1
|
Zhou H, Wu Z, Zhang Y, Yu Z, Nie Z, Fan J, Zhu Z, Chen F, Wang T. In vitro anticancer study of novel curcumin derivatives via targeting PI3K/Akt/p53 signaling pathway. Mol Divers 2025; 29:73-86. [PMID: 38951417 DOI: 10.1007/s11030-024-10833-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/28/2024] [Indexed: 07/03/2024]
Abstract
Four new series of curcumin derivatives bearing NO-donating moiety were synthesized via etherification, nucleophilic substitution, and Knoevenagel condensation etc. The cytotoxicity activity of curcumin derivatives against five human tumor cell lines (A549, Hela, HepG2, MCF-7 and HT-29) and two normal cell lines (LO-2 and HK-2) has been studied. The results showed that compound 6a could inhibit the proliferation of MCF-7 cells remarkably and exhibit low toxicity to normal cells. Also, the underlying mechanism in vitro of compound 6a on MCF-7 was investigated. It has been found that compound 6a induced G2/M arrest and apoptosis of MCF-7 in a dose-dependent manner. Compound 6a-induced the fluorescence changes of ROS in MCF-7 cells confirmed the occurrence of apoptosis. Western Blot suggested that compound 6a decreased the expression of PI3K, as well as increased the expression of p53, cleaved caspase-9 and cleaved caspase-3. Furthermore, molecular docking revealed that compound 6a could bind well at active site of PI3K (3zim) with total score 9.59. Together, compound 6a, a potential PI3K inhibitor, may inhibit the survival of MCF-7 cells via interfering with PI3K/Akt/p53 pathway.
Collapse
Affiliation(s)
- Huixian Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Zhiwen Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Yannan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Zikai Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Zhengyang Nie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Jinbiao Fan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Zuchang Zhu
- Technological R&D department, Lizhu Pharmaceutical Co., Ltd, Zhuhai, Guangdong, 519000, People's Republic of China
| | - Fenglian Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China.
| | - Tao Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China.
| |
Collapse
|
2
|
Wang H, Chen Q, Liu Q, Luo C. Master regulator: p53's pivotal role in steering NK-cell tumor patrol. Front Immunol 2024; 15:1428653. [PMID: 39185404 PMCID: PMC11344261 DOI: 10.3389/fimmu.2024.1428653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
The p53 protein, encoded by TP53, is a tumor suppressor that plays a critical role in regulating apoptosis, cell cycle regulation, and angiogenesis in tumor cells via controlling various downstream signals. Natural killer (NK) cell-mediated immune surveillance is a vital self-defense mechanism against cancer and other diseases, with NK cell activity regulated by various mechanisms. Among these, p53 plays a significant role in immune regulation by maintaining the homeostasis and functionality of NK cells. It enhances the transcriptional activity of NK cell-activating ligands and downregulates inhibitory ligands to boost NK cell activation and tumor-killing efficacy. Additionally, p53 influences NK cell cytotoxicity by promoting apoptosis, autophagy, and ferroptosis in different tumor cells. p53 is involved in the regulation of NK cell activity and effector functions through multiple pathways. p53 also plays a pivotal role in the tumor microenvironment (TME), regulating the activity of NK cells. NK cells are critical components of the TME and are capable of directly killing tumor cells. And p53 mutates in numerous cancers, with the most common alteration being a missense mutation. These mutations are commonly associated with poor survival rates in patients with cancer. This review details p53's role in NK cell tumor immunosurveillance, summarizing how p53 enhances NK cell recognition and tumor destruction. We also explore the potential applications of p53 in tumor immunotherapy, discussing strategies for modulating p53 to enhance NK cell function and improve the efficacy of tumor immunotherapy, along with the associated challenges. Understanding the interaction between p53 and NK cells within the TME is crucial for advancing NK cell-based immunotherapy and developing p53-related novel therapeutics.
Collapse
Affiliation(s)
| | | | | | - Changjiang Luo
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
3
|
El-Arabey A, Abdel-Hamied H, Awadalla M, Alosaimi B, Almanaa T, Al-Shouli S, Modafer Y, Alhamdi H, Abdalla M. A bioinformatic analysis of the role of TP53 status on the infiltration of CD8+ T cells into the tumor microenvironment. Braz J Med Biol Res 2023; 56:e12970. [PMID: 37878888 PMCID: PMC10591486 DOI: 10.1590/1414-431x2023e12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/27/2023] [Indexed: 10/27/2023] Open
Abstract
CD8+ T cells play basic roles in the immune system in a tumor microenvironment (TME) to fight cancer. Several reports have suggested signs of the involvement of tumor protein p53 (TP53) in a complex immune system network. Moreover, our previous research indicated that TP53 orchestrates the polarization and infiltration of macrophages into the TME. In the present study, the clinical function of TP53 status (wild/mutant) in CD8+ T cell infiltration was assessed using more than 10,000 The Cancer Genome Atlas (TCGA) samples from 30 cancer types through Tumor Immune Estimation (TIMER). Our investigation revealed that CD8+ T cell infiltration was higher in head and neck squamous cell carcinoma (HNSC) and uterine corpus endometrial carcinoma (UCEC) patients with wild-type TP53 than in those with mutant TP53. Wild-type TP53 conferred a good prognosis for HNSC and UCEC (P<0.05). In contrast, CD8+ T cell infiltration in lung adenocarcinoma (LUAD) patients with wild-type TP53 was much lower than in those with mutant TP53. Notably, clinical outcomes for LUAD with wild-type TP53 were poor (P<0.05). This study was the first to provide insights into the novel association of TP53 with CD8+ T cells infiltration in the TME in patients with HNSC, LUAD, and UCEC. Therefore, TP53 status acts as a prognostic marker, and this can be used as a basis to further study the effect of targeting TP53 in these patients. Furthermore, our study found that TP53 status was a reliable predictive factor and therapeutic target in patients with HNSC and UCEC.
Collapse
Affiliation(s)
- A.A. El-Arabey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - H.E. Abdel-Hamied
- Department of General Pathology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - M.E. Awadalla
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| | - B. Alosaimi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| | - T.N. Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - S.T. Al-Shouli
- Immunology Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Y.A. Modafer
- Department of Biology, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - H.W. Alhamdi
- Department of Biology, College of Sciences, King Khalid University, Abha, Saudi Arabia
| | - M. Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
4
|
Cho E, Han S, Eom HS, Lee SJ, Han C, Singh R, Kim SH, Park BM, Kim BG, Kim YH, Kwon BS, Nam KT, Choi BK. Cross-Activation of Regulatory T Cells by Self Antigens Limits Self-Reactive and Activated CD8 + T Cell Responses. Int J Mol Sci 2023; 24:13672. [PMID: 37761976 PMCID: PMC10530955 DOI: 10.3390/ijms241813672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
The interaction between regulatory T (Treg) cells and self-reactive T cells is a crucial mechanism for maintaining immune tolerance. In this study, we investigated the cross-activation of Treg cells by self-antigens and its impact on self-reactive CD8+ T cell responses, with a focus on the P53 signaling pathway. We discovered that major histocompatibility complex (MHC) I-restricted self-peptides not only activated CD8+ T cells but also induced the delayed proliferation of Treg cells. Following HLA-A*0201-restricted Melan-A-specific (pMelan) CD8+ T cells, we observed the direct expansion of Treg cells and concurrent suppression of pMelan+CD8+ T cell proliferation upon stimulation with Melan-A peptide. Transcriptome analysis revealed no significant alterations in specific signaling pathways in pMelan+CD8+ T cells that were co-cultured with activated Treg cells. However, there was a noticeable upregulation of genes involved in P53 accumulation, a critical regulator of cell survival and apoptosis. Consistent with such observation, the blockade of P53 induced a continuous proliferation of pMelan+CD8+ T cells. The concurrent stimulation of Treg cells through self-reactive TCRs by self-antigens provides insights into the immune system's ability to control activated self-reactive CD8+ T cells as part of peripheral tolerance, highlighting the intricate interplay between Treg cells and CD8+ T cells and implicating therapeutic interventions in autoimmune diseases and cancer immunotherapy.
Collapse
Affiliation(s)
- Eunjung Cho
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Immuno-Oncology Branch, Division of Rare and Refractory Cancer, National Cancer Center, Goyang 10408, Republic of Korea (S.-J.L.)
| | - Seongeun Han
- Immuno-Oncology Branch, Division of Rare and Refractory Cancer, National Cancer Center, Goyang 10408, Republic of Korea (S.-J.L.)
| | - Hyeon Seok Eom
- Hematological Malignancy Center of the Hospital, National Cancer Center, Goyang 10408, Republic of Korea
| | - Sang-Jin Lee
- Immuno-Oncology Branch, Division of Rare and Refractory Cancer, National Cancer Center, Goyang 10408, Republic of Korea (S.-J.L.)
| | - Chungyong Han
- Immuno-Oncology Branch, Division of Rare and Refractory Cancer, National Cancer Center, Goyang 10408, Republic of Korea (S.-J.L.)
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| | - Rohit Singh
- Immuno-Oncology Branch, Division of Rare and Refractory Cancer, National Cancer Center, Goyang 10408, Republic of Korea (S.-J.L.)
| | - Seon-Hee Kim
- Immuno-Oncology Branch, Division of Rare and Refractory Cancer, National Cancer Center, Goyang 10408, Republic of Korea (S.-J.L.)
- Department of Biomedical Laboratory Science, Catholic Kwandong University, Gangneung 25601, Republic of Korea
| | - Bo-Mi Park
- Biomedicine Production Branch, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Byoung-Gie Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Young H. Kim
- Eutilex, Co., Ltd., Geumcheon-gu, Seoul 08594, Republic of Korea
| | - Byoung S. Kwon
- Eutilex, Co., Ltd., Geumcheon-gu, Seoul 08594, Republic of Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Beom K. Choi
- Immuno-Oncology Branch, Division of Rare and Refractory Cancer, National Cancer Center, Goyang 10408, Republic of Korea (S.-J.L.)
- Innobationbio, Co., Ltd., Mapo-gu, Seoul 03929, Republic of Korea
| |
Collapse
|
5
|
Unraveling the Structural Changes in the DNA-Binding Region of Tumor Protein p53 ( TP53) upon Hotspot Mutation p53 Arg248 by Comparative Computational Approach. Int J Mol Sci 2022; 23:ijms232415499. [PMID: 36555140 PMCID: PMC9779389 DOI: 10.3390/ijms232415499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
The vital tissue homeostasis regulator p53 forms a tetramer when it binds to DNA and regulates the genes that mediate essential biological processes such as cell-cycle arrest, senescence, DNA repair, and apoptosis. Missense mutations in the core DNA-binding domain (109-292) simultaneously cause the loss of p53 tumor suppressor function and accumulation of the mutant p53 proteins that are carcinogenic. The most common p53 hotspot mutation at codon 248 in the DNA-binding region, where arginine (R) is substituted by tryptophan (W), glycine (G), leucine (L), proline (P), and glutamine (Q), is reported in various cancers. However, it is unclear how the p53 Arg248 mutation with distinct amino acid substitution affects the structure, function, and DNA binding affinity. Here, we characterized the pathogenicity and protein stability of p53 hotspot mutations at codon 248 using computational tools PredictSNP, Align GVGD, HOPE, ConSurf, and iStable. We found R248W, R248G, and R248P mutations highly deleterious and destabilizing. Further, we subjected all five R248 mutant-p53-DNA and wt-p53-DNA complexes to molecular dynamics simulation to investigate the structural stability and DNA binding affinity. From the MD simulation analysis, we observed increased RMSD, RMSF, and Rg values and decreased protein-DNA intermolecular hydrogen bonds in the R248-p53-DNA than the wt-p53-DNA complexes. Likewise, due to high SASA values, we observed the shrinkage of proteins in R248W, R248G, and R248P mutant-p53-DNA complexes. Compared to other mutant p53-DNA complexes, the R248W, R248G, and R248P mutant-p53-DNA complexes showed more structural alteration. MM-PBSA analysis showed decreased binding energies with DNA in all five R248-p53-DNA mutants than the wt-p53-DNA complexes. Henceforth, we conclude that the amino acid substitution of Arginine with the other five amino acids at codon 248 reduces the p53 protein's affinity for DNA and may disrupt cell division, resulting in a gain of p53 function. The proposed study influences the development of rationally designed molecular-targeted treatments that improve p53-based therapeutic outcomes in cancer.
Collapse
|
6
|
Xu C, Liu Z, Yan C, Xiao J. Application of apoptosis-related genes in a multiomics-related prognostic model study of gastric cancer. Front Genet 2022; 13:901200. [PMID: 35991578 PMCID: PMC9389051 DOI: 10.3389/fgene.2022.901200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/12/2022] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the most common tumors in the world, and apoptosis is closely associated with GC. A number of therapeutic methods have been implemented to increase the survival in GC patients, but the outcomes remain unsatisfactory. Apoptosis is a highly conserved form of cell death, but aberrant regulation of the process also leads to a variety of major human diseases. As variations of apoptotic genes may increase susceptibility to gastric cancer. Thus, it is critical to identify novel and potent tools to predict the overall survival (OS) and treatment efficacy of GC. The expression profiles and clinical characteristics of TCGA-STAD and GSE15459 cohorts were downloaded from TCGA and GEO. Apoptotic genes were extracted from the GeneCards database. Apoptosis risk scores were constructed by combining Cox regression and LASSO regression. The GSE15459 and TCGA internal validation sets were used for external validation. Moreover, we explored the relationship between the apoptosis risk score and clinical characteristics, drug sensitivity, tumor microenvironment (TME) and tumor mutational burden (TMB). Finally, we used GSVA to further explore the signaling pathways associated with apoptosis risk. By performing TCGA-STAD differential analysis, we obtained 839 differentially expressed genes, which were then analyzed by Cox regressions and LASSO regression to establish 23 genes associated with apoptosis risk scores. We used the test validation cohort from TCGA-STAD and the GSE15459 dataset for external validation. The AUC values of the ROC curve for 2-, 3-, and 5-years survival were 0.7, 0.71, and 0.71 in the internal validation cohort from TCGA-STAD and 0.77, 0.74, and 0.75 in the GSE15459 dataset, respectively. We constructed a nomogram by combining the apoptosis risk signature and some clinical characteristics from TCGA-STAD. Analysis of apoptosis risk scores and clinical characteristics demonstrated notable differences in apoptosis risk scores between survival status, sex, grade, stage, and T stage. Finally, the apoptosis risk score was correlated with TME characteristics, drug sensitivity, TMB, and TIDE scores.
Collapse
Affiliation(s)
- Chengfei Xu
- Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Zilin Liu
- Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Chuanjing Yan
- Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- *Correspondence: Chuanjing Yan, ; Jiangwei Xiao,
| | - Jiangwei Xiao
- Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- *Correspondence: Chuanjing Yan, ; Jiangwei Xiao,
| |
Collapse
|
7
|
T helper cell-mediated epitranscriptomic regulation via m6A RNA methylation bridges link between coronary artery disease and invasive ductal carcinoma. J Cancer Res Clin Oncol 2022; 148:3421-3436. [PMID: 35776197 DOI: 10.1007/s00432-022-04130-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/08/2022] [Indexed: 12/09/2022]
Abstract
PURPOSE Invasive ductal carcinoma (IDC) and coronary artery disease (CAD), remains the greatest cause of death annually in women, driven by complex signalling pathways and shared several predisposing risk factors together. Therefore, it is important to find out the common epigenetic modifications which are responsible for possible disease progression from CAD to IDC. METHODS CD4+T cell isolation by MACS, RT2 profiler PCR array, Gene ontology study, m6A RNA methylation, ChIP-qPCR, Q-PCR, CRISPR/Cas9-mediated knockout/overexpression, Lactate dehydrogenase release assay, RDIP-qPCR. RESULTS We have identified several epigenetic regulators (e.g., VEGFA, AIMP1, etc.) which are mainly involved in inflammatory pathways in both the diseased conditions. Epitranscriptomic alterations such as m6A RNA methylation found abnormal in CD4+T helper cells in both IDC as well as CAD. CRISPR-Cas9 mediated knockout/overexpression of specific gene (BRCA1) are promising therapeutic approaches in diseased conditions by regulating m6A RNA methylation and also tumor suppressor gene P53. It also affected the R-loop formation which is vulnerable to DNA damage and BRCA1 can also induce CTL mediated cytotoxicity in breast cancer cells. CONCLUSIONS Therefore, by understanding the modifications of epigenetic mechanisms, their alterations and interactions will aid in the development of newer therapeutic approaches to stop the possible spread from one disease to another.
Collapse
|
8
|
Busbee PB, Bam M, Yang X, Abdulla OA, Zhou J, Ginsberg JPJ, Aiello AE, Uddin M, Nagarkatti M, Nagarkatti PS. Dysregulated TP53 Among PTSD Patients Leads to Downregulation of miRNA let-7a and Promotes an Inflammatory Th17 Phenotype. Front Immunol 2022; 12:815840. [PMID: 35058939 PMCID: PMC8763839 DOI: 10.3389/fimmu.2021.815840] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/15/2021] [Indexed: 12/31/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric disorder and patients diagnosed with PTSD often express other comorbid health issues, particularly autoimmune and inflammatory disorders. Our previous reports investigating peripheral blood mononuclear cells (PBMCs) from PTSD patients showed that these patients exhibit an increased inflammatory T helper (Th) cell phenotype and widespread downregulation of microRNAs (miRNAs), key molecules involved in post-transcriptional gene regulation. A combination of analyzing prior datasets on gene and miRNA expression of PBMCs from PTSD and Control samples, as well as experiments using primary PBMCs collected from human PTSD and Controls blood, was used to evaluate TP53 expression, DNA methylation, and miRNA modulation on Th17 development. In the current report, we note several downregulated miRNAs were linked to tumor protein 53 (TP53), also known as p53. Expression data from PBMCs revealed that compared to Controls, PTSD patients exhibited decreased TP53 which correlated with an increased inflammatory Th17 phenotype. Decreased expression of TP53 in the PTSD population was shown to be associated with an increase in DNA methylation in the TP53 promotor region. Lastly, the most significantly downregulated TP53-associated miRNA, let-7a, was shown to negatively regulate Th17 T cells. Let-7a modulation in activated CD4+ T cells was shown to influence Th17 development and function, via alterations in IL-6 and IL-17 production, respectively. Collectively, these studies reveal that PTSD patients could be susceptible to inflammation by epigenetic dysregulation of TP53, which alters the miRNA profile to favor a proinflammatory Th17 phenotype.
Collapse
Affiliation(s)
- Philip B Busbee
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Marpe Bam
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Xiaoming Yang
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Osama A Abdulla
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Juhua Zhou
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Jay Paul Jack Ginsberg
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States.,Departments of Psychophysiology, Clinical Psychology, and Research Office, Saybrook University, Pasadena, CA, United States
| | - Allison E Aiello
- Department of Epidemiology, University of North Carolina (UNC) Gillings School of Global Public Health, University of North Carolina, Mcgavran-Greenberg Hall, Chapel Hill, NC, United States
| | - Monica Uddin
- Genomics Program, University of South Florida College of Public Health, Tampa, FL, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
9
|
The volume-regulated anion channel LRRC8C suppresses T cell function by regulating cyclic dinucleotide transport and STING-p53 signaling. Nat Immunol 2022; 23:287-302. [PMID: 35105987 DOI: 10.1038/s41590-021-01105-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 12/01/2021] [Indexed: 12/20/2022]
Abstract
The volume-regulated anion channel (VRAC) is formed by LRRC8 proteins and is responsible for the regulatory volume decrease (RVD) after hypotonic cell swelling. Besides chloride, VRAC transports other molecules, for example, immunomodulatory cyclic dinucleotides (CDNs) including 2'3'cGAMP. Here, we identify LRRC8C as a critical component of VRAC in T cells, where its deletion abolishes VRAC currents and RVD. T cells of Lrrc8c-/- mice have increased cell cycle progression, proliferation, survival, Ca2+ influx and cytokine production-a phenotype associated with downmodulation of p53 signaling. Mechanistically, LRRC8C mediates the transport of 2'3'cGAMP in T cells, resulting in STING and p53 activation. Inhibition of STING recapitulates the phenotype of LRRC8C-deficient T cells, whereas overexpression of p53 inhibits their enhanced T cell function. Lrrc8c-/- mice have exacerbated T cell-dependent immune responses, including immunity to influenza A virus infection and experimental autoimmune encephalomyelitis. Our results identify cGAMP uptake through LRRC8C and STING-p53 signaling as a new inhibitory signaling pathway in T cells and adaptive immunity.
Collapse
|
10
|
Li J, Huang D, Lei B, Huang J, Yang L, Nie M, Su S, Zhao Q, Wang Y. VLA-4 suppression by senescence signals regulates meningeal immunity and leptomeningeal metastasis. eLife 2022; 11:83272. [PMID: 36484779 PMCID: PMC9803356 DOI: 10.7554/elife.83272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Leptomeningeal metastasis is associated with dismal prognosis and has few treatment options. However, very little is known about the immune response to leptomeningeal metastasis. Here, by establishing an immunocompetent mouse model of breast cancer leptomeningeal metastasis, we found that tumor-specific CD8+ T cells were generated in deep cervical lymph nodes (dCLNs) and played an important role in controlling leptomeningeal metastasis. Mechanistically, T cells in dCLNs displayed a senescence phenotype and their recruitment was impaired in mice bearing cancer cells that preferentially colonized in leptomeningeal space. Upregulation of p53 suppressed the transcription of VLA-4 in senescent dCLN T cells and consequently inhibited their migration to the leptomeningeal compartment. Clinically, CD8+ T cells from the cerebrospinal fluid of patients with leptomeningeal metastasis exhibited senescence and VLA-4 downregulation. Collectively, our findings demonstrated that CD8+ T cell immunosenescence drives leptomeningeal metastasis.
Collapse
Affiliation(s)
- Jiaqian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina
| | - Di Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina
| | - Bingxi Lei
- Department of Neurosurgery, Sun Yat-sen UniversityGuangzhouChina
| | - Jingying Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina
| | - Linbing Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina
| | - Man Nie
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer CenterGuangzhouChina
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina,Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen UniversityGuangzhouChina
| | - Qiyi Zhao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhouChina,Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-Sen UniversityGuangzhouChina
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina
| |
Collapse
|
11
|
Liu Y, Leslie PL, Zhang Y. Life and Death Decision-Making by p53 and Implications for Cancer Immunotherapy. Trends Cancer 2020; 7:226-239. [PMID: 33199193 DOI: 10.1016/j.trecan.2020.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/11/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022]
Abstract
The tumor-suppressor protein p53 is mutated in approximately half of all cancers, whereas the p53 signaling network is perturbed in almost all cancers. In response to different stress stimuli, p53 selectively activates genes to elicit a cell survival or cell death response. How p53 makes the decision between life and death remains a fascinating question and an exciting field of research. Understanding how this decision is made has major implications for improving cancer treatments, particularly in recently evolved immune checkpoint inhibition therapy. We highlight progress and challenges in understanding the mechanisms governing the p53 life and death decision-making process, and discuss how this decision is relevant to immune system regulation. Finally, we discuss how knowledge of the p53 pro-survival and pro-death decision node can be applied to optimize immune checkpoint inhibitor therapy for cancer treatment.
Collapse
Affiliation(s)
- Yong Liu
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| | - Patrick L Leslie
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
| | - Yanping Zhang
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA.
| |
Collapse
|
12
|
Targeting mutant p53-expressing tumours with a T cell receptor-like antibody specific for a wild-type antigen. Nat Commun 2019; 10:5382. [PMID: 31772160 PMCID: PMC6879612 DOI: 10.1038/s41467-019-13305-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/02/2019] [Indexed: 01/09/2023] Open
Abstract
Accumulation of mutant p53 proteins is frequently found in a wide range of cancers. While conventional antibodies fail to target intracellular proteins, proteosomal degradation results in the presentation of p53-derived peptides on the tumour cell surface by class I molecules of the major histocompatibility complex (MHC). Elevated levels of such p53-derived peptide-MHCs on tumour cells potentially differentiate them from healthy tissues. Here, we report the engineering of an affinity-matured human antibody, P1C1TM, specific for the unmutated p53125-134 peptide in complex with the HLA-A24 class I MHC molecule. We show that P1C1TM distinguishes between mutant and wild-type p53 expressing HLA-A24+ cells, and mediates antibody dependent cellular cytotoxicity of mutant p53 expressing cells in vitro. Furthermore, we show that cytotoxic PNU-159682-P1C1TM drug conjugates specifically inhibit growth of mutant p53 expressing cells in vitro and in vivo. Hence, p53-associated peptide-MHCs are attractive targets for the immunotherapy against mutant p53 expressing tumours. Several cancers harbour mutant p53 and express higher levels of p53-derived peptide-MHCs. Here, the authors report affinity matured human antibody, P1C1TM, specific for the p53125-134 peptide in complex with the HLA-A24 class I MHC molecule and show its efficacy and specificity for mutant p53 expressing tumours.
Collapse
|
13
|
Fan K, Wang F, Li Y, Chen L, Gao Z, Zhang Y, Duan JY, Huang T, Zhong J, Liu RB, Mao X, Fan H, Guo X, Jin J. CRL4 DCAF2 is required for mature T-cell expansion via Aurora B-regulated proteasome activity. J Autoimmun 2018; 96:74-85. [PMID: 30245026 DOI: 10.1016/j.jaut.2018.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/18/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022]
Abstract
The proliferation of T cells in peripheral lymphoid tissues requires T cell receptor (TCR)-mediated cell cycle entry. However, the underlying mechanism regulating cell cycle progression in mature T cells is incompletely understood. Here, we have identified an E3 ubiquitin ligase, CRL4DCAF2, as a critical mediator controlling M phase exit in activated T cells. DCAF2 expression is induced upon TCR stimulation and its deficiency attenuates T cell expansion. Additionally, DCAF2 T cell-specific knockout mice display impaired peripheral T cell maintenance and reduced severity of various autoimmune diseases. Continuous H4K20me1 modification caused by DCAF2 deficiency inhibits the induction of Aurkb expression, which regulates 26S proteasome activity during G2/M phase. CRL4DCAF2 deficiency causes M phase arrest through proteasome-dependent mechanisms in peripheral T cells. Our findings establish DCAF2 as a novel target for T cell-mediated autoimmunity or inflammatory diseases.
Collapse
Affiliation(s)
- Keqi Fan
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Fei Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yiyuan Li
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Lu Chen
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Zhengjun Gao
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yu Zhang
- Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, 310016, China
| | - Jin-Yuan Duan
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Tao Huang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Jiangyan Zhong
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Rong-Bei Liu
- Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, 310016, China
| | - Xintao Mao
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Hengyu Fan
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xing Guo
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
| | - Jin Jin
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
14
|
Zakiryanova GK, Wheeler S, Shurin MR. Oncogenes in immune cells as potential therapeutic targets. Immunotargets Ther 2018; 7:21-28. [PMID: 29692982 PMCID: PMC5903485 DOI: 10.2147/itt.s150586] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The role of deregulated expression of oncogenes and tumor-suppressor genes in tumor development has been intensively investigated for decades. However, expression of oncogenes and their potential role in immune cell defects during carcinogenesis and tumor progression have not been thoroughly assessed. The defects in proto-oncogenes have been well documented and evaluated mostly in tumor cells, despite the fact that proto-oncogenes are expressed in all cells, including cells of the immune system. In this review, key studies from immune-mediated diseases that may be associated with oncogene signaling pathways are refocused to provide groundwork for beginning to understand the effects of oncogenes in and on the cancer-related immune system dysfunction.
Collapse
Affiliation(s)
- Gulnur K Zakiryanova
- Department Biophysics and Biomedicine, Faculty Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Sarah Wheeler
- Division of Clinical Immunopathology, Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Michael R Shurin
- Division of Clinical Immunopathology, Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Madapura HS, Salamon D, Wiman KG, Lain S, Klein E, Nagy N. cMyc-p53 feedback mechanism regulates the dynamics of T lymphocytes in the immune response. Cell Cycle 2017; 15:1267-75. [PMID: 26985633 DOI: 10.1080/15384101.2016.1160975] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Activation and proliferation of T cells are tightly regulated during the immune response. We show here that kinetics of proliferation of PHA activated T cells follows the expression of cMyc. Expression of p53 is also elevated and remains high several days after activation. To investigate the role of p53 in activated T cells, its expression was further elevated with nultin-3 treatment, a small molecule that dissociates the E3 ubiquitin protein ligase MDM2 from p53. Concomitantly, cMyc expression and proliferation decreased. At the other end of the cMyc-p53 axis, inhibition of cMyc with 10058-F4 led to down regulation of p53, likely through the lower level of cMyc induced p14ARF, which is also known to dissociate the p53-MDM2 complex. Both compounds induced cell cycle arrest and apoptosis. We conclude that the feedback regulation between cMyc and p53 is important for the T cell homeostasis. We also show that the two compounds modulating p53 and cMyc levels inhibited proliferation without abolishing the cytotoxic function, thus demonstrating the dichotomy between proliferation and cytotoxicity in activated T cells.
Collapse
Affiliation(s)
- Harsha S Madapura
- a Department of Microbiology , Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden.,b Department of Oncology-Pathology , Cancer Center Karolinska (CCK), Karolinska Institutet , Stockholm , Sweden
| | - Daniel Salamon
- a Department of Microbiology , Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Klas G Wiman
- b Department of Oncology-Pathology , Cancer Center Karolinska (CCK), Karolinska Institutet , Stockholm , Sweden
| | - Sonia Lain
- a Department of Microbiology , Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Eva Klein
- a Department of Microbiology , Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Noémi Nagy
- a Department of Microbiology , Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
16
|
Liamin M, Boutet-Robinet E, Jamin EL, Fernier M, Khoury L, Kopp B, Le Ferrec E, Vignard J, Audebert M, Sparfel L. Benzo[a]pyrene-induced DNA damage associated with mutagenesis in primary human activated T lymphocytes. Biochem Pharmacol 2017; 137:113-124. [PMID: 28461126 DOI: 10.1016/j.bcp.2017.04.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/24/2017] [Indexed: 01/02/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), such as benzo[a]pyrene (B[a]P), are widely distributed environmental contaminants exerting toxic effects such as genotoxicity and carcinogenicity, mainly associated with aryl hydrocarbon receptor (AhR) activation and the subsequent induction of cytochromes P-450 (CYP) 1-metabolizing enzymes. We previously reported an up-regulation of AhR expression and activity in primary cultures of human T lymphocyte by a physiological activation. Despite the suggested link between exposure to PAHs and the risk of lymphoma, the potential of activated human T lymphocytes to metabolize AhR exogenous ligands such as B[a]P and produce DNA damage has not been investigated. In the present study, we characterized the genotoxic response of primary activated T lymphocytes to B[a]P. We demonstrated that, following T lymphocyte activation, B[a]P treatment triggers a marked increase in CYP1 expression and activity generating, upon metabolic activation, DNA adducts and double-strand breaks (DSBs) after a 48-h treatment. At this time point, B[a]P also induces a DNA damage response with ataxia telangiectasia mutated kinase activation, thus producing a p53-dependent response and T lymphocyte survival. B[a]P activates DSB repair by mobilizing homologous recombination machinery but also induces gene mutations in activated human T lymphocytes which could consequently drive a cancer process. In conclusion, primary cultures of activated human T lymphocytes represent a good model for studying genotoxic effects of environmental contaminants such as PAHs, and predicting human health issues.
Collapse
Affiliation(s)
- Marie Liamin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche en Santé, Environnement et Travail (IRSET - INSERM UMR 1085), 35000 Rennes, France; Université de Rennes 1, Faculté des Sciences Pharmaceutiques et Biologiques, structure fédérative de recherche, Biosit UMS CNRS 3480/US INSERM 018, 35043 Rennes, France
| | - Elisa Boutet-Robinet
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Emilien L Jamin
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Morgane Fernier
- Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche en Santé, Environnement et Travail (IRSET - INSERM UMR 1085), 35000 Rennes, France; Université de Rennes 1, Faculté des Sciences Pharmaceutiques et Biologiques, structure fédérative de recherche, Biosit UMS CNRS 3480/US INSERM 018, 35043 Rennes, France
| | - Laure Khoury
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Benjamin Kopp
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Eric Le Ferrec
- Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche en Santé, Environnement et Travail (IRSET - INSERM UMR 1085), 35000 Rennes, France; Université de Rennes 1, Faculté des Sciences Pharmaceutiques et Biologiques, structure fédérative de recherche, Biosit UMS CNRS 3480/US INSERM 018, 35043 Rennes, France
| | - Julien Vignard
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Marc Audebert
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Lydie Sparfel
- Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche en Santé, Environnement et Travail (IRSET - INSERM UMR 1085), 35000 Rennes, France; Université de Rennes 1, Faculté des Sciences Pharmaceutiques et Biologiques, structure fédérative de recherche, Biosit UMS CNRS 3480/US INSERM 018, 35043 Rennes, France.
| |
Collapse
|
17
|
Structure and Function of p53-DNA Complexes with Inactivation and Rescue Mutations: A Molecular Dynamics Simulation Study. PLoS One 2015; 10:e0134638. [PMID: 26244575 PMCID: PMC4526489 DOI: 10.1371/journal.pone.0134638] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/10/2015] [Indexed: 01/10/2023] Open
Abstract
The tumor suppressor protein p53 can lose its function upon DNA-contact mutations (R273C and R273H) in the core DNA-binding domain. The activity can be restored by second-site suppressor or rescue mutations (R273C_T284R, R273H_T284R, and R273H_S240R). In this paper, we elucidate the structural and functional consequence of p53 proteins upon DNA-contact mutations and rescue mutations and the underlying mechanisms at the atomic level by means of molecular dynamics simulations. Furthermore, we also apply the docking approach to investigate the binding phenomena between the p53 protein and DNA upon DNA-contact mutations and rescue mutations. This study clearly illustrates that, due to DNA-contact mutants, the p53 structure loses its stability and becomes more rigid than the native protein. This structural loss might affect the p53-DNA interaction and leads to inhibition of the cancer suppression. Rescue mutants (R273C_T284R, R273H_T284R and R273H_S240R) can restore the functional activity of the p53 protein upon DNA-contact mutations and show a good interaction between the p53 protein and a DNA molecule, which may lead to reactivate the cancer suppression function. Understanding the effects of p53 cancer and rescue mutations at the molecular level will be helpful for designing drugs for p53 associated cancer diseases. These drugs should be designed so that they can help to inhibit the abnormal function of the p53 protein and to reactivate the p53 function (cell apoptosis) to treat human cancer.
Collapse
|
18
|
DeMicco A, Yang-Iott K, Bassing CH. Somatic inactivation of Tp53 in hematopoietic stem cells or thymocytes predisposes mice to thymic lymphomas with clonal translocations. Cell Cycle 2013; 12:3307-16. [PMID: 24036547 DOI: 10.4161/cc.26299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
TP53 protects cells from transformation by responding to stresses including aneuploidy and DNA double-strand breaks (DSBs). TP53 induces apoptosis of lymphocytes with persistent DSBs at antigen receptor loci and other genomic loci to prevent these lesions from generating oncogenic translocations. Despite this critical function of TP53, germline Tp53(-/-) mice succumb to immature T-cell (thymic) lymphomas that exhibit aneuploidy and lack clonal translocations. However, Tp53(-/-) mice occasionally develop B lineage lymphomas and Tp53 deletion in pro-B cells causes lymphomas with oncogenic immunoglobulin (Ig) locus translocations. In addition, human lymphoid cancers with somatic TP53 inactivation often harbor oncogenic IG or T-cell receptor (TCR) locus translocations. To determine whether somatic Tp53 inactivation unmasks translocations or alters the frequency of B lineage tumors in mice, we generated and analyzed mice with conditional Tp53 deletion initiating in hematopoietic stem cells (HSCs) or in lineage-committed thymocytes. Median tumor-free survival of each strain was similar to the lifespan of Tp53(-/-) mice. Mice with HSC deletion of Tp53 predominantly succumbed to thymic lymphomas with clonal translocations not involving Tcr loci; however, these mice occasionally developed mature B-cell lymphomas that harbored clonal Ig translocations. Deletion of Tp53 in thymocytes caused thymic lymphomas with aneuploidy and/or clonal translocations, including oncogenic Tcr locus translocations. Our data demonstrate that the developmental stage of Tp53 inactivation affects karyotypes of lymphoid malignancies in mice where somatic deletion of Tp53 initiating in thymocytes is sufficient to cause thymic lymphomas with oncogenic translocations.
Collapse
Affiliation(s)
- Amy DeMicco
- Cell and Molecular Biology Graduate Group; Perelman School of Medicine of the University of Pennsylvania; Philadelphia, PA USA; Division of Cancer Pathobiology; Department of Pathology and Laboratory Medicine; Center for Childhood Cancer Research; Children's Hospital of Philadelphia Research Institute; Philadelphia, PA USA; Abramson Family Cancer Research Institute; Perelman School of Medicine of the University of Pennsylvania; Philadelphia, PA USA
| | | | | |
Collapse
|
19
|
Chillemi G, Davidovich P, D'Abramo M, Mametnabiev T, Garabadzhiu AV, Desideri A, Melino G. Molecular dynamics of the full-length p53 monomer. Cell Cycle 2013; 12:3098-108. [PMID: 23974096 DOI: 10.4161/cc.26162] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The p53 protein is frequently mutated in a very large proportion of human tumors, where it seems to acquire gain-of-function activity that facilitates tumor onset and progression. A possible mechanism is the ability of mutant p53 proteins to physically interact with other proteins, including members of the same family, namely p63 and p73, inactivating their function. Assuming that this interaction might occurs at the level of the monomer, to investigate the molecular basis for this interaction, here, we sample the structural flexibility of the wild-type p53 monomeric protein. The results show a strong stability up to 850 ns in the DNA binding domain, with major flexibility in the N-terminal transactivations domains (TAD1 and TAD2) as well as in the C-terminal region (tetramerization domain). Several stable hydrogen bonds have been detected between N-terminal or C-terminal and DNA binding domain, and also between N-terminal and C-terminal. Essential dynamics analysis highlights strongly correlated movements involving TAD1 and the proline-rich region in the N-terminal domain, the tetramerization region in the C-terminal domain; Lys120 in the DNA binding region. The herein presented model is a starting point for further investigation of the whole protein tetramer as well as of its mutants.
Collapse
|
20
|
Chimenti MS, Tucci P, Candi E, Perricone R, Melino G, Willis AE. Metabolic profiling of human CD4+ cells following treatment with methotrexate and anti-TNF-α infliximab. Cell Cycle 2013; 12:3025-36. [PMID: 23974102 PMCID: PMC3875677 DOI: 10.4161/cc.26067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The autoimmune process in rheumatoid arthritis depends on activation of immune cells, which utilize intracellular kinases to respond to external stimuli such as cytokines, immune complexes, and antigens. CD4+ T cells comprise a large proportion of the inflammatory cells that invade the synovial tissue and may therefore be a cell type of pathogenic importance. Both methotrexate and infliximab are effective in the treatment of inflammatory arthritis; however, the biological effects triggered by these treatments and the biochemical mechanisms underlining the cell response are still not fully understood. Thus, in this study the global metabolic changes associated with methotrexate or infliximab treatment of isolated human CD4+ T cells were examined using gas chromatography/mass spectrometry or liquid chromatography/mass spectrometry. In total 148 metabolites involved in selective pathways were found to be significantly altered. Overall, the changes observed are likely to reflect the effort of CD4+ cells to increase the production of cellular reducing power to offset the cellular stress exerted by treatment. Importantly, analysis of the global metabolic changes associated with MTX or infliximab treatment of isolated human CD4+ T cells suggested that the toxicity associated with these agents is minimal when used at clinically relevant concentrations.
Collapse
Affiliation(s)
- Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology; Department of Internal Medicine; University of Rome Tor Vergata; Rome, Italy
| | | | | | | | | | | |
Collapse
|