1
|
Feroz W, Park BS, Siripurapu M, Ntim N, Kilroy MK, Sheikh AMA, Mishra R, Garrett JT. Non-Muscle Myosin II A: Friend or Foe in Cancer? Int J Mol Sci 2024; 25:9435. [PMID: 39273383 PMCID: PMC11395477 DOI: 10.3390/ijms25179435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Non-muscle myosin IIA (NM IIA) is a motor protein that belongs to the myosin II family. The myosin heavy chain 9 (MYH9) gene encodes the heavy chain of NM IIA. NM IIA is a hexamer and contains three pairs of peptides, which include the dimer of heavy chains, essential light chains, and regulatory light chains. NM IIA is a part of the actomyosin complex that generates mechanical force and tension to carry out essential cellular functions, including adhesion, cytokinesis, migration, and the maintenance of cell shape and polarity. These functions are regulated via light and heavy chain phosphorylation at different amino acid residues. Apart from physiological functions, NM IIA is also linked to the development of cancer and genetic and neurological disorders. MYH9 gene mutations result in the development of several autosomal dominant disorders, such as May-Hegglin anomaly (MHA) and Epstein syndrome (EPS). Multiple studies have reported NM IIA as a tumor suppressor in melanoma and head and neck squamous cell carcinoma; however, studies also indicate that NM IIA is a critical player in promoting tumorigenesis, chemoradiotherapy resistance, and stemness. The ROCK-NM IIA pathway regulates cellular movement and shape via the control of cytoskeletal dynamics. In addition, the ROCK-NM IIA pathway is dysregulated in various solid tumors and leukemia. Currently, there are very few compounds targeting NM IIA, and most of these compounds are still being studied in preclinical models. This review provides comprehensive evidence highlighting the dual role of NM IIA in multiple cancer types and summarizes the signaling networks involved in tumorigenesis. Furthermore, we also discuss the role of NM IIA as a potential therapeutic target with a focus on the ROCK-NM IIA pathway.
Collapse
Affiliation(s)
- Wasim Feroz
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Briley SoYoung Park
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
- Cancer Research Scholars Program, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Meghna Siripurapu
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Nicole Ntim
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Mary Kate Kilroy
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | | | - Rosalin Mishra
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Joan T. Garrett
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| |
Collapse
|
2
|
Ultimescu F, Hudita A, Popa DE, Olinca M, Muresean HA, Ceausu M, Stanciu DI, Ginghina O, Galateanu B. Impact of Molecular Profiling on Therapy Management in Breast Cancer. J Clin Med 2024; 13:4995. [PMID: 39274207 PMCID: PMC11396537 DOI: 10.3390/jcm13174995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/16/2024] Open
Abstract
Breast cancer (BC) remains the most prevalent cancer among women and the leading cause of cancer-related mortality worldwide. The heterogeneity of BC in terms of histopathological features, genetic polymorphisms, and response to therapies necessitates a personalized approach to treatment. This review focuses on the impact of molecular profiling on therapy management in breast cancer, emphasizing recent advancements in next-generation sequencing (NGS) and liquid biopsies. These technologies enable the identification of specific molecular subtypes and the detection of blood-based biomarkers such as circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and tumor-educated platelets (TEPs). The integration of molecular profiling with traditional clinical and pathological data allows for more tailored and effective treatment strategies, improving patient outcomes. This review also discusses the current challenges and prospects of implementing personalized cancer therapy, highlighting the potential of molecular profiling to revolutionize BC management through more precise prognostic and therapeutic interventions.
Collapse
Affiliation(s)
- Flavia Ultimescu
- OncoTeam Diagnostic S.A., 010719 Bucharest, Romania
- Doctoral School of Medicine, "Carol Davila" University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
| | - Ariana Hudita
- Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest, University of Bucharest, 050663 Bucharest, Romania
| | - Daniela Elena Popa
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy Bucharest, 020956 Bucharest, Romania
| | - Maria Olinca
- OncoTeam Diagnostic S.A., 010719 Bucharest, Romania
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
| | | | - Mihail Ceausu
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
| | | | - Octav Ginghina
- Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy Bucharest, 010221 Bucharest, Romania
- Department of Surgery 3, "Prof. Dr. Al. Trestioreanu" Institute of Oncology Bucharest, 022328 Bucharest, Romania
| | - Bianca Galateanu
- Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| |
Collapse
|
3
|
Feng Y, Huang Z, Song L, Li N, Li X, Shi H, Liu R, Lu F, Han X, Ding Y, Ding Y, Wang J, Yang J, Jia Z. PDE3B regulates KRT6B and increases the sensitivity of bladder cancer cells to copper ionophores. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4911-4925. [PMID: 38165426 DOI: 10.1007/s00210-023-02928-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Cuproptosis is a new Cu-dependent programmed cell death manner that has shown regulatory functions in many tumor types, however, its mechanism in bladder cancer remains unclear. Here, we reveal that Phosphodiesterase 3B (PDE3B), a cuproptosis-associated gene, could reduce the invasion and migration of bladder cancer. PDE3B is downregulated in bladder cancer tissues, which is correlated with better prognosis. Conversely, overexpression of PDE3B in bladder cancer cell could significantly resist invasion and migration, which is consistent with the TCGA database results. Future study demonstrate the anti-cancer effect of PDE3B is mediated by Keratin 6B (KRT6B) which leads to the keratinization. Therefore, PDE3B can reduce KRT6B expression and inhibit the invasion and migration of bladder cancer. Meanwhile, increased expression of PDE3B was able to enhance the sensitivity of Cuproptosis drug thiram. This study show that PDE3B/KRT6B is a potential cancer therapeutic target and PDE3B activation is able to increase the sensitivity of bladder cancer cells to copper ionophores.
Collapse
Affiliation(s)
- Yuankang Feng
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhenlin Huang
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Liang Song
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ningyang Li
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiang Li
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Huihui Shi
- Department of Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ruoyang Liu
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Fubo Lu
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xu Han
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yafei Ding
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yinghui Ding
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Department of Otology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jun Wang
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jinjian Yang
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhankui Jia
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
4
|
George AL, Dueñas ME, Marín-Rubio JL, Trost M. Stability-based approaches in chemoproteomics. Expert Rev Mol Med 2024; 26:e6. [PMID: 38604802 PMCID: PMC11062140 DOI: 10.1017/erm.2024.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/17/2024] [Accepted: 02/22/2024] [Indexed: 04/13/2024]
Abstract
Target deconvolution can help understand how compounds exert therapeutic effects and can accelerate drug discovery by helping optimise safety and efficacy, revealing mechanisms of action, anticipate off-target effects and identifying opportunities for therapeutic expansion. Chemoproteomics, a combination of chemical biology with mass spectrometry has transformed target deconvolution. This review discusses modification-free chemoproteomic approaches that leverage the change in protein thermodynamics induced by small molecule ligand binding. Unlike modification-based methods relying on enriching specific protein targets, these approaches offer proteome-wide evaluations, driven by advancements in mass spectrometry sensitivity, increasing proteome coverage and quantitation methods. Advances in methods based on denaturation/precipitation by thermal or chemical denaturation, or by protease degradation are evaluated, emphasising the evolving landscape of chemoproteomics and its potential impact on future drug-development strategies.
Collapse
Affiliation(s)
- Amy L. George
- Laboratory for Biomedical Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Maria Emilia Dueñas
- Laboratory for Biomedical Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - José Luis Marín-Rubio
- Laboratory for Biomedical Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Matthias Trost
- Laboratory for Biomedical Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| |
Collapse
|
5
|
Liu Q, Cheng C, Huang J, Yan W, Wen Y, Liu Z, Zhou B, Guo S, Fang W. MYH9: A key protein involved in tumor progression and virus-related diseases. Biomed Pharmacother 2024; 171:116118. [PMID: 38181716 DOI: 10.1016/j.biopha.2023.116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
The myosin heavy chain 9 (MYH9) gene encodes the heavy chain of non-muscle myosin IIA (NMIIA), which belongs to the myosin II subfamily of actin-based molecular motors. Previous studies have demonstrated that abnormal expression and mutations of MYH9 were correlated with MYH9-related diseases and tumors. Furthermore, earlier investigations identified MYH9 as a tumor suppressor. However, subsequent research revealed that MYH9 promoted tumorigenesis, progression and chemoradiotherapy resistance. Note-worthily, MYH9 has also been linked to viral infections, like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Epstein-Barr virus, and hepatitis B virus, as a receptor or co-receptor. In addition, MYH9 promotes the development of hepatocellular carcinoma by interacting with the hepatitis B virus-encoding X protein. Finally, various findings highlighted the role of MYH9 in the development of these illnesses, especially in tumors. This review summarizes the involvement of the MYH9-regulated signaling network in tumors and virus-related diseases and presents possible drug interventions on MYH9, providing insights for the use of MYH9 as a therapeutic target for tumors and virus-mediated diseases.
Collapse
Affiliation(s)
- Qing Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Chao Cheng
- Department of Otolaryngology, Shenzhen Longgang Otolaryngology hospital, Shenzhen 518000, China
| | - Jiyu Huang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Weiwei Yan
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Yinhao Wen
- Department of Oncology, Pingxiang People's Hospital, Pingxiang 337000, China
| | - Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China; Key Laboratory of Protein Modification and Degradation, Basic School of Guangzhou Medical University, Guangzhou 510315, China.
| | - Beixian Zhou
- The People's Hospital of Gaozhou, Gaozhou 525200, China.
| | - Suiqun Guo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510315, China.
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China; The People's Hospital of Gaozhou, Gaozhou 525200, China; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510315, China.
| |
Collapse
|
6
|
Lafi Z, Alshaer W, Gharaibeh L, Alqudah DA, AlQuaissi B, Bashaireh B, Ibrahim AA. Synergistic combination of doxorubicin with hydralazine, and disulfiram against MCF-7 breast cancer cell line. PLoS One 2023; 18:e0291981. [PMID: 37768997 PMCID: PMC10538757 DOI: 10.1371/journal.pone.0291981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023] Open
Abstract
Disulfiram and hydralazine have recently been reported to have anti-cancer action, and repositioned to be used as adjuvant in cancer therapy. Chemotherapy combined with other medications, such as those that affect the immune system or epigenetic cell profile, can overcome resistance with fewer adverse effects compared to chemotherapy alone. In the present study, a combination of doxorubicin (DOX) with hydrazine (Hyd) and disulfiram (Dis), as a triple treatment, was evaluated against wild-type and DOX-resistant MCF-7 breast cancer cell line. Both wild-type MCF-7 cell line (MCF-7_WT) and DOX-resistant MCF-7 cell line (MCF-7_DoxR) were treated with different combination ratios of DOX, Dis, and Hyd followed by measuring the cell viability using the MTT assay. Synergism was determined using a combination index, isobologram analysis, and dose-reducing index. The anti-proliferation activity and mechanism of the triple combination were investigated by apoptosis analysis. The results showed a reduction in the IC50 values of DOX in MCF-7_WT cells (from 0.24 μM to 0.012 μM) and MCF-7_DoxR cells (from 1.13 μM to 0.44 μM) when treated with Dis (0.03μM), and Hyd (20μM) combination. Moreover, The triple combination DOX/Hyd/Dis induced significant apoptosis in both MCF-7_WT and MCF-7_DoxR cells compared to DOX alone. The triple combination of DOX, Dis, and Hyd showed a synergistic drugs combination to decrease the DOX dose needed to kill both MCF-7_WT and MCF-7_DoxR cancer cells and enhanced chemosensitivity to DOX.
Collapse
Affiliation(s)
- Zainab Lafi
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Lobna Gharaibeh
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Dana A. Alqudah
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | | | - Banan Bashaireh
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Abed Alqader Ibrahim
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, United States of America
| |
Collapse
|
7
|
Challenges and Perspectives in Target Identification and Mechanism Illustration for Chinese Medicine. Chin J Integr Med 2023:10.1007/s11655-023-3629-9. [PMID: 36809500 DOI: 10.1007/s11655-023-3629-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 02/23/2023]
Abstract
Chinese medicine (CM) is an important resource for human life understanding and discovery of drugs. However, due to the unclear pharmacological mechanism caused by unclear target, research and international promotion of many active components have made little progress in the past decades of years. CM is mainly composed of multi-ingredients with multi-targets. The identification of targets of multiple active components and the weight analysis of multiple targets in a specific pathological environment, that is, the determination of the most important target is the main obstacle to the mechanism clarification and thus hinders its internationalization. In this review, the main approach to target identification and network pharmacology were summarized. And BIBm (Bayesian inference modeling), a powerful method for drug target identification and key pathway determination was introduced. We aim to provide a new scientific basis and ideas for the development and international promotion of new drugs based on CM.
Collapse
|
8
|
Kurbatov I, Dolgalev G, Arzumanian V, Kiseleva O, Poverennaya E. The Knowns and Unknowns in Protein-Metabolite Interactions. Int J Mol Sci 2023; 24:4155. [PMID: 36835565 PMCID: PMC9964805 DOI: 10.3390/ijms24044155] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Increasing attention has been focused on the study of protein-metabolite interactions (PMI), which play a key role in regulating protein functions and directing an orchestra of cellular processes. The investigation of PMIs is complicated by the fact that many such interactions are extremely short-lived, which requires very high resolution in order to detect them. As in the case of protein-protein interactions, protein-metabolite interactions are still not clearly defined. Existing assays for detecting protein-metabolite interactions have an additional limitation in the form of a limited capacity to identify interacting metabolites. Thus, although recent advances in mass spectrometry allow the routine identification and quantification of thousands of proteins and metabolites today, they still need to be improved to provide a complete inventory of biological molecules, as well as all interactions between them. Multiomic studies aimed at deciphering the implementation of genetic information often end with the analysis of changes in metabolic pathways, as they constitute one of the most informative phenotypic layers. In this approach, the quantity and quality of knowledge about PMIs become vital to establishing the full scope of crosstalk between the proteome and the metabolome in a biological object of interest. In this review, we analyze the current state of investigation into the detection and annotation of protein-metabolite interactions, describe the recent progress in developing associated research methods, and attempt to deconstruct the very term "interaction" to advance the field of interactomics further.
Collapse
Affiliation(s)
| | | | | | - Olga Kiseleva
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| | | |
Collapse
|
9
|
Chang MR, Rusanov DA, Arakelyan J, Alshehri M, Asaturova AV, Kireeva GS, Babak MV, Ang WH. Targeting emerging cancer hallmarks by transition metal complexes: Cancer stem cells and tumor microbiome. Part I. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
10
|
So CL, Meinert C, Xia Q, Robitaille M, Roberts-Thomson SJ, Monteith GR. Increased matrix stiffness suppresses ATP-induced sustained Ca2+ influx in MDA-MB-231 breast cancer cells. Cell Calcium 2022; 104:102569. [DOI: 10.1016/j.ceca.2022.102569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
|
11
|
Solovieva M, Shatalin Y, Odinokova I, Krestinina O, Baburina Y, Mishukov A, Lomovskaya Y, Pavlik L, Mikheeva I, Holmuhamedov E, Akatov V. Disulfiram oxy-derivatives induce entosis or paraptosis-like death in breast cancer MCF-7 cells depending on the duration of treatment. Biochim Biophys Acta Gen Subj 2022; 1866:130184. [PMID: 35660414 DOI: 10.1016/j.bbagen.2022.130184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Dithiocarbamates and derivatives (including disulfiram, DSF) are currently investigated as antineoplastic agents. We have revealed earlier the ability of hydroxocobalamin (vitamin В12b) combined with diethyldithiocarbamate (DDC) to catalyze the formation of highly cytotoxic oxidized derivatives of DSF (DSFoxy, sulfones and sulfoxides). METHODS Electron and fluorescent confocal microscopy, molecular biology and conventional biochemical techniques were used to study the morphological and functional responses of MCF-7 human breast cancer cells to treatment with DDC and B12b alone or in combination. RESULTS DDC induces unfolded protein response in MCF-7 cells. The combined use of DDC and B12b causes MCF-7 cell death. Electron microscopy revealed the separation of ER and nuclear membranes, leading to the formation of both cytoplasmic and perinuclear vacuoles, with many fibers inside. The process of vacuolization coincided with the appearance of ER stress markers, a marked damage to mitochondria, a significant inhibition of 20S proteasome, and actin depolimerization at later stages. Specific inhibitors of apoptosis, necroptosis, autophagy, and ferroptosis did not prevent cell death. A short- time (6-h) exposure to DSFoxy caused a significant increase in the number of entotic cells. CONCLUSIONS These observations indicate that MCF-7 cells treated with a mixture of DDC and B12b die by the mechanism of paraptosis. A short- time exposure to DSFoxy caused, along with paraptosis, a significant activation of the entosis and its final stage, lysosomal cell death. GENERAL SIGNIFICANCE The results obtained open up opportunities for the development of new approaches to induce non-apoptotic death of cancer cells by dithiocarbamates.
Collapse
Affiliation(s)
- Marina Solovieva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Yuri Shatalin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia.
| | - Irina Odinokova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Olga Krestinina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Yulia Baburina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Artem Mishukov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia; Laboratory of Biorheology and Biomechanics, Center for Theoretical Problems of Physicochemical Pharmacology RAS, Moscow 109029, Russian Federation
| | - Yana Lomovskaya
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Liubov Pavlik
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Irina Mikheeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Ekhson Holmuhamedov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia; Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Vladimir Akatov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| |
Collapse
|
12
|
Wei W, Qiao J, Jiang X, Cai L, Hu X, He J, Chen M, Yang M, Cui T. Dehydroquinate Synthase Directly Binds to Streptomycin and Regulates Susceptibility of Mycobacterium bovis to Streptomycin in a Non-canonical Mode. Front Microbiol 2022; 13:818881. [PMID: 35516432 PMCID: PMC9063660 DOI: 10.3389/fmicb.2022.818881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/22/2022] [Indexed: 12/02/2022] Open
Abstract
Antimicrobial resistance (AMR) represents one of the main challenges in Tuberculosis (TB) treatment. Investigating the genes involved in AMR and the underlying mechanisms holds promise for developing alternative treatment strategies. The results indicate that dehydroquinate synthase (DHQS) regulates the susceptibility of Mycobacterium bovis BCG to first-line anti-TB drug streptomycin. Perturbation of the expression of aroB encoding DHQS affects the susceptibility of M. bovis BCG to streptomycin. Purified DHQS impairs in vitro antibacterial activity of streptomycin, but did not hydrolyze or modify streptomycin. DHQS directly binds to streptomycin while retaining its own catalytic activity. Computationally modeled structure analysis of DHQS–streptomycin complex reveals that DHQS binds to streptomycin without disturbing native substrate binding. In addition, streptomycin treatment significantly induces the expression of DHQS, thus resulting in DHQS-mediated susceptibility. Our findings uncover the additional function of DHQS in AMR and provide an insight into a non-canonical resistance mechanism by which protein hijacks antibiotic to reduce the interaction between antibiotic and its target with normal protein function retained.
Collapse
Affiliation(s)
- Wenping Wei
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Junjie Qiao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaofang Jiang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Luxia Cai
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaomin Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jin He
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Min Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Min Yang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Min Yang,
| | - Tao Cui
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Tao Cui,
| |
Collapse
|
13
|
The emerging role of mass spectrometry-based proteomics in drug discovery. Nat Rev Drug Discov 2022; 21:637-654. [PMID: 35351998 DOI: 10.1038/s41573-022-00409-3] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
Proteins are the main targets of most drugs; however, system-wide methods to monitor protein activity and function are still underused in drug discovery. Novel biochemical approaches, in combination with recent developments in mass spectrometry-based proteomics instrumentation and data analysis pipelines, have now enabled the dissection of disease phenotypes and their modulation by bioactive molecules at unprecedented resolution and dimensionality. In this Review, we describe proteomics and chemoproteomics approaches for target identification and validation, as well as for identification of safety hazards. We discuss innovative strategies in early-stage drug discovery in which proteomics approaches generate unique insights, such as targeted protein degradation and the use of reactive fragments, and provide guidance for experimental strategies crucial for success.
Collapse
|
14
|
Lin ZT, Gu J, Wang H, Wu A, Sun J, Chen S, Li Y, Kong Y, Wu MX, Wu T. Thermosensitive and Conductive Hybrid Polymer for Real-Time Monitoring of Spheroid Growth and Drug Responses. ACS Sens 2021; 6:2147-2157. [PMID: 34014658 DOI: 10.1021/acssensors.0c02266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three-dimensional (3D) cell culture based on polymer scaffold provides a promising tool to mimic a physiological microenvironment for drug testing; however, the next-generation cell activity monitoring technology for 3D cell culture is still challenging. Conventionally, drug efficacy evaluation and cell growth heavily rely on cell staining assays, using optical devices or flow cytometry. Here, we report a dual-function polymer scaffold (DFPS) composed of thermosensitive, silver flake- and gold nanoparticle-decorated polymers, enabling conductance change upon cell proliferation or death for in situ cell activity monitoring and drug screening. The cell activity can be quantitatively monitored via measuring the conductance change induced by polymeric network swelling or shrinkage. This novel dual-function system (1) provides a 3D microenvironment to enable the formation and growth of tumor spheroid in vitro and streamlines the harvesting of tumor spheroids through the thermosensitive scaffold and (2) offers a simple and direct quantitative method to monitor 3D cell culture in situ for drug responses. As a proof of concept, we demonstrated that a breast cancer stem cell line MDA-MB-436 was able to form cell spheroids in the scaffold, and the conductance change of the sensor exhibited a linear relationship with cell concentration. To examine its potential in drug screening, cancer spheroids in the cell sensor were treated with paclitaxel (PTX) and docetaxel (DTX), and predicted quantitative evaluation of the cytotoxic effect of drugs was established. Our results indicated that this cell sensing system may hold promising potential in expanding into an array device for high-throughput drug screening.
Collapse
Affiliation(s)
- Zuan-Tao Lin
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, United States
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Jianhua Gu
- Electron Microscopy Core, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Huie Wang
- Electron Microscopy Core, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Albon Wu
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, United States
| | - Jingying Sun
- Department of Physics and TcSUH, University of Houston, Houston, Texas 77204, United States
| | - Shuo Chen
- Department of Physics and TcSUH, University of Houston, Houston, Texas 77204, United States
| | - Yaxi Li
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, United States
| | - Yifei Kong
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Mei X. Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Tianfu Wu
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
15
|
Peng X, Wang T, Gao H, Yue X, Bian W, Mei J, Zhang Y. The interplay between IQGAP1 and small GTPases in cancer metastasis. Biomed Pharmacother 2021; 135:111243. [PMID: 33434854 DOI: 10.1016/j.biopha.2021.111243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 01/07/2023] Open
Abstract
The metastatic spread of tumor cells to distant anatomical locations is a critical cause for disease progression and leads to more than 90 % of cancer-related deaths. IQ motif-containing GTPase-activating protein 1 (IQGAP1), a prominent regulator in the cancer metastasis process, is a scaffold protein that interacts with components of the cytoskeleton. As a critical node within the small GTPase network, IQGAP1 acts as a binding partner of several small GTPases, which in turn function as molecular switches to control most cellular processes, including cell migration and invasion. Given the significant interaction between IQGAP1 and small GTPases in cancer metastasis, we briefly elucidate the role of IQGAP1 in regulating cancer metastasis and the varied interactions existing between IQGAP1 and small GTPases. In addition, the potential regulators for IQGAP1 activity and its interaction with small GTPases are also incorporated in this review. Overall, we comprehensively summarize the role of IQGAP1 in cancer tumorigenicity and metastasis, which may be a potential anti-tumor target to restrain cancer progression.
Collapse
Affiliation(s)
- Xiafeng Peng
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China; First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166, China.
| | - Tiejun Wang
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China.
| | - Han Gao
- School of Medicine, Jiangnan University, Wuxi, 214122, China.
| | - Xin Yue
- First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166, China.
| | - Weiqi Bian
- First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166, China.
| | - Jie Mei
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China; Wuxi Clinical Medical College, Nanjing Medical University, Wuxi, 214023, China.
| | - Yan Zhang
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China.
| |
Collapse
|
16
|
Osman MA, Antonisamy WJ, Yakirevich E. IQGAP1 control of centrosome function defines distinct variants of triple negative breast cancer. Oncotarget 2020; 11:2493-2511. [PMID: 32655836 PMCID: PMC7335670 DOI: 10.18632/oncotarget.27623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a heterogenous and lethal disease that lacks diagnostic markers and therapeutic targets; as such common targets are highly sought after. IQGAP1 is a signaling scaffold implicated in TNBC, but its mechanism is unknown. Here we show that IQGAP1 localizes to the centrosome, interacts with and influences the expression level and localization of key centrosome proteins like BRCA1 and thereby impacts centrosome number. Genetic mutant analyses suggest that phosphorylation cycling of IQGAP1 is important to its subcellular localization and centrosome-nuclear shuttling of BRCA1; dysfunction of this process defines two alternate mechanisms associated with cell proliferation. TNBC cell lines and patient tumor tissues differentially phenocopy these mechanisms supporting clinical existence of molecularly distinct variants of TNBC defined by IQGAP1 pathways. These variants are defined, at least in part, by differential mis-localization or stabilization of IQGAP1-BRCA1 and rewiring of a novel Erk1/2-MNK1-JNK-Akt-β-catenin signaling signature. We discuss a model in which IQGAP1 modulates centrosome-nuclear crosstalk to regulate cell division and imparts on cancer. These findings have implications on cancer racial disparities and can provide molecular tools for classification of TNBC, presenting IQGAP1 as a common target amenable to personalized medicine.
Collapse
Affiliation(s)
- Mahasin A. Osman
- Department of Medicine, Division of Oncology, Health Sciences Campus, University of Toledo, Toledo, OH 43614, USA
- Department of Molecular Pharmacology, Physiology and Biotechnology, Division of Biology and Medicine, Warren Alpert Medical School of Brown University, Providence, RI 02912, USA
| | - William James Antonisamy
- Department of Medicine, Division of Oncology, Health Sciences Campus, University of Toledo, Toledo, OH 43614, USA
| | - Evgeny Yakirevich
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
17
|
Coencapsulation of disulfiram and doxorubicin in liposomes strongly reverses multidrug resistance in breast cancer cells. Int J Pharm 2020; 580:119191. [DOI: 10.1016/j.ijpharm.2020.119191] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/06/2020] [Accepted: 02/28/2020] [Indexed: 12/19/2022]
|
18
|
Lyu J, Wang K, Ye M. Modification-free approaches to screen drug targets at proteome level. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Li R, Li Q, Ji Q. Molecular targeted study in tumors: From western medicine to active ingredients of traditional Chinese medicine. Biomed Pharmacother 2020; 121:109624. [DOI: 10.1016/j.biopha.2019.109624] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
|
20
|
Khan HJ, Rohondia SO, Othman Ahmed ZS, Zalavadiya N, Dou QP. Increasing opportunities of drug repurposing for treating breast cancer by the integration of molecular, histological, and systemic approaches. DRUG REPURPOSING IN CANCER THERAPY 2020:121-172. [DOI: 10.1016/b978-0-12-819668-7.00005-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
21
|
The biological activity of bispecific trastuzumab/pertuzumab plant biosimilars may be drastically boosted by disulfiram increasing formaldehyde accumulation in cancer cells. Sci Rep 2019; 9:16168. [PMID: 31700025 PMCID: PMC6838051 DOI: 10.1038/s41598-019-52507-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023] Open
Abstract
Studies of breast cancer therapy have examined the improvement of bispecific trastuzumab/pertuzumab antibodies interacting simultaneously with two different epitopes of the human epidermal growth factor receptor 2 (HER2). Here, we describe the creation and production of plant-made bispecific antibodies based on trastuzumab and pertuzumab plant biosimilars (bi-TPB-PPB). Using surface plasmon resonance analysis of bi-TPB-PPB antibodies binding with the HER2 extracellular domain, we showed that the obtained Kd values were within the limits accepted for modified trastuzumab and pertuzumab. Despite the ability of bi-TPB-PPB antibodies to bind to Fcγ receptor IIIa and HER2 oncoprotein on the cell surface, a proliferation inhibition assay did not reveal any effect until α1,3-fucose and β1,2-xylose in the Asn297-linked glycan were removed. Another approach to activating bi-TPB-PPB may be associated with the use of disulfiram (DSF) a known aldehyde dehydrogenase 2 (ALDH2) inhibitor. We found that disulfiram is capable of killing breast cancer cells with simultaneous formaldehyde accumulation. Furthermore, we investigated the capacity of DSF to act as an adjuvant for bi-TPB-PPB antibodies. Although the content of ALDH2 mRNA was decreased after BT-474 cell treatment with antibodies, we only observed cell proliferation inhibiting activity of bi-TPB-PPB in the presence of disulfiram. We concluded that disulfiram can serve as a booster and adjuvant for anticancer immunotherapy.
Collapse
|
22
|
Tao X, Gou J, Zhang Q, Tan X, Ren T, Yao Q, Tian B, Kou L, Zhang L, Tang X. Synergistic breast tumor cell killing achieved by intracellular co-delivery of doxorubicin and disulfiram via core-shell-corona nanoparticles. Biomater Sci 2018; 6:1869-1881. [PMID: 29808221 DOI: 10.1039/c8bm00271a] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Combination therapy with different functional chemotherapeutic agents based on nano-drug delivery systems is an effective strategy for the treatment of breast cancer. However, co-delivery of drug molecules with different physicochemical properties still remains a challenge. In this study, an amphiphilic poly (ε-caprolactone)-b-poly (l-glutamic acid)-g-methoxy poly (ethylene glycol) (PCL-b-PGlu-g-mPEG) copolymer was designed and synthesized to develop a nanocarrier for the co-delivery of hydrophilic doxorubicin (DOX) and hydrophobic disulfiram (DSF). The amphiphilic copolymer self-assembled into core-shell-corona structured nanoparticles with the hydrophobic PCL core for DSF loading (hydrophobic interaction) and anionic poly (glutamic acid) shell for DOX loading (electrostatic interaction). DSF and DOX co-loaded nanoparticles (Co-NPs) resulted in high drug loading and precisely controlled DSF/DOX ratio via formulation optimization. Compared with free drug solutions, DSF and DOX delivered by the Co-NPs were found to have improved intracellular accumulation. Results of cytotoxicity assays showed that DSF/DOX delivered at the weight ratio of 0.5 and 1 could achieve a synergistic cytotoxic effect on breast cancer cell lines (MCF-7 and MDA-MB-231). In vivo imaging confirmed that the core-shell-corona nanoparticles could efficiently accumulate in tumors. In vivo anti-tumor effect results indicated that Co-NPs showed an improved drug synergistic effect on antitumor activity compared with the free drug combination. Therefore, it can be concluded that core-shell-corona nanoparticles prepared by PCL-b-PGlu-g-mPEG could be a promising co-delivery system for drug combination therapy in the treatment of breast cancer.
Collapse
Affiliation(s)
- Xiaoguang Tao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Dorokhov YL, Sheshukova EV, Bialik TE, Komarova TV. Human Endogenous Formaldehyde as an Anticancer Metabolite: Its Oxidation Downregulation May Be a Means of Improving Therapy. Bioessays 2018; 40:e1800136. [PMID: 30370669 DOI: 10.1002/bies.201800136] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/27/2018] [Indexed: 02/06/2023]
Abstract
Malignant cells are characterized by an increased content of endogenous formaldehyde formed as a by-product of biosynthetic processes. Accumulation of formaldehyde in cancer cells is combined with activation of the processes of cellular formaldehyde clearance. These mechanisms include increased ALDH and suppressed ADH5/FDH activity, which oncologists consider poor and favorable prognostic markers, respectively. Here, the sources and regulation of formaldehyde metabolism in cancer cells are reviewed. The authors also analyze the participation of oncoproteins such as fibulins, FGFR1, HER2/neu, FBI-1, and MUC1-C in the control of genes related to formaldehyde metabolism, suggesting the existence of two mutually exclusive processes in cancer cells: 1) production and 2) oxidation and elimination of formaldehyde from the cell. The authors hypothesize that the study of the anticancer properties of disulfiram and alpha lipoic acid - which affect the balance of formaldehyde in the body - may serve as the basis of future anticancer therapy.
Collapse
Affiliation(s)
- Yuri L Dorokhov
- N.I. Vavilov Institute of General Genetics of RAS, 119991, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia
| | | | - Tatiana E Bialik
- N.N. Blokhin National Medical Research Center of Oncology, 115478, Moscow, Russia
| | - Tatiana V Komarova
- N.I. Vavilov Institute of General Genetics of RAS, 119991, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia
| |
Collapse
|
24
|
Pendharkar N, Dhali S, Abhang S. A Novel Strategy to Investigate Tissue‐Secreted Tumor Microenvironmental Proteins in Serum toward Development of Breast Cancer Early Diagnosis Biomarker Signature. Proteomics Clin Appl 2018; 13:e1700119. [DOI: 10.1002/prca.201700119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/03/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Namita Pendharkar
- Biochemistry DepartmentB.J. Medical CollegeSassoon Hospital Pune 411001 MH India
- Proteomics LabNational Centre for Cell Science Pune 411007 MH India
| | - Snigdha Dhali
- Proteomics LabNational Centre for Cell Science Pune 411007 MH India
| | - Subodhini Abhang
- Biochemistry DepartmentB.J. Medical CollegeSassoon Hospital Pune 411001 MH India
| |
Collapse
|
25
|
Zacksenhaus E, Liu JC, Granieri L, Vorobieva I, Wang DY, Ghanbari-Azarnier R, Li H, Ali A, Chung PED, Ju Y, Jiang Z, Shrestha M. CDC25 as a common therapeutic target for triple-negative breast cancer - the challenges ahead. Mol Cell Oncol 2018; 5:e1481814. [PMID: 30250928 DOI: 10.1080/23723556.2018.1481814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 12/16/2022]
Abstract
The dual phosphatase CDC25 has recently been identified as a target for diverse triple-negative breast cancers including RB1/PTEN/P53-deficient tumors. Moreover, CDC25 inhibitors effectively synergize with PI3K inhibitors to suppress tumor growth. We discuss these findings and the challenges that lie ahead in bringing CDC25 inhibitors to the clinic.
Collapse
Affiliation(s)
- Eldad Zacksenhaus
- Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jeff C Liu
- Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | - Letizia Granieri
- Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada.,European Institute of Oncology, Milan, Italy
| | - Ioulia Vorobieva
- Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Dong-Yu Wang
- Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | - Ronak Ghanbari-Azarnier
- Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Huiqin Li
- Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | - Amjad Ali
- Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | - Philip E D Chung
- Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - YoungJun Ju
- Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | - Zhe Jiang
- Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | - Mariusz Shrestha
- Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Zeng F, Jiang W, Zhao W, Fan Y, Zhu Y, Zhang H. Ras GTPase-Activating-Like Protein IQGAP1 (IQGAP1) Promotes Breast Cancer Proliferation and Invasion and Correlates with Poor Clinical Outcomes. Med Sci Monit 2018; 24:3315-3323. [PMID: 29779034 PMCID: PMC5991136 DOI: 10.12659/msm.909916] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 04/17/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Breast cancer is one of the most common female cancers in the world. As a key integrator of cell signaling pathways, IQGAP1 contributes to the development and progression of several cancers. However, the exact effects and molecular mechanisms of IQGAP1 in breast cancer progression remain poorly understood. MATERIAL AND METHODS In the present study, IQGAP1 expression was measured in 96 paired breast cancer samples and the corresponding adjacent non-cancerous tissues by immunohistochemistry and quantitative polymerase chain reaction. To further explore the biological function of IQGAP1 in breast cancer cells, we knocked down IQGAP1 expression in MCF-7 cells and overexpressed it in SK-BR-3 cells. RESULTS IQGAP1 was specifically upregulated in breast cancer tissues compared with the corresponding adjacent non-cancerous tissues. Moreover, IQGAP1 expression was positively correlated with breast cancer survival rate. IQGAP1 also promoted breast cancer cell proliferation and cell cycle progression and suppressed apoptosis. CONCLUSIONS In conclusion, our results suggest that IQGAP1 plays an important role in the cell proliferation and invasion of human breast cancer cells, thus indicating that IQGAP1 may be a potential therapeutic target for the treatment of human breast cancer.
Collapse
Affiliation(s)
- Fanye Zeng
- Second Department of Oncology, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| | - Weihua Jiang
- Second Department of Breast Surgery, The Oncological Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| | - Wei Zhao
- Department of Clinical Biochemistry, School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, P.R. China
| | - Yuxiang Fan
- Second Department of Oncology, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| | - Yanhua Zhu
- Second Department of Oncology, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| | - Hongliang Zhang
- Second Department of Oncology, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| |
Collapse
|
27
|
Wolff RA, Wang-Gillam A, Alvarez H, Tiriac H, Engle D, Hou S, Groff AF, San Lucas A, Bernard V, Allenson K, Castillo J, Kim D, Mulu F, Huang J, Stephens B, Wistuba II, Katz M, Varadhachary G, Park Y, Hicks J, Chinnaiyan A, Scampavia L, Spicer T, Gerhardinger C, Maitra A, Tuveson D, Rinn J, Lizee G, Yee C, Levine AJ. Dynamic changes during the treatment of pancreatic cancer. Oncotarget 2018; 9:14764-14790. [PMID: 29599906 PMCID: PMC5871077 DOI: 10.18632/oncotarget.24483] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/01/2018] [Indexed: 01/17/2023] Open
Abstract
This manuscript follows a single patient with pancreatic adenocarcinoma for a five year period, detailing the clinical record, pathology, the dynamic evolution of molecular and cellular alterations as well as the responses to treatments with chemotherapies, targeted therapies and immunotherapies. DNA and RNA samples from biopsies and blood identified a dynamic set of changes in allelic imbalances and copy number variations in response to therapies. Organoid cultures established from biopsies over time were employed for extensive drug testing to determine if this approach was feasible for treatments. When an unusual drug response was detected, an extensive RNA sequencing analysis was employed to establish novel mechanisms of action of this drug. Organoid cell cultures were employed to identify possible antigens associated with the tumor and the patient's T-cells were expanded against one of these antigens. Similar and identical T-cell receptor sequences were observed in the initial biopsy and the expanded T-cell population. Immunotherapy treatment failed to shrink the tumor, which had undergone an epithelial to mesenchymal transition prior to therapy. A warm autopsy of the metastatic lung tumor permitted an extensive analysis of tumor heterogeneity over five years of treatment and surgery. This detailed analysis of the clinical descriptions, imaging, pathology, molecular and cellular evolution of the tumors, treatments, and responses to chemotherapy, targeted therapies, and immunotherapies, as well as attempts at the development of personalized medical treatments for a single patient should provide a valuable guide to future directions in cancer treatment.
Collapse
Affiliation(s)
- Robert A Wolff
- Department of Gastrointestinal (GI) Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Hector Alvarez
- Department of Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Hervé Tiriac
- Cold Spring Harbor Laboratory, New York, NY, USA
| | | | - Shurong Hou
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL, USA
| | - Abigail F Groff
- Department of Molecular and Cellular Biology, Harvard University, The Broad Institute, Cambridge, MA, USA
| | - Anthony San Lucas
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Vincent Bernard
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Kelvin Allenson
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Jonathan Castillo
- Department of Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Dong Kim
- Department of Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Feven Mulu
- Department of Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Jonathan Huang
- Department of Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Bret Stephens
- Department of Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew Katz
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Gauri Varadhachary
- Department of Gastrointestinal (GI) Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | | | - James Hicks
- Cold Spring Harbor Laboratory, New York, NY, USA
| | - Arul Chinnaiyan
- Center for Translational Pathology, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Louis Scampavia
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL, USA
| | - Timothy Spicer
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL, USA
| | - Chiara Gerhardinger
- Department of Molecular and Cellular Biology, Harvard University, The Broad Institute, Cambridge, MA, USA
| | - Anirban Maitra
- Department of Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | | | - John Rinn
- Department of Molecular and Cellular Biology, Harvard University, The Broad Institute, Cambridge, MA, USA.,Current address: University of Colorado Boulder, BioFrontiers Institute, Boulder, CO, USA
| | - Gregory Lizee
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Cassian Yee
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Arnold J Levine
- Simons Center for Systems Biology, Institute for Advanced Study, Princeton, NJ, USA
| |
Collapse
|
28
|
Ogburn RN, Jin L, Meng H, Fitzgerald MC. Discovery of Tamoxifen and N-Desmethyl Tamoxifen Protein Targets in MCF-7 Cells Using Large-Scale Protein Folding and Stability Measurements. J Proteome Res 2017; 16:4073-4085. [PMID: 28927269 DOI: 10.1021/acs.jproteome.7b00442] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The proteins in an MCF-7 cell line were probed for tamoxifen (TAM) and n-desmethyl tamoxifen (NDT) induced stability changes using the Stability of Proteins from Rates of Oxidation (SPROX) technique in combination with two different quantitative proteomics strategies, including one based on SILAC and one based on isobaric mass tags. Over 1000 proteins were assayed for TAM- and NDT-induced protein stability changes, and a total of 163 and 200 protein hits were identified in the TAM and NDT studies, respectively. A subset of 27 high-confidence protein hits were reproducibly identified with both proteomics strategies and/or with multiple peptide probes. One-third of the high-confidence hits have previously established experimental links to the estrogen receptor, and nearly all of the high-confidence hits have established links to breast cancer. One high-confidence protein hit that has known estrogen receptor binding properties, Y-box binding protein 1 (YBX1), was further validated as a direct binding target of TAM using both the SPROX and pulse proteolysis techniques. Proteins with TAM- and/or NDT-induced expression level changes were also identified in the SILAC-SPROX experiments. These proteins with expression level changes included only a small fraction of those with TAM- and/or NDT-induced stability changes.
Collapse
Affiliation(s)
- Ryenne N Ogburn
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Lorrain Jin
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - He Meng
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Michael C Fitzgerald
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| |
Collapse
|
29
|
Diether M, Sauer U. Towards detecting regulatory protein–metabolite interactions. Curr Opin Microbiol 2017; 39:16-23. [DOI: 10.1016/j.mib.2017.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/21/2017] [Accepted: 07/27/2017] [Indexed: 01/20/2023]
|
30
|
Liu JC, Zacksenhouse M, Eisen A, Nofech-Mozes S, Zacksenhaus E. Identification of cell proliferation, immune response and cell migration as critical pathways in a prognostic signature for HER2+:ERα- breast cancer. PLoS One 2017. [PMID: 28632792 PMCID: PMC5478114 DOI: 10.1371/journal.pone.0179223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Multi-gene prognostic signatures derived from primary tumor biopsies can guide clinicians in designing an appropriate course of treatment. Identifying genes and pathways most essential to a signature performance may facilitate clinical application, provide insights into cancer progression, and uncover potentially new therapeutic targets. We previously developed a 17-gene prognostic signature (HTICS) for HER2+:ERα- breast cancer patients, using genes that are differentially expressed in tumor initiating cells (TICs) versus non-TICs from MMTV-Her2/neu mammary tumors. Here we probed the pathways and genes that underlie the prognostic power of HTICS. Methods We used Leave-One Out, Data Combination Test, Gene Set Enrichment Analysis (GSEA), Correlation and Substitution analyses together with Receiver Operating Characteristic (ROC) and Kaplan-Meier survival analysis to identify critical biological pathways within HTICS. Publically available cohorts with gene expression and clinical outcome were used to assess prognosis. NanoString technology was used to detect gene expression in formalin-fixed paraffin embedded (FFPE) tissues. Results We show that three major biological pathways: cell proliferation, immune response, and cell migration, drive the prognostic power of HTICS, which is further tuned by Homeostatic and Glycan metabolic signalling. A 6-gene minimal Core that retained a significant prognostic power, albeit less than HTICS, also comprised the proliferation/immune/migration pathways. Finally, we developed NanoString probes that could detect expression of HTICS genes and their substitutions in FFPE samples. Conclusion Our results demonstrate that the prognostic power of a signature is driven by the biological processes it monitors, identify cell proliferation, immune response and cell migration as critical pathways for HER2+:ERα- cancer progression, and defines substitutes and Core genes that should facilitate clinical application of HTICS.
Collapse
Affiliation(s)
- Jeffrey C. Liu
- Division of Advanced Diagnostics, Toronto General Research Institute—University Health Network, Toronto, Ontario, Canada
- * E-mail: (JCL); (EZ)
| | - Miriam Zacksenhouse
- Brain-computer Interfaces for Rehabilitation Laboratory, Faculty of Mechanical Engineering, Technion—Israel Institute of Technology Haifa, Israel
| | - Andrea Eisen
- Sunnybrook Health Sciences Centre, University of Toronto; Toronto, Ontario, Canada
| | - Sharon Nofech-Mozes
- Sunnybrook Health Sciences Centre, University of Toronto; Toronto, Ontario, Canada
| | - Eldad Zacksenhaus
- Division of Advanced Diagnostics, Toronto General Research Institute—University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (JCL); (EZ)
| |
Collapse
|
31
|
Merkel O, Taylor N, Prutsch N, Staber PB, Moriggl R, Turner SD, Kenner L. When the guardian sleeps: Reactivation of the p53 pathway in cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:1-13. [PMID: 28927521 DOI: 10.1016/j.mrrev.2017.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Indexed: 12/22/2022]
Abstract
The p53 tumor suppressor is inactivated in most cancers, thus suggesting that loss of p53 is a prerequisite for tumor growth. Therefore, its reintroduction through different means bears great clinical potential. After a brief introduction to current knowledge of p53 and its regulation by the ubiquitin-ligases MDM2/MDMX and post-translational modifications, we will discuss small molecules that are able to reactivate specific, frequently observed mutant forms of p53 and their applicability for clinical purposes. Many malignancies display amplification of MDM genes encoding negative regulators of p53 and therefore much effort to date has concentrated on the development of molecules that inhibit MDM2, the most advanced of which are being tested in clinical trials for sarcoma, glioblastoma, bladder cancer and lung adenocarcinoma. These will be discussed as will recent findings of MDMX inhibitors: these are of special importance as it has been shown that cancers that become resistant to MDM2 inhibitors often amplify MDM4. Finally, we will also touch on gene therapy and vaccination approaches; the former of which aims to replace mutated TP53 and the latter whose goal is to activate the body's immune system toward mutant p53 expressing cells. Besides the obvious importance of MDM2 and MDMX expression for regulation of p53, other regulatory factors should not be underestimated and are also described. Despite the beauty of the concept, the past years have shown that many obstacles have to be overcome to bring p53 reactivation to the clinic on a broad scale, and it is likely that in most cases it will be part of a combined therapeutic approach. However, improving current p53 targeted molecules and finding the best therapy partners will clearly impact the future of cancer therapy.
Collapse
Affiliation(s)
- Olaf Merkel
- Department of Clinical Pathology, Medical University Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | - Ninon Taylor
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases, Rheumatology, Oncologic Center, Laboratory of Immunological and Molecular Cancer Research Laboratory of Immunological and Molecular Cancer Research, Paracelsus Medical University, Salzburg, Austria
| | - Nicole Prutsch
- Department of Clinical Pathology, Medical University Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Philipp B Staber
- Department of Internal Medicine 1, Division of Hematology and Hemostaseology, Comprehensive Cancer Centre Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Waehringerstrasse 13a, 1090 Vienna, Austria; Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna and Medical University of Vienna, Austria
| | - Suzanne D Turner
- Department of Pathology, University of Cambridge, Lab Block Level 3, Box 231, Addenbrooke's Hospital, Cambridge CB20QQ, UK
| | - Lukas Kenner
- Department of Clinical Pathology, Medical University Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Waehringerstrasse 13a, 1090 Vienna, Austria; Institute of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, Austria.
| |
Collapse
|
32
|
Saxena C. Identification of protein binding partners of small molecules using label-free methods. Expert Opin Drug Discov 2016; 11:1017-25. [DOI: 10.1080/17460441.2016.1227316] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
33
|
Jones RA, Robinson TJ, Liu JC, Shrestha M, Voisin V, Ju Y, Chung PED, Pellecchia G, Fell VL, Bae S, Muthuswamy L, Datti A, Egan SE, Jiang Z, Leone G, Bader GD, Schimmer A, Zacksenhaus E. RB1 deficiency in triple-negative breast cancer induces mitochondrial protein translation. J Clin Invest 2016; 126:3739-3757. [PMID: 27571409 DOI: 10.1172/jci81568] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/12/2016] [Indexed: 01/03/2023] Open
Abstract
Triple-negative breast cancer (TNBC) includes basal-like and claudin-low subtypes for which no specific treatment is currently available. Although the retinoblastoma tumor-suppressor gene (RB1) is frequently lost together with TP53 in TNBC, it is not directly targetable. There is thus great interest in identifying vulnerabilities downstream of RB1 that can be therapeutically exploited. Here, we determined that combined inactivation of murine Rb and p53 in diverse mammary epithelial cells induced claudin-low-like TNBC with Met, Birc2/3-Mmp13-Yap1, and Pvt1-Myc amplifications. Gene set enrichment analysis revealed that Rb/p53-deficient tumors showed elevated expression of the mitochondrial protein translation (MPT) gene pathway relative to tumors harboring p53 deletion alone. Accordingly, bioinformatic, functional, and biochemical analyses showed that RB1-E2F complexes bind to MPT gene promoters to regulate transcription and control MPT. Additionally, a screen of US Food and Drug Administration-approved (FDA-approved) drugs identified the MPT antagonist tigecycline (TIG) as a potent inhibitor of Rb/p53-deficient tumor cell proliferation. TIG preferentially suppressed RB1-deficient TNBC cell proliferation, targeted both the bulk and cancer stem cell fraction, and strongly attenuated xenograft growth. It also cooperated with sulfasalazine, an FDA-approved inhibitor of cystine xCT antiporter, in culture and xenograft assays. Our results suggest that RB1 deficiency promotes cancer cell proliferation in part by enhancing mitochondrial function and identify TIG as a clinically approved drug for RB1-deficient TNBC.
Collapse
|
34
|
Song W, Tang Z, Lei T, Wen X, Wang G, Zhang D, Deng M, Tang X, Chen X. Stable loading and delivery of disulfiram with mPEG-PLGA/PCL mixed nanoparticles for tumor therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:377-86. [DOI: 10.1016/j.nano.2015.10.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/10/2015] [Accepted: 10/10/2015] [Indexed: 11/16/2022]
|
35
|
de Souza VB, Schenka AA. Cancer Stem and Progenitor-Like Cells as Pharmacological Targets in Breast Cancer Treatment. Breast Cancer (Auckl) 2015; 9:45-55. [PMID: 26609237 PMCID: PMC4644141 DOI: 10.4137/bcbcr.s29427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 01/05/2023] Open
Abstract
The present review is focused on the current role of neoplastic stem and progenitor-like cells as primary targets in the pharmacotherapy of cancer as well as in the development of new anticancer drugs. We begin by summarizing the main characteristics of these tumor-initiating cells and key concepts that support their participation in therapeutic failure. In particular, we discuss the differences between the major carcinogenesis models (ie, clonal evolution vs cancer stem cell (CSC) model) with emphasis on breast cancer (given its importance to the study of CSCs) and their implications for the development of new treatment strategies. In addition, we describe the main ways to target these cells, including the main signaling pathways that are more activated or altered in CSCs. Finally, we provide a comprehensive compilation of the most recently tested drugs.
Collapse
Affiliation(s)
- Valéria B. de Souza
- Department of Pharmacology, School of Medical Sciences, State University of Campinas (UNICAMP), São Paulo, Brazil
- Department of Anatomic Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), São Paulo, Brazil
| | - André A. Schenka
- Department of Pharmacology, School of Medical Sciences, State University of Campinas (UNICAMP), São Paulo, Brazil
- Department of Anatomic Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), São Paulo, Brazil
| |
Collapse
|
36
|
Badawy AAB, Bano S. Elevation of Kynurenine Metabolites in Rat Liver and Serum: A Potential Additional Mechanism of the Alcohol Aversive and Anti-cancer Effects of Disulfiram? Alcohol Alcohol 2015. [PMID: 26224731 PMCID: PMC4678950 DOI: 10.1093/alcalc/agv085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aims The tryptophan metabolites 3-hydroxykynurenine (3-HK) and 3-hydroxyanthranilic acid (3-HAA) inhibit the liver mitochondrial low Km aldehyde dehydrogenase and possess alcohol-aversive and immunosuppressant properties. As the disulfiram (DS) metabolite carbon disulphide activates enzymes forming 3-HK and 3-HAA, we investigated if repeated disulfiram treatment increases the hepatic and serum levels of these 2 metabolites. Methods Livers and sera of male Wistar rats were analysed for tryptophan and kynurenine metabolites after repeated DS treatment for 7 days. Results DS increased liver and serum [3-HK] and [3-HAA] possibly by increasing the flux of tryptophan down the hepatic kynurenine pathway and activation of kynurenine hydroxylase and kynureninase. Conclusions We provisionally suggest that elevation of some kynurenine metabolites may be an additional mechanism of the alcohol-aversive and anticancer effects of disulfiram.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK
| | - Samina Bano
- Present address: Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
37
|
Hong KJ, Hsu MC, Hung WC. RECK impedes DNA repair by inhibiting the erbB/JAB1/Rad51 signaling axis and enhances chemosensitivity of breast cancer cells. Am J Cancer Res 2015; 5:2422-2430. [PMID: 26396917 PMCID: PMC4568777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 06/05/2023] Open
Abstract
The reversion-inducing cysteine-rich protein with kazal motif (RECK) is an endogenous matrix metalloproteinase (MMP) inhibitor and a tumor suppressor. Its expression is dramatically down-regulated in human cancers. Our recent results suggest a novel MMP-independent anti-cancer activity of RECK by inhibiting the erbB signaling. Activation of the erbB signaling is associated with chemotherapeutic resistance, however, whether RECK could modulate drug sensitivity is still unknown. Here we demonstrated that expression of RECK induced the activation of ATM and ATR pathways, and the formation of γ-H2AX foci in breast cancer cells. RECK inhibited the erbB signaling and attenuated the expression of the downstream molecules Jun activation domain-binding protein 1 (JAB1) and the DNA repair protein RAD51 to impede DNA repair and to increase drug sensitivity. Treatment of epidermal growth factor or over-expression of HER-2 effectively reversed the inhibitory effect of RECK. In addition, ectopic expression of JAB1 counteracted RECK-induced RAD51 reduction and drug sensitization. Our results elucidate a novel function of RECK to modulate DNA damage response and drug resistance by inhibiting the erbB/Jab1/RAD51 signaling axis. Restoration of RECK expression in breast cancer cells may increase sensitivity to chemotherapeutic agents.
Collapse
Affiliation(s)
- Kun-Jing Hong
- Institute of Biomedical Sciences, National Sun Yet-Sen UniversityKaohsiung 804, Taiwan, Republic of China
| | - Ming-Chuan Hsu
- National Institute of Cancer Research, National Health Research InstitutesTainan 704, Taiwan, Republic of China
| | - Wen-Chun Hung
- Institute of Biomedical Sciences, National Sun Yet-Sen UniversityKaohsiung 804, Taiwan, Republic of China
- National Institute of Cancer Research, National Health Research InstitutesTainan 704, Taiwan, Republic of China
| |
Collapse
|
38
|
Lv J, Shim JS. Existing drugs and their application in drug discovery targeting cancer stem cells. Arch Pharm Res 2015; 38:1617-26. [PMID: 26152874 DOI: 10.1007/s12272-015-0628-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/28/2015] [Indexed: 12/18/2022]
Abstract
Despite standard cancer therapies such as chemotherapy and targeted therapy have shown some efficacies, the cancer in many cases eventually relapses and metastasizes upon stopping the treatment. There is a small subpopulation of cancer cells within tumor, with specific characters similar to those found in stem cells. This group of cancer cells is known as tumor-initiating or cancer stem cells (CSCs), which have an ability to self-renew and give rise to cancer cell progeny. CSCs are related with drug resistance, metastasis and relapse of cancer, hence emerging as a crucial drug target for eliminating cancer. Rapid advancement of CSC biology has enabled researchers to isolate and culture CSCs in vitro, making the cells amenable to high-throughput drug screening. Recently, drug repositioning, which utilizes existing drugs to develop potential new indications, has been gaining popularity as an alternative approach for the drug discovery. As existing drugs have favorable bioavailability and safety profiles, drug repositioning is now actively exploited for prompt development of therapeutics for many serious diseases, such as cancer. In this review, we will introduce latest examples of attempted drug repositioning targeting CSCs and discuss potential use of the repositioned drugs for cancer therapy.
Collapse
Affiliation(s)
- Junfang Lv
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, 999078, China
| | - Joong Sup Shim
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, 999078, China.
| |
Collapse
|
39
|
Kast RE, Karpel-Massler G, Halatsch ME. CUSP9* treatment protocol for recurrent glioblastoma: aprepitant, artesunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, ritonavir, sertraline augmenting continuous low dose temozolomide. Oncotarget 2015; 5:8052-82. [PMID: 25211298 PMCID: PMC4226667 DOI: 10.18632/oncotarget.2408] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
CUSP9 treatment protocol for recurrent glioblastoma was published one year ago. We now present a slight modification, designated CUSP9*. CUSP9* drugs--aprepitant, artesunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, sertraline, ritonavir, are all widely approved by regulatory authorities, marketed for non-cancer indications. Each drug inhibits one or more important growth-enhancing pathways used by glioblastoma. By blocking survival paths, the aim is to render temozolomide, the current standard cytotoxic drug used in primary glioblastoma treatment, more effective. Although esthetically unpleasing to use so many drugs at once, the closely similar drugs of the original CUSP9 used together have been well-tolerated when given on a compassionate-use basis in the cases that have come to our attention so far. We expect similarly good tolerability for CUSP9*. The combined action of this suite of drugs blocks signaling at, or the activity of, AKT phosphorylation, aldehyde dehydrogenase, angiotensin converting enzyme, carbonic anhydrase -2,- 9, -12, cyclooxygenase-1 and -2, cathepsin B, Hedgehog, interleukin-6, 5-lipoxygenase, matrix metalloproteinase -2 and -9, mammalian target of rapamycin, neurokinin-1, p-gp efflux pump, thioredoxin reductase, tissue factor, 20 kDa translationally controlled tumor protein, and vascular endothelial growth factor. We believe that given the current prognosis after a glioblastoma has recurred, a trial of CUSP9* is warranted.
Collapse
Affiliation(s)
| | - Georg Karpel-Massler
- University of Ulm, Department of Neurosurgery, Albert-Einstein-Allee 23, Ulm, Germany
| | - Marc-Eric Halatsch
- University of Ulm, Department of Neurosurgery, Albert-Einstein-Allee 23, Ulm, Germany
| |
Collapse
|
40
|
Disulfiram and Copper Ions Kill Mycobacterium tuberculosis in a Synergistic Manner. Antimicrob Agents Chemother 2015. [PMID: 26033731 DOI: 10.1128/aac.00692‐15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Tuberculosis is a severe disease affecting millions worldwide. Unfortunately, treatment strategies are hampered both by the prohibitively long treatment regimen and the rise of drug-resistant strains. Significant effort has been expended in the search for new treatments, but few options have successfully emerged, and new treatment modalities are desperately needed. Recently, there has been growing interest in the synergistic antibacterial effects of copper ions (Cu(II/I)) in combination with certain small molecular compounds, and we have previously reported development of a drug screening strategy to harness the intrinsic bactericidal properties of Cu(II/I). Here, we describe the copper-dependent antimycobacterial properties of disulfiram, an FDA-approved and well-tolerated sobriety aid. Disulfiram was inhibitory to mycobacteria only in the presence of Cu(II/I) and exerted its bactericidal activity well below the active concentration of Cu(II/I) or disulfiram alone. No other physiologically relevant bivalent transition metals (e.g., Fe(II), Ni(II), Mn(II), and Co(II)) exhibited this effect. We demonstrate that the movement of the disulfiram-copper complex across the cell envelope is porin independent and can inhibit intracellular protein functions. Additionally, the complex is able to synergistically induce intracellular copper stress responses significantly more than Cu(II/I) alone. Our data suggest that by complexing with disulfiram, Cu(II/I) is likely allowed unfettered access to vulnerable intracellular components, bypassing the normally sufficient copper homeostatic machinery. Overall, the synergistic antibacterial activity of Cu(II/I) and disulfiram reveals the susceptibility of the copper homeostasis system of Mycobacterium tuberculosis to chemical attacks and establishes compounds that act in concert with copper as a new class of bacterial inhibitors.
Collapse
|
41
|
Disulfiram and Copper Ions Kill Mycobacterium tuberculosis in a Synergistic Manner. Antimicrob Agents Chemother 2015; 59:4835-44. [PMID: 26033731 DOI: 10.1128/aac.00692-15] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/27/2015] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis is a severe disease affecting millions worldwide. Unfortunately, treatment strategies are hampered both by the prohibitively long treatment regimen and the rise of drug-resistant strains. Significant effort has been expended in the search for new treatments, but few options have successfully emerged, and new treatment modalities are desperately needed. Recently, there has been growing interest in the synergistic antibacterial effects of copper ions (Cu(II/I)) in combination with certain small molecular compounds, and we have previously reported development of a drug screening strategy to harness the intrinsic bactericidal properties of Cu(II/I). Here, we describe the copper-dependent antimycobacterial properties of disulfiram, an FDA-approved and well-tolerated sobriety aid. Disulfiram was inhibitory to mycobacteria only in the presence of Cu(II/I) and exerted its bactericidal activity well below the active concentration of Cu(II/I) or disulfiram alone. No other physiologically relevant bivalent transition metals (e.g., Fe(II), Ni(II), Mn(II), and Co(II)) exhibited this effect. We demonstrate that the movement of the disulfiram-copper complex across the cell envelope is porin independent and can inhibit intracellular protein functions. Additionally, the complex is able to synergistically induce intracellular copper stress responses significantly more than Cu(II/I) alone. Our data suggest that by complexing with disulfiram, Cu(II/I) is likely allowed unfettered access to vulnerable intracellular components, bypassing the normally sufficient copper homeostatic machinery. Overall, the synergistic antibacterial activity of Cu(II/I) and disulfiram reveals the susceptibility of the copper homeostasis system of Mycobacterium tuberculosis to chemical attacks and establishes compounds that act in concert with copper as a new class of bacterial inhibitors.
Collapse
|
42
|
Drug affinity responsive target stability (DARTS) for small-molecule target identification. Methods Mol Biol 2015; 1263:287-98. [PMID: 25618353 DOI: 10.1007/978-1-4939-2269-7_22] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Drug affinity responsive target stability (DARTS) is a relatively quick and straightforward approach to identify potential protein targets for small molecules. It relies on the protection against proteolysis conferred on the target protein by interaction with a small molecule. The greatest advantage of this method is being able to use the native small molecule without having to immobilize or modify it (e.g., by incorporation of biotin, fluorescent, radioisotope, or photoaffinity labels). Here we describe in detail the protocol for performing unbiased DARTS with complex protein lysates to identify binding targets of small molecules and for using DARTS-Western blotting to test, screen, or validate potential small-molecule targets. Although the ideas have mainly been developed from studying molecules in areas of biology that are currently of interest to us and our collaborators, the general principles should be applicable to the analysis of all molecules in nature.
Collapse
|
43
|
Cheriyan VT, Wang Y, Muthu M, Jamal S, Chen D, Yang H, Polin LA, Tarca AL, Pass HI, Dou QP, Sharma S, Wali A, Rishi AK. Disulfiram suppresses growth of the malignant pleural mesothelioma cells in part by inducing apoptosis. PLoS One 2014; 9:e93711. [PMID: 24690739 PMCID: PMC3972204 DOI: 10.1371/journal.pone.0093711] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/05/2014] [Indexed: 12/17/2022] Open
Abstract
Dithiocarbamate compound Disulfiram (DSF) that binds with copper and functions as an inhibitor of aldehyde dehydrogenase is a Food and Drug Administration approved agent for treatment of alcoholism. Copper complexed DSF (DSF-Cu) also possesses anti-tumor and chemosensitizing properties; however, its molecular mechanisms of action remain unclear. Here we investigated malignant pleural mesothelioma (MPM) suppressive effects of DSF-Cu and the molecular mechanisms involved. DSF-Cu inhibited growth of the murine as well as human MPM cells in part by increasing levels of ubiquitinated proteins. DSF-Cu exposure stimulated apoptosis in MPM cells that involved activation of stress-activated protein kinases (SAPKs) p38 and JNK1/2, caspase-3, and cleavage of poly-(ADP-ribose)-polymerase, as well as increased expression of sulfatase 1 and apoptosis transducing CARP-1/CCAR1 protein. Gene-array based analyses revealed that DSF-Cu suppressed cell growth and metastasis-promoting genes including matrix metallopeptidase 3 and 10. DSF inhibited MPM cell growth and survival by upregulating cell cycle inhibitor p27Kip1, IGFBP7, and inhibitors of NF-κB such as ABIN 1 and 2 and Inhibitory κB (IκB)α and β proteins. DSF-Cu promoted cleavage of vimentin, as well as serine-phosphorylation and lysine-63 linked ubiquitination of podoplanin. Administration of 50 mg/kg DSF-Cu by daily i.p injections inhibited growth of murine MPM cell-derived tumors in vivo. Although podoplanin expression often correlates with metastatic disease and poor prognosis, phosphorylation of serines in cytoplasmic domain of podoplanin has recently been shown to interfere with cellular motility and migration signaling. Post-translational modification of podoplanin and cleavage of vimentin by DSF-Cu underscore a metastasis inhibitory property of this agent and together with our in vivo studies underscore its potential as an anti-MPM agent.
Collapse
Affiliation(s)
- Vino T. Cheriyan
- Department of Oncology, Wayne State University, Detroit, Michigan, United States of America
- John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
| | - Ying Wang
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
- Department of Oncology, Wayne State University, Detroit, Michigan, United States of America
| | - Magesh Muthu
- Department of Oncology, Wayne State University, Detroit, Michigan, United States of America
- John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
| | - Shazia Jamal
- Department of Oncology, Wayne State University, Detroit, Michigan, United States of America
- John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
| | - Di Chen
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
- Department of Oncology, Wayne State University, Detroit, Michigan, United States of America
| | - Huanjie Yang
- Department of Life Science and Engineering, Harbin Institute of Technology, Harbin, China
| | - Lisa A. Polin
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
- Department of Oncology, Wayne State University, Detroit, Michigan, United States of America
| | - Adi L. Tarca
- Department of Computer Science, Wayne State University, Detroit, Michigan, United States of America
| | - Harvey I. Pass
- Division of Cardiothoracic Surgery, New York University Cancer Center, New York, New York, United States of America
| | - Q. Ping Dou
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
- Department of Oncology, Wayne State University, Detroit, Michigan, United States of America
- * E-mail: (QPD); (AKR)
| | - Sunita Sharma
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
- Department of Oncology, Wayne State University, Detroit, Michigan, United States of America
| | - Anil Wali
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
- John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
| | - Arun K. Rishi
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
- Department of Oncology, Wayne State University, Detroit, Michigan, United States of America
- John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- * E-mail: (QPD); (AKR)
| |
Collapse
|
44
|
Robinson TJW, Liu JC, Vizeacoumar F, Sun T, Maclean N, Egan SE, Schimmer AD, Datti A, Zacksenhaus E. RB1 status in triple negative breast cancer cells dictates response to radiation treatment and selective therapeutic drugs. PLoS One 2013; 8:e78641. [PMID: 24265703 PMCID: PMC3827056 DOI: 10.1371/journal.pone.0078641] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 09/20/2013] [Indexed: 02/06/2023] Open
Abstract
Triple negative breast cancer (TNBC) includes basal-like and claudin-low subtypes for which only chemotherapy and radiation therapy are currently available. The retinoblastoma (RB1) tumor suppressor is frequently lost in human TNBC. Knockdown of RB1 in luminal BC cells was shown to affect response to endocrine, radiation and several antineoplastic drugs. However, the effect of RB1 status on radiation and chemo-sensitivity in TNBC cells and whether RB1 status affects response to divergent or specific treatment are unknown. Using multiple basal-like and claudin-low cell lines, we hereby demonstrate that RB-negative TNBC cell lines are highly sensitive to gamma-irradiation, and moderately more sensitive to doxorubicin and methotrexate compared to RB-positive TNBC cell lines. In contrast, RB1 status did not affect sensitivity of TNBC cells to multiple other drugs including cisplatin (CDDP), 5-fluorouracil, idarubicin, epirubicin, PRIMA-1met, fludarabine and PD-0332991, some of which are used to treat TNBC patients. Moreover, a non-biased screen of ∼3400 compounds, including FDA-approved drugs, revealed similar sensitivity of RB-proficient and -deficient TNBC cells. Finally, ESA+/CD24−/low/CD44+ cancer stem cells from RB-negative TNBC lines were consistently more sensitive to gamma-irradiation than RB-positive lines, whereas the effect of chemotherapy on the cancer stem cell fraction varied irrespective of RB1 expression. Our results suggest that patients carrying RB-deficient TNBCs would benefit from gamma-irradiation as well as doxorubicin and methotrexate therapy, but not necessarily from many other anti-neoplastic drugs.
Collapse
Affiliation(s)
- Tyler J. W. Robinson
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (TJWR); (EZ)
| | - Jeff C. Liu
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Frederick Vizeacoumar
- S.M.A.R.T. High Throughput Facility, Mount Sinai Hospital, Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
| | - Thomas Sun
- S.M.A.R.T. High Throughput Facility, Mount Sinai Hospital, Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
| | - Neil Maclean
- Clinical Studies Resource Centre, OCI, University Health Network, Toronto, Ontario, Canada
| | - Sean E. Egan
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Aaron D. Schimmer
- Clinical Studies Resource Centre, OCI, University Health Network, Toronto, Ontario, Canada
| | - Alessandro Datti
- S.M.A.R.T. High Throughput Facility, Mount Sinai Hospital, Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Eldad Zacksenhaus
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- * E-mail: (TJWR); (EZ)
| |
Collapse
|