1
|
Hou J, Du Y, Cui H. RNF6 promotes cell proliferation of glioblastoma by targeting ubiquitin-mediated degradation of p27. Biochem Biophys Res Commun 2025; 752:151460. [PMID: 39938447 DOI: 10.1016/j.bbrc.2025.151460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
RNF6 (RING finger protein 6), an atypical RING-type ubiquitin ligase, has been reported to be a potential tumor promoter in several human cancers. However, the role of RNF6 in glioblastoma remains poorly understood. In this study, we found that RNF6 was highly expressed in glioblastoma tissues, and its elevated expression was significantly associated with poor prognosis in glioblastoma patients. RNF6 depletion remarkably inhibited cell growth of glioblastoma cells. Mechanistically, RNF6 depletion stabilized p27 protein expression. We demonstrated that RNF6 interacted with p27 and mediated its ubiquitination and degradation in an E3 ligase activity-dependent manner. Moreover, we provide the first evidence revealing the crucial role RNF6 in mediating SKP2 expression at both transcriptional and post-translational levels. On the one hand, RNF6 played as a transcription factor to regulate the activity of the SKP2 promoter. On the other hand, RNF6 interacted with SKP2 and stabilized its protein levels in an Akt-dependent manner. Collectively, our data indicated that RNF6 accelerated glioblastoma cell proliferation and tumorigenesis by targeting p27 for degradation.
Collapse
Affiliation(s)
- Jianbing Hou
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China; Jinfeng Laboratory, Chongqing, 400716, China
| | - Yi Du
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China; Jinfeng Laboratory, Chongqing, 400716, China.
| |
Collapse
|
2
|
Ganesan IP, Kiyokawa H. A Perspective on Therapeutic Targeting Against Ubiquitin Ligases to Stabilize Tumor Suppressor Proteins. Cancers (Basel) 2025; 17:626. [PMID: 40002221 PMCID: PMC11853300 DOI: 10.3390/cancers17040626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/26/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
The loss of functions of tumor suppressor (TS) genes plays a key role in not only tumor initiation but also tumor progression leading to poor prognosis. While therapeutic inhibition of oncogene-encoded kinases has shown clinical success, restoring TS functions remains challenging due to conceptual and technical limitations. E3 ubiquitin ligases that ubiquitinate TS proteins for accelerated degradation in cancers emerge as promising therapeutic targets. Unlike proteasomal inhibitors with a broad spectrum, inhibitors of an E3 ligase would offer superior selectivity and efficacy in enhancing expression of its substrate TS proteins as far as the TS proteins retain wild-type structures. Recent advances in developing E3 inhibitors, including MDM2 inhibitors, highlight their potential and ultimately guide the framework to establish E3 inhibition as effective strategies to treat specific types of cancers. This review explores E3 ligases that negatively regulate bona fide TS proteins, the developmental status of E3 inhibitors, and their promise and pitfalls as therapeutic agents for anti-cancer precision medicine.
Collapse
Affiliation(s)
| | - Hiroaki Kiyokawa
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
3
|
Park IA, Noh YK, Min KW, Kim DH, Lee JY, Son BK, Kwon MJ, Han MH, Hur JY, Pyo JS. p27 Cell Cycle Inhibitor and Survival in Luminal-Type Breast Cancer: Gene Ontology, Machine Learning, and Drug Screening Analysis. J Breast Cancer 2024; 27:305-322. [PMID: 39344410 PMCID: PMC11543279 DOI: 10.4048/jbc.2024.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/02/2024] [Accepted: 08/25/2024] [Indexed: 10/01/2024] Open
Abstract
PURPOSE A widely distributed cell cycle inhibitor, p27, regulates cyclin-dependent kinase-cyclin complexes. Although the prognostic value of p27 has been established for various types of carcinomas, its role in luminal breast cancer remains poorly understood. This study aimed to explore the functional enrichment of p27 and identify potential drug targets in patients with luminal-type breast cancer. METHODS Clinicopathological data were collected from 868 patients with luminal-type breast cancer. Additionally, publicly available data from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset (1,500 patients) and the Gene Expression Omnibus database (855 patients) were included in the analysis. Immunohistochemical staining for p27, differential gene expression analysis, disease ontology analysis, survival prediction modeling using machine learning (ML), and in vitro drug screening were also performed. RESULTS Low p27 expression correlated with younger age, advanced tumor stage, estrogen receptor/progesterone receptor negativity, decreased cluster of differentiation 8+ T cell count, and poorer survival outcomes in luminal-type breast cancer. The METABRIC data revealed that reduced cyclin-dependent kinase inhibitor 1B (CDKN1B) expression (encoding p27) was associated with cell proliferation-related pathways and epigenetic polycomb repressive complex 2. Using ML, p27 emerged as the second most significant survival factor after N stage, thereby enhancing survival model performance. Additionally, luminal-type breast cancer cell lines with low CDKN1B expression demonstrated increased sensitivity to specific anticancer drugs such as voxtalisib and serdemetan, implying a potential therapeutic synergy between CDKN1B-targeted approaches and these drugs. CONCLUSION The integration of ML and bioinformatic analyses of p27 has the potential to enhance risk stratification and facilitate personalized treatment strategies for patients with breast cancer.
Collapse
Affiliation(s)
- In Ah Park
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yung-Kyun Noh
- Department of Computer Science, Hanyang University, Seoul, Korea
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea
| | - Kyueng-Whan Min
- Department of Pathology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, Korea.
| | - Dong-Hoon Kim
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Jeong-Yeon Lee
- Department of Pathology, Hanyang University College of Medicine, Seoul, Korea
| | - Byoung Kwan Son
- Department of Internal Medicine, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, Korea
| | - Mi Jung Kwon
- Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Myung-Hoon Han
- Department of Neurosurgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Joon Young Hur
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Jung Soo Pyo
- Department of Pathology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, Korea
| |
Collapse
|
4
|
Zhang H, Wang J, Ge Y, Ye M, Jin X. Siah1 in cancer and nervous system diseases (Review). Oncol Rep 2021; 47:35. [PMID: 34958110 DOI: 10.3892/or.2021.8246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/10/2021] [Indexed: 11/06/2022] Open
Abstract
The dysregulation of the ubiquitin‑proteasome system will result in the abnormal accumulation and dysfunction of proteins, thus leading to severe diseases. Seven in absentia homolog 1 (Siah1), an E3 ubiquitin ligase, has attracted wide attention due to its varied functions in physiological and pathological conditions, and the numerous newly discovered Siah1 substrates. In cancer and nervous system diseases, the functions of Siah1 as a promoter or a suppressor of diseases are related to the change in cellular microenvironment and subcellular localization. At the same time, complex upstream regulations make Siah1 different from other E3 ubiquitin ligases. Understanding the molecular mechanism of Siah1 will help the study of various signaling pathways and benefit the therapeutic strategy of human diseases (e.g., cancer and nervous system diseases). In the present review, the functions and regulations of Siah1 are described. Moreover, novel substrates of Siah1 discovered in recent studies will be highlighted in cancer and nervous system diseases, providing ideas for future research and clinical targeted therapies using Siah1.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Jie Wang
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Yidong Ge
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Meng Ye
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Xiaofeng Jin
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| |
Collapse
|
5
|
Reciprocal antagonistic regulation of E3 ligases controls ACC synthase stability and responses to stress. Proc Natl Acad Sci U S A 2021; 118:2011900118. [PMID: 34404725 DOI: 10.1073/pnas.2011900118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ethylene influences plant growth, development, and stress responses via crosstalk with other phytohormones; however, the underlying molecular mechanisms are still unclear. Here, we describe a mechanistic link between the brassinosteroid (BR) and ethylene biosynthesis, which regulates cellular protein homeostasis and stress responses. We demonstrate that as a scaffold, 1-aminocyclopropane-1-carboxylic acid (ACC) synthases (ACS), a rate-limiting enzyme in ethylene biosynthesis, promote the interaction between Seven-in-Absentia of Arabidopsis (SINAT), a RING-domain containing E3 ligase involved in stress response, and ETHYLENE OVERPRODUCER 1 (ETO1) and ETO1-like (EOL) proteins, the E3 ligase adaptors that target a subset of ACS isoforms. Each E3 ligase promotes the degradation of the other, and this reciprocally antagonistic interaction affects the protein stability of ACS. Furthermore, 14-3-3, a phosphoprotein-binding protein, interacts with SINAT in a BR-dependent manner, thus activating reciprocal degradation. Disrupted reciprocal degradation between the E3 ligases compromises the survival of plants in carbon-deficient conditions. Our study reveals a mechanism by which plants respond to stress by modulating the homeostasis of ACS and its cognate E3 ligases.
Collapse
|
6
|
p27 controls autophagic vesicle trafficking in glucose-deprived cells via the regulation of ATAT1-mediated microtubule acetylation. Cell Death Dis 2021; 12:481. [PMID: 33986251 PMCID: PMC8119952 DOI: 10.1038/s41419-021-03759-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022]
Abstract
The cyclin-dependent kinase inhibitor p27Kip1 (p27) has been involved in promoting autophagy and survival in conditions of metabolic stress. While the signaling cascade upstream of p27 leading to its cytoplasmic localization and autophagy induction has been extensively studied, how p27 stimulates the autophagic process remains unclear. Here, we investigated the mechanism by which p27 promotes autophagy upon glucose deprivation. Mouse embryo fibroblasts (MEFs) lacking p27 exhibit a decreased autophagy flux compared to wild-type cells and this is correlated with an abnormal distribution of autophagosomes. Indeed, while autophagosomes are mainly located in the perinuclear area in wild-type cells, they are distributed throughout the cytoplasm in p27-null MEFs. Autophagosome trafficking towards the perinuclear area, where most lysosomes reside, is critical for autophagosome–lysosome fusion and cargo degradation. Vesicle trafficking is mediated by motor proteins, themselves recruited preferentially to acetylated microtubules, and autophagy flux is directly correlated to microtubule acetylation levels. p27−/− MEFs exhibit a marked reduction in microtubule acetylation levels and restoring microtubule acetylation in these cells, either by re-expressing p27 or with deacetylase inhibitors, restores perinuclear positioning of autophagosomes and autophagy flux. Finally, we find that p27 promotes microtubule acetylation by binding to and stabilizing α-tubulin acetyltransferase (ATAT1) in glucose-deprived cells. ATAT1 knockdown results in random distribution of autophagosomes in p27+/+ MEFs and impaired autophagy flux, similar to that observed in p27−/− cells. Overall, in response to glucose starvation, p27 promotes autophagy by facilitating autophagosome trafficking along microtubule tracks by maintaining elevated microtubule acetylation via an ATAT1-dependent mechanism.
Collapse
|
7
|
Wang J, Ni X, Shen S, Zhang D, Ni X, Suo T, Lu P, Fan K, Liu H, Liu H. Phosphorylation at Ser10 triggered p27 degradation and promoted gallbladder carcinoma cell migration and invasion by regulating stathmin1 under glucose deficiency. Cell Signal 2021; 80:109923. [PMID: 33444777 DOI: 10.1016/j.cellsig.2021.109923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
Gallbladder carcinoma (GBC) is a considerable challenge because of its high metastatic potential. The tumor microenvironment is characterized by nutrient starvation, which promotes tumor metastasis. Stathmin1, an important microtubuleregulating protein, is overexpressed and promotes metastasis in GBC. It remains unclear how the harsh tumor microenvironment regulates stathmin1 expression to affect GBC metastasis. We employed glucose deficiency to mimic nutrient starvation and found that glucose deficiency upregulated stathmin1 transcription. However, glucose deficiency also promoted p27 degradation. There was a significant negative correlation between stathmin1 and p27 protein levels under glucose deficiency. Further study revealed that, under glucose deficiency, human kinase interacting with stathmin (hKIS) induced phosphorylation at Ser10 of p27 and its translocation to the cytoplasm for degradation, which upregulated the transcription factor E2F1 to promote stathmin1 transcription. hKIS knockdown significantly inhibited p27 cytoplasmic translocation and its consequent degradation. Stathmin1 knockdown significantly inhibited GBC cell migration and invasion in vitro. Our study revealed the role of the hKIS/p27/E2F1 axis in upregulating stathmin1 transcription to promote GBC cell migration and invasion under glucose deficiency conditions.
Collapse
Affiliation(s)
- Jiwen Wang
- Department of General Surgery, Zhongshan Hospital, General Surgery Institute, Fudan University, Shanghai 200032, China; Biliary Tract Disease Institute, Fudan University, Shanghai 200032, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, ZhongShan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaojian Ni
- Department of General Surgery, Zhongshan Hospital, General Surgery Institute, Fudan University, Shanghai 200032, China; Biliary Tract Disease Institute, Fudan University, Shanghai 200032, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, ZhongShan Hospital, Fudan University, Shanghai 200032, China
| | - Sheng Shen
- Department of General Surgery, Zhongshan Hospital, General Surgery Institute, Fudan University, Shanghai 200032, China; Biliary Tract Disease Institute, Fudan University, Shanghai 200032, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, ZhongShan Hospital, Fudan University, Shanghai 200032, China
| | - Dexiang Zhang
- General Surgery Department, Zhongshan-Xuhui Hospital Affiliated to Fudan University, Shanghai 200031, China
| | - Xiaoling Ni
- Department of General Surgery, Zhongshan Hospital, General Surgery Institute, Fudan University, Shanghai 200032, China; Biliary Tract Disease Institute, Fudan University, Shanghai 200032, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, ZhongShan Hospital, Fudan University, Shanghai 200032, China
| | - Tao Suo
- Department of General Surgery, Zhongshan Hospital, General Surgery Institute, Fudan University, Shanghai 200032, China; Biliary Tract Disease Institute, Fudan University, Shanghai 200032, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, ZhongShan Hospital, Fudan University, Shanghai 200032, China
| | - Pinxiang Lu
- General Surgery Department, Zhongshan-Xuhui Hospital Affiliated to Fudan University, Shanghai 200031, China
| | - Kun Fan
- Department of General Surgery, Zhongshan Hospital, General Surgery Institute, Fudan University, Shanghai 200032, China; Biliary Tract Disease Institute, Fudan University, Shanghai 200032, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, ZhongShan Hospital, Fudan University, Shanghai 200032, China; General Surgery Department, Zhongshan-Xuhui Hospital Affiliated to Fudan University, Shanghai 200031, China.
| | - Han Liu
- Department of General Surgery, Zhongshan Hospital, General Surgery Institute, Fudan University, Shanghai 200032, China; Biliary Tract Disease Institute, Fudan University, Shanghai 200032, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, ZhongShan Hospital, Fudan University, Shanghai 200032, China.
| | - Houbao Liu
- Department of General Surgery, Zhongshan Hospital, General Surgery Institute, Fudan University, Shanghai 200032, China; Biliary Tract Disease Institute, Fudan University, Shanghai 200032, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, ZhongShan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
8
|
Nakai N, Kitai S, Iida N, Inoue S, Higashida K. Autophagy under glucose starvation enhances protein translation initiation in response to re-addition of glucose in C2C12 myotubes. FEBS Open Bio 2020; 10:2149-2156. [PMID: 32882752 PMCID: PMC7530399 DOI: 10.1002/2211-5463.12970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 01/02/2023] Open
Abstract
Proteolysis is known to play a crucial role in maintaining skeletal muscle mass and function. Autophagy is a conserved intracellular process for the bulk degradation of proteins in lysosomes. Although nutrient starvation is known to induce autophagy, the effect of nutrient repletion following starvation on the mTOR pathway‐mediated protein translation remains unclear. In the present study, we examined the effect of glucose starvation on the initiation of protein translation in response to glucose re‐addition in C2C12 myotubes. Glucose starvation decreased the phosphorylation of p70 S6 kinase (p70S6K), a bonafide marker for protein translation initiation. Following re‐addition of glucose, phosphorylation of p70S6K markedly increased only in glucose‐starved cells. Inhibiting autophagy using pharmacological inhibitors diminished the effect of glucose re‐addition on the phosphorylation of p70S6K, whereas inhibition of the ubiquitin‐proteasome system did not exert any effect. In conclusion, autophagy under glucose starvation partially accounts for the activation of translation initiation by re‐addition of glucose.
Collapse
Affiliation(s)
- Naoya Nakai
- Laboratory of Exercise Nutrition, Department of Nutrition, University of Shiga Prefecture, Hikone, Japan
| | - Saki Kitai
- Laboratory of Exercise Nutrition, Department of Nutrition, University of Shiga Prefecture, Hikone, Japan
| | - Noriko Iida
- Laboratory of Exercise Nutrition, Department of Nutrition, University of Shiga Prefecture, Hikone, Japan
| | - Sachika Inoue
- Laboratory of Exercise Nutrition, Department of Nutrition, University of Shiga Prefecture, Hikone, Japan
| | - Kazuhiko Higashida
- Laboratory of Exercise Nutrition, Department of Nutrition, University of Shiga Prefecture, Hikone, Japan
| |
Collapse
|
9
|
Ren H, Mi X, Zhao P, Zhao X, Wei N, Huang H, Meng Z, Kou J, Sun M, Liu Y, Zhang H, Yang J, Li W, Li H. TRAF4, a new substrate of SIAH1, participates in chemotherapy resistance of breast cancer cell by counteracting SIAH1-mediated downregulation of β-catenin. Breast Cancer Res Treat 2020; 183:275-289. [PMID: 32671611 DOI: 10.1007/s10549-020-05789-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/04/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE TRAF4 plays an important role in the development and progression of breast cancer, but its impact on chemotherapy resistance is as yet, however, poorly understood. METHODS Western blotting, immunoprecipitation, and immunofluorescence staining were used to identify and verify that TRAF4 was a novel substrate of SIAH1 and prevented SIAH1-mediated β-catenin degradation. Cell proliferation analysis and Flow cytometry analysis were utilized to detect TRAF4's function on the growth-inhibitory effect of etoposide. Immunohistochemistry was used to detect the expression of TRAF4, SIAH1, and β-catenin. Statistical analysis was used to analyze the relationships between them with clinical parameters and curative effect of chemotherapy pathologically. RESULTS Our results suggested that TRAF4 prevents SIAH1-mediated β-catenin degradation. TRAF4 was a novel substrate of SIAH1 and the TRAF domain of TRAF4 was critical for binding to SIAH1. TRAF4 reduced the growth-inhibitory effect of etoposide via reducing the number of S-phase cells and suppressing cell apoptosis. Concordantly, we found that breast cancer patients with a low-TRAF4 expression benefited most from chemotherapy, who had higher tumor volume reduction rate and better pathological response, while, the high-TRAF4 expression group had lower tumor volume reduction rate and poor pathological response. CONCLUSIONS TRAF4 was a novel substrate of SIAH1 and prevented SIAH1-mediated β-catenin degradation, which explains the protective effect of TRAF4 on β-catenin during cell stress and links TRAF4 to chemotherapy resistance in tumors. These findings implicated a novel pathway for the oncogenic function of TRAF4.
Collapse
Affiliation(s)
- Huayan Ren
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, 450052, P.R. China
| | - Xiaoyi Mi
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Pengyuan Zhao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, 450052, P.R. China
| | - Xueyan Zhao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, 450052, P.R. China
| | - Na Wei
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, 450052, P.R. China
| | - Huifen Huang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, 450052, P.R. China
| | - Zhongqin Meng
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, 450052, P.R. China
| | - Junna Kou
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, 450052, P.R. China
| | - Mingfang Sun
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yuqiong Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, 450052, P.R. China
| | - Hongyan Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, 450052, P.R. China
| | - Jianping Yang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, 450052, P.R. China
| | - Wencai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, 450052, P.R. China
| | - Huixiang Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China. .,College of Basic Medical Sciences, Zhengzhou University, Jianshe Road 1, Erqi Ward, Zhengzhou, 450052, P.R. China.
| |
Collapse
|
10
|
Scortegagna M, Hockemeyer K, Dolgalev I, Poźniak J, Rambow F, Li Y, Feng Y, Tinoco R, Otero DC, Zhang T, Brown K, Bosenberg M, Bradley LM, Marine JC, Aifantis I, Ronai ZA. Siah2 control of T-regulatory cells limits anti-tumor immunity. Nat Commun 2020; 11:99. [PMID: 31911617 PMCID: PMC6946684 DOI: 10.1038/s41467-019-13826-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/28/2019] [Indexed: 12/23/2022] Open
Abstract
Understanding the mechanisms underlying anti-tumor immunity is pivotal for improving immune-based cancer therapies. Here, we report that growth of BRAF-mutant melanoma cells is inhibited, up to complete rejection, in Siah2-/- mice. Growth-inhibited tumors exhibit increased numbers of intra-tumoral activated T cells and decreased expression of Ccl17, Ccl22, and Foxp3. Marked reduction in Treg proliferation and tumor infiltration coincide with G1 arrest in tumor infiltrated Siah2-/- Tregs in vivo or following T cell stimulation in culture, attributed to elevated expression of the cyclin-dependent kinase inhibitor p27, a Siah2 substrate. Growth of anti-PD-1 therapy resistant melanoma is effectively inhibited in Siah2-/- mice subjected to PD-1 blockade, indicating synergy between PD-1 blockade and Siah2 loss. Low SIAH2 and FOXP3 expression is identified in immune responsive human melanoma tumors. Overall, Siah2 regulation of Treg recruitment and cell cycle progression effectively controls melanoma development and Siah2 loss in the host sensitizes melanoma to anti-PD-1 therapy.
Collapse
Affiliation(s)
- Marzia Scortegagna
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.
| | - Kathryn Hockemeyer
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, 10016, USA
| | - Igor Dolgalev
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, 10016, USA
| | - Joanna Poźniak
- VIB Center for Cancer Biology Laboratory for Molecular Cancer Biology, KU Leuven Oncology Department, Leuven, Belgium
| | - Florian Rambow
- VIB Center for Cancer Biology Laboratory for Molecular Cancer Biology, KU Leuven Oncology Department, Leuven, Belgium
| | | | - Yongmei Feng
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Roberto Tinoco
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.,Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Dennis C Otero
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Kevin Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Marcus Bosenberg
- Departments of Dermatology, Pathology, Yale University, School of Medicine, New Haven, CT, 06520, USA
| | - Linda M Bradley
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Jean-Christophe Marine
- VIB Center for Cancer Biology Laboratory for Molecular Cancer Biology, KU Leuven Oncology Department, Leuven, Belgium
| | - Ioannis Aifantis
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, 10016, USA.
| | - Ze'ev A Ronai
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
11
|
Hughes SE, Hemenway E, Guo F, Yi K, Yu Z, Hawley RS. The E3 ubiquitin ligase Sina regulates the assembly and disassembly of the synaptonemal complex in Drosophila females. PLoS Genet 2019; 15:e1008161. [PMID: 31107865 PMCID: PMC6544331 DOI: 10.1371/journal.pgen.1008161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/31/2019] [Accepted: 04/26/2019] [Indexed: 01/04/2023] Open
Abstract
During early meiotic prophase, homologous chromosomes are connected along their entire lengths by a proteinaceous tripartite structure known as the synaptonemal complex (SC). Although the components that comprise the SC are predominantly studied in this canonical ribbon-like structure, they can also polymerize into repeated structures known as polycomplexes. We find that in Drosophila oocytes, the ability of SC components to assemble into canonical tripartite SC requires the E3 ubiquitin ligase Seven in absentia (Sina). In sina mutant oocytes, SC components assemble into large rod-like polycomplexes instead of proper SC. Thus, the wild-type Sina protein inhibits the polymerization of SC components, including those of the lateral element, into polycomplexes. These polycomplexes persist into meiotic stages when canonical SC has been disassembled, indicating that Sina also plays a role in controlling SC disassembly. Polycomplexes induced by loss-of-function sina mutations associate with centromeres, sites of double-strand breaks, and cohesins. Perhaps as a consequence of these associations, centromere clustering is defective and crossing over is reduced. These results suggest that while features of the polycomplexes can be recognized as SC by other components of the meiotic nucleus, polycomplexes nonetheless fail to execute core functions of canonical SC.
Collapse
Affiliation(s)
- Stacie E. Hughes
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Elizabeth Hemenway
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Fengli Guo
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Kexi Yi
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - R. Scott Hawley
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
12
|
Yan S, Li A, Liu Y. CacyBP/SIP inhibits the migration and invasion behaviors of glioblastoma cells through activating Siah1 mediated ubiquitination and degradation of cytoplasmic p27. Cell Biol Int 2017; 42:216-226. [PMID: 29024247 DOI: 10.1002/cbin.10889] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/07/2017] [Indexed: 11/09/2022]
Abstract
Calcyclin-binding protein or Siah-1-interacting protein (CacyBP/SIP) has been reported to be up-regulated and plays an important role in promoting cell proliferation in human glioma. However, the effect of CacyBP/SIP on glioma cell motility is still unclear. Here, to our surprise, CacyBP/SIP was found to inhibit the migration and invasion of glioma cells U251 and U87. Silencing of CacyBP/SIP significantly promoted the migration and invasion behaviors of glioma cells. On the contrary, overexpression of CacyBP/SIP obviously suppressed them. Further investigation indicated that silencing of CacyBP/SIP significantly reduced the interaction between Siah1 and cytoplasmic p27, which in turn attenuated the ubiquitination and degradation of cytoplasmic p27. In contrast, overexpression of CacyBP/SIP promoted the interaction between Siah1 and cytoplasmic p27, which in turn increased the ubiquitination and degradation of cytoplasmic p27. Importantly, the degradation of p27 could be blocked by Siah1 knockdown. Finally, we found that CacyBP/SIP was reversely related to cytoplasmic p27 in human normal brain tissues and glioma tissues. Taken together, these results suggest that CacyBP/SIP plays an important role in inhibiting glioma cell migration and invasion through promoting the degradation of cytoplasmic p27.
Collapse
Affiliation(s)
- Shiwei Yan
- School of Medicine, Shandong University, Jinan, 250012, China.,Department of Neurosurgery, Lianyungang First People's Hospital, 182 North Tongguan Road, Lianyungang, 222002, China
| | - Aimin Li
- Department of Neurosurgery, Lianyungang First People's Hospital, 182 North Tongguan Road, Lianyungang, 222002, China
| | - Yuguang Liu
- School of Medicine, Shandong University, Jinan, 250012, China.,Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China
| |
Collapse
|
13
|
Cell cycle-dependent translocation and regulatory mechanism of CacyBP/SIP in gastric cancer cells. Anticancer Drugs 2017; 29:19-28. [PMID: 29099417 DOI: 10.1097/cad.0000000000000556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Our previous results showed that calcyclin-binding protein/Siah-1-interacting protein (CacyBP/SIP) inhibits the proliferation and tumorigenicity of gastric cancer; however, the exact mechanism remains unclear, especially from the aspect of cell cycle. The subcellular localization of CacyBP/SIP, Siah-1, and Skp1 in SGC7901 gastric cancer cells was assessed by immunofluorescence after cell cycle synchronization. Levels of CacyBP/SIP, Siah-1, Skp1, β-catenin, and p-ERK1/2 were analyzed by western blotting. CacyBP/SIP phosphorylation (p-CacyBP/SIP) and the combining capacity of Siah-1 and Skp1 with CacyBP/SIP in nucleoprotein were determined by immunoprecipitation. CacyBP/SIP, Siah-1, and Skp1 were mainly in the cytoplasm in the G1 phase, but translocated to the nucleus during G2. Their expression in total protein was not altered, but elevated in the G2 phase in nucleoprotein. The CacyBP/SIP nucleus translocation of cells transfected with mutant CacyBP/SIP that does not bind S100 (CacyBP-ΔS100) was significantly increased compared with wild-type CacyBP/SIP. In the G2 phase, p-CacyBP/SIP expression and the combining capacity of Siah-1 and Skp1 with CacyBP/SIP were all increased, whereas levels of β-catenin and p-ERK1/2 reduced, compared with the G1 phase. CacyBP/SIP or CacyBP-ΔS100 overexpression was correlated with constitutively low β-catenin expression and affected its level through cell cycle. CacyBP/SIP overexpression led to retarded proliferation, G1 arrest, and β-catenin reduction, which could be abolished by lithium chloride, β-catenin activator, and further enhanced by the Wnt inhibitor XAV-939. In addition, CacyBP-ΔS100 further suppressed cell proliferation and induced G1 arrest compared with CacyBP/SIP. In conclusion, CacyBP/SIP nuclear localization, dependent on S100 protein, suppresses gastric cancer tumorigenesis through β-catenin degradation and the dephosphorylation of ERK1/2 during the G2 phase.
Collapse
|
14
|
Membrane-bound β-catenin degradation is enhanced by ETS2-mediated Siah1 induction in Helicobacter pylori-infected gastric cancer cells. Oncogenesis 2017; 6:e327. [PMID: 28481365 PMCID: PMC5523059 DOI: 10.1038/oncsis.2017.26] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/16/2017] [Accepted: 03/20/2017] [Indexed: 12/12/2022] Open
Abstract
β-catenin has two different cellular functions: intercellular adhesion and transcriptional activity. The E3 ubiquitin ligase Siah1 causes ubiquitin-mediated degradation of the cytosolic β-catenin and therefore, impairs nuclear translocation and oncogenic function of β-catenin. However, the effect of Siah1 on the cell membrane bound β-catenin has not been studied. In this study, we identified that the carcinogenic bacterium H. pylori increased ETS2 transcription factor-mediated Siah1 protein expression in gastric cancer cells (GCCs) MKN45, AGS and Kato III. Siah1 protein level was also noticeably higher in gastric adenocarcinoma biopsy samples as compared to non-cancerous gastric epithelia. Siah1 knockdown significantly decreased invasiveness and migration of H. pylori-infected GCCs. Although, Siah1 could not increase degradation of the cytosolic β-catenin and its nuclear translocation, it enhanced degradation of the membrane-bound β-catenin in the infected GCCs. This loss of membrane-bound pool of β-catenin was not associated with the proteasomal degradation of E-cadherin. Thus, this work delineated the role of Siah1 in increasing invasiveness of H. pylori-infected GCCs.
Collapse
|
15
|
Yanagi T, Hata H, Mizuno E, Kitamura S, Imafuku K, Nakazato S, Wang L, Nishihara H, Tanaka S, Shimizu H. PCTAIRE1/CDK16/PCTK1 is overexpressed in cutaneous squamous cell carcinoma and regulates p27 stability and cell cycle. J Dermatol Sci 2017; 86:149-157. [DOI: 10.1016/j.jdermsci.2017.02.281] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/08/2017] [Accepted: 02/20/2017] [Indexed: 02/06/2023]
|
16
|
Adam MG, Matt S, Christian S, Hess-Stumpp H, Haegebarth A, Hofmann TG, Algire C. SIAH ubiquitin ligases regulate breast cancer cell migration and invasion independent of the oxygen status. Cell Cycle 2016; 14:3734-47. [PMID: 26654769 PMCID: PMC4825722 DOI: 10.1080/15384101.2015.1104441] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Seven-in-absentia homolog (SIAH) proteins are evolutionary conserved RING type E3 ubiquitin ligases responsible for the degradation of key molecules regulating DNA damage response, hypoxic adaptation, apoptosis, angiogenesis, and cell proliferation. Many studies suggest a tumorigenic role for SIAH2. In breast cancer patients SIAH2 expression levels correlate with cancer aggressiveness and overall patient survival. In addition, SIAH inhibition reduced metastasis in melanoma. The role of SIAH1 in breast cancer is still ambiguous; both tumorigenic and tumor suppressive functions have been reported. Other studies categorized SIAH ligases as either pro- or antimigratory, while the significance for metastasis is largely unknown. Here, we re-evaluated the effects of SIAH1 and SIAH2 depletion in breast cancer cell lines, focusing on migration and invasion. We successfully knocked down SIAH1 and SIAH2 in several breast cancer cell lines. In luminal type MCF7 cells, this led to stabilization of the SIAH substrate Prolyl Hydroxylase Domain protein 3 (PHD3) and reduced Hypoxia-Inducible Factor 1α (HIF1α) protein levels. Both the knockdown of SIAH1 or SIAH2 led to increased apoptosis and reduced proliferation, with comparable effects. These results point to a tumor promoting role for SIAH1 in breast cancer similar to SIAH2. In addition, depletion of SIAH1 or SIAH2 also led to decreased cell migration and invasion in breast cancer cells. SIAH knockdown also controlled microtubule dynamics by markedly decreasing the protein levels of stathmin, most likely via p27(Kip1). Collectively, these results suggest that both SIAH ligases promote a migratory cancer cell phenotype and could contribute to metastasis in breast cancer.
Collapse
Affiliation(s)
- M Gordian Adam
- a Cellular Senescence Group ; German Cancer Research Center DKFZ ; Heidelberg , Germany.,b GTRG Oncology II; GDD; Bayer Pharma AG ; Berlin , Germany
| | - Sonja Matt
- a Cellular Senescence Group ; German Cancer Research Center DKFZ ; Heidelberg , Germany
| | - Sven Christian
- b GTRG Oncology II; GDD; Bayer Pharma AG ; Berlin , Germany
| | | | | | - Thomas G Hofmann
- a Cellular Senescence Group ; German Cancer Research Center DKFZ ; Heidelberg , Germany
| | - Carolyn Algire
- b GTRG Oncology II; GDD; Bayer Pharma AG ; Berlin , Germany
| |
Collapse
|
17
|
Niu YL, Li YJ, Wang JB, Lu YY, Liu ZX, Feng SS, Hu JG, Zhai HH. CacyBP/SIP nuclear translocation regulates p27Kip1 stability in gastric cancer cells. World J Gastroenterol 2016; 22:3992-4001. [PMID: 27099442 PMCID: PMC4823249 DOI: 10.3748/wjg.v22.i15.3992] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 11/10/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the mechanism of calcyclin binding protein/Siah-1 interacting protein (CacyBP/SIP) nuclear translocation in promoting the proliferation of gastric cancer (GC) cells.
METHODS: The effect of CacyBP/SIP nuclear translocation on cell cycle was investigated by cell cycle analysis. Western blot analysis was used to assess the change in expression of cell cycle regulatory proteins and proteasome-mediated degradation of p27Kip1. Co-immunoprecipitation (co-IP) analysis was performed to examine the binding of CacyBP/SIP with Skp1. A CacyBP/SIP truncation mutant which lacked the Skp1 binding site was constructed and fused to a fluorescent protein. Subsequently, the effect on Skp1 binding with the fusion protein was examined by co-IP, while localization of fluorescent fusion protein observed by confocal laser microscopy, and change in p27Kip1 protein expression assessed by Western blot analysis.
RESULTS: CacyBP/SIP nuclear translocation induced by gastrin promoted progression of GC cells from G1 phase. However, while CacyBP/SIP nuclear translocation was inhibited using siRNA to suppress CacyBP/SIP expression, cell cycle was clearly inhibited. CacyBP/SIP nuclear translocation significantly decreased the level of cell cycle inhibitor p27Kip1, increased Cyclin E protein expression whereas the levels of Skp1, Skp2, and CDK2 were not affected. Upon inhibition of CacyBP/SIP nuclear translocation, there were no changes in protein levels of p27Kip1 and Cyclin E, while p27Kip1 decrease could be prevented by the proteasome inhibitor MG132. Moreover, CacyBP/SIP was found to bind to Skp1 by immunoprecipitation, an event that was abolished by mutant CacyBP/SIP, which also failed to stimulate p27Kip1 degradation, even though the mutant could still translocate into the nucleus.
CONCLUSION: CacyBP/SIP nuclear translocation contributes to the proliferation of GC cells, and CacyBP/SIP exerts this effect, at least in part, by stimulating ubiquitin-mediated degradation of p27Kip1.
Collapse
|
18
|
Topolska-Woś AM, Chazin WJ, Filipek A. CacyBP/SIP--Structure and variety of functions. Biochim Biophys Acta Gen Subj 2015; 1860:79-85. [PMID: 26493724 DOI: 10.1016/j.bbagen.2015.10.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/09/2015] [Accepted: 10/16/2015] [Indexed: 01/30/2023]
Abstract
BACKGROUND CacyBP/SIP (Calcyclin-Binding Protein and Siah-1 Interacting Protein) is a small modular protein implicated in a wide range of cellular processes. It is expressed in different tissues of mammals but homologs are also found in some lower organisms. In mammals, a high level of CacyBP/SIP is present in tumor cells and in neurons. CacyBP/SIP binds several target proteins such as members of the S100 family, components of a ubiquitin ligase complex, and cytoskeletal proteins. SCOPE OF REVIEW CacyBP/SIP has been shown to be involved in protein de-phosphorylation, ubiquitination, cytoskeletal dynamics, regulation of gene expression, cell proliferation, differentiation, and tumorigenesis. This review focuses on very recent reports on CacyBP/SIP structure and function in these important cellular processes. MAJOR CONCLUSIONS CacyBP/SIP is a multi-domain and multi-functional protein. Altered levels of CacyBP/SIP in several cancers implicate its involvement in the maintenance of cell homeostasis. Changes in CacyBP/SIP subcellular localization in neurons of AD brains suggest that this protein is strongly linked to neurodegenerative diseases. Elucidation of CacyBP/SIP structure and cellular function is leading to greater understanding of its role in normal physiology and disease pathologies. GENERAL SIGNIFICANCE The available results suggest that CacyBP/SIP is a key player in multiple biological processes. Detailed characterization of the physical, biochemical and biological properties of CacyBP/SIP will provide better insight into the regulation of its diverse functions in vivo, and given the association with specific diseases, will help clarify the potential of therapeutic targeting of this protein.
Collapse
Affiliation(s)
| | - Walter J Chazin
- Department of Biochemistry, Vanderbilt University, Nashville, USA; Department of Chemistry, Vanderbilt University, Nashville, USA; Center for Structural Biology, Vanderbilt University, Nashville, USA
| | - Anna Filipek
- Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
19
|
Lin CH, Lin SY, Chang HW, Ko LJ, Tseng YS, Chang VHS, Yu WCY. CDK2 phosphorylation regulates the protein stability of KLF10 by interfering with binding of the E3 ligase SIAH1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1174-81. [PMID: 25728284 DOI: 10.1016/j.bbamcr.2015.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/15/2015] [Accepted: 02/19/2015] [Indexed: 01/07/2023]
Abstract
Downregulation of multiple cell cycle-regulatory molecules is a dominant event in TGF-β1-mediated growth inhibition of human carcinoma cells. It is known that KLF10 mimics the anti-proliferative and apoptotic effects that TGF-β1 has on epithelial cell growth and the growth of various tumor cells; based on these findings it is considered as a tumor suppressor. KLF10 protein expression is tightly associated with cell cycle-dependent events. However, the regulatory mechanism and its biological meaning have not been identified. In this study, we have demonstrated that KLF10 is a substrate of CDK2/cyclin E and can be phosphorylated. We also have shown that KLF10 efficiently binds to CDK2, while binding much less to CDK4, and displaying no binding to Cdk6. Using mass spectrometry, site direct mutagenesis, in vitro kinase assays and depletion assays, we have established that CDK2 phosphorylates Ser206, which subsequently affects the steady state level of KLF10 in cells. Our studies have also proved that CDK2 up-regulates the protein level of KLF10 through reducing its association with SIAH1, a KLF10 E3-ubiqutin ligase involved in proteasomal degradation. Taken all together, these findings indicate that CDK2-dependent phosphorylation regulates KLF10 stability and that this affects the role of KLF10 in cell.
Collapse
Affiliation(s)
- Ching-Hui Lin
- National Institute of Cancer Research, National Health Research Institutes, Taipei, Taiwan
| | - Shu-Yu Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsuen-Wen Chang
- Laboratory Animal Center, Taipei Medical University, Taipei, Taiwan
| | - Li-Jung Ko
- National Institute of Cancer Research, National Health Research Institutes, Taipei, Taiwan
| | - Yan-Shen Tseng
- National Institute of Cancer Research, National Health Research Institutes, Taipei, Taiwan
| | - Vincent H S Chang
- Program for Translation Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| | - Winston C Y Yu
- National Institute of Cancer Research, National Health Research Institutes, Taipei, Taiwan; Program for Translation Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
20
|
BIS targeting induces cellular senescence through the regulation of 14-3-3 zeta/STAT3/SKP2/p27 in glioblastoma cells. Cell Death Dis 2014; 5:e1537. [PMID: 25412315 PMCID: PMC4260756 DOI: 10.1038/cddis.2014.501] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 01/17/2023]
Abstract
Cellular senescence is an important mechanism for preventing tumor progression. The elevated expression of Bcl-2-interacting cell death suppressor (BIS), an anti-apoptotic and anti-stress protein, often correlates with poor prognosis in several cancers including glioblastoma; however, the role of BIS in the regulation of senescence has not been well defined. Here, we describe for the first time that the depletion of BIS induces G1 arrest and cellular senescence through the accumulation of p27 that is independent of p53, p21 or p16. The increase in p27 expression in BIS-depleted cells was attributable to an impairment of the ubiquitin-mediated degradation of p27, which was caused by a decrease in S-phase kinase-associated protein 2 (SKP2) at the transcriptional level. As an underlying molecular mechanism, we demonstrate that the loss of activity of signal transducer and activator of transcription 3 (STAT3) was specifically linked to the suppression of SKP2 expression. Despite a reduction in phospho-STAT3 levels, total STAT3 levels were unexpectedly increased by BIS depletion, specifically in the insoluble fraction. Our results show that 14-3-3ζ expression is decreased by BIS knockdown and that 14-3-3ζ depletion per se significantly induced senescence phenotypes. In addition, the ectopic expression of 14-3-3ζ blocked senescence caused by BIS depletion, which was paralleled with a decrease in insoluble STAT3 in A172 glioblastoma cells. These findings indicate that the impairment of the protein quality control conferred by BIS and/or 14-3-3ζ is critical for BIS depletion-induced senescence. Moreover, BIS knockdown also induced senescence along with an accumulation of total STAT3 and p27 in several different cell types as well as embryonic fibroblasts derived from Bis-knock out mice with/without variations in 14-3-3ζ levels. Therefore, our findings suggest that a downregulation of BIS expression could serve as a potential strategy for restricting tumor progression via an induction of senescence through the regulation of STAT3/SKP2/p27 pathway.
Collapse
|
21
|
PCTAIRE1 regulates p27 stability, apoptosis and tumor growth in malignant melanoma. Oncoscience 2014; 1:624-33. [PMID: 25593992 PMCID: PMC4278280 DOI: 10.18632/oncoscience.86] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 10/05/2014] [Indexed: 12/27/2022] Open
Abstract
PCTAIRE1 is a cyclin-dependent kinase family protein that has been implicated in spermatogenesis. Although we recently revealed the function of PCTAIRE1 in tumorigenesis of epithelial carcinoma cells, its tumorigenic function in melanoma remains unclear. Interrogation of the Oncomine database revealed that malignant melanoma showed up-regulation of PCTAIRE1 mRNA compared to normal skin and benign melanocytic nevus tissues. In the melanoma cell lines A2058 and SK-MEL-28, PCTAIRE1 gene knockdown using siRNA or shRNA diminished melanoma cell proliferation as assessed by cellular ATP levels, cell counting and clonogenic assays. Moreover, FACS analyses of annexin V-PI staining and DNA content showed that PCTAIRE1 knockdown caused apoptosis in A2058 cells. In contrast, PCTAIRE1 does not appear to be involved in the proliferation of immortalized human keratinocyte HaCaT cells. Depletion of PCTAIRE1 by siRNA/shRNA led to p27 accumulation in melanoma cells but not HaCaT cells. In tumor xenografts of melanoma A2058 cells, conditional knockdown of PCTAIRE1 restored p27 protein expression and suppressed tumor growth. Our findings reveal a crucial role for PCTAIRE1 in regulating p27 protein levels and tumor growth in melanoma cells, suggesting that PCTAIRE1 could provide a target for melanoma treatment.
Collapse
|
22
|
Tanaka T, Iino M. Sec6 regulated cytoplasmic translocation and degradation of p27 via interactions with Jab1 and Siah1. Cell Signal 2014; 26:2071-85. [DOI: 10.1016/j.cellsig.2014.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/06/2014] [Accepted: 06/09/2014] [Indexed: 11/25/2022]
|
23
|
Yanagi T, Krajewska M, Matsuzawa SI, Reed JC. PCTAIRE1 phosphorylates p27 and regulates mitosis in cancer cells. Cancer Res 2014; 74:5795-807. [PMID: 25205104 DOI: 10.1158/0008-5472.can-14-0872] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PCTAIRE1 is distant relative of the cyclin-dependent kinase family that has been implicated in spermatogenesis and neuronal development, but it has not been studied in cancer. Here, we report that PCTAIRE1 is expressed in prostate, breast, and cervical cancer cells, where its RNAi-mediated silencing causes growth inhibition with aberrant mitosis due to defects in centrosome dynamics. PCTAIRE1 was not similarly involved in proliferation of nontransformed cells, including diploid human IMR-90 fibroblasts. Through yeast two-hybrid screening, we identified tumor suppressor p27 as a PCTAIRE1 interactor. In vitro kinase assays showed PCTAIRE1 phosphorylates p27 at Ser10. PCTAIRE1 silencing modulated Ser10 phosphorylation on p27 and led to its accumulation in cancer cells but not in nontransformed cells. In a mouse xenograft model of PPC1 prostate cancer, conditional silencing of PCTAIRE1 restored p27 protein expression and suppressed tumor growth. Mechanistic studies in HeLa cells showed that PCTAIRE1 phosphorylates p27 during the S and M phases of the cell cycle. Notably, p27 silencing was sufficient to rescue cells from mitotic arrest caused by PCTAIRE1 silencing. Clinically, PCTAIRE1 was highly expressed in primary breast and prostate tumors compared with adjacent normal epithelial tissues. Together our findings reveal an unexpected role for PCTAIRE1 in regulating p27 stability, mitosis, and tumor growth, suggesting PCTAIRE1 as a candidate cancer therapeutic target.
Collapse
Affiliation(s)
- Teruki Yanagi
- Sanford-Burnham Medical Research Institute, La Jolla, California
| | - Maryla Krajewska
- Sanford-Burnham Medical Research Institute, La Jolla, California
| | | | - John C Reed
- Sanford-Burnham Medical Research Institute, La Jolla, California.
| |
Collapse
|
24
|
Zhai HH, Meng J, Wang JB, Liu ZX, Li YF, Feng SS. CacyBP/SIP nuclear translocation induced by gastrin promotes gastric cancer cell proliferation. World J Gastroenterol 2014; 20:10062-10070. [PMID: 25110433 PMCID: PMC4123335 DOI: 10.3748/wjg.v20.i29.10062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 03/12/2014] [Accepted: 05/05/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of nuclear translocation of calcyclin binding protein, also called Siah-1 interacting protein (CacyBP/SIP), in gastric carcinogenesis.
METHODS: The expression of CacyBP/SIP protein in gastric cancer cell lines was detected by Western blot. Immunofluorescence experiments were performed on gastric cancer cell lines that had been either unstimulated or stimulated with gastrin. To confirm the immunofluorescence findings, the relative abundance of CacyBP/SIP in nuclear and cytoplasmic compartments was assessed by Western blot. The effect of nuclear translocation of CacyBP/SIP on cell proliferation was examined using MTT assay. The colony formation assay was used to measure clonogenic cell survival. The effect of CacyBP/SIP nuclear translocation on cell cycle progression was investigated. Two CacyBP/SIP-specific siRNA vectors were designed and constructed to inhibit CacyBP/SIP expression in order to reduce the nuclear translocation of CacyBP/SIP, and the expression of CacyBP/SIP in stably transfected cells was determined by Western blot. The effect of inhibiting CacyBP/SIP nuclear translocation on cell proliferation was then assessed.
RESULTS: CacyBP/SIP protein was present in most of gastric cancer cell lines. In unstimulated cells, CacyBP/SIP was distributed throughout the cytoplasm; while in stimulated cells, CacyBP/SIP was found mainly in the perinuclear region. CacyBP/SIP nuclear translocation generated a growth-stimulatory effect on cells. The number of colonies in the CacyBP/SIP nuclear translocation group was significantly higher than that in the control group. The percentage of stimulated cells in G1 phase was significantly lower than that of control cells (69.70% ± 0.46% and 65.80% ± 0.60%, control cells and gastrin-treated SGC7901 cells, P = 0.008; 72.99% ± 0.46% and 69.36% ± 0.51%, control cells and gastrin-treated MKN45 cells, P = 0.022). CacyBP/SIPsi1 effectively down-regulated the expression of CacyBP/SIP, and cells stably transfected by CacyBP/SIPsi1 were then chosen for further cellular assays. In CacyBP/SIPsi1 stably transfected cells, CacyBP/SIP was shown to be distributed throughout the cytoplasm, irregardless of whether they were stimulated or not. After CacyBP/SIP nuclear translocation was reduced, there had no major effect on cell proliferation, as shown by MTT assay. There had no enhanced anchorage-dependent growth upon stimulation, as indicated by colony formation in flat plates. No changes appeared in the percentage of cells in G0-G1 phase in either cell line (71.09% ± 0.16% and 70.86% ± 0.25%, control cells and gastrin-treated SGC7901-CacyBP/SIPsi1 cells, P = 0.101; 74.17% ± 1.04% and 73.07% ± 1.00%, control cells and gastrin-treated MKN45-CacyBP/SIPsi1 cells, P = 0.225).
CONCLUSION: CacyBP/SIP nuclear translocation promotes the proliferation and cell cycle progression of gastric cancer cells.
Collapse
|
25
|
Qi J, Kim H, Scortegagna M, Ronai ZA. Regulators and effectors of Siah ubiquitin ligases. Cell Biochem Biophys 2014; 67:15-24. [PMID: 23700162 DOI: 10.1007/s12013-013-9636-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Siah ubiquitin ligases are members of the RING finger E3 ligases. The Siah E3s are conserved from fly to mammals. Primarily implicated in cellular stress responses, Siah ligases play a key role in hypoxia, through the regulation of HIF-1α transcription stability and activity. Concomitantly, physiological conditions associated with varying oxygen tension often highlight the importance of Siah, as seen in cancer and neurodegenerative disorders. Notably, recent studies also point to the role of these ligases in fundamental processes including DNA damage response, cellular organization and polarity. This review summarizes the current understanding of upstream regulators and downstream effectors of Siah.
Collapse
Affiliation(s)
- Jianfei Qi
- Signal Transduction Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
26
|
An N-terminal SIAH-interacting motif regulates the stability of the ubiquitin specific protease (USP)-19. Biochem Biophys Res Commun 2013; 433:390-5. [DOI: 10.1016/j.bbrc.2013.02.094] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 02/18/2013] [Indexed: 11/18/2022]
|
27
|
Buchwald M, Pietschmann K, Brand P, Günther A, Mahajan NP, Heinzel T, Krämer OH. SIAH ubiquitin ligases target the nonreceptor tyrosine kinase ACK1 for ubiquitinylation and proteasomal degradation. Oncogene 2012. [PMID: 23208506 DOI: 10.1038/onc.2012.515] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Activated Cdc42-associated kinase 1 (ACK1) is a nonreceptor tyrosine kinase linked to cellular transformation. The aberrant regulation of ACK1 promotes tumor progression and metastasis. Therefore, ACK1 is regarded as a valid target in cancer therapy. Seven in absentia homolog (SIAH) ubiquitin ligases facilitate substrate ubiquitinylation that targets proteins to the proteasomal degradation pathway. Here we report that ACK1 and SIAH1 from Homo sapiens interact in a yeast two-hybrid screen. Protein-protein interaction studies and protein degradation analyses using deletion and point mutants of ACK1 verify that SIAH1 and the related SIAH2 interact with ACK1. The association between SIAHs and ACK1 depends on the integrity of a highly conserved SIAH-binding motif located in the far C-terminus of ACK1. Furthermore, we demonstrate that the interaction of ACK1 with SIAH1 and the induction of proteasomal degradation of ACK1 by SIAH1 are independent of ACK1's kinase activity. Chemical inhibitors blocking proteasomal activity corroborate that SIAH1 and SIAH2 destabilize the ACK1 protein by inducing its proteasomal turnover. This mechanism apparently differs from the lysosomal pathway targeting ACK1 after stimulation with the epidermal growth factor. Our data also show that ACK1, but not ACK1 mutants lacking the SIAH binding motif, has a discernable negative effect on SIAH levels. Additionally, knockdown approaches targeting the SIAH2 mRNA uncover specifically that the induction of SIAH2 expression, by hormonally-induced estrogen receptor (ER) activation, decreases the levels of ACK1 in luminal human breast cancer cells. Collectively, our data provide novel insights into the molecular mechanisms modulating ACK1 and they position SIAH ubiquitin ligases as negative regulators of ACK1 in transformed cells.
Collapse
Affiliation(s)
- M Buchwald
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich-Schiller University, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Krämer OH, Stauber RH, Bug G, Hartkamp J, Knauer SK. SIAH proteins: critical roles in leukemogenesis. Leukemia 2012; 27:792-802. [PMID: 23038274 DOI: 10.1038/leu.2012.284] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The delicate balance between the synthesis and the degradation of proteins ensures cellular homeostasis. Proteases act in an irreversible manner and therefore have to be strictly regulated. The ubiquitin-proteasome system (UPS) is a major pathway for the proteolytic degradation of cellular proteins. As dysregulation of the UPS is observed in most cancers including leukemia, the UPS is a valid target for therapeutic intervention strategies. Ubiquitin-ligases selectively bind substrates to target them for poly-ubiquitinylation and proteasomal degradation. Therefore, pharmacological modulation of these proteins could allow a specific level of control. Increasing evidence accumulates that ubiquitin-ligases termed mammalian seven in absentia homologs (SIAHs) are not only critical for the pathogenesis of solid tumors but also for leukemogenesis. However, the relevance and therapeutic potential of SIAH-dependent processes has not been fully elucidated. Here, we summarize functions of SIAH ubiquitin-ligases in leukemias, how they select leukemia-relevant substrates for proteasomal degradation, and how the expression and activity of SIAH1 and SIAH2 can be modulated in vivo. We also discuss that epigenetic drugs belonging to the group of histone deacetylase inhibitors induce SIAH-dependent proteasomal degradation to accelerate the turnover of leukemogenic proteins. In addition, our review highlights potential areas for future research on SIAH proteins.
Collapse
Affiliation(s)
- O H Krämer
- Center for Molecular Biomedicine (CMB), Department of Biochemistry, University of Jena, Jena, Germany.
| | | | | | | | | |
Collapse
|
29
|
Decreased skp2 expression is necessary but not sufficient for therapy-induced senescence in prostate cancer. Transl Oncol 2012; 5:278-87. [PMID: 22937180 DOI: 10.1593/tlo.12181] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/01/2012] [Accepted: 06/11/2012] [Indexed: 12/13/2022] Open
Abstract
Therapy-induced senescence (TIS), a cytostatic stress response in cancer cells, is induced inefficiently by current anticancer agents and radiation. The mechanisms that mediate TIS in cancer cells are not well defined. Herein, we characterize a robust senescence response both in vitro and in vivo to the quinone diaziquone (AZQ), previously identified in a high-throughput senescence-induction small-molecule screen. Using AZQ and several other agents that induce senescence, we screened a series of cyclin-dependent kinase inhibitors and found that p27(Kip1) was induced in all investigated prostate cancer cell lines. The ubiquitin-ligase Skp2 negatively regulates p27(Kip1) and, during TIS, is translocated to the cytoplasm before its expression is decreased in senescent cells. Overexpression of Skp2 blocks the effects of AZQ on senescence and p27(Kip1) induction. We also find that stable long-term short hairpin RNA knockdown of Skp2 decreases proliferation but does not generate the complete senescence phenotype. We conclude that Skp2 participates in regulating TIS but, alone, is insufficient to induce senescence in cancer cells.
Collapse
|
30
|
Regulation of autophagy by glucose in Mammalian cells. Cells 2012; 1:372-95. [PMID: 24710481 PMCID: PMC3901114 DOI: 10.3390/cells1030372] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/22/2012] [Accepted: 07/13/2012] [Indexed: 02/07/2023] Open
Abstract
Autophagy is an evolutionarily conserved process that contributes to maintain cell homeostasis. Although it is strongly regulated by many extracellular factors, induction of autophagy is mainly produced by starvation of nutrients. In mammalian cells, the regulation of autophagy by amino acids, and also by the hormone insulin, has been extensively investigated, but knowledge about the effects of other autophagy regulators, including another nutrient, glucose, is more limited. Here we will focus on the signalling pathways by which environmental glucose directly, i.e., independently of insulin and glucagon, regulates autophagy in mammalian cells, but we will also briefly mention some data in yeast. Although glucose deprivation mainly induces autophagy via AMPK activation and the subsequent inhibition of mTORC1, we will also comment other signalling pathways, as well as evidences indicating that, under certain conditions, autophagy can be activated by glucose. A better understanding on how glucose regulates autophagy not only will expand our basic knowledge of this important cell process, but it will be also relevant to understand common human disorders, such as cancer and diabetes, in which glucose levels play an important role.
Collapse
|
31
|
Jäkel H, Peschel I, Kunze C, Weinl C, Hengst L. Regulation of p27 (Kip1) by mitogen-induced tyrosine phosphorylation. Cell Cycle 2012; 11:1910-7. [PMID: 22580455 DOI: 10.4161/cc.19957] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Extracellular mitogen signal transduction is initiated by ligand binding to specific receptors of target cells. This causes a cellular response that frequently triggers the activation of tyrosine kinases. Non-receptor kinases like Src and Lyn can directly phosphorylate the Cdk inhibitor protein p27 (Kip1) . Tyrosine phosphorylation can cause impaired Cdk-inhibitory activity and decreased stability of p27. In addition to these non-receptor tyrosine kinases, the receptor-associated tyrosine kinase Janus kinase 2 (JAK2) was recently identified to phosphorylate p27. JAK2 becomes activated through binding of various cytokines and growth factors to their corresponding receptors and can directly bind and selectively phosphorylate tyrosine residue 88 (Y88) of the Cdk inhibitor p27. This impairs Cdk inhibition by p27 and promotes its ubiquitin-dependent proteasomal degradation. Via this mechanism, JAK2 can link cytokine and growth factor initiated signal transduction to p27 regulation, whereas oncogenes like JAK2V617F or BCR-Abl can use this mechanism to inactivate the Cdk inhibitor.
Collapse
Affiliation(s)
- Heidelinde Jäkel
- Division of Medical Biochemistry; Biocenter; Innsbruck Medical University; Innsbruck, Austria
| | | | | | | | | |
Collapse
|