potential of these miRNAs as biomarkers of AD. In total, 112 subjects consisting of 28 dementia due to AD cases, 63 MCI due to AD cases, and 21 cognitively healthy controls were included. We identified seven Aβ1-42-associated plasma miRNAs, six P-tau181-associated plasma miRNAs, and nine Aβ1-42-associated serum miRNAs. These miRNAs were involved in AD-relevant biological processes, such as PI3K/AKT signaling. Based on this signaling pathway, we constructed an miRNA-gene target network, wherein miR-145-5p has been identified as a hub. Furthermore, we showed that miR-145-5p performs best in the prediction of both AD and MCI. Moreover, miR-145-5p also improved the prediction performance of the mini-mental state examination (MMSE) score. The performance of this miRNA was validated using different datasets including an RT-qPCR dataset from plasma samples of 23 MCI cases and 30 age-matched controls. These findings indicate that blood-circulating miRNAs that are associated with CSF biomarkers levels and specifically plasma miR-145-5p alone or combined with the MMSE score can potentially be used as noninvasive biomarkers for AD or MCI screening in the general population, although studies in other AD cohorts are necessary for further validation.
Collapse
Affiliation(s)
- Qingfeng Wen
- Department
of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- MHeNS,
School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Mandy Melissa Jane Wittens
- Department
of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerpen, Belgium
- Neuroprotection
and Neuromodulation (NEUR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium
- Department
of Neurology, Universitair Ziekenhuis Brussel
(UZ Brussel), Laarbeeklaan
101, 1090 Brussel, Belgium
| | - Sebastiaan Engelborghs
- Department
of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerpen, Belgium
- Neuroprotection
and Neuromodulation (NEUR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium
- Department
of Neurology, Universitair Ziekenhuis Brussel
(UZ Brussel), Laarbeeklaan
101, 1090 Brussel, Belgium
| | - Marcel H. M. van Herwijnen
- Department
of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Maria Tsamou
- ToxGenSolutions
(TGS), 6229EV Maastricht, The Netherlands
| | - Erwin Roggen
- ToxGenSolutions
(TGS), 6229EV Maastricht, The Netherlands
| | - Bert Smeets
- Department
of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- MHeNS,
School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Julian Krauskopf
- Department
of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Jacco Jan Briedé
- Department
of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- MHeNS,
School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
46
|
Margetts TJ, Wang HS, Karnik SJ, Plotkin LI, Movila A, Oblak AL, Fehrenbacher JC, Kacena MA. From the Mind to the Spine: The Intersecting World of Alzheimer's and Osteoporosis. Curr Osteoporos Rep 2024; 22:152-164. [PMID: 38334917 PMCID: PMC10912148 DOI: 10.1007/s11914-023-00848-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 02/10/2024]
Abstract
PURPOSE OF REVIEW This comprehensive review delves into the intricate interplay between Alzheimer's disease (AD) and osteoporosis, two prevalent conditions with significant implications for individuals' quality of life. The purpose is to explore their bidirectional association, underpinned by common pathological processes such as aging, genetic factors, inflammation, and estrogen deficiency. RECENT FINDINGS Recent advances have shown promise in treating both Alzheimer's disease (AD) and osteoporosis by targeting disease-specific proteins and bone metabolism regulators. Monoclonal antibodies against beta-amyloid and tau for AD, as well as RANKL and sclerostin for osteoporosis, have displayed therapeutic potential. Additionally, ongoing research has identified neuroinflammatory genes shared between AD and osteoporosis, offering insight into the interconnected inflammatory mechanisms. This knowledge opens avenues for innovative dual-purpose therapies that could address both conditions, potentially revolutionizing treatment approaches for AD and osteoporosis simultaneously. This review underscores the potential for groundbreaking advancements in early diagnosis and treatment by unraveling the intricate connection between AD and bone health. It advocates for a holistic, patient-centered approach to medical care that considers both cognitive and bone health, ultimately aiming to enhance the overall well-being of individuals affected by these conditions. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.
Collapse
Affiliation(s)
- Tyler J Margetts
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Hannah S Wang
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sonali J Karnik
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Lilian I Plotkin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA
| | - Alexandru Movila
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA
| | - Adrian L Oblak
- Department of Radiology & Imaging Sciences, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jill C Fehrenbacher
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA.
| |
Collapse
|
47
|
Karnik SJ, Margetts TJ, Wang HS, Movila A, Oblak AL, Fehrenbacher JC, Kacena MA, Plotkin LI. Mind the Gap: Unraveling the Intricate Dance Between Alzheimer's Disease and Related Dementias and Bone Health. Curr Osteoporos Rep 2024; 22:165-176. [PMID: 38285083 PMCID: PMC10912190 DOI: 10.1007/s11914-023-00847-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE OF REVIEW This review examines the linked pathophysiology of Alzheimer's disease/related dementia (AD/ADRD) and bone disorders like osteoporosis. The emphasis is on "inflammaging"-a low-level inflammation common to both, and its implications in an aging population. RECENT FINDINGS Aging intensifies both ADRD and bone deterioration. Notably, ADRD patients have a heightened fracture risk, impacting morbidity and mortality, though it is uncertain if fractures worsen ADRD. Therapeutically, agents targeting inflammation pathways, especially Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) and TNF-α, appear beneficial for both conditions. Additionally, treatments like Sirtuin 1 (SIRT-1), known for anti-inflammatory and neuroprotective properties, are gaining attention. The interconnectedness of AD/ADRD and bone health necessitates a unified treatment approach. By addressing shared mechanisms, we can potentially transform therapeutic strategies, enriching our understanding and refining care in our aging society. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.
Collapse
Affiliation(s)
- Sonali J Karnik
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Tyler J Margetts
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Hannah S Wang
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Alexandru Movila
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adrian L Oblak
- Department of Radiology & Imaging Sciences, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jill C Fehrenbacher
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA.
| | - Lilian I Plotkin
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA.
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
48
|
Fertan E, Böken D, Murray A, Danial JSH, Lam JYL, Wu Y, Goh PA, Alić I, Cheetham MR, Lobanova E, Zhang YP, Nižetić D, Klenerman D. Cerebral organoids with chromosome 21 trisomy secrete Alzheimer's disease-related soluble aggregates detectable by single-molecule-fluorescence and super-resolution microscopy. Mol Psychiatry 2024; 29:369-386. [PMID: 38102482 PMCID: PMC11116105 DOI: 10.1038/s41380-023-02333-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Understanding the role of small, soluble aggregates of beta-amyloid (Aβ) and tau in Alzheimer's disease (AD) is of great importance for the rational design of preventative therapies. Here we report a set of methods for the detection, quantification, and characterisation of soluble aggregates in conditioned media of cerebral organoids derived from human iPSCs with trisomy 21, thus containing an extra copy of the amyloid precursor protein (APP) gene. We detected soluble beta-amyloid (Aβ) and tau aggregates secreted by cerebral organoids from both control and the isogenic trisomy 21 (T21) genotype. We developed a novel method to normalise measurements to the number of live neurons within organoid-conditioned media based on glucose consumption. Thus normalised, T21 organoids produced 2.5-fold more Aβ aggregates with a higher proportion of larger (300-2000 nm2) and more fibrillary-shaped aggregates than controls, along with 1.3-fold more soluble phosphorylated tau (pTau) aggregates, increased inflammasome ASC-specks, and a higher level of oxidative stress inducing thioredoxin-interacting protein (TXNIP). Importantly, all this was detectable prior to the appearance of histological amyloid plaques or intraneuronal tau-pathology in organoid slices, demonstrating the feasibility to model the initial pathogenic mechanisms for AD in-vitro using cells from live genetically pre-disposed donors before the onset of clinical disease. Then, using different iPSC clones generated from the same donor at different times in two independent experiments, we tested the reproducibility of findings in organoids. While there were differences in rates of disease progression between the experiments, the disease mechanisms were conserved. Overall, our results show that it is possible to non-invasively follow the development of pathology in organoid models of AD over time, by monitoring changes in the aggregates and proteins in the conditioned media, and open possibilities to study the time-course of the key pathogenic processes taking place.
Collapse
Affiliation(s)
- Emre Fertan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK
| | - Dorothea Böken
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK
| | - Aoife Murray
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - John S H Danial
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK
| | - Jeff Y L Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK
| | - Yunzhao Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK
| | - Pollyanna A Goh
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, UK
| | - Ivan Alić
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Matthew R Cheetham
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK
| | - Evgeniia Lobanova
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK
| | - Yu P Zhang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK
| | - Dean Nižetić
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0AH, UK.
| |
Collapse
|
49
|
Orfali R, Alwatban AZ, Orfali RS, Lau L, Chea N, Alotaibi AM, Nam YW, Zhang M. Oxidative stress and ion channels in neurodegenerative diseases. Front Physiol 2024; 15:1320086. [PMID: 38348223 PMCID: PMC10859863 DOI: 10.3389/fphys.2024.1320086] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Numerous neurodegenerative diseases result from altered ion channel function and mutations. The intracellular redox status can significantly alter the gating characteristics of ion channels. Abundant neurodegenerative diseases associated with oxidative stress have been documented, including Parkinson's, Alzheimer's, spinocerebellar ataxia, amyotrophic lateral sclerosis, and Huntington's disease. Reactive oxygen and nitrogen species compounds trigger posttranslational alterations that target specific sites within the subunits responsible for channel assembly. These alterations include the adjustment of cysteine residues through redox reactions induced by reactive oxygen species (ROS), nitration, and S-nitrosylation assisted by nitric oxide of tyrosine residues through peroxynitrite. Several ion channels have been directly investigated for their functional responses to oxidizing agents and oxidative stress. This review primarily explores the relationship and potential links between oxidative stress and ion channels in neurodegenerative conditions, such as cerebellar ataxias and Parkinson's disease. The potential correlation between oxidative stress and ion channels could hold promise for developing innovative therapies for common neurodegenerative diseases.
Collapse
Affiliation(s)
- Razan Orfali
- Neuroscience Research Department, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Adnan Z. Alwatban
- Neuroscience Research Department, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | | | - Liz Lau
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Noble Chea
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Abdullah M. Alotaibi
- Neuroscience Research Department, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Young-Woo Nam
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Miao Zhang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| |
Collapse
|
50
|
Dos Santos NCL, Malta SM, Franco RR, Silva HCG, Silva MH, Rodrigues TS, de Oliveira RM, Araújo TN, Augusto SC, Espindola FS, Ueira-Vieira C. Antioxidant and anti-Alzheimer's potential of Tetragonisca angustula (Jataí) stingless bee pollen. Sci Rep 2024; 14:308. [PMID: 38172290 PMCID: PMC10764861 DOI: 10.1038/s41598-023-51091-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024] Open
Abstract
Alzheimer's disease (AD) is considered the leading cause of dementia in the elderly worldwide. It results in progressive memory loss and impairment of cognitive and motor skills, leading to a high degree of disability and dependence. The development of AD is associated with the accumulation of senile plaques in the brain, caused by the amyloidogenic pathway of the disease. Several genetic and biochemical events are linked to AD development, with oxidative stress being one of them. Due to the scarcity of drugs aimed at treating AD, antioxidant compounds are increasingly studied as therapeutic targets for the disease. In this study, we investigate the antioxidant and anti-Alzheimer potential of the Tetragonisca angustula (Jataí) pollen extract in a Drosophila melanogaster Alzheimer's model. For this purpose, we utilized a D. melanogaster AD-like model, which expresses genes related to the amyloidogenic pathway of Alzheimer's disease. We explored the floral origin of the collected pollen, conducted phytochemical prospecting, and evaluated its antioxidant capacity in vitro. In vivo experiments involved assessing the survival and climbing ability of the D. melanogaster AD-like model with various concentrations of the pollen extract. Our findings revealed that the pollen extract of Tetragonisca angustula exhibits a significant antioxidant response and high concentrations of important phytochemicals, such as flavonoids and polyphenols. Furthermore, it enhanced the survival rate of D. melanogaster, and across all concentrations tested, it improved the climbing ability of the flies after 15 days of treatment with methanolic pollen extract. Additionally, the pollen extract reduced the neurodegeneration index in histopathological analysis. Thus, our study demonstrates the potential of Tetragonisca angustula pollen as an important subject for further investigation, aiming to isolate molecules that could potentially serve as therapeutic targets for Alzheimer's disease.
Collapse
Affiliation(s)
- Natalia Carine Lima Dos Santos
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
- Laboratório de Genética, Instituto de Biotecnologia, Universidade Federal de Uberlândia, Rua Acre, Bloco 2E, Sala 226, Uberlândia, MG, 38408-144, Brazil.
| | - Serena Mares Malta
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | | | | | | | | | - Thayane Nogueira Araújo
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | | - Carlos Ueira-Vieira
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
- Laboratório de Genética, Instituto de Biotecnologia, Universidade Federal de Uberlândia, Rua Acre, Bloco 2E, Sala 226, Uberlândia, MG, 38408-144, Brazil.
| |
Collapse
|