1
|
Huang X, Jiang L, Wen Z, Yuan M, Zhong Y. Knockdown of TTC9 inhibits the proliferation, migration and invasion, but induces the apoptosis of lung adenocarcinoma cells. Heliyon 2022; 8:e11254. [PMID: 36339754 PMCID: PMC9634374 DOI: 10.1016/j.heliyon.2022.e11254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/23/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the most commonly diagnosed subtypes of lung cancer, and one of the deadliest cancers. Tetratricopeptide repeat domain 9A (TTC9) is upregulated and has played an oncogenic role in some malignant tumors. However, the expression and role of TTC9 has not yet been elucidated in LUAD. Here, we investigated the expression profiles, biological functions and potential molecular mechanism of the TTC9 gene in LUAD. TTC9 expression was significantly overexpressed in LUAD tissues compared with that in normal lung tissues. TTC9 expression was closely correlated with gender, lymph node metastasis, and survival status in the TCGA-LUAD cohort. Subsequent cellular function assays demonstrated that knockdown of TTC9 promoted PC9 cell apoptosis and inhibited cell proliferation, migration and invasion, leading to cell cycle arrest in G2 phase. Moreover, inhibition of TTC9 suppressed the tumorigenicity of PC9 cells in nude mice. TTC9 might serve as oncogene in LUAD through cancer-related signaling pathways including p38 MAPK pathway. The expression of TTC9 gene might be modulated by DNA copy number variant and DNA methylation. TTC9 was significantly associated with tumor immune infiltration patterns. Accordingly, TTC9 may be a novel therapeutic target for the treatment of LUAD.
Collapse
Affiliation(s)
- Xiaoyue Huang
- Medical College, Guangxi University, Nanning 530021, PR China
- Department of Thoracic Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning 530021, PR China
| | - Lingyu Jiang
- The First Affiliated Hospital, Jinan University, Guangzhou 510006, PR China
- Intensive Care Unit, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning 530021, PR China
| | - Zhaoke Wen
- Department of Thoracic Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning 530021, PR China
| | - Mingqing Yuan
- Medical College, Guangxi University, Nanning 530021, PR China
- Corresponding author.
| | - Yonglong Zhong
- Department of Thoracic Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning 530021, PR China
- Corresponding author.
| |
Collapse
|
2
|
Sekaran SD, Liew ZM, Yam HC, Raju CS. The association between diabetes and obesity with Dengue infections. Diabetol Metab Syndr 2022; 14:101. [PMID: 35864519 PMCID: PMC9301891 DOI: 10.1186/s13098-022-00870-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/28/2022] [Indexed: 12/03/2022] Open
Abstract
Dengue, an arboviral disease is a global threat to public health as the number of Dengue cases increases through the decades and this trend is predicted to continue. Non-communicable diseases such as diabetes and obesity are also on an upward trend. Moreover, past clinical studies have shown comorbidities worsen the clinical manifestation of especially Severe Dengue. However, discussion regarding the underlying mechanisms regarding the association between these comorbidities and dengue are lacking. The hallmark of Severe Dengue is plasma leakage which is due to several factors including presence of pro-inflammatory cytokines and dysregulation of endothelial barrier protein expression. The key factors of diabetes affecting endothelial functions are Th1 skewed responses and junctional-related proteins expression. Additionally, obesity alters the lipid metabolism and immune response causing increased viral replication and inflammation. The similarity between diabetes and obesity individuals is in having chronic inflammation resulting in endothelial dysfunction. This review outlines the roles of diabetes and obesity in severe dengue and gives some insights into the plausible mechanisms of comorbidities in Severe Dengue.
Collapse
Affiliation(s)
- S D Sekaran
- Faculty of Medicine and Health Sciences, UCSI University Springhill Campus, Port Dickson, 70100, Negri Sembilan, Malaysia.
| | - Z M Liew
- Faculty of Applied Science, UCSI University Kuala Lumpur, Kuala Lumpur, 56000, Malaysia
| | - H C Yam
- Faculty of Applied Science, UCSI University Kuala Lumpur, Kuala Lumpur, 56000, Malaysia
| | - C S Raju
- Department of Medical Microbiology, Faculty of Medicine, University Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
3
|
Qiu J, Sun M, Wang Y, Chen B. Identification of Hub Genes and Pathways in Gastric Adenocarcinoma Based on Bioinformatics Analysis. Med Sci Monit 2020; 26:e920261. [PMID: 32058995 PMCID: PMC7034404 DOI: 10.12659/msm.920261] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/27/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Gastric adenocarcinoma accounts for 95% of all gastric malignant tumors. The purpose of this research was to identify differentially expressed genes (DEGs) of gastric adenocarcinoma by use of bioinformatics methods. MATERIAL AND METHODS The gene microarray datasets of GSE103236, GSE79973, and GSE29998 were imported from the GEO database, containing 70 gastric adenocarcinoma samples and 68 matched normal samples. Gene ontology (GO) and KEGG analysis were applied to screened DEGs; Cytoscape software was used for constructing protein-protein interaction (PPI) networks and to perform module analysis of the DEGs. UALCAN was used for prognostic analysis. RESULTS We identified 2909 upregulated DEGs (uDEGs) and 7106 downregulated DEGs (dDEGs) of gastric adenocarcinoma. The GO analysis showed uDEGs were enriched in skeletal system development, cell adhesion, and biological adhesion. KEGG pathway analysis showed uDEGs were enriched in ECM-receptor interaction, focal adhesion, and Cytokine-cytokine receptor interaction. The top 10 hub genes - COL1A1, COL3A1, COL1A2, BGN, COL5A2, THBS2, TIMP1, SPP1, PDGFRB, and COL4A1 - were distinguished from the PPI network. These 10 hub genes were shown to be significantly upregulated in gastric adenocarcinoma tissues in GEPIA. Prognostic analysis of the 10 hub genes via UALCAN showed that the upregulated expression of COL3A1, COL1A2, BGN, and THBS2 significantly reduced the survival time of gastric adenocarcinoma patients. Module analysis revealed that gastric adenocarcinoma was related to 2 pathways: including focal adhesion signaling and ECM-receptor interaction. CONCLUSIONS This research distinguished hub genes and relevant signal pathways, which contributes to our understanding of the molecular mechanisms, and could be used as diagnostic indicators and therapeutic biomarkers for gastric adenocarcinoma.
Collapse
Affiliation(s)
- Jieping Qiu
- Department of Clinical Medicine, The First Clinical College, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Mengyu Sun
- Department of Clinical Medicine, The First Clinical College, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Yaoqun Wang
- Department of Clinical Medicine, The First Clinical College, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Bo Chen
- Department of Gastrointestinal Surgery Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| |
Collapse
|
4
|
Mitra M, Lee HN, Coller HA. Splicing Busts a Move: Isoform Switching Regulates Migration. Trends Cell Biol 2020; 30:74-85. [PMID: 31810769 PMCID: PMC8219349 DOI: 10.1016/j.tcb.2019.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 11/21/2022]
Abstract
Cell migration is essential for normal development, neural patterning, pathogen eradication, and cancer metastasis. Pre-mRNA processing events such as alternative splicing and alternative polyadenylation result in greater transcript and protein diversity as well as function and activity. A critical role for alternative pre-mRNA processing in cell migration has emerged in axon outgrowth during neuronal development, immune cell migration, and cancer metastasis. These findings suggest that migratory signals result in expression changes of post-translational modifications of splicing or polyadenylation factors, leading to splicing events that generate promigratory isoforms. We summarize this recent progress and suggest emerging technologies that may facilitate a deeper understanding of the role of alternative splicing and polyadenylation in cell migration.
Collapse
Affiliation(s)
- Mithun Mitra
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ha Neul Lee
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Hilary A Coller
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA; Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Putra VDL, Jalilian I, Campbell M, Poole K, Whan R, Tomasetig F, Tate MLK. Mapping the Mechanome-A Protocol for Simultaneous Live Imaging and Quantitative Analysis of Cell Mechanoadaptation and Ingression. Bio Protoc 2019; 9:e3439. [PMID: 33654934 DOI: 10.21769/bioprotoc.3439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/28/2019] [Accepted: 11/22/2019] [Indexed: 11/02/2022] Open
Abstract
Mechanomics, the mechanics equivalent of genomics, is a burgeoning field studying mechanical modulation of stem cell behavior and lineage commitment. Analogous to mechanical testing of a living material as it adapts and evolves, mapping of the mechanome necessitates the development of new protocols to assess changes in structure and function in live stem cells as they adapt and differentiate. Previous techniques have relied on imaging of cellular structures in fixed cells and/or live cell imaging of single cells with separate studies of changes in mechanical and biological properties. Here we present two complementary protocols to study mechanobiology and mechanoadaptation of live stem cells in adherent and motile contexts. First, we developed and tested live imaging protocols for simultaneous visualization and tracking of actin and tubulin mechanoadaptation as well as shape and volume of cells and their nuclei in adherent model embryonic murine mesenchymal stem cells (C3H/10T1/2) and in a neuroblastoma cell line. Then we applied the protocol to enable quantitative study of primary human mesenchymal stem cells in a motile state, e.g., ingression in a three-dimensional, in vitro cell culture model. Together, these protocols enable study of emergent structural mechanoadaptation of the cell's own cytoskeletal machinery while tracking lineage commitment using phenotypic (quantitative morphology measures) and genotypic (e.g., reverse transcription Polymerase Chain Reaction, rtPCR) methods. These tools are expected to facilitate the mapping of the mechanome and incipient mechanistic understanding of stem cell mechanobiology, from the cellular to the tissue and organ length scales.
Collapse
Affiliation(s)
- Vina D L Putra
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Iman Jalilian
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia.,Department of Cell Biology, Yale University, New Haven, USA
| | - Madeline Campbell
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Kate Poole
- Cellular Mechanotransduction Group, EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Renee Whan
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Florence Tomasetig
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Melissa L Knothe Tate
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| |
Collapse
|
6
|
Impact of the actin cytoskeleton on cell development and function mediated via tropomyosin isoforms. Semin Cell Dev Biol 2019; 102:122-131. [PMID: 31630997 DOI: 10.1016/j.semcdb.2019.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 01/07/2023]
Abstract
The physiological function of actin filaments is challenging to dissect because of the pleiotropic impact of global disruption of the actin cytoskeleton. Tropomyosin isoforms have provided a unique opportunity to address this issue. A substantial fraction of actin filaments in animal cells consist of co-polymers of actin with specific tropomyosin isoforms which determine the functional capacity of the filament. Genetic manipulation of the tropomyosins has revealed isoform specific roles and identified the physiological function of the different actin filament types based on their tropomyosin isoform composition. Surprisingly, there is remarkably little redundancy between the tropomyosins resulting in highly penetrant impacts of both ectopic overexpression and knockout of isoforms. The physiological roles of the tropomyosins cover a broad range from development and morphogenesis to cell migration and specialised tissue function and human diseases.
Collapse
|
7
|
Desouza-Armstrong M, Gunning PW, Stehn JR. Tumor suppressor tropomyosin Tpm2.1 regulates sensitivity to apoptosis beyond anoikis characterized by changes in the levels of intrinsic apoptosis proteins. Cytoskeleton (Hoboken) 2017; 74:233-248. [PMID: 28378936 DOI: 10.1002/cm.21367] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/03/2017] [Accepted: 03/28/2017] [Indexed: 01/15/2023]
Abstract
The actin cytoskeleton is a polymer system that acts both as a sensor and mediator of apoptosis. Tropomyosins (Tpm) are a family of actin binding proteins that form co-polymers with actin and diversify actin filament function. Previous studies have shown that elevated expression of the tropomyosin isoform Tpm2.1 sensitized cells to apoptosis induced by cell detachment (anoikis) via an unknown mechanism. It is not yet known whether Tpm2.1 or other tropomyosin isoforms regulate sensitivity to apoptosis beyond anoikis. In this study, rat neuroepithelial cells overexpressing specific tropomyosin isoforms (Tpm1.7, Tpm2.1, Tpm3.1, and Tpm4.2) were screened for sensitivity to different classes of apoptotic stimuli, including both cytoskeletal and non-cytoskeletal targeting compounds. Results showed that elevated expression of tropomyosins in general inhibited apoptosis sensitivity to different stimuli. However, Tpm2.1 overexpression consistently enhanced sensitivity to anoikis as well as apoptosis induced by the actin targeting drug jasplakinolide (JASP). In contrast the cancer-associated isoform Tpm3.1 inhibited the induction of apoptosis by a range of agents. Treatment of Tpm2.1 overexpressing cells with JASP was accompanied by enhanced sensitivity to mitochondrial depolarization, a hallmark of intrinsic apoptosis. Moreover, Tpm2.1 overexpressing cells showed elevated levels of the apoptosis proteins Bak (proapoptotic), Mcl-1 (prosurvival), Bcl-2 (prosurvival) and phosphorylated p53 (Ser392). Finally, JASP treatment of Tpm2.1 cells caused significantly reduced Mcl-1, Bcl-2 and p53 (Ser392) levels relative to control cells. We therefore propose that Tpm2.1 regulates sensitivity to apoptosis beyond the scope of anoikis by modulating the expression of key intrinsic apoptosis proteins which primes the cell for death.
Collapse
Affiliation(s)
- Melissa Desouza-Armstrong
- Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Peter W Gunning
- Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Justine R Stehn
- Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Novogen Ltd. Hornsby, Sydney, New South Wales, 2077, Australia
| |
Collapse
|
8
|
Kopecki Z, Ludwig RJ, Cowin AJ. Cytoskeletal Regulation of Inflammation and Its Impact on Skin Blistering Disease Epidermolysis Bullosa Acquisita. Int J Mol Sci 2016; 17:ijms17071116. [PMID: 27420054 PMCID: PMC4964491 DOI: 10.3390/ijms17071116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 01/10/2023] Open
Abstract
Actin remodelling proteins regulate cytoskeletal cell responses and are important in both innate and adaptive immunity. These responses play a major role in providing a fine balance in a cascade of biological events that results in either protective acute inflammation or chronic inflammation that leads to a host of diseases including autoimmune inflammation mediated epidermolysis bullosa acquisita (EBA). This review describes the role of the actin cytoskeleton and in particular the actin remodelling protein called Flightless I (Flii) in regulating cellular inflammatory responses and its subsequent effect on the autoimmune skin blistering disease EBA. It also outlines the potential of an antibody based therapy for decreasing Flii expression in vivo to ameliorate the symptoms associated with EBA.
Collapse
Affiliation(s)
- Zlatko Kopecki
- Future Industries Institute, Regenerative Medicine, University of South Australia, Mawson Lakes 5095, Adelaide, Australia.
| | - Ralf J Ludwig
- Institute of Experimental Dermatology, University of Lubeck, Lubeck 23562, Germany.
| | - Allison J Cowin
- Future Industries Institute, Regenerative Medicine, University of South Australia, Mawson Lakes 5095, Adelaide, Australia.
| |
Collapse
|
9
|
Brettle M, Patel S, Fath T. Tropomyosins in the healthy and diseased nervous system. Brain Res Bull 2016; 126:311-323. [PMID: 27298153 DOI: 10.1016/j.brainresbull.2016.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 12/25/2022]
Abstract
Regulation of the actin cytoskeleton is dependent on a plethora of actin-associated proteins in all eukaryotic cells. The family of tropomyosins plays a key role in controlling the function of several of these actin-associated proteins and their access to actin filaments. In order to understand the regulation of the actin cytoskeleton in highly dynamic subcellular compartments of neurons such as growth cones of developing neurons and the synaptic compartment of mature neurons, it is pivotal to decipher the functional role of tropomyosins in the nervous system. In this review, we will discuss the current understanding and recent findings on the regulation of the actin cytoskeleton by tropomyosins and potential implication that this has for the dysregulation of the actin cytoskeleton in neurological diseases.
Collapse
Affiliation(s)
- Merryn Brettle
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, 2052 Sydney, New South Wales, Australia
| | - Shrujna Patel
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, 2052 Sydney, New South Wales, Australia
| | - Thomas Fath
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, 2052 Sydney, New South Wales, Australia.
| |
Collapse
|
10
|
Jalilian I, Heu C, Cheng H, Freittag H, Desouza M, Stehn JR, Bryce NS, Whan RM, Hardeman EC, Fath T, Schevzov G, Gunning PW. Cell elasticity is regulated by the tropomyosin isoform composition of the actin cytoskeleton. PLoS One 2015; 10:e0126214. [PMID: 25978408 PMCID: PMC4433179 DOI: 10.1371/journal.pone.0126214] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/31/2015] [Indexed: 02/07/2023] Open
Abstract
The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to a multi-gene family that form a co-polymer with actin filaments and differentially regulate actin filament stability, function and organization. Tpm isoform expression is highly regulated and together with the ability to sort to specific intracellular sites, result in the generation of distinct Tpm isoform-containing actin filament populations. Nanomechanical measurements conducted with an Atomic Force Microscope using indentation in Peak Force Tapping in indentation/ramping mode, demonstrated that Tpm impacts on cell stiffness and the observed effect occurred in a Tpm isoform-specific manner. Quantitative analysis of the cellular filamentous actin (F-actin) pool conducted both biochemically and with the use of a linear detection algorithm to evaluate actin structures revealed that an altered F-actin pool does not absolutely predict changes in cell stiffness. Inhibition of non-muscle myosin II revealed that intracellular tension generated by myosin II is required for the observed increase in cell stiffness. Lastly, we show that the observed increase in cell stiffness is partially recapitulated in vivo as detected in epididymal fat pads isolated from a Tpm3.1 transgenic mouse line. Together these data are consistent with a role for Tpm in regulating cell stiffness via the generation of specific populations of Tpm isoform-containing actin filaments.
Collapse
Affiliation(s)
- Iman Jalilian
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Celine Heu
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
- Biomedical Imaging facility, UNSW Australia, Sydney, NSW 2052, Australia
| | - Hong Cheng
- Neurodegeneration and Repair Unit, School of Medical Sciences, UNSW Australia, Sydney NSW 2052, Australia
| | - Hannah Freittag
- Neurodegeneration and Repair Unit, School of Medical Sciences, UNSW Australia, Sydney NSW 2052, Australia
| | - Melissa Desouza
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Justine R. Stehn
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Nicole S. Bryce
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Renee M. Whan
- Biomedical Imaging facility, UNSW Australia, Sydney, NSW 2052, Australia
| | - Edna C. Hardeman
- Neuromuscular and Regenerative Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Thomas Fath
- Neurodegeneration and Repair Unit, School of Medical Sciences, UNSW Australia, Sydney NSW 2052, Australia
| | - Galina Schevzov
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Peter W. Gunning
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
11
|
O'Neill GM. Scared stiff: Stabilizing the actin cytoskeleton to stop invading cancer cells in their tracks. BIOARCHITECTURE 2014; 1:29-31. [PMID: 21866259 DOI: 10.4161/bioa.1.1.14665] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 12/28/2010] [Indexed: 01/29/2023]
Abstract
In recent years the concept of plasticity between invasion modes used by individual cancer cells has been gaining increasing interest in the field. Individually invading tumour cells can be divided into those that use a mesenchymal invasion mode, those that use "amoeboid" invasion and those that can switch between the two modes. The morphological distinctions between these different modes of invasion suggest that the actin cytoskeleton is likely to be a major contributor to the plasticity of cancer cell invasion mechanisms. We have recently investigated this idea by manipulating expression of Tm5NM1, one isoform of the tropomyosin family of actin-associating proteins. In a novel finding, we discovered that stabilizing the actin cytoskeleton via elevated expression of Tm5NM1 specifically inhibits mesenchymal-type cancer cell invasion, without causing transition to "amoeboid" motility-thus stopping the invading cancer cells in their tracks. The present perspective discusses our recent data in the context of current understanding of invasion plasticity and considers how stabilizing actin filaments may inhibit the mesenchymal invasion mode.
Collapse
Affiliation(s)
- Geraldine M O'Neill
- Children's Cancer Research Unit; Kids Research Institute; The Children's Hospital at Westmead; Discipline of Paediatrics and Child Health; University of Sydney; Sydney, Australia
| |
Collapse
|
12
|
Tropomyosin Tm5NM1 spatially restricts src kinase activity through perturbation of Rab11 vesicle trafficking. Mol Cell Biol 2014; 34:4436-46. [PMID: 25288639 DOI: 10.1128/mcb.00796-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In order for cells to stop moving, they must synchronously stabilize actin filaments and their associated focal adhesions. How these two structures are coordinated in time and space is not known. We show here that the actin association protein Tm5NM1, which induces stable actin filaments, concurrently suppresses the trafficking of focal-adhesion-regulatory molecules. Using combinations of fluorescent biosensors and fluorescence recovery after photobleaching (FRAP), we demonstrate that Tm5NM1 reduces the level of delivery of Src kinase to focal adhesions, resulting in reduced phosphorylation of adhesion-resident Src substrates. Live imaging of Rab11-positive recycling endosomes that carry Src to focal adhesions reveals disruption of this pathway. We propose that tropomyosin synchronizes adhesion dynamics with the cytoskeleton by regulating actin-dependent trafficking of essential focal-adhesion molecules.
Collapse
|
13
|
Fife CM, McCarroll JA, Kavallaris M. Movers and shakers: cell cytoskeleton in cancer metastasis. Br J Pharmacol 2014; 171:5507-23. [PMID: 24665826 DOI: 10.1111/bph.12704] [Citation(s) in RCA: 388] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/14/2014] [Accepted: 03/18/2014] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Metastasis is responsible for the greatest number of cancer deaths. Metastatic disease, or the movement of cancer cells from one site to another, is a complex process requiring dramatic remodelling of the cell cytoskeleton. The various components of the cytoskeleton, actin (microfilaments), microtubules (MTs) and intermediate filaments, are highly integrated and their functions are well orchestrated in normal cells. In contrast, mutations and abnormal expression of cytoskeletal and cytoskeletal-associated proteins play an important role in the ability of cancer cells to resist chemotherapy and metastasize. Studies on the role of actin and its interacting partners have highlighted key signalling pathways, such as the Rho GTPases, and downstream effector proteins that, through the cytoskeleton, mediate tumour cell migration, invasion and metastasis. An emerging role for MTs in tumour cell metastasis is being unravelled and there is increasing interest in the crosstalk between key MT interacting proteins and the actin cytoskeleton, which may provide novel treatment avenues for metastatic disease. Improved understanding of how the cytoskeleton and its interacting partners influence tumour cell migration and metastasis has led to the development of novel therapeutics against aggressive and metastatic disease. LINKED ARTICLES This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24.
Collapse
Affiliation(s)
- C M Fife
- Tumour Biology and Targeting Program, Children's Cancer Institute Australia Lowy Cancer Research Centre, UNSW Australia, Randwick, NSW, Australia; Australian Centre for NanoMedicine, UNSW Australia, Sydney, NSW, Australia
| | | | | |
Collapse
|
14
|
Curthoys NM, Freittag H, Connor A, Desouza M, Brettle M, Poljak A, Hall A, Hardeman E, Schevzov G, Gunning PW, Fath T. Tropomyosins induce neuritogenesis and determine neurite branching patterns in B35 neuroblastoma cells. Mol Cell Neurosci 2013; 58:11-21. [PMID: 24211701 DOI: 10.1016/j.mcn.2013.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/21/2013] [Accepted: 10/29/2013] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The actin cytoskeleton is critically involved in the regulation of neurite outgrowth. RESULTS The actin cytoskeleton-associated protein tropomyosin induces neurite outgrowth in B35 neuroblastoma cells and regulates neurite branching in an isoform-dependent manner. CONCLUSIONS Our data indicate that tropomyosins are key regulators of the actin cytoskeleton during neurite outgrowth. SIGNIFICANCE Revealing the molecular machinery that regulates the actin cytoskeleton during neurite outgrowth may provide new therapeutic strategies to promote neurite regeneration after nerve injury. SUMMARY The formation of a branched network of neurites between communicating neurons is required for all higher functions in the nervous system. The dynamics of the actin cytoskeleton is fundamental to morphological changes in cell shape and the establishment of these branched networks. The actin-associated proteins tropomyosins have previously been shown to impact on different aspects of neurite formation. Here we demonstrate that an increased expression of tropomyosins is sufficient to induce the formation of neurites in B35 neuroblastoma cells. Furthermore, our data highlight the functional diversity of different tropomyosin isoforms during neuritogenesis. Tropomyosins differentially impact on the expression levels of the actin filament bundling protein fascin and increase the formation of filopodia along the length of neurites. Our data suggest that tropomyosins are central regulators of actin filament populations which drive distinct aspects of neuronal morphogenesis.
Collapse
Affiliation(s)
- Nikki Margarita Curthoys
- Neurodegeneration and Repair Unit, School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia; Oncology Research Unit, School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia
| | - Hannah Freittag
- Neurodegeneration and Repair Unit, School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia; Neuromuscular and Regenerative Medicine Unit, School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia
| | - Andrea Connor
- Neurodegeneration and Repair Unit, School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia; Oncology Research Unit, School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia
| | - Melissa Desouza
- Neurodegeneration and Repair Unit, School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia; Oncology Research Unit, School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia
| | - Merryn Brettle
- Neurodegeneration and Repair Unit, School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia
| | - Anne Poljak
- Bioanalytical Mass Spectrometry Facility, Bioanalytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Amelia Hall
- Neurodegeneration and Repair Unit, School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia
| | - Edna Hardeman
- Neuromuscular and Regenerative Medicine Unit, School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia
| | - Galina Schevzov
- Oncology Research Unit, School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia
| | - Peter William Gunning
- Oncology Research Unit, School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia
| | - Thomas Fath
- Neurodegeneration and Repair Unit, School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia.
| |
Collapse
|
15
|
Wilkinson AE, Kobelt LJ, Leipzig ND. Immobilized ECM molecules and the effects of concentration and surface type on the control of NSC differentiation. J Biomed Mater Res A 2013. [DOI: 10.1002/jbm.a.35001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ashley E. Wilkinson
- Department of Chemical and Biomolecular Engineering; University of Akron; 200 East Buchtel Common, Whitby Hall 211 Akron Ohio 44325
| | - Liza J. Kobelt
- Department of Chemical and Biomolecular Engineering; University of Akron; 200 East Buchtel Common, Whitby Hall 211 Akron Ohio 44325
| | - Nic D. Leipzig
- Department of Chemical and Biomolecular Engineering; University of Akron; 200 East Buchtel Common, Whitby Hall 211 Akron Ohio 44325
| |
Collapse
|
16
|
Mamidi R, Michael JJ, Muthuchamy M, Chandra M. Interplay between the overlapping ends of tropomyosin and the N terminus of cardiac troponin T affects tropomyosin states on actin. FASEB J 2013; 27:3848-59. [PMID: 23748972 DOI: 10.1096/fj.13-232363] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The functional significance of the molecular swivel at the head-to-tail overlapping ends of contiguous tropomyosin (Tm) dimers in striated muscle is unknown. Contractile measurements were made in muscle fibers from transgenic (TG) mouse hearts that expressed a mutant α-Tm (Tm(H276N)). We also reconstituted mouse cardiac troponin T (McTnT) N-terminal deletion mutants, McTnT(1-44Δ) and McTnT(45-74Δ), into muscle fibers from Tm(H276N). For controls, we used the wild-type (WT) McTnT because altered effects could be correlated with the mutant forms of McTnT. Tm(H276N) slowed crossbridge (XB) detachment rate (g) by 19%. McTnT(1-44Δ) attenuated Ca(2+)-activated maximal tension against Tm(WT) (36%) and Tm(H276N) (38%), but sped g only against Tm(H276N) by 35%. The rate of tension redevelopment decreased (17%) only in McTnT(1-44Δ) + Tm(H276N) fibers. McTnT(45-74Δ) attenuated tension (19%) and myofilament Ca(2+) sensitivity (pCa50=5.93 vs. 6.00 in the control fibers) against Tm(H276N), but not against Tm(WT) background. Thus, altered XB cycling kinetics decreased the fraction of strongly bound XBs in McTnT(1-44Δ) + Tm(H276N) fibers, whereas diminished thin-filament cooperativity attenuated tension in McTnT(45-74Δ) + Tm(H276N) fibers. In summary, our study is the first to show that the interplay between the N terminus of cTnT and the overlapping ends of contiguous Tm effectuates different states of Tm on the actin filament.
Collapse
Affiliation(s)
- Ranganath Mamidi
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520, USA
| | | | | | | |
Collapse
|
17
|
Forsthoefel DJ, James NP, Escobar DJ, Stary JM, Vieira AP, Waters FA, Newmark PA. An RNAi screen reveals intestinal regulators of branching morphogenesis, differentiation, and stem cell proliferation in planarians. Dev Cell 2013; 23:691-704. [PMID: 23079596 DOI: 10.1016/j.devcel.2012.09.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 08/12/2012] [Accepted: 09/13/2012] [Indexed: 11/19/2022]
Abstract
Planarians grow and regenerate organs by coordinating proliferation and differentiation of pluripotent stem cells with remodeling of postmitotic tissues. Understanding how these processes are orchestrated requires characterizing cell-type-specific gene expression programs and their regulation during regeneration and homeostasis. To this end, we analyzed the expression profile of planarian intestinal phagocytes, cells responsible for digestion and nutrient storage/distribution. Utilizing RNA interference, we identified cytoskeletal regulators required for intestinal branching morphogenesis and a modulator of bioactive sphingolipid metabolism, ceramide synthase, required for the production of functional phagocytes. Additionally, we found that a gut-enriched homeobox transcription factor, nkx-2.2, is required for somatic stem cell proliferation, suggesting a niche-like role for phagocytes. Identification of evolutionarily conserved regulators of intestinal branching, differentiation, and stem cell dynamics demonstrates the utility of the planarian digestive system as a model for elucidating the mechanisms controlling postembryonic organogenesis.
Collapse
Affiliation(s)
- David J Forsthoefel
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Bristow JM, Reno TA, Jo M, Gonias SL, Klemke RL. Dynamic phosphorylation of tyrosine 665 in pseudopodium-enriched atypical kinase 1 (PEAK1) is essential for the regulation of cell migration and focal adhesion turnover. J Biol Chem 2012; 288:123-31. [PMID: 23105102 DOI: 10.1074/jbc.m112.410910] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pseudopodium-enriched atypical kinase 1 (PEAK1) is a recently described tyrosine kinase that associates with the actin cytoskeleton and focal adhesion (FA) in migrating cells. PEAK1 is known to promote cell migration, but the responsible mechanisms remain unclear. Here, we show that PEAK1 controls FA assembly and disassembly in a dynamic pathway controlled by PEAK1 phosphorylation at Tyr-665. Knockdown of endogenous PEAK1 inhibits random cell migration. In PEAK1-deficient cells, FA lifetimes are decreased, FA assembly times are shortened, and FA disassembly times are extended. Phosphorylation of Tyr-665 in PEAK1 is essential for normal PEAK1 localization and its function in the regulation of FAs; however, constitutive phosphorylation of PEAK1 Tyr-665 is also disruptive of its function, indicating a requirement for precise spatiotemporal regulation of PEAK1. Src family kinases are required for normal PEAK1 localization and function. Finally, we provide evidence that PEAK1 promotes cancer cell invasion through Matrigel by a mechanism that requires dynamic regulation of Tyr-665 phosphorylation.
Collapse
Affiliation(s)
- Jeanne M Bristow
- Department of Pathology and Moores Cancer Center, University of California at San Diego, La Jolla, California 92093, USA
| | | | | | | | | |
Collapse
|
19
|
N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB. Proc Natl Acad Sci U S A 2012; 109:12449-54. [PMID: 22814378 DOI: 10.1073/pnas.1210303109] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Protein N-terminal acetylation (Nt-acetylation) is an important mediator of protein function, stability, sorting, and localization. Although the responsible enzymes are thought to be fairly well characterized, the lack of identified in vivo substrates, the occurrence of Nt-acetylation substrates displaying yet uncharacterized N-terminal acetyltransferase (NAT) specificities, and emerging evidence of posttranslational Nt-acetylation, necessitate the use of genetic models and quantitative proteomics. NatB, which targets Met-Glu-, Met-Asp-, and Met-Asn-starting protein N termini, is presumed to Nt-acetylate 15% of all yeast and 18% of all human proteins. We here report on the evolutionary traits of NatB from yeast to human and demonstrate that ectopically expressed hNatB in a yNatB-Δ yeast strain partially complements the natB-Δ phenotypes and partially restores the yNatB Nt-acetylome. Overall, combining quantitative N-terminomics with yeast studies and knockdown of hNatB in human cell lines, led to the unambiguous identification of 180 human and 110 yeast NatB substrates. Interestingly, these substrates included Met-Gln- N-termini, which are thus now classified as in vivo NatB substrates. We also demonstrate the requirement of hNatB activity for maintaining the structure and function of actomyosin fibers and for proper cellular migration. In addition, expression of tropomyosin-1 restored the altered focal adhesions and cellular migration defects observed in hNatB-depleted HeLa cells, indicative for the conserved link between NatB, tropomyosin, and actin cable function from yeast to human.
Collapse
|
20
|
Zhong J, Baquiran JB, Bonakdar N, Lees J, Ching YW, Pugacheva E, Fabry B, O'Neill GM. NEDD9 stabilizes focal adhesions, increases binding to the extra-cellular matrix and differentially effects 2D versus 3D cell migration. PLoS One 2012; 7:e35058. [PMID: 22509381 PMCID: PMC3324407 DOI: 10.1371/journal.pone.0035058] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 03/08/2012] [Indexed: 12/30/2022] Open
Abstract
The speed of cell migration on 2-dimensional (2D) surfaces is determined by the rate of assembly and disassembly of clustered integrin receptors known as focal adhesions. Different modes of cell migration that have been described in 3D environments are distinguished by their dependence on integrin-mediated interactions with the extra-cellular matrix. In particular, the mesenchymal invasion mode is the most dependent on focal adhesion dynamics. The focal adhesion protein NEDD9 is a key signalling intermediary in mesenchymal cell migration, however whether NEDD9 plays a role in regulating focal adhesion dynamics has not previously been reported. As NEDD9 effects on 2D migration speed appear to depend on the cell type examined, in the present study we have used mouse embryo fibroblasts (MEFs) from mice in which the NEDD9 gene has been depleted (NEDD9 -/- MEFs). This allows comparison with effects of other focal adhesion proteins that have previously been demonstrated using MEFs. We show that focal adhesion disassembly rates are increased in the absence of NEDD9 expression and this is correlated with increased paxillin phosphorylation at focal adhesions. NEDD9-/- MEFs have increased rates of migration on 2D surfaces, but conversely, migration of these cells is significantly reduced in 3D collagen gels. Importantly we show that myosin light chain kinase is activated in 3D in the absence of NEDD9 and is conversely inhibited in 2D cultures. Measurement of adhesion strength reveals that NEDD9-/- MEFs have decreased adhesion to fibronectin, despite upregulated α5β1 fibronectin receptor expression. We find that β1 integrin activation is significantly suppressed in the NEDD9-/-, suggesting that in the absence of NEDD9 there is decreased integrin receptor activation. Collectively our data suggest that NEDD9 may promote 3D cell migration by slowing focal adhesion disassembly, promoting integrin receptor activation and increasing adhesion force to the ECM.
Collapse
Affiliation(s)
- Jessie Zhong
- Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Discipline of Paediatrics and Child Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Jaime B. Baquiran
- Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Navid Bonakdar
- Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Justin Lees
- Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Yu Wooi Ching
- Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Elena Pugacheva
- Mary Babb Randolph Cancer Center (MBRCC), West Virginia University, Morgantown, West Virginia, United States of America
| | - Ben Fabry
- Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Geraldine M. O'Neill
- Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Discipline of Paediatrics and Child Health, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
21
|
Goh Then Sin C, Hersch N, Rudland PS, Barraclough R, Hoffmann B, Gross SR. S100A4 downregulates filopodia formation through increased dynamic instability. Cell Adh Migr 2012; 5:439-47. [PMID: 21975553 DOI: 10.4161/cam.5.5.17773] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cell migration requires the initial formation of cell protrusions, lamellipodia and/or filopodia, the attachment of the leading lamella to extracellular cues and the formation and efficient recycling of focal contacts at the leading edge. The small calcium binding EF-hand protein S100A4 has been shown to promote cell motility but the direct molecular mechanisms responsible remain to be elucidated. In this work, we provide new evidences indicating that elevated levels of S100A4 affect the stability of filopodia and prevent the maturation of focal complexes. Increasing the levels of S100A4 in a rat mammary benign tumor derived cell line results in acquired cellular migration on the wound healing scratch assay. At the cellular levels, we found that high levels of S100A4 induce the formation of many nascent filopodia, but that only a very small and limited number of those can stably adhere and mature, as opposed to control cells, which generate fewer protrusions but are able to maintain these into more mature projections. This observation was paralleled by the fact that S100A4 overexpressing cells were unable to establish stable focal adhesions. Using different truncated forms of the S100A4 proteins that are unable to bind to myosin IIA, our data suggests that this newly identified functions of S100A4 is myosin-dependent, providing new understanding on the regulatory functions of S100A4 on cellular migration.
Collapse
|
22
|
Schevzov G, Curthoys NM, Gunning PW, Fath T. Functional diversity of actin cytoskeleton in neurons and its regulation by tropomyosin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 298:33-94. [PMID: 22878104 DOI: 10.1016/b978-0-12-394309-5.00002-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurons comprise functionally, molecularly, and spatially distinct subcellular compartments which include the soma, dendrites, axon, branches, dendritic spines, and growth cones. In this chapter, we detail the remarkable ability of the neuronal cytoskeleton to exquisitely regulate all these cytoplasmic distinct partitions, with particular emphasis on the microfilament system and its plethora of associated proteins. Importance will be given to the family of actin-associated proteins, tropomyosin, in defining distinct actin filament populations. The ability of tropomyosin isoforms to regulate the access of actin-binding proteins to the filaments is believed to define the structural diversity and dynamics of actin filaments and ultimately be responsible for the functional outcome of these filaments.
Collapse
Affiliation(s)
- Galina Schevzov
- Oncology Research Unit, Department of Pharmacology, School of Medical Sciences, University of New South Wales, Kensington, Australia
| | | | | | | |
Collapse
|
23
|
Schevzov G, Whittaker SP, Fath T, Lin JJ, Gunning PW. Tropomyosin isoforms and reagents. BIOARCHITECTURE 2011; 1:135-164. [PMID: 22069507 DOI: 10.4161/bioa.1.4.17897] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/18/2011] [Accepted: 08/26/2011] [Indexed: 12/29/2022]
Abstract
Tropomyosins are rod-like dimers which form head-to-tail polymers along the length of actin filaments and regulate the access of actin binding proteins to the filaments.1 The diversity of tropomyosin isoforms, over 40 in mammals, and their role in an increasing number of biological processes presents a challenge both to experienced researchers and those new to this field. The increased appreciation that the role of these isoforms expands beyond that of simply stabilizing actin filaments has lead to a surge of reagents and techniques to study their function and mechanisms of action. This report is designed to provide a basic guide to the genes and proteins and the availability of reagents which allow effective study of this family of proteins. We highlight the value of combining multiple techniques to better evaluate the function of different tm isoforms and discuss the limitations of selected reagents. Brief background material is included to demystify some of the unfortunate complexity regarding this multi-gene family of proteins including the unconventional nomenclature of the isoforms and the evolutionary relationships of isoforms between species. Additionally, we present step-by-step detailed experimental protocols used in our laboratory to assist new comers to the field and experts alike.
Collapse
Affiliation(s)
- Galina Schevzov
- Oncology Research Unit; School of Medical Sciences; The University of New South Wales; Sydney, NSW Australia
| | | | | | | | | |
Collapse
|
24
|
Lees JG, Bach CTT, O'Neill GM. Interior decoration: tropomyosin in actin dynamics and cell migration. Cell Adh Migr 2011; 5:181-6. [PMID: 21173575 DOI: 10.4161/cam.5.2.14438] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cell migration and invasion requires the precise temporal and spatial orchestration of a variety of biological processes. Filaments of polymerized actin are critical players in these diverse processes, including the regulation of cell anchorage points (both cell-cell and cell-extracellular matrix), the uptake and delivery of molecules via endocytic pathways and the generation of force for both membrane protrusion and retraction. How the actin filaments are specialized for each of these discrete functions is yet to be comprehensively elucidated. The cytoskeletal tropomyosins are a family of actin associating proteins that form head-to-tail polymers which lay in the major groove of polymerized actin filaments. In the present review we summarize the emerging isoform-specific functions of tropomyosins in cell migration and invasion and discuss their potential roles in the specialization of actin filaments for the diverse cellular processes that together regulate cell migration and invasion.
Collapse
Affiliation(s)
- Justin G Lees
- Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | | | | |
Collapse
|
25
|
Gilbert I, Robert C, Dieleman S, Blondin P, Sirard MA. Transcriptional effect of the LH surge in bovine granulosa cells during the peri-ovulation period. Reproduction 2010; 141:193-205. [PMID: 21123518 DOI: 10.1530/rep-10-0381] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The LH surge induces a multitude of events that are essential for ovulation and corpus luteum formation. The transcriptional responses to the LH surge of preovulatory granulosa cells (GCs) are complex and still poorly understood. In this study, a genome-wide bovine oligo array was used to determine how the gene expression profile of GCs is modulated by the LH surge. GCs from three different stages were used to assess the short- and long-term effects of this hormone on follicle differentiation: 1) 2 h before induction of the LH surge, 2) 6 h and 3) 22 h after the LH surge. The results obtained were a list of differentially expressed transcripts for each GC group. To provide a comprehensive understanding of the processes at play, biological annotations were used to reveal the different functions of transcripts, confirming that the LH surge acts in a temporal manner. The pre-LH group is involved in typical tasks such as cell division, development, and proliferation, while the early response to the LH surge included features such as response to stimulus, vascularization, and lipid synthesis, which are indicative of cells preparing for ovulation. The late response of GCs revealed terms associated with protein localization and intracellular transport, corresponding to the future secretion task that will be required for the transformation of GCs into corpus luteum. Overall, results described in this study provide new insights into the different transcriptional steps that GCs go through during ovulation and before luteinization.
Collapse
Affiliation(s)
- Isabelle Gilbert
- Département des Sciences Animales, Centre de Recherche en Biologie de la Reproduction, Université Laval, Sainte-Foy, Québec, G1K 7P4, Canada
| | | | | | | | | |
Collapse
|