1
|
Li YR, Dunn ZS, Yu Y, Li M, Wang P, Yang L. Advancing cell-based cancer immunotherapy through stem cell engineering. Cell Stem Cell 2023; 30:592-610. [PMID: 36948187 PMCID: PMC10164150 DOI: 10.1016/j.stem.2023.02.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 01/04/2023] [Accepted: 02/22/2023] [Indexed: 03/24/2023]
Abstract
Advances in cell-based therapy, particularly CAR-T cell therapy, have transformed the treatment of hematological malignancies. Although an important step forward for the field, autologous CAR-T therapies are hindered by high costs, manufacturing challenges, and limited efficacy against solid tumors. With ongoing progress in gene editing and culture techniques, engineered stem cells and their application in cell therapy are poised to address some of these challenges. Here, we review stem cell-based immunotherapy approaches, stem cell sources, gene engineering and manufacturing strategies, therapeutic platforms, and clinical trials, as well as challenges and future directions for the field.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zachary Spencer Dunn
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Yanqi Yu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Miao Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA; Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
2
|
Li YR, Dunn ZS, Zhou Y, Lee D, Yang L. Development of Stem Cell-Derived Immune Cells for Off-the-Shelf Cancer Immunotherapies. Cells 2021; 10:cells10123497. [PMID: 34944002 PMCID: PMC8700013 DOI: 10.3390/cells10123497] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
Cell-based cancer immunotherapy has revolutionized the treatment of hematological malignancies. Specifically, autologous chimeric antigen receptor-engineered T (CAR-T) cell therapies have received approvals for treating leukemias, lymphomas, and multiple myeloma following unprecedented clinical response rates. A critical barrier to the widespread usage of current CAR-T cell products is their autologous nature, which renders these cellular products patient-selective, costly, and challenging to manufacture. Allogeneic cell products can be scalable and readily administrable but face critical concerns of graft-versus-host disease (GvHD), a life-threatening adverse event in which therapeutic cells attack host tissues, and allorejection, in which host immune cells eliminate therapeutic cells, thereby limiting their antitumor efficacy. In this review, we discuss recent advances in developing stem cell-engineered allogeneic cell therapies that aim to overcome the limitations of current autologous and allogeneic cell therapies, with a special focus on stem cell-engineered conventional αβ T cells, unconventional T (iNKT, MAIT, and γδ T) cells, and natural killer (NK) cells.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (D.L.)
| | - Zachary Spencer Dunn
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA;
| | - Yang Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (D.L.)
| | - Derek Lee
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (D.L.)
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; (Y.-R.L.); (Y.Z.); (D.L.)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Correspondence:
| |
Collapse
|
3
|
Barathan M, Mohamed R, Yong YK, Kannan M, Vadivelu J, Saeidi A, Larsson M, Shankar EM. Viral Persistence and Chronicity in Hepatitis C Virus Infection: Role of T-Cell Apoptosis, Senescence and Exhaustion. Cells 2018; 7:cells7100165. [PMID: 30322028 PMCID: PMC6210370 DOI: 10.3390/cells7100165] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) represents a challenging global health threat to ~200 million infected individuals. Clinical data suggest that only ~10–15% of acutely HCV-infected individuals will achieve spontaneous viral clearance despite exuberant virus-specific immune responses, which is largely attributed to difficulties in recognizing the pathognomonic symptoms during the initial stages of exposure to the virus. Given the paucity of a suitable small animal model, it is also equally challenging to study the early phases of viral establishment. Further, the host factors contributing to HCV chronicity in a vast majority of acutely HCV-infected individuals largely remain unexplored. The last few years have witnessed a surge in studies showing that HCV adopts myriad mechanisms to disconcert virus-specific immune responses in the host to establish persistence, which includes, but is not limited to viral escape mutations, viral growth at privileged sites, and antagonism. Here we discuss a few hitherto poorly explained mechanisms employed by HCV that are believed to lead to chronicity in infected individuals. A better understanding of these mechanisms would aid the design of improved therapeutic targets against viral establishment in susceptible individuals.
Collapse
Affiliation(s)
- Muttiah Barathan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, LembahPantai, 50603 Kuala Lumpur, Malaysia.
| | - Rosmawati Mohamed
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603 LembahPantai, Kuala Lumpur, Malaysia.
| | - Yean K Yong
- Laboratory Center, Xiamen University Malaysia, 43900 Sepang, Malaysia.
| | - Meganathan Kannan
- Division of Blood and Vascular Biology, Department of Life Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur 610005, India.
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, LembahPantai, 50603 Kuala Lumpur, Malaysia.
| | - Alireza Saeidi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, LembahPantai, 50603 Kuala Lumpur, Malaysia.
| | - Marie Larsson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linkoping University, 58 183 Linkoping, Sweden.
| | - Esaki Muthu Shankar
- Division of Infection Biology and Medical Microbiology, Department of Life Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur 610005, India.
| |
Collapse
|
4
|
Wong EB, Ndung'u T, Kasprowicz VO. The role of mucosal-associated invariant T cells in infectious diseases. Immunology 2016; 150:45-54. [PMID: 27633333 DOI: 10.1111/imm.12673] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/19/2016] [Accepted: 09/05/2016] [Indexed: 01/03/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are donor-unrestricted lymphocytes that are surprisingly abundant in humans, representing 1-10% of circulating T cells and further enriched in mucosal tissues. MAIT cells recognize and are activated by small molecule ligands produced by microbes and presented by MR1, a highly conserved MHC-related antigen-presenting protein that is ubiquitously expressed in human cells. Increasing evidence suggests that MAIT cells play a protective role in anti-bacterial immunity at mucosal interfaces. Some fungi are known to produce MAIT-activating ligands, but the role of MAIT cells in fungal infections has not yet been investigated. In viral infections, specifically HIV, which has received the most study, MAIT cell biology is clearly altered, but the mechanisms explaining these alterations and their clinical significance are not yet understood. Many questions remain unanswered about the potential of MAIT cells for protection or pathogenesis in infectious diseases. Because they interact with the universal, donor-unrestricted ligand-presenting MR1 molecule, MAIT cells may be attractive immunotherapy or vaccine targets. New tools, including the development of MR1-ligand tetramers and next-generation T-cell receptor sequencing, have the potential to accelerate MAIT cell research and lead to new insights into the role of this unique set of lymphocytes in infectious diseases.
Collapse
Affiliation(s)
- Emily B Wong
- African Health Research Institute, Durban, South Africa.,Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Thumbi Ndung'u
- African Health Research Institute, Durban, South Africa.,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,The Ragon Institute of MGH, MIT, and Harvard, Harvard Medical School, Cambridge, MA, USA.,Max Planck Institute for Infection Biology, Berlin, Germany
| | - Victoria O Kasprowicz
- African Health Research Institute, Durban, South Africa.,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,The Ragon Institute of MGH, MIT, and Harvard, Harvard Medical School, Cambridge, MA, USA
| |
Collapse
|
5
|
Eberhard JM, Hartjen P, Kummer S, Schmidt RE, Bockhorn M, Lehmann C, Balagopal A, Hauber J, van Lunzen J, zur Wiesch JS. CD161+ MAIT cells are severely reduced in peripheral blood and lymph nodes of HIV-infected individuals independently of disease progression. PLoS One 2014; 9:e111323. [PMID: 25369333 PMCID: PMC4219715 DOI: 10.1371/journal.pone.0111323] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/21/2014] [Indexed: 01/10/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are characterized by the combined expression of the semi-invariant T cell receptor (TCR) Vα7.2, the lectin receptor CD161, as well as IL-18R, and play an important role in antibacterial host defense of the gut. The current study characterized CD161+ MAIT and CD161–TCRVα7.2+ T cell subsets within a large cohort of HIV patients with emphasis on patients with slow disease progression and elite controllers. Mononuclear cells from blood and lymph node samples as well as plasma from 63 patients and 26 healthy donors were analyzed by multicolor flow cytometry and ELISA for IL-18, sCD14 and sCD163. Additionally, MAIT cells were analyzed after in vitro stimulation with different cytokines and/or fixed E.coli. Reduced numbers of CD161+ MAIT cells during HIV infection were detectable in the blood and lymph nodes of all patient groups, including elite controllers. CD161+ MAIT cell numbers did not recover even after successful antiretroviral treatment. The loss of CD161+ MAIT cells was correlated with higher levels of MAIT cell activation; an increased frequency of the CD161–TCRVα7.2+T cell subset in HIV infection was observed. In vitro stimulation of MAIT cells with IL-18 and IL-12, IL-7 and fixed E.coli also resulted in a rapid and additive reduction of the MAIT cell frequency defined by CD161, IL-18R and CCR6. In summary, the irreversible reduction of the CD161+ MAIT cell subset seems to be an early event in HIV infection that is independent of later stages of the disease. This loss appears to be at least partially due to the distinctive vulnerability of MAIT cells to the pronounced stimulation by microbial products and cytokines during HIV-infection.
Collapse
MESH Headings
- Adult
- Aged
- Anti-HIV Agents/therapeutic use
- Antigens, CD/blood
- Antigens, Differentiation, Myelomonocytic/blood
- Disease Progression
- Escherichia coli/physiology
- Female
- HIV Infections/drug therapy
- HIV Infections/pathology
- Humans
- Immunity, Mucosal/immunology
- Interleukin-12/metabolism
- Interleukin-12/pharmacology
- Interleukin-18/blood
- Interleukin-18/metabolism
- Interleukin-18/pharmacology
- Interleukin-7/metabolism
- Interleukin-7/pharmacology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lipopolysaccharide Receptors/blood
- Lymph Nodes/cytology
- Lymph Nodes/metabolism
- Male
- Middle Aged
- NK Cell Lectin-Like Receptor Subfamily B/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Cell Surface/blood
- Receptors, Interleukin-18/metabolism
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Johanna Maria Eberhard
- Infectious Diseases Unit, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Philip Hartjen
- Infectious Diseases Unit, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Silke Kummer
- Infectious Diseases Unit, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Reinhold E. Schmidt
- Department of Immunology and Rheumatology, Hannover Medical School, Hanover, Germany
- German Center for Infection Research (DZIF), partner site Hamburg and Hannover, Hamburg and Hannover, Germany
| | - Maximilian Bockhorn
- Department of General Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clara Lehmann
- Department of Internal Medicine I, University Hospital of Cologne, Cologne, Germany
| | - Ashwin Balagopal
- School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Joachim Hauber
- Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg and Hannover, Hamburg and Hannover, Germany
| | - Jan van Lunzen
- Infectious Diseases Unit, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg and Hannover, Hamburg and Hannover, Germany
- * E-mail:
| | - Julian Schulze zur Wiesch
- Infectious Diseases Unit, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg and Hannover, Hamburg and Hannover, Germany
| |
Collapse
|
6
|
Abstract
The evolutionary conservation of T lymphocyte subsets bearing αβ TCRs using invariant α-chains is indicative of unique and important functions. Among these T lymphocytes, NKT cells that express an invariant TCRα-chain and recognize lipid Ags presented by the nonclassical MHC class I molecule CD1d are probably the most studied. However, a new population of evolutionarily conserved T cells with another invariant TCRα rearrangement was recently characterized. These cells, which are very abundant in humans, tend to reside in mucosal tissues and, therefore, were named mucosal-associated invariant T (MAIT) cells. Until recently, little was known about MAIT cells; however, several recent advances in our understanding of MAIT cell characteristics and functions secure their upcoming rise to fame in the immunology field and in clinical practice.
Collapse
Affiliation(s)
- Laurent Gapin
- Department of Immunology, University of Colorado School of Medicine, Denver, CO 80206
| |
Collapse
|