1
|
Nguyen LTP, Kim JH, Son J, Hur SS, Lee M, Byeon HK, Kim JY, Ban MJ, Kim JH, Lee MR, Park JH, Hwang Y. 3D Spheroid Cultures for Salivary Gland Tissue Engineering: Effects of Fibroblast on Epithelial Cell Function. Life (Basel) 2025; 15:607. [PMID: 40283162 PMCID: PMC12028948 DOI: 10.3390/life15040607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Three-dimensional (3D) spheroid cultures are crucial for modeling salivary gland (SG) morphogenesis and advancing regenerative medicine. This study evaluated the effects of varying ratios of mouse SG-derived epithelial cells co-cultured with human dermal fibroblasts (hDFs), identifying a 2:1 ratio (spheroids containing 67% EpCAMpos cells with 33% hDFs) as optimal for preserving native SG-derived epithelial cell phenotypes. At this ratio, 67% EpCAMpos spheroids maintained structural integrity and demonstrated a significant reduction in apoptosis and senescence markers, specifically, cleaved caspase-3 (Cc3) and Serpine1, alongside an enhanced expression of the progenitor marker Keratin 5 (KRT5). This highlights the pivotal role of fibroblasts in supporting epithelial cell function in 3D cultures. These spheroids provide a useful model for developing SG tissues that closely mimic physiological properties. Despite promising results, these findings are preliminary and require further validation under diverse conditions and across different SG models.
Collapse
Affiliation(s)
- Lan Thi Phuong Nguyen
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Republic of Korea; (L.T.P.N.); (J.H.K.); (J.S.); (S.S.H.); (M.L.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Joo Hyun Kim
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Republic of Korea; (L.T.P.N.); (J.H.K.); (J.S.); (S.S.H.); (M.L.)
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea;
| | - Jiwon Son
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Republic of Korea; (L.T.P.N.); (J.H.K.); (J.S.); (S.S.H.); (M.L.)
| | - Sung Sik Hur
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Republic of Korea; (L.T.P.N.); (J.H.K.); (J.S.); (S.S.H.); (M.L.)
| | - Minyong Lee
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Republic of Korea; (L.T.P.N.); (J.H.K.); (J.S.); (S.S.H.); (M.L.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Hyung Kwon Byeon
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea;
| | - Jin-Young Kim
- Division of Respiratory Allergy and Critical Care Medicine, Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea;
| | - Myung Jin Ban
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea;
| | - Joo Hyun Kim
- Department of Otorhinolaryngology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Republic of Korea;
| | - Man Ryul Lee
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jae Hong Park
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea;
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Republic of Korea; (L.T.P.N.); (J.H.K.); (J.S.); (S.S.H.); (M.L.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan 31538, Republic of Korea
| |
Collapse
|
2
|
Majidpour M, Azizi SG, Davodabadi F, Sabeti Akbar-Abad M, Abdollahi Z, Sargazi S, Shahriari H. Recent advances in TGF-β signaling pathway in COVID-19 pathogenesis: A review. Microb Pathog 2025; 199:107236. [PMID: 39701478 DOI: 10.1016/j.micpath.2024.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
The coronavirus disease 2019 (COVID-19) has resulted in approximately 7.0 million fatalities between 2019 and 2022, underscoring a pressing need for comprehensive research into its underlying mechanisms and therapeutic avenues. A distinctive feature of severe COVID-19 is the dysregulated immune response characterized by excessive activation of immune cells and the consequent cytokine storms. Recent advancements in our understanding of cellular signaling pathways have illuminated the role of Transforming Growth Factor Beta (TGF-β) as a pivotal signaling molecule with significant implications for the pathogenesis of infectious diseases, including COVID-19. Emerging evidence reveals that TGF-β signaling, when activated by viral components or secondary pathways, adversely affects diverse cell types, particularly immune cells, and lung tissue, leading to complications such as pulmonary fibrosis. In our review article, we critically evaluate recent literature on the involvement of TGF-β signaling in the progression of COVID-19. We discuss a range of pharmacological interventions, including nintedanib, pirfenidone, corticosteroids, proton pump inhibitors, and histone deacetylase inhibitors, and their potential to modulate the TGF-β pathway in the context of COVID-19 treatment. Additionally, we explore ongoing clinical trials involving mesenchymal stem cells, low-dose radiation therapy, and artemisinin derivatives to assess their impact on TGF-β levels and subsequent clinical outcomes in COVID-19 patients. This review is particularly relevant at this juncture as the global health community continues to grapple with the ramifications of the COVID-19 pandemic, highlighting the urgent need for targeted therapeutic strategies aimed at TGF-β modulation to mitigate disease severity and improve patient outcomes.
Collapse
Affiliation(s)
- Mahdi Majidpour
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Seyed Ghader Azizi
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Fatemeh Davodabadi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahboobeh Sabeti Akbar-Abad
- Department of Clinical Biochemistry, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Zahra Abdollahi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Hossein Shahriari
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
3
|
Trugilo KP, Cebinelli GCM, Castilha EP, da Silva MR, Berti FCB, de Oliveira KB. The role of transforming growth factor β in cervical carcinogenesis. Cytokine Growth Factor Rev 2024; 80:12-23. [PMID: 39482191 DOI: 10.1016/j.cytogfr.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
Human papillomavirus (HPV) is involved in virtually all cases of cervical cancer. However, HPV alone is not sufficient to cause malignant development. The effects of chronic inflammation and the interaction of immune components with the microenvironment infected with the high-risk HPV type (HR) may contribute to cancer development. Transforming growth factor β (TGFB) appears to play an important role in cervical carcinogenesis. Protein and mRNA levels of this cytokine gradually increase as normal tissue develops into malignant tissue and are closely related to the severity of HPV infection. At the onset of infection, TGFB can inhibit the proliferation of infected cells and viral amplification by inhibiting cell growth and downregulating the transcriptional activity of the long control region (LCR) of HPV, thereby reducing the expression of early genes. When infected cells progress to a malignant phenotype, the response to the cell growth inhibitory effect of TGFB1 is lost and the suppression of E6 and E7 expression decreases. Subsequently, TGFB1 expression is upregulated by high levels of E6 and E7 oncoproteins, leading to an increase in TGFB1 in the tumor microenvironment, where this molecule promotes epithelial-to-mesenchymal transition (EMT), cell motility, angiogenesis, and immunosuppression. This interaction between HPV oncoproteins and TGFB1 is an important mechanism promoting the development and progression of cervical cancer.
Collapse
Affiliation(s)
- Kleber Paiva Trugilo
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR 86057-970, Brazil.
| | | | - Eliza Pizarro Castilha
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR 86057-970, Brazil.
| | - Mariane Ricciardi da Silva
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR 86057-970, Brazil.
| | | | - Karen Brajão de Oliveira
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR 86057-970, Brazil.
| |
Collapse
|
4
|
Janus P, Kuś P, Jaksik R, Vydra N, Toma-Jonik A, Gramatyka M, Kurpas M, Kimmel M, Widłak W. Transcriptional responses to direct and indirect TGFB1 stimulation in cancerous and noncancerous mammary epithelial cells. Cell Commun Signal 2024; 22:522. [PMID: 39468555 PMCID: PMC11514872 DOI: 10.1186/s12964-024-01821-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/07/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Transforming growth factor beta (TGFβ) is important for the morphogenesis and secretory function of the mammary gland. It is one of the main activators of the epithelial-mesenchymal transition (EMT), a process important for tissue remodeling and regeneration. It also provides cells with the plasticity to form metastases during tumor progression. Noncancerous and cancer cells respond differently to TGFβ. However, knowledge of the cellular signaling cascades triggered by TGFβ in various cell types is still limited. METHODS MCF10A (noncancerous, originating from fibrotic breast tissue) and MCF7 (cancer, estrogen receptor-positive) breast epithelial cells were treated with TGFB1 directly or through conditioned media from stimulated cells. Transcriptional changes (via RNA-seq) were assessed in untreated cells and after 1-6 days of treatment. Differentially expressed genes were detected with DESeq2 and the hallmark collection was selected for gene set enrichment analysis. RESULTS TGFB1 induces EMT in both the MCF10A and MCF7 cell lines but via slightly different mechanisms (signaling through SMAD3 is more active in MCF7 cells). Many EMT-related genes are expressed in MCF10A cells at baseline. Both cell lines respond to TGFB1 by decreasing the expression of genes involved in cell proliferation: through the repression of MYC (and the protein targets) in MCF10A cells and the activation of p63-dependent signaling in MCF7 cells (CDKN1A and CDKN2B, which are responsible for the inhibition of cyclin-dependent kinases, are upregulated). In addition, estrogen receptor signaling is inhibited and caspase-dependent cell death is induced only in MCF7 cells. Direct incubation with TGFB1 and treatment of cells with conditioned media similarly affected transcriptional profiles. However, TGFB1-induced protein secretion is more pronounced in MCF10A cells; therefore, the signaling is propagated through conditioned media (bystander effect) more effectively in MCF10A cells than in MCF7 cells. CONCLUSIONS Estrogen receptor-positive breast cancer patients may benefit from high levels of TGFB1 expression due to the repression of estrogen receptor signaling, inhibition of proliferation, and induction of apoptosis in cancer cells. However, some TGFB1-stimulated cells may undergo EMT, which increases the risk of metastasis.
Collapse
Affiliation(s)
- Patryk Janus
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-102, Poland
| | - Paweł Kuś
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, Gliwice, 44-100, Poland
| | - Roman Jaksik
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, Gliwice, 44-100, Poland
| | - Natalia Vydra
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-102, Poland
| | - Agnieszka Toma-Jonik
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-102, Poland
| | - Michalina Gramatyka
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-102, Poland
| | - Monika Kurpas
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, Gliwice, 44-100, Poland
| | - Marek Kimmel
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, Gliwice, 44-100, Poland.
- Departments of Statistics and Bioengineering, Rice University, Houston, TX, USA.
| | - Wiesława Widłak
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-102, Poland.
| |
Collapse
|
5
|
Mohammadi-Bardbori A, Shadboorestan A, Niknahad H, Noorafshan A, Fardid R, Nadimi E, Bakhtari A, Omidi M. Disrupting Development: Unraveling the Interplay of Aryl Hydrocarbon Receptor (AHR) and Wnt/β-Catenin Pathways in Kidney Development Under the Influence of Environmental Pollutants. Biol Trace Elem Res 2024; 202:4482-4493. [PMID: 38117383 DOI: 10.1007/s12011-023-04009-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Understanding the intricate molecular mechanisms governing aryl hydrocarbon receptor (AHR) and Wnt/β-Catenin pathways crosstalk is of paramount importance for elucidating normal development. We investigated the repercussions of aberrant activation of these signaling pathways on kidney development. HEK-293 cells were subjected to AHR and Wnt activators and inhibitors for 3 and 24 h. Subsequently, pregnant adult female BALB/c mice were administered treatments at gestation day 9 (GD-9), and embryos were analyzed at GD-18 using a combination of cellular, molecular, stereological, and histopathological techniques. Our results demonstrated a noteworthy escalation in oxidative stress and gene expression endpoints associated with apoptosis. Moreover, stereological analyses exhibited alterations in cortex, proximal tubule, and kidney tissue vessels volumes. Remarkably, co-treatment with 6-formylindolo [3,2-b] carbazole (FICZ) and cadmium (Cd) resulted in a significant reduction in glomerulus volume, while elevating the volumes of distal tubule, Henle loop, and connective tissue, compared to the control group. Histopathological investigations further confirmed structural changes in the loop of Henle and proximal tubule, alongside a decline in glomerular volume. Additionally, the expression levels of AHR and Ctnnb1 genes significantly increased in the Cd-treated group compared to the control group. Enhanced expression of apoptosis-related genes, including Bcl-x, Bax, and Caspase3, along with alterations in mitochondrial membrane potential and cytochrome C release, was observed. In contrast, Gsk3 gene expression was significantly decreased. Our findings robustly establish that chemical pollutants, such as Cd, disrupt the AHR and Wnt/β-Catenin physiological roles during developmental stages by inhibiting the metabolic degradation of FICZ.
Collapse
Affiliation(s)
- Afshin Mohammadi-Bardbori
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Shadboorestan
- Depertment of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Niknahad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Noorafshan
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Departments of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fardid
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Nadimi
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azizollah Bakhtari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmoud Omidi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
6
|
Danielpour D. Advances and Challenges in Targeting TGF-β Isoforms for Therapeutic Intervention of Cancer: A Mechanism-Based Perspective. Pharmaceuticals (Basel) 2024; 17:533. [PMID: 38675493 PMCID: PMC11054419 DOI: 10.3390/ph17040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The TGF-β family is a group of 25 kDa secretory cytokines, in mammals consisting of three dimeric isoforms (TGF-βs 1, 2, and 3), each encoded on a separate gene with unique regulatory elements. Each isoform plays unique, diverse, and pivotal roles in cell growth, survival, immune response, and differentiation. However, many researchers in the TGF-β field often mistakenly assume a uniform functionality among all three isoforms. Although TGF-βs are essential for normal development and many cellular and physiological processes, their dysregulated expression contributes significantly to various diseases. Notably, they drive conditions like fibrosis and tumor metastasis/progression. To counter these pathologies, extensive efforts have been directed towards targeting TGF-βs, resulting in the development of a range of TGF-β inhibitors. Despite some clinical success, these agents have yet to reach their full potential in the treatment of cancers. A significant challenge rests in effectively targeting TGF-βs' pathological functions while preserving their physiological roles. Many existing approaches collectively target all three isoforms, failing to target just the specific deregulated ones. Additionally, most strategies tackle the entire TGF-β signaling pathway instead of focusing on disease-specific components or preferentially targeting tumors. This review gives a unique historical overview of the TGF-β field often missed in other reviews and provides a current landscape of TGF-β research, emphasizing isoform-specific functions and disease implications. The review then delves into ongoing therapeutic strategies in cancer, stressing the need for more tools that target specific isoforms and disease-related pathway components, advocating mechanism-based and refined approaches to enhance the effectiveness of TGF-β-targeted cancer therapies.
Collapse
Affiliation(s)
- David Danielpour
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH 44106, USA; ; Tel.: +1-216-368-5670; Fax: +1-216-368-8919
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Institute of Urology, University Hospitals, Cleveland, OH 44106, USA
| |
Collapse
|
7
|
Runa F, Ortiz-Soto G, de Barros NR, Kelber JA. Targeting SMAD-Dependent Signaling: Considerations in Epithelial and Mesenchymal Solid Tumors. Pharmaceuticals (Basel) 2024; 17:326. [PMID: 38543112 PMCID: PMC10975212 DOI: 10.3390/ph17030326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 04/01/2024] Open
Abstract
SMADs are the canonical intracellular effector proteins of the TGF-β (transforming growth factor-β). SMADs translocate from plasma membrane receptors to the nucleus regulated by many SMAD-interacting proteins through phosphorylation and other post-translational modifications that govern their nucleocytoplasmic shuttling and subsequent transcriptional activity. The signaling pathway of TGF-β/SMAD exhibits both tumor-suppressing and tumor-promoting phenotypes in epithelial-derived solid tumors. Collectively, the pleiotropic nature of TGF-β/SMAD signaling presents significant challenges for the development of effective cancer therapies. Here, we review preclinical studies that evaluate the efficacy of inhibitors targeting major SMAD-regulating and/or -interacting proteins, particularly enzymes that may play important roles in epithelial or mesenchymal compartments within solid tumors.
Collapse
Affiliation(s)
- Farhana Runa
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA
| | | | | | - Jonathan A Kelber
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA
- Department of Biology, Baylor University, Waco, TX 76706, USA
| |
Collapse
|
8
|
Giannuzzi D, Capra E, Bisutti V, Vanzin A, Marsan PA, Cecchinato A, Pegolo S. Methylome-wide analysis of milk somatic cells upon subclinical mastitis in dairy cattle. J Dairy Sci 2024; 107:1805-1820. [PMID: 37939836 DOI: 10.3168/jds.2023-23821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023]
Abstract
Better understanding of the molecular mechanisms behind bovine mastitis is fundamental for improving the management of this disease, which continues to be of major concern for the dairy industry, especially in its subclinical form. Disease severity and progression depend on numerous aspects, such as livestock genetics, and the interaction between the causative agent, the host, and the environment. In this context, epigenetic mechanisms have proven to have a role in controlling the response of the animal to inflammation. Therefore, in this study we aimed to explore genome-wide DNA methylation of milk somatic cells (SC) in healthy cows (n = 15) and cows affected by naturally occurring subclinical mastitis by Streptococcus agalactiae (n = 12) and Prototheca spp. (n = 11), to better understand the role of SC methylome in the host response to disease. Differentially methylated regions (DMR) were evaluated comparing: (1) Strep. agalactiae-infected versus healthy; (2) Prototheca-infected versus healthy, and (3) mastitis versus healthy and (4) Strep. agalactiae-infected versus Prototheca-infected. The functional analysis was performed at 2 levels. To begin with, we extracted differentially methylated genes (DMG) from promoter DMR, which were analyzed using the Cytoscape ClueGO plug-in. Coupled with this DMG-driven approach, all the genes associated with promoter-methylated regions were fed to the Pathifier algorithm. From the DMR analysis, we identified 1,081 hypermethylated and 361 hypomethylated promoter regions in Strep. agalactiae-infected animals, while 1,514 hypermethylated and 358 hypomethylated promoter regions were identified in Prototheca-infected animals, when compared with the healthy controls. When considering infected animals as a whole group (regardless of the pathogen), we found 1,576 hypermethylated and 460 hypomethylated promoter regions. Both pathogens were associated with methylation differences in genes involved in pathways related to meiosis, reproduction and tissue remodeling. Exploring the whole methylome, in subclinically infected cows we observed a strong deregulation of immune-related pathways, such as nuclear factor kB and toll-like receptors signaling pathways, and of energy-related pathways such as the tricarboxylic acid cycle and unsaturated fatty acid biosynthesis. In conclusion, no evident pathogen-specific SC methylome signature was detected in the present study. Overall, we observed a clear regulation of host immune response driven by DNA methylation upon subclinical mastitis. Further studies on a larger cohort of animals are needed to validate our results and to possibly identify a unique SC methylome that signifies pathogen-specific alterations.
Collapse
Affiliation(s)
- D Giannuzzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro, Italy
| | - E Capra
- Institute of Agricultural Biology and Biotechnology, National Research Council (IBBA CNR), 26900, Lodi, Italy
| | - V Bisutti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro, Italy.
| | - A Vanzin
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro, Italy
| | - P Ajmone Marsan
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - A Cecchinato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro, Italy
| | - S Pegolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro, Italy
| |
Collapse
|
9
|
Kumphune S, Seenak P, Paiyabhrom N, Songjang W, Pankhong P, Jumroon N, Thaisakun S, Phaonakrop N, Roytrakul S, Malakul W, Jiraviriyakul A, Nernpermpisooth N. Cardiac endothelial ischemia/reperfusion injury-derived protein damage-associated molecular patterns disrupt the integrity of the endothelial barrier. Heliyon 2024; 10:e24600. [PMID: 38312663 PMCID: PMC10835233 DOI: 10.1016/j.heliyon.2024.e24600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Human cardiac microvascular endothelial cells (HCMECs) are sensitive to ischemia and vulnerable to damage during reperfusion. The release of damage-associated molecular patterns (DAMPs) during reperfusion induces additional tissue damage. The current study aimed to identify early protein DAMPs in human cardiac microvascular endothelial cells subjected to ischemia-reperfusion injury (IRI) using a proteomic approach and their effect on endothelial cell injury. HCMECs were subjected to 60 min of simulated ischemia and 6 h of reperfusion, which can cause lethal damage. DAMPs in the culture media were subjected to liquid chromatography-tandem mass spectrometry proteomic analysis. The cells were treated with endothelial IRI-derived DAMP medium for 24 h. Endothelial injury was assessed by measuring lactate dehydrogenase activity, morphological features, and the expression of endothelial cadherin, nitric oxide synthase (eNOS), and caveolin-1. The top two upregulated proteins, DNAJ homolog subfamily B member 11 and pyrroline-5-carboxylate reductase 2, are promising and sensitive predictors of cardiac microvascular endothelial damage. HCMECs expose to endothelial IRI-derived DAMP, the lactate dehydrogenase activity was significantly increased compared with the control group (10.15 ± 1.03 vs 17.67 ± 1.19, respectively). Following treatment with endothelial IRI-derived DAMPs, actin-filament dysregulation, and downregulation of vascular endothelial cadherin, caveolin-1, and eNOS expressions were observed, along with cell death. In conclusion, the early protein DAMPs released during cardiac microvascular endothelial IRI could serve as novel candidate biomarkers for acute myocardial IRI. Distinct features of impaired plasma membrane integrity can help identify therapeutic targets to mitigate the detrimental consequences mediated of endothelial IRI-derived DAMPs.
Collapse
Affiliation(s)
- Sarawut Kumphune
- Biomedical Engineering and Innovation Research Centre, Chiang Mai University, Muang, Chiang Mai, 50200, Thailand
- Biomedical Engineering Institute, Chiang Mai University, Muang, Chiang Mai, 50200, Thailand
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Porrnthanate Seenak
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Nitchawat Paiyabhrom
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Worawat Songjang
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Panyupa Pankhong
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Noppadon Jumroon
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Siriwan Thaisakun
- National Centre for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Narumon Phaonakrop
- National Centre for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Sittiruk Roytrakul
- National Centre for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Wachirawadee Malakul
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Arunya Jiraviriyakul
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Nitirut Nernpermpisooth
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| |
Collapse
|
10
|
Pashootan P, Saadati F, Fahimi H, Rahmati M, Strippoli R, Zarrabi A, Cordani M, Moosavi MA. Metal-based nanoparticles in cancer therapy: Exploring photodynamic therapy and its interplay with regulated cell death pathways. Int J Pharm 2024; 649:123622. [PMID: 37989403 DOI: 10.1016/j.ijpharm.2023.123622] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/01/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023]
Abstract
Photodynamic therapy (PDT) represents a non-invasive treatment strategy currently utilized in the clinical management of selected cancers and infections. This technique is predicated on the administration of a photosensitizer (PS) and subsequent irradiation with light of specific wavelengths, thereby generating reactive oxygen species (ROS) within targeted cells. The cellular effects of PDT are dependent on both the localization of the PS and the severity of ROS challenge, potentially leading to the stimulation of various cell death modalities. For many years, the concept of regulated cell death (RCD) triggered by photodynamic reactions predominantly encompassed apoptosis, necrosis, and autophagy. However, in recent decades, further explorations have unveiled additional cell death modalities, such as necroptosis, ferroptosis, cuproptosis, pyroptosis, parthanatos, and immunogenic cell death (ICD), which helps to achieve tumor cell elimination. Recently, nanoparticles (NPs) have demonstrated substantial advantages over traditional PSs and become important components of PDT, due to their improved physicochemical properties, such as enhanced solubility and superior specificity for targeted cells. This review aims to summarize recent advancements in the applications of different metal-based NPs as PSs or delivery systems for optimized PDT in cancer treatment. Furthermore, it mechanistically highlights the contribution of RCD pathways during PDT with metal NPs and how these forms of cell death can improve specific PDT regimens in cancer therapy.
Collapse
Affiliation(s)
- Parya Pashootan
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Saadati
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Hossein Fahimi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Marveh Rahmati
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy; National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey; Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
| | - Marco Cordani
- Departament of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain.
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran.
| |
Collapse
|
11
|
Schmidt B, Sers C, Klein N. BannMI deciphers potential n-to-1 information transduction in signaling pathways to unravel message of intrinsic apoptosis. BIOINFORMATICS ADVANCES 2023; 4:vbad175. [PMID: 38187472 PMCID: PMC10769817 DOI: 10.1093/bioadv/vbad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/28/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024]
Abstract
Motivation Cell fate decisions, such as apoptosis or proliferation, are communicated via signaling pathways. The pathways are heavily intertwined and often consist of sequential interaction of proteins (kinases). Information integration takes place on the protein level via n-to-1 interactions. A state-of-the-art procedure to quantify information flow (edges) between signaling proteins (nodes) is network inference. However, edge weight calculation typically refers to 1-to-1 interactions only and relies on mean protein phosphorylation levels instead of single cell distributions. Information theoretic measures such as the mutual information (MI) have the potential to overcome these shortcomings but are still rarely used. Results This work proposes a Bayesian nearest neighbor-based MI estimator (BannMI) to quantify n-to-1 kinase dependency in signaling pathways. BannMI outperforms the state-of-the-art MI estimator on protein-like data in terms of mean squared error and Pearson correlation. Using BannMI, we analyze apoptotic signaling in phosphoproteomic cancerous and noncancerous breast cell line data. Our work provides evidence for cooperative signaling of several kinases in programmed cell death and identifies a potential key role of the mitogen-activated protein kinase p38. Availability and implementation Source code and applications are available at: https://github.com/zuiop11/nn_info and can be downloaded via Pip as Python package: nn-info.
Collapse
Affiliation(s)
- Bettina Schmidt
- Research Center Trustworthy Data Science and Security, Universitätsallianz Ruhr, 44227 Dortmund, North Rhine-Westphalia, Germany
- Department of Computer Science, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Christine Sers
- Institute of Pathology, Charité–Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Department of Biology, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Nadja Klein
- Research Center Trustworthy Data Science and Security, Universitätsallianz Ruhr, 44227 Dortmund, North Rhine-Westphalia, Germany
- Department of Statistics, Technische Universität Dortmund, 44227 Dortmund, North Rhine-Westphalia, Germany
| |
Collapse
|
12
|
Singh S, Gouri V, Samant M. TGF-β in correlation with tumor progression, immunosuppression and targeted therapy in colorectal cancer. Med Oncol 2023; 40:335. [PMID: 37855975 DOI: 10.1007/s12032-023-02204-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
Colorectal cancer (CRC) is a complex malignancy responsible for the second-highest cancer deaths worldwide. TGF-β maintains normal cellular homeostasis by inhibiting the cell cycle and inducing apoptosis, but its elevated level is correlated with colorectal cancer progression, as TGF-β is a master regulator of the epithelial-to-mesenchymal transition, a critical step of metastasis. Tumors, including CRC, use elevated TGF-β levels to avoid immune surveillance by modulating immune cell differentiation, proliferation, and effector function. Presently, the treatment of advanced CRC is mainly based on chemotherapy, with multiple adverse effects. Thus, there is a need to develop alternate tactics because CRC continue to be mostly resistant to the present therapeutic regimen. TGF-β blockade has emerged as a promising therapeutic target in cancer therapy. Blocking TGF-β with phytochemicals and other molecules, such as antisense oligonucleotides, monoclonal antibodies, and bifunctional traps, alone or in combination, may be a safer and more effective way to treat CRC. Furthermore, combination immunotherapy comprising TGF-β blockers and immune checkpoint inhibitors is gaining popularity because both molecules work synergistically to suppress the immune system. Here, we summarize the current understanding of TGF-β as a therapeutic target for managing CRC and its context-dependent tumor-promoting or tumor-suppressing nature.
Collapse
Affiliation(s)
- Sumeet Singh
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India
| | - Vinita Gouri
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India
- Department of Zoology, Kumaun University, Nainital, Uttarakhand, India
| | - Mukesh Samant
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India.
| |
Collapse
|
13
|
Huang J, Zhou M, You W, Luo X, Ke C. Molecular Characterization and Function of Bone Morphogenetic Protein 7 ( BMP7) in the Pacific Abalone, Haliotis discus hannai. Genes (Basel) 2023; 14:1128. [PMID: 37372307 DOI: 10.3390/genes14061128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/20/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) play important roles in a lot of biological processes, such as bone development, cell proliferation, cell differentiation, growth, etc. However, the functions of abalone BMP genes are still unknown. This study aimed to better understand the characterization and biological function of BMP7 of Haliotis discus hannai (hdh-BMP7) via cloning and sequencing analysis. The coding sequence (CDS) length of hdh-BMP7 is 1251 bp, which encodes 416 amino acids including a signal peptide (1-28 aa), a transforming growth factor-β (TGF-β) propeptide (38-272 aa), and a mature TGF-β peptide (314-416 aa). The analysis of expression showed that hdh-BMP7 mRNA was widely expressed in all the examined tissues of H. discus hannai. Four SNPs were related to growth traits. The results of RNA interference (RNAi) showed that the mRNA expression levels of hdh-BMPR I, hdh-BMPR II, hdh-smad1, and hdh-MHC declined after hdh-BMP7 was silenced. After RNAi experiment for 30 days, the shell length, shell width, and total weight were found to be reduced in H. discus hannai (p < 0.05). The results of real-time quantitative reverse transcription PCR revealed that the hdh-BMP7 mRNA was lower in abalone of the S-DD-group than in the L-DD-group. Based on these data, we hypothesized that BMP7 gene has a positive role in the growth of H. discus hannai.
Collapse
Affiliation(s)
- Jianfang Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Mingcan Zhou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Xuan Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen 361102, China
| |
Collapse
|
14
|
Azhar NA, Abu Bakar SA, Citartan M, Ahmad NH. mRNA transcriptome profiling of human hepatocellular carcinoma cells HepG2 treated with Catharanthus roseus-silver nanoparticles. World J Hepatol 2023; 15:393-409. [PMID: 37034237 PMCID: PMC10075008 DOI: 10.4254/wjh.v15.i3.393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/17/2023] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND The demand for the development of cancer nanomedicine has increased due to its great therapeutic value that can overcome the limitations of conventional cancer therapy. However, the presence of various bioactive compounds in crude plant extracts used for the synthesis of silver nanoparticles (AgNPs) makes its precise mechanisms of action unclear. AIM To assessed the mRNA transcriptome profiling of human HepG2 cells exposed to Catharanthus roseus G. Don (C. roseus)-AgNPs. METHODS The proliferative activity of hepatocellular carcinoma (HepG2) and normal human liver (THLE3) cells treated with C. roseusAgNPs were measured using MTT assay. The RNA samples were extracted and sequenced using BGIseq500 platform. This is followed by data filtering, mapping, gene expression analysis, differentially expression genes analysis, Gene Ontology analysis, and pathway analysis. RESULTS The mean IC50 values of C. roseusAgNPs on HepG2 was 4.38 ± 1.59 μg/mL while on THLE3 cells was 800 ± 1.55 μg/mL. Transcriptome profiling revealed an alteration of 296 genes. C. roseusAgNPs induced the expression of stress-associated genes such as MT, HSP and HMOX-1. Cellular signalling pathways were potentially activated through MAPK, TNF and TGF pathways that are responsible for apoptosis and cell cycle arrest. The alteration of ARF6, EHD2, FGFR3, RhoA, EEA1, VPS28, VPS25, and TSG101 indicated the uptake of C. roseus-AgNPs via both clathrin-dependent and clathrin-independent endocytosis. CONCLUSION This study provides new insights into gene expression study of biosynthesised AgNPs on cancer cells. The cytotoxicity effect is mediated by the aberrant gene alteration, and more interestingly the unique selective antiproliferative properties indicate the C. roseusAgNPs as an ideal anticancer candidate.
Collapse
Affiliation(s)
- Nur Asna Azhar
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Pulau Pinang, Malaysia
- Liver Malignancies Research Program, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Siti Aishah Abu Bakar
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Pulau Pinang, Malaysia
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia
| | - Marimuthu Citartan
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Nor Hazwani Ahmad
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Pulau Pinang, Malaysia
- Liver Malignancies Research Program, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Pulau Pinang, Malaysia
| |
Collapse
|
15
|
Jasuja H, Jaswandkar SV, Katti DR, Katti KS. Interstitial fluid flow contributes to prostate cancer invasion and migration to bone; study conducted using a novel horizontal flow bioreactor. Biofabrication 2023; 15:025017. [PMID: 36863017 PMCID: PMC10020972 DOI: 10.1088/1758-5090/acc09a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/01/2023] [Indexed: 03/04/2023]
Abstract
Prostate cancer bone metastasis is the leading cause of cancer-related mortality in men in the United States, causing severe damage to skeletal tissue. The treatment of advanced-stage prostate cancer is always challenging due to limited drug treatment options, resulting in low survival rates. There is a scarcity of knowledge regarding the mechanisms associated with the effects of biomechanical cues by the interstitial fluid flow on prostate cancer cell growth and migration. We have designed a novel bioreactor system to demonstrate the impact of interstitial fluid flow on the migration of prostate cancer cells to the bone during extravasation. First, we demonstrated that a high flow rate induces apoptosis in PC3 cells via TGF-β1 mediated signaling; thus, physiological flow rate conditions are optimum for cell growth. Next, to understand the role of interstitial fluid flow in prostate cancer migration, we evaluated the migration rate of cells under static and dynamic conditions in the presence or absence of bone. We report that CXCR4 levels were not significantly changed under static and dynamic conditions, indicating that CXCR4 activation in PC3 cells is not influenced by flow conditions but by the bone, where CXCR4 levels were upregulated. The bone-upregulated CXCR4 levels led to increased MMP-9 levels resulting in a high migration rate in the presence of bone. In addition, upregulated levels ofαvβ3integrins under fluid flow conditions contributed to an overall increase in the migration rate of PC3 cells. Overall, this study demonstrates the potential role of interstitial fluid flow in prostate cancer invasion. Understanding the critical role of interstitial fluid flow in promoting prostate cancer cell progression will enhance current therapies for advanced-stage prostate cancer and provide improved treatment options for patients.
Collapse
Affiliation(s)
- Haneesh Jasuja
- Department of Civil, Construction and Environmental Engineering North Dakota State University, Fargo, ND 58108, United States of America
| | - Sharad V Jaswandkar
- Department of Civil, Construction and Environmental Engineering North Dakota State University, Fargo, ND 58108, United States of America
| | - Dinesh R Katti
- Department of Civil, Construction and Environmental Engineering North Dakota State University, Fargo, ND 58108, United States of America
| | - Kalpana S Katti
- Department of Civil, Construction and Environmental Engineering North Dakota State University, Fargo, ND 58108, United States of America
- Author to whom any correspondence should be addressed
| |
Collapse
|
16
|
Behnia M, Bradfute SB. The Host Non-Coding RNA Response to Alphavirus Infection. Viruses 2023; 15:v15020562. [PMID: 36851776 PMCID: PMC9967650 DOI: 10.3390/v15020562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Alphaviruses are important human and animal pathogens that can cause a range of debilitating symptoms and are found worldwide. These include arthralgic diseases caused by Old-World viruses and encephalitis induced by infection with New-World alphaviruses. Non-coding RNAs do not encode for proteins, but can modulate cellular response pathways in a myriad of ways. There are several classes of non-coding RNAs, some more well-studied than others. Much research has focused on the mRNA response to infection against alphaviruses, but analysis of non-coding RNA responses has been more limited until recently. This review covers what is known regarding host cell non-coding RNA responses in alphavirus infections and highlights gaps in the knowledge that future research should address.
Collapse
|
17
|
Wisuitiprot V, Ingkaninan K, Wisuitiprot W, Srivilai J, Chakkavittumrong P, Waranuch N. Effects of some medicinal plant extracts on dermal papilla cells. J Cosmet Dermatol 2022; 21:6109-6117. [PMID: 35675125 DOI: 10.1111/jocd.15148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/27/2022] [Accepted: 06/04/2022] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Miniaturization of the hair follicles is evident on the balding scalp. Approved medications, topical minoxidil, and oral finasteride for the treatment of alopecia sometimes come with undesirable adverse effects. The study was to examine the bioactivity of medicinal plants for finding the promising source of anti-hair loss application. METHODS Ten ethanolic extracts were prepared from Acacia concina (Willd.) DC., Acanthus ebracteatus Vahl, Bridelia ovata Decne, Cleome viscosa L., Cocos nucifera L., Hibiscus subdariffla L., Oryza sativa L., Terminalia chebula Retz., Tinospora crispa (L.) Hook. f. & Thomson and cytotoxic tested on dermal papilla cells using MTT assay. The effect of the extracts on cell cycle was also determined using flow cytometry technique. Anti-inflammatory activity was examined by determining IL-1β inhibition in RAW 257.4 cells. In vitro study of androgenic and 5α-reductase inhibitory activities were also determined using MTT assay and enzymatic reaction couple with liquid chromatography-mass spectrometry (LC-MS), respectively. RESULTS Our results revealed that only A. ebracteatus promoted dermal papilla cell proliferation and the S and G2/M phases in cell cycle. A. ebracteatus also showed inhibitory activity against 5α-reductase and testosterone in reducing cell viability of the dermal papilla. Moreover, A. ebracteatus extract strongly inhibited LPS-stimulating IL-1β production in RAW 264.7 cells in a dose-dependent manner. CONCLUSION Our finding indicated that the ethanolic extract of A. ebracteatus is a promising candidate for anti-hair loss treatment.
Collapse
Affiliation(s)
- Vanuchawan Wisuitiprot
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand.,Cosmetics and Natural Products Research Center, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Kornkanok Ingkaninan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Wudtichai Wisuitiprot
- Sirindhorn College of Public Health Phitsanulok, Faculty of Public Health and Allied Health Sciences, Praboromarajchanok Institute, Phitsanulok, Thailand
| | - Jukkarin Srivilai
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Panlop Chakkavittumrong
- Department of Internal Medicine, Faculty of Medicine, Thammasat University, Bangkok, Thailand
| | - Neti Waranuch
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand.,Cosmetics and Natural Products Research Center, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
18
|
Wang J, Wang M, Lu X, Zhang Y, Zeng S, Pan X, Zhou Y, Wang H, Chen N, Cai F, Biskup E. IL-6 inhibitors effectively reverse post-infarction cardiac injury and ischemic myocardial remodeling via the TGF-β1/Smad3 signaling pathway. Exp Ther Med 2022; 24:576. [PMID: 35949328 PMCID: PMC9353402 DOI: 10.3892/etm.2022.11513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/17/2022] [Indexed: 11/06/2022] Open
Abstract
Approximately one in four myocardial infarctions occur in older patients. The majority of therapeutic advances are either not appropriate or not tested in elderly patients. The main reasons for deviating from the guidelines are justified concerns regarding the effectiveness of the recommended forms of therapy, fear of adverse drug reactions and ethical concerns. Targeting interleukin 6 (IL-6) for ventricular remodeling after cardiovascular damage is a feasible alternative to standard polypharmaceutics, but the underlying molecular mechanisms are not well understood. Continuous activation of the IL-6-associated cytokine receptor gp130 leads to cardiomyopathic hypertrophy. TGFβ1 is involved in forming fibrosis in various organs, and its overexpression can cause myocardial hypertrophy and fibrosis. Il-6 has been hypothesized to be indirectly involved in cardiac remodeling via the TGFβ1/Smad signaling transduction pathway. In the present study, a rat model of acute myocardial ischemia, IL-6 and IL-6 receptor blockers were injected directly into the necrotic myocardium. Changes in cardiac function, myocardial infarction area, myocardial collagen, necrotic myocardial fibrosis and levels of TGFβ1, IL-6 and MMP2/9 were quantified in myocardial tissue fibrosis by ELISA. The present study demonstrated that IL-6 stimulated myocardial fibrosis through the TGFβ1-Smad-MM2/9 signaling transduction pathway. Overall, this provided a solid foundation for understanding the relationship between IL-6 and ventricular remodeling.
Collapse
Affiliation(s)
- Jiahong Wang
- Department of Cardiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, P.R. China
| | - Minghong Wang
- Department of Health Management Center, Shanghai Public Health Clinical Center, Shanghai 201508, P.R. China
| | - Xiancheng Lu
- Department of Nutrition, Shanghai Yangpu Hospital of Traditional Chinese Medicine, Shanghai 200090, P.R. China
| | - Yi Zhang
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, P.R. China
| | - Siliang Zeng
- Department of Rehabilitation Therapy, Shanghai Normal University Tianhua College, Shanghai 201815, P.R. China
| | - Xin Pan
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, P.R. China
| | - Yimeng Zhou
- Department of Cardiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, P.R. China
| | - Hui Wang
- Laboratory of Tumor Molecular Biology, School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Nannan Chen
- Department of Cardiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, P.R. China
| | - Fengfeng Cai
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, P.R. China
| | - Ewelina Biskup
- Laboratory of Tumor Molecular Biology, School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
- Department of Advanced Biomedical Sciences, Division of Cardiology, Federico II University, I-580131 Naples, Italy
| |
Collapse
|
19
|
Mogadem A, Naqvi A, Almamary MA, Ahmad WA, Jemon K, El-Alfy SH. Hepatoprotective effects of flexirubin, a novel pigment from Chryseobacterium artocarpi, against carbon tetrachloride-induced liver injury: An in vivo study and molecular modeling. Toxicol Appl Pharmacol 2022; 444:116022. [PMID: 35436475 DOI: 10.1016/j.taap.2022.116022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/02/2022] [Accepted: 04/09/2022] [Indexed: 12/31/2022]
|
20
|
RGS5-TGFβ-Smad2/3 axis switches pro- to anti-apoptotic signaling in tumor-residing pericytes, assisting tumor growth. Cell Death Differ 2021; 28:3052-3076. [PMID: 34012071 PMCID: PMC8564526 DOI: 10.1038/s41418-021-00801-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 02/04/2023] Open
Abstract
Regulator-of-G-protein-signaling-5 (RGS5), a pro-apoptotic/anti-proliferative protein, is a signature molecule of tumor-associated pericytes, highly expressed in several cancers, and is associated with tumor growth and poor prognosis. Surprisingly, despite the negative influence of intrinsic RGS5 expression on pericyte survival, RGS5highpericytes accumulate in progressively growing tumors. However, responsible factor(s) and altered-pathway(s) are yet to report. RGS5 binds with Gαi/q and promotes pericyte apoptosis in vitro, subsequently blocking GPCR-downstream PI3K-AKT signaling leading to Bcl2 downregulation and promotion of PUMA-p53-Bax-mediated mitochondrial damage. However, within tumor microenvironment (TME), TGFβ appeared to limit the cytocidal action of RGS5 in tumor-residing RGS5highpericytes. We observed that in the presence of high RGS5 concentrations, TGFβ-TGFβR interactions in the tumor-associated pericytes lead to the promotion of pSmad2-RGS5 binding and nuclear trafficking of RGS5, which coordinately suppressed RGS5-Gαi/q and pSmad2/3-Smad4 pairing. The RGS5-TGFβ-pSmad2 axis thus mitigates both RGS5- and TGFβ-dependent cellular apoptosis, resulting in sustained pericyte survival/expansion within the TME by rescuing PI3K-AKT signaling and preventing mitochondrial damage and caspase activation. This study reports a novel mechanism by which TGFβ fortifies and promotes survival of tumor pericytes by switching pro- to anti-apoptotic RGS5 signaling in TME. Understanding this altered RGS5 signaling might prove beneficial in designing future cancer therapy.
Collapse
|
21
|
Ghahri-Saremi N, Akbari B, Soltantoyeh T, Hadjati J, Ghassemi S, Mirzaei HR. Genetic Modification of Cytokine Signaling to Enhance Efficacy of CAR T Cell Therapy in Solid Tumors. Front Immunol 2021; 12:738456. [PMID: 34721401 PMCID: PMC8552010 DOI: 10.3389/fimmu.2021.738456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has shown unprecedented success in treating advanced hematological malignancies. Its effectiveness in solid tumors has been limited due to heterogeneous antigen expression, a suppressive tumor microenvironment, suboptimal trafficking to the tumor site and poor CAR T cell persistence. Several approaches have been developed to overcome these obstacles through various strategies including the genetic engineering of CAR T cells to blunt the signaling of immune inhibitory receptors as well as to modulate signaling of cytokine/chemokine molecules and their receptors. In this review we offer our perspective on how genetically modifying cytokine/chemokine molecules and their receptors can improve CAR T cell qualities such as functionality, persistence (e.g. resistance to pro-apoptotic signals) and infiltration into tumor sites. Understanding how such modifications can overcome barriers to CAR T cell effectiveness will undoubtedly enhance the potential of CAR T cells against solid tumors.
Collapse
Affiliation(s)
- Navid Ghahri-Saremi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnia Akbari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Soltantoyeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamshid Hadjati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Ghassemi
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Kaushal JB, Shukla V, Sankhwar P, Jha RK, Dwivedi A. Targeted inhibition of TAK1 abrogates TGFβ1 non-canonical signaling axis, NFκB/Smad7 inhibiting human endometriotic cells proliferation and inducing cell death involving autophagy. Cytokine 2021; 148:155700. [PMID: 34560609 DOI: 10.1016/j.cyto.2021.155700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022]
Abstract
Transforming growth factor (TGFβ) is known to play a major role in establishment and maintenance of endometriosis as reported by our group earlier, the underlying mechanism remains to be explored. We deciphered the involvement of TAK1 in TGFβ1- induced cellular responses and delineated the signaling mechanism in human endometriotic cells. The endometriotic cells showed elevated expression of TGFβ1 signaling-effector molecules. TGFβ1 exposure to endometriotic cells induced the expression of the downstream target molecules indicating that TGFβ1 is implicated in the commencement ofTAK1/NFκB-p65/Smad7 cascade. The silencing of TAK1 in endometriotic cells attenuated the TGFβ1 -induced NFκB transcriptional activation and nuclear translocation of NFκB-p65 subunit. The pharmacological inhibition of NFκB by QNZ or knockdown of TAK1 reduced the expression of Smad7 and Cox2. The knockdown of TAK1 in endometriotic cells showed G1 phase cell-cycle arrest and showed low BrdU-incorporation in the presence of TGFβ1. The inhibition of TAK1 attenuated the TGFβ1 signaling activation indicating that TAK1 is a crucial mediator for TGFβ1 action in endometriotic cells. The exposure of endometriotic cells to TAK1 inhibitor, celastrol caused activation of caspase-3 and -9 that led to PARP cleavage and induced apoptosis. Simultaneously, autophagy occurred in celastrol-treated and TAK1-silenced cells as was evidenced by the formation of autophagosome and the increased expression of autophagic markers. Thus, TAK1 activation appears to protect the growth of endometriotic cells by suppressing the cell death process. Overall, our study provided the evidence that of TAK1 significant in the endometriotic cell regulation and mediates a functional cross-talk between TGFβ1 and NFκB-p65 that promotes the growth and inflammatory response in endometriotic cells.
Collapse
Affiliation(s)
- Jyoti B Kaushal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow 226031, U.P., India
| | - Vinay Shukla
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow 226031, U.P., India
| | - Pushplata Sankhwar
- Department of Obstetrics & Gynaecology, King George's Medical University, Lucknow 226001, U.P., India
| | - Rajesh K Jha
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow 226031, U.P., India.
| | - Anila Dwivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow 226031, U.P., India.
| |
Collapse
|
23
|
Gudiño V, Cammareri P, Billard CV, Myant KB. Negative regulation of TGFβ-induced apoptosis by RAC1B enhances intestinal tumourigenesis. Cell Death Dis 2021; 12:873. [PMID: 34564693 PMCID: PMC8464603 DOI: 10.1038/s41419-021-04177-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/23/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
RAC1B is a tumour-related alternative splice isoform of the small GTPase RAC1, found overexpressed in a large number of tumour types. Building evidence suggests it promotes tumour progression but compelling in vivo evidence, demonstrating a role in driving tumour invasion, is currently lacking. In the present study, we have overexpressed RAC1B in a colorectal cancer mouse model with potential invasive properties. Interestingly, RAC1B overexpression did not trigger tumour invasion, rather it led to an acceleration of tumour initiation and reduced mouse survival. By modelling early stages of adenoma initiation we observed a reduced apoptotic rate in RAC1B overexpressing tumours, suggesting protection from apoptosis as a mediator of this phenotype. RAC1B overexpressing tumours displayed attenuated TGFβ signalling and functional analysis in ex vivo organoid cultures demonstrated that RAC1B negatively modulates TGFβ signalling and confers resistance to TGFβ-driven cell death. This work defines a novel mechanism by which early adenoma cells can overcome the cytostatic and cytotoxic effects of TGFβ signalling and characterises a new oncogenic function of RAC1B in vivo.
Collapse
Affiliation(s)
- Victoria Gudiño
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK
- Inflammatory Bowel Disease Unit, Department of Gastroenterology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) - CIBEREHD, Barcelona, Spain
| | - Patrizia Cammareri
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Caroline V Billard
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Kevin B Myant
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
24
|
Liu J, Tian J, Sodhi K, Shapiro JI. The Na/K-ATPase Signaling and SGLT2 Inhibitor-Mediated Cardiorenal Protection: A Crossed Road? J Membr Biol 2021; 254:513-529. [PMID: 34297135 PMCID: PMC8595165 DOI: 10.1007/s00232-021-00192-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022]
Abstract
In different large-scale clinic outcome trials, sodium (Na+)/glucose co-transporter 2 (SGLT2) inhibitors showed profound cardiac- and renal-protective effects, making them revolutionary treatments for heart failure and kidney disease. Different theories are proposed according to the emerging protective effects other than the original purpose of glucose-lowering in diabetic patients. As the ATP-dependent primary ion transporter providing the Na+ gradient to drive other Na+-dependent transporters, the possible role of the sodium–potassium adenosine triphosphatase (Na/K-ATPase) as the primary ion transporter and its signaling function is not explored.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Biomedical Sciences, JCE School of Medicine, Marshall University, Huntington, WV, USA.
| | - Jiang Tian
- Department of Biomedical Sciences, JCE School of Medicine, Marshall University, Huntington, WV, USA
| | - Komal Sodhi
- Department of Surgery, JCE School of Medicine, Marshall University, Huntington, WV, USA
| | - Joseph I Shapiro
- Departments of Medicine, JCE School of Medicine, Marshall University, Huntington, WV, USA
| |
Collapse
|
25
|
The Protein-Independent Role of Phosphate in the Progression of Chronic Kidney Disease. Toxins (Basel) 2021; 13:toxins13070503. [PMID: 34357974 PMCID: PMC8310030 DOI: 10.3390/toxins13070503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Several factors contribute to renal-function decline in CKD patients, and the role of phosphate content in the diet is still a matter of debate. This study aims to analyze the mechanism by which phosphate, independent of protein, is associated with the progression of CKD. Adult Munich-Wistar rats were submitted to 5/6 nephrectomy (Nx), fed with a low-protein diet, and divided into two groups. Only phosphate content (low phosphate, LoP, 0.2%; high phosphate, HiP, 0.95%) differentiated diets. After sixty days, biochemical parameters and kidney histology were analyzed. The HiP group presented worse renal function, with higher levels of PTH, FGF-23, and fractional excretion of phosphate. In the histological analysis of the kidney tissue, they also showed a higher percentage of interstitial fibrosis, expression of α-actin, PCNA, and renal infiltration by macrophages. The LoP group presented higher expression of beclin-1 in renal tubule cells, a marker of autophagic flux, when compared to the HiP group. Our findings highlight the action of phosphate in the induction of kidney interstitial inflammation and fibrosis, contributing to the progression of renal disease. A possible effect of phosphate on the dysregulation of the renal cell autophagy mechanism needs further investigation with clinical studies.
Collapse
|
26
|
Bae Y, Hwang JS, Shin YJ. miR-30c-1 encourages human corneal endothelial cells to regenerate through ameliorating senescence. Aging (Albany NY) 2021; 13:9348-9372. [PMID: 33744867 PMCID: PMC8064150 DOI: 10.18632/aging.202719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 02/16/2021] [Indexed: 12/22/2022]
Abstract
In the present study, we studied the role of microRNA-30c-1 (miR-30c-1) on transforming growth factor beta1 (TGF-β1)-induced senescence of hCECs. hCECs were transfected by miR-30c-1 and treated with TGF-β1 to assess the inhibitory effect of miR-30c-1 on TGF-β1-induced senescence. Cell viability and proliferation rate in miR-30c-1-transfected cells was elevated compared with control. Cell cycle analysis revealed that cell abundance in S phase was elevated in miR-30c-1-treated cells compared with control. TGF-β1 increased the senescence of hCECs; however, this was ameliorated by miR-30c-1. TGF-β1 increased the size of hCECs, the ratio of senescence-associated beta-galactosidase-stained cells, secretion of senescence-associated secretory phenotype factors, the oxidative stress, and arrested the cell cycle, all of which were ameliorated by miR-30c-1 treatment. miR-30c-1 also suppressed a TGF-β1-induced depolarization of mitochondrial membrane potential and a TGF-β1 stimulated increase in levels of cleaved poly (ADP-ribose) polymerase (PARP), cleaved caspase 3, and microtubule-associated proteins 1A/1B light chain 3B II. In conclusion, miR-30c-1 promoted the proliferation of hCECs through ameliorating the TGF- β1-induced senescence of hCECs and reducing cell death of hCECs. Thus, miR-30c-1 may be a therapeutic target for hCECs regeneration.
Collapse
Affiliation(s)
- Younghwan Bae
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Jin Sun Hwang
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Young Joo Shin
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
27
|
Thooyamani AS, Mukhopadhyay A. PDGFRα mediated survival of myofibroblasts inhibit satellite cell proliferation during aberrant regeneration of lacerated skeletal muscle. Sci Rep 2021; 11:63. [PMID: 33420132 PMCID: PMC7794387 DOI: 10.1038/s41598-020-79771-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Aberrant regeneration or fibrosis in muscle is the denouement of deregulated cellular and molecular events that alter original tissue architecture due to accumulation of excessive extracellular matrix. The severity of the insult to the skeletal muscle determines the nature of regeneration. Numerous attempts at deciphering the mechanism underlying fibrosis and the subsequent strategies of drug therapies have yielded temporary solutions. Our intent is to understand the interaction between the myofibroblasts (MFs) and the satellite cells (SCs), during skeletal muscle regeneration. We hypothesize that MFs contribute to the impairment of SCs function by exhibiting an antagonistic influence on their proliferation. A modified laceration based skeletal muscle injury model in mouse was utilized to evaluate the dynamics between the SCs and MFs during wound healing. We show that the decline in MFs’ number through inhibition of PDGFRα signaling consequently promotes proliferation of the SCs and exhibits improved skeletal muscle remodeling. We further conclude that in situ administration of PDGFRα inhibitor prior to onset of fibrosis may attenuate aberrant regeneration. This opens new possibility for the early treatment of muscle fibrosis by specific targeting of MFs rather than transplantation of SCs.
Collapse
Affiliation(s)
- Abinaya Sundari Thooyamani
- Stem Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India. .,, Abi Nivas, Subbanapalya Extension, Bangalore, 560043, India.
| | - Asok Mukhopadhyay
- Stem Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India. .,, AA-602, Ashabari, Patuli, Kolkata, 700094, India.
| |
Collapse
|
28
|
Liu S, Ren J, Ten Dijke P. Targeting TGFβ signal transduction for cancer therapy. Signal Transduct Target Ther 2021; 6:8. [PMID: 33414388 PMCID: PMC7791126 DOI: 10.1038/s41392-020-00436-9] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/19/2022] Open
Abstract
Transforming growth factor-β (TGFβ) family members are structurally and functionally related cytokines that have diverse effects on the regulation of cell fate during embryonic development and in the maintenance of adult tissue homeostasis. Dysregulation of TGFβ family signaling can lead to a plethora of developmental disorders and diseases, including cancer, immune dysfunction, and fibrosis. In this review, we focus on TGFβ, a well-characterized family member that has a dichotomous role in cancer progression, acting in early stages as a tumor suppressor and in late stages as a tumor promoter. The functions of TGFβ are not limited to the regulation of proliferation, differentiation, apoptosis, epithelial-mesenchymal transition, and metastasis of cancer cells. Recent reports have related TGFβ to effects on cells that are present in the tumor microenvironment through the stimulation of extracellular matrix deposition, promotion of angiogenesis, and suppression of the anti-tumor immune reaction. The pro-oncogenic roles of TGFβ have attracted considerable attention because their intervention provides a therapeutic approach for cancer patients. However, the critical function of TGFβ in maintaining tissue homeostasis makes targeting TGFβ a challenge. Here, we review the pleiotropic functions of TGFβ in cancer initiation and progression, summarize the recent clinical advancements regarding TGFβ signaling interventions for cancer treatment, and discuss the remaining challenges and opportunities related to targeting this pathway. We provide a perspective on synergistic therapies that combine anti-TGFβ therapy with cytotoxic chemotherapy, targeted therapy, radiotherapy, or immunotherapy.
Collapse
Affiliation(s)
- Sijia Liu
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Jiang Ren
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
29
|
Chen J, Ding ZY, Li S, Liu S, Xiao C, Li Z, Zhang BX, Chen XP, Yang X. Targeting transforming growth factor-β signaling for enhanced cancer chemotherapy. Theranostics 2021; 11:1345-1363. [PMID: 33391538 PMCID: PMC7738904 DOI: 10.7150/thno.51383] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
During the past decades, drugs targeting transforming growth factor-β (TGFβ) signaling have received tremendous attention for late-stage cancer treatment since TGFβ signaling has been recognized as a prime driver for tumor progression and metastasis. Nonetheless, in healthy and pre-malignant tissues, TGFβ functions as a potent tumor suppressor. Furthermore, TGFβ signaling plays a key role in normal development and homeostasis by regulating cell proliferation, differentiation, migration, apoptosis, and immune evasion, and by suppressing tumor-associated inflammation. Therefore, targeting TGFβ signaling for cancer therapy is challenging. Recently, we and others showed that blocking TGFβ signaling increased chemotherapy efficacy, particularly for nanomedicines. In this review, we briefly introduce the TGFβ signaling pathway, and the multifaceted functions of TGFβ signaling in cancer, including regulating the tumor microenvironment (TME) and the behavior of cancer cells. We also summarize TGFβ targeting agents. Then, we highlight TGFβ inhibition strategies to restore the extracellular matrix (ECM), regulate the tumor vasculature, reverse epithelial-mesenchymal transition (EMT), and impair the stemness of cancer stem-like cells (CSCs) to enhance cancer chemotherapy efficacy. Finally, the current challenges and future opportunities in targeting TGFβ signaling for cancer therapy are discussed.
Collapse
Affiliation(s)
- Jitang Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ze-yang Ding
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepatic-Biliary-Pancreatic Diseases, National Medical Center for Major Public Health Events, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Sha Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepatic-Biliary-Pancreatic Diseases, National Medical Center for Major Public Health Events, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-xiang Zhang
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepatic-Biliary-Pancreatic Diseases, National Medical Center for Major Public Health Events, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-ping Chen
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepatic-Biliary-Pancreatic Diseases, National Medical Center for Major Public Health Events, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong, 510530, China
| |
Collapse
|
30
|
Zhao J, Cui B, Yao H, Lin Z, Dong Y. A Potential Role of Bone Morphogenetic Protein 7 in Shell Formation and Growth in the Razor Clam Sinonovacula constricta. Front Physiol 2020; 11:1059. [PMID: 32982790 PMCID: PMC7485270 DOI: 10.3389/fphys.2020.01059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/31/2020] [Indexed: 01/02/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) not only play essential roles in bone development but also are involved in embryonic growth, organogenesis cell proliferation and differentiation. However, the previous studies on the functions of shellfish BMPs genes are still very limited. To better understand its molecular structure and biological function, BMP7 of the razor clam Sinonovacula constricta (Sc-BMP7) was cloned and characterized in this study. The full length of Sc-BMP7 is 2252 bp, including an open reading frame (ORF) of 1257 bp encoding 418 amino acids. The protein sequence included a signal peptide (1–32 aa), a prodomain (38–270 aa) and a TGF-β domain (317–418 aa). The quantitative expression of eleven adult tissues showed that Sc-BMP7 was significantly higher expressed in the gill, foot, and mantle (P < 0.05), but lower in hemocytes and hepatopancreas. In the early development stages, low expression was detected in the stages of unfertilized mature eggs, fertilized eggs, 4-cell embryos, blastula, gastrulae, whereas it increased after the stage of trochophore and demonstrated the highest expression in umbo larvae (P < 0.01). In shell repair experiment, Sc-BMP7 showed increasing expression level after 12 h. The higher expression of Sc-BMP7 was detected while Ca2+ concentration was reduced in seawater. After inhibiting Sc-BMP7 expression using RNA interference (RNAi) technology, expression of Sc-BMP7 mRNA and protein were significantly down-regulated (P < 0.05) in the central zone of mantle (nacre formation related tissue) and the pallial zone of mantle (prismatic layer formation related tissue). Association analysis identified two shared SNPs in exon of Sc-BMP7 gene from 246 individuals of two groups. These results indicated that BMP7 might be involved in shell formation and growth. These results would contribute to clarify the role of Sc-BMP7 in the regulation of growth and shell formation, and provide growth-related markers for molecular marker assisted breeding of this species.
Collapse
Affiliation(s)
- Jiaxi Zhao
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Baoyue Cui
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Hanhan Yao
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Zhihua Lin
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Yinghui Dong
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
31
|
Yamashita M, Aoki H, Hashita T, Iwao T, Matsunaga T. Inhibition of transforming growth factor beta signaling pathway promotes differentiation of human induced pluripotent stem cell-derived brain microvascular endothelial-like cells. Fluids Barriers CNS 2020; 17:36. [PMID: 32456699 PMCID: PMC7249446 DOI: 10.1186/s12987-020-00197-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/15/2020] [Indexed: 01/02/2023] Open
Abstract
Background The blood–brain barrier (BBB) plays an important role as a biological barrier by regulating molecular transport between circulating blood and the brain parenchyma. In drug development, the accurate evaluation of BBB permeability is essential to predict not only the efficacy but also the safety of drugs. Recently, brain microvascular endothelial-like cells derived from human induced pluripotent stem cells (iPSCs) have attracted much attention. However, the differentiation protocol has not been optimized, and the enhancement of iPSC-derived brain microvascular endothelial-like cells (iBMELCs) function is required to develop highly functional BBB models for pharmaceutical research. Thus, we attempted to improve the functions of differentiated iBMELCs and develop a versatile BBB model by modulating TGF-β signaling pathway without implementing complex techniques such as co-culture systems. Methods iPSCs were differentiated into iBMELCs, and TGF-β inhibitor was used in the late stage of differentiation. To investigate the effect of TGF-β on freezing–thawing, iBMELCs were frozen for 60–90 min or 1 month. The barrier integrity of iBMELCs was evaluated by transendothelial electrical resistance (TEER) values and permeability of Lucifer yellow. Characterization of iBMELCs was conducted by RT-qPCR, immunofluorescence analysis, vascular tube formation assay, and acetylated LDL uptake assay. Functions of efflux transporters were defined by intracellular accumulation of the substrates. Results When we added a TGF-β inhibitor during iBMELCs differentiation, expression of the vascular endothelial cell marker was increased and blood vessel-like structure formation was enhanced. Furthermore, TEER values were remarkably increased in three iPSC lines. Additionally, it was revealed that TGF-β pathway inhibition suppressed the damage caused by the freezing–thawing of iBMELCs. Conclusion We succeeded in significantly enhancing the function and endothelial characteristics of iBMELCs by adding a small molecular compound, a TGF-β inhibitor. Moreover, the iBMELCs could maintain high barrier function even after freezing–thawing. Taken together, these results suggest that TGF-β pathway inhibition may be useful for developing iPSC-derived in vitro BBB models for further pharmaceutical research.
Collapse
Affiliation(s)
- Misaki Yamashita
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Hiromasa Aoki
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Tadahiro Hashita
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.
| |
Collapse
|
32
|
Mitz CA, Viloria-Petit AM. Contrasting effects of transforming growth factor β1 on programmed cell death of bovine mammary epithelial cell lines MAC-T and BME-UV1. J Dairy Sci 2020; 103:5532-5549. [PMID: 32229120 DOI: 10.3168/jds.2019-17460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/17/2020] [Indexed: 11/19/2022]
Abstract
A previous study in the bovine mammary epithelial cell line BME-UV1 demonstrated that suppression of the phosphatidylinositol-4,5-biphosphate 3 kinase (PI3K)/AKT (somatotropic) signaling pathway was required for transforming growth factor β1 (TGFβ1)-induced programmed cell death (PCD). To investigate whether this is a universal mechanism for TGFβ1 to induce PCD in bovine mammary epithelium, we compared TGFβ1 modulation of PI3K/AKT and its role in PCD in 2 bovine mammary epithelial cell lines: MAC-T and BME-UV1. In MAC-T cells, TGFβ1 promoted cell survival, and this paralleled a reduction in PI3K/AKT activity, rather than an increase. In BME-UV1 cells, TGFβ1 induced PCD, and this was accompanied by a time-dependent effect on PI3K/AKT activity, including an initial significant increase in the phosphorylation of AKT at 3 h, followed by a reduction between 12 and 24 h, and then an increase at 48 h. Inhibition of AKT activity enhanced TGFβ1-induced PCD in BME-UV1 cells but had no effect on MAC-T cells, suggesting that TGFβ1 mediates PCD in BME-UV1 cells through suppression of AKT activity. Inhibition of TGFβ receptor type I (TβRI) kinase activity completely abrogated TGFβ1-induced PCD in BME-UV1 cells but had no effect on TGFβ1-induced suppression of PCD in MAC-T cells, demonstrating that TGFβ1-induced PCD in BME-UV1 cells is dependent on TβRI/SMAD signaling. These and previous observations suggest that the different effects of TGFβ1 on PCD in these cell lines might involve noncanonical signaling pathways other than PI3K/AKT, and may reflect their different lineages. Future studies should address this finding, taking into consideration the effect that different culture conditions might have on cell phenotype.
Collapse
Affiliation(s)
- C A Mitz
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - A M Viloria-Petit
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
33
|
Aluganti Narasimhulu C, Singla DK. The Role of Bone Morphogenetic Protein 7 (BMP-7) in Inflammation in Heart Diseases. Cells 2020; 9:cells9020280. [PMID: 31979268 PMCID: PMC7073173 DOI: 10.3390/cells9020280] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
Bone morphogenetic protein-7 is (BMP-7) is a potent anti-inflammatory growth factor belonging to the Transforming Growth Factor Beta (TGF-β) superfamily. It plays an important role in various biological processes, including embryogenesis, hematopoiesis, neurogenesis and skeletal morphogenesis. BMP-7 stimulates the target cells by binding to specific membrane-bound receptor BMPR 2 and transduces signals through mothers against decapentaplegic (Smads) and mitogen activated protein kinase (MAPK) pathways. To date, rhBMP-7 has been used clinically to induce the differentiation of mesenchymal stem cells bordering the bone fracture site into chondrocytes, osteoclasts, the formation of new bone via calcium deposition and to stimulate the repair of bone fracture. However, its use in cardiovascular diseases, such as atherosclerosis, myocardial infarction, and diabetic cardiomyopathy is currently being explored. More importantly, these cardiovascular diseases are associated with inflammation and infiltrated monocytes where BMP-7 has been demonstrated to be a key player in the differentiation of pro-inflammatory monocytes, or M1 macrophages, into anti-inflammatory M2 macrophages, which reduces developed cardiac dysfunction. Therefore, this review focuses on the molecular mechanisms of BMP-7 treatment in cardiovascular disease and its role as an anti-fibrotic, anti-apoptotic and anti-inflammatory growth factor, which emphasizes its potential therapeutic significance in heart diseases.
Collapse
|
34
|
Zhu H, Shan Y, Ge K, Lu J, Kong W, Jia C. Specific Overexpression of Mitofusin-2 in Hepatic Stellate Cells Ameliorates Liver Fibrosis in Mice Model. Hum Gene Ther 2020; 31:103-109. [PMID: 31802713 DOI: 10.1089/hum.2019.153] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a chronic liver disease that could further develop to cirrhosis and liver carcinoma. Hepatic stellate cells (HSCs) are primary effector cells to initiate liver fibrosis. We aimed to explore the function and underlying mechanisms of mitochondrial fusion protein Mitofusin-2 (MFN2) in liver fibrosis. First, we utilized an alpha-smooth muscle actin promoter to overexpress MFN2 specifically in HSCs using adeno-associated virus (AAV) vector (AAV-MFN2). Overexpression of MFN2 was specifically achieved in HSC-T6 cells, but not in murine bone marrow-derived macrophages or hepatocyte AML-12 cells. We found that high expression of MFN2 induced apoptosis of HSC-T6 cells. Mechanistically, we demonstrated that high level of MFN2 inhibited TGF-β1/Smad signaling pathway, triggered downregulation of type I, type III, and type IV collagen, and antagonized the formation of factors associated with liver fibrosis. Furthermore, we found that overexpression of MFN2 using AAV-MFN2 ameliorated CCl4-induced liver fibrosis in vivo with significantly decreased immune cell infiltration. Taken together, our findings indicate that MFN2 is critical in regulating apoptosis and liver fibrosis in HSCs, which might be a useful therapeutic target to treat liver fibrosis.
Collapse
Affiliation(s)
- Hanzhang Zhu
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, the Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| | - Yuqiang Shan
- Department of Gastrointestinal Surgery, Hangzhou First People's Hospital, the Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| | - Ke Ge
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, the Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| | - Jun Lu
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, the Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| | - Wencheng Kong
- Department of Gastrointestinal Surgery, Hangzhou First People's Hospital, the Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| | - Changku Jia
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, the Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Transforming Growth Factor-beta signaling in αβ thymocytes promotes negative selection. Nat Commun 2019; 10:5690. [PMID: 31857584 PMCID: PMC6923358 DOI: 10.1038/s41467-019-13456-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/06/2019] [Indexed: 01/04/2023] Open
Abstract
In the thymus, the T lymphocyte repertoire is purged of a substantial portion of highly self-reactive cells. This negative selection process relies on the strength of TCR-signaling in response to self-peptide-MHC complexes, both in the cortex and medulla regions. However, whether cytokine-signaling contributes to negative selection remains unclear. Here, we report that, in the absence of Transforming Growth Factor beta (TGF-β) signaling in thymocytes, negative selection is significantly impaired. Highly autoreactive thymocytes first escape cortical negative selection and acquire a Th1-like-phenotype. They express high levels of CXCR3, aberrantly accumulate at the cortico-medullary junction and subsequently fail to sustain AIRE expression in the medulla, escaping medullary negative selection. Highly autoreactive thymocytes undergo an atypical maturation program, substantially accumulate in the periphery and induce multiple organ-autoimmune-lesions. Thus, these findings reveal TGF-β in thymocytes as crucial for negative selection with implications for understanding T cell self-tolerance mechanisms.
Collapse
|
36
|
Ets-1 deficiency alleviates nonalcoholic steatohepatitis via weakening TGF-β1 signaling-mediated hepatocyte apoptosis. Cell Death Dis 2019; 10:458. [PMID: 31189885 PMCID: PMC6561928 DOI: 10.1038/s41419-019-1672-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 04/10/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
Hepatocyte apoptosis is a hallmark of nonalcoholic steatohepatitis (NASH) and contributes to liver injury, fibrosis, and inflammation. However, the molecular mechanisms underlying excessive hepatocyte apoptosis in NASH remain largely unknown. This study aimed to explore whether and how the v-ets avian erythroblastosis virus E26 oncogene homolog 1 (Ets-1) is involved in diet-induced hepatocyte apoptosis in mice. The study found that the expression level of hepatic Ets-1 was elevated in a NASH mouse model as a result of the activation of transforming growth factor beta1 (TGF-β1) signaling. In the presence of TGF-β1, phosphorylated mothers against decapentaplegic homolog 2/3 (p-Smad2/3) translocated to the binding sites of the Ets-1 promoter to upregulate the expression of Ets-1 in primary hepatocytes. In addition, Ets-1 bound directly to phosphorylated Smad3 (p-Smad3), thereby preventing the ubiquitination and proteasomal degradation of p-Smad3 and enhancing the activity of TGF-β1/Smad3 signaling. Consequently, elevated Ets-1 stimulated TGF-β1-induced hepatocyte apoptosis. However, Ets-1 knockdown alleviated diet-induced hepatocyte apoptosis and NASH with reduced liver injury, inflammation, and fibrosis. Taken together, Ets-1 had an adverse impact on hepatocyte survival under TGF-β1 treatment and accelerated the development of NASH in mice.
Collapse
|
37
|
Siraj AK, Pratheeshkumar P, Divya SP, Parvathareddy SK, Bu R, Masoodi T, Kong Y, Thangavel S, Al-Sanea N, Ashari LH, Abduljabbar A, Al-Homoud S, Al-Dayel F, Al-Kuraya KS. TGFβ-induced SMAD4-dependent Apoptosis Proceeded by EMT in CRC. Mol Cancer Ther 2019; 18:1312-1322. [PMID: 31053577 DOI: 10.1158/1535-7163.mct-18-1378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 11/16/2022]
Abstract
Colorectal cancer is one of the leading causes of cancer-related deaths worldwide. In Saudi Arabia, colorectal cancer is more aggressive and presents at younger age, warranting new treatment strategies. Role of TGFβ/Smad4 signaling pathway in initiation and progression of colorectal cancer is well documented. This study examined the role of TGFβ/Smad4 signaling pathway in a large cohort of Saudi patients with colorectal cancer, followed by in vitro analysis to dissect the dual role of TGFβ on inducing epithelial-to-mesenchymal transition (EMT) and apoptosis. Our study demonstrated high frequency of Smad4 alterations with low expression of Smad4 protein identifying a subgroup of aggressive colorectal cancer to be an independent marker for poor prognosis. Functional studies using colorectal cancer cells show that TGFβ induces Smad4-dependent EMT followed by apoptosis. Induction of mesenchymal transcriptional factors, Snail1 and Zeb1, was essential for TGFβ-induced apoptosis. Our results indicate that KLF5 acts as an oncogene in colorectal cancer cells regardless of Smad4 expression and inhibition of KLF5 is requisite for TGFβ-induced apoptosis. Furthermore, TGFβ/Smad4 signal inhibits the transcription of KLF5 that in turn switches Sox4 from tumor promoter to suppressor. A high incidence of Smad4 alterations were found in the Saudi patients with colorectal cancer. Functional study results indicate that TGFβ induces Smad4-dependent EMT followed by apoptosis in colorectal cancer cells.
Collapse
Affiliation(s)
- Abdul K Siraj
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Poyil Pratheeshkumar
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sasidharan Padmaja Divya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Rong Bu
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tariq Masoodi
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Yan Kong
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Saravanan Thangavel
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nasser Al-Sanea
- Department of Surgery, Colorectal Unit, Riyadh, Saudi Arabia
| | - Luai H Ashari
- Department of Surgery, Colorectal Unit, Riyadh, Saudi Arabia
| | | | - Samar Al-Homoud
- Department of Surgery, Colorectal Unit, Riyadh, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khawla S Al-Kuraya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| |
Collapse
|
38
|
Nilsson LM, Zhang L, Bondar A, Svensson D, Wernerson A, Brismar H, Scott L, Aperia A. Prompt apoptotic response to high glucose in SGLT-expressing renal cells. Am J Physiol Renal Physiol 2019; 316:F1078-F1089. [PMID: 30864838 PMCID: PMC6580252 DOI: 10.1152/ajprenal.00615.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It is generally believed that cells that are unable to downregulate glucose transport are particularly vulnerable to hyperglycemia. Yet, little is known about the relation between expression of glucose transporters and acute toxic effects of high glucose exposure. In the present ex vivo study of rat renal cells, we compared the apoptotic response to a moderate increase in glucose concentration. We studied cell types that commonly are targeted in diabetic kidney disease (DKD): proximal tubule cells, which express Na+-dependent glucose transporter (SGLT)2, mesangial cells, which express SGLT1, and podocytes, which lack SGLT and take up glucose via insulin-dependent glucose transporter 4. Proximal tubule cells and mesangial cells responded within 4–8 h of exposure to 15 mM glucose with translocation of the apoptotic protein Bax to mitochondria and an increased apoptotic index. SGLT downregulation and exposure to SGLT inhibitors abolished the apoptotic response. The onset of overt DKD generally coincides with the onset of albuminuria. Albumin had an additive effect on the apoptotic response. Ouabain, which interferes with the apoptotic onset, rescued from the apoptotic response. Insulin-supplemented podocytes remained resistant to 15 and 30 mM glucose for at least 24 h. Our study points to a previously unappreciated role of SGLT-dependent glucose uptake as a risk factor for diabetic complications and highlights the importance of therapeutic approaches that specifically target the different cell types in DKD.
Collapse
Affiliation(s)
- Linnéa M Nilsson
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, Sweden
| | - Liang Zhang
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Alexander Bondar
- Institute of Chemical Biology and Fundamental Medicine, Novosibirisk, Russia
| | - Daniel Svensson
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Annika Wernerson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet , Stockholm , Sweden
| | - Hjalmar Brismar
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, Sweden.,Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Lena Scott
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Anita Aperia
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
39
|
Hoyeck MP, Hadj-Moussa H, Storey KB. Estivation-responsive microRNAs in a hypometabolic terrestrial snail. PeerJ 2019; 7:e6515. [PMID: 30809463 PMCID: PMC6387573 DOI: 10.7717/peerj.6515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/25/2019] [Indexed: 01/01/2023] Open
Abstract
When faced with extreme environmental conditions, the milk snail (Otala lactea) enters a state of dormancy known as estivation. This is characterized by a strong reduction in metabolic rate to <30% of normal resting rate that is facilitated by various behavioural, physiological, and molecular mechanisms. Herein, we investigated the regulation of microRNA in the induction of estivation. Changes in the expression levels of 75 highly conserved microRNAs were analysed in snail foot muscle, of which 26 were significantly upregulated during estivation compared with controls. These estivation-responsive microRNAs were linked to cell functions that are crucial for long-term survival in a hypometabolic state including anti-apoptosis, cell-cycle arrest, and maintenance of muscle functionality. Several of the microRNA responses by snail foot muscle also characterize hypometabolism in other species and support the existence of a conserved suite of miRNA responses that regulate environmental stress responsive metabolic rate depression across phylogeny.
Collapse
Affiliation(s)
- Myriam P Hoyeck
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, Ottawa, Ontario, Canada
| | - Hanane Hadj-Moussa
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, Ottawa, Ontario, Canada
| | - Kenneth B Storey
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
40
|
Xu YR, Wang GY, Zhou YC, Yang WX. The characterization and potential roles of bone morphogenetic protein 7 during spermatogenesis in Chinese mitten crab Eriocheir sinensis. Gene 2018; 673:119-129. [PMID: 29890312 DOI: 10.1016/j.gene.2018.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 05/31/2018] [Accepted: 06/07/2018] [Indexed: 01/12/2023]
Abstract
Bone morphogenetic proteins (BMPs), which belong to the transforming growth factor-β superfamily, have been implicated in various biological and physiological processes, especially in the gonad development. However, scarce studies were focused on the roles of BMPs in the reproductive system of crustaceans. In this study, the whole gene encoding BMP7 protein was cloned and characterized firstly in Chinese mitten crab Eriocheir sinensis. The bioinformatics analysis of the deduced amino acid sequence showed that Es-BMP7 was composed of prodomain/latency-associated peptide and the TGF-β characteristic domain. The sequence conservation and phylogenetic analysis were also conducted. Quantitative real-time PCR was conducted indifferent tissues. The highest expression in testis indicated the potential role of BMP7 to male gonad development. Western blot results showed the different translational levels of BMP7 in different tissues. In-situ hybridization revealed that the expression of es-bmp7 signals presented in a bimodal manner: highest in spermatogonia, decreased in spermatocytes and stage I spermatids, disappeared in stage II spermatids, and showed up again in stage III spermatids and mature sperm. To further verify the potential roles during spermatogenesis, immunofluorescence was conducted and results showed the similar expression tendency with in situ hybridization. The protein signal was highest in the cytoplasm of spermatogonia, continued to decline in the cytoplasm of spermatocytes and the following stages, and weak signal was found in the mature sperm. Taken together, our results revealed that Es-BMP7 might play a part in testis development in Eriocheir sinensis, presumably by maintaining the self-renewal of spermatogonia and promoting the germ cell differentiation/meiotic mitosis, or facilitating the successful fertilization.
Collapse
Affiliation(s)
- Ya-Ru Xu
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gao-Yuan Wang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi-Chao Zhou
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
41
|
Zhang C, Liu Z, Zheng Y, Geng Y, Han C, Shi Y, Sun H, Zhang C, Chen Y, Zhang L, Guo Q, Yang L, Zhou X, Kong L. Glycyrrhetinic Acid Functionalized Graphene Oxide for Mitochondria Targeting and Cancer Treatment In Vivo. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1703306. [PMID: 29205852 DOI: 10.1002/smll.201703306] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Indexed: 06/07/2023]
Abstract
Mitochondria-mediated apoptosis (MMA) is a preferential option for cancer therapy due to the presence of cell-suicide factors in mitochondria, however, low permeability of mitochondria is a bottleneck for targeting drug delivery. In this paper, glycyrrhetinic acid (GA), a natural product from Glycyrrhiza glabra, is found to be a novel mitochondria targeting ligand, which can improve mitochondrial permeability and enhance the drug uptake of mitochondria. GA-functionalized graphene oxide (GO) is prepared and used as an effective carrier for targeted delivery of doxorubicin into mitochondria. The detailed in vitro and in vivo mechanism study shows that GA-functionalized GO causes a decrease in mitochondrial membrane potential and activates the MMA pathway. The GA-functionalized drug delivery system demonstrates highly improved apoptosis induction ability and anticancer efficacy compared to the non-GA-functionalized nanocarrier delivery system. The GA-functionalized nanocarrier also shows low toxicity, suggesting that it can be a useful tool for drug delivery.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Pharmacy, Nankai University, Tianjin, 300071, China
| | - Ying Zheng
- Department of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Yadi Geng
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Chao Han
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Yamin Shi
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Hongbin Sun
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Yijun Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Luyong Zhang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Lei Yang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Xiang Zhou
- Department of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| |
Collapse
|
42
|
Abstract
Transforming growth factor βs (TGF-βs) are closely related ligands that have pleiotropic activity on most cell types of the body. They act through common heterotetrameric TGF-β type II and type I transmembrane dual specificity kinase receptor complexes, and the outcome of signaling is context-dependent. In normal tissue, they serve a role in maintaining homeostasis. In many diseased states, particularly fibrosis and cancer, TGF-β ligands are overexpressed and the outcome of signaling is diverted toward disease progression. There has therefore been a concerted effort to develop drugs that block TGF-β signaling for therapeutic benefit. This review will cover the basics of TGF-β signaling and its biological activities relevant to oncology, present a summary of pharmacological TGF-β blockade strategies, and give an update on preclinical and clinical trials for TGF-β blockade in a variety of solid tumor types.
Collapse
Affiliation(s)
- Rosemary J Akhurst
- Department of Anatomy and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158-9001
| |
Collapse
|
43
|
Abstract
Transforming growth factor βs (TGF-βs) are closely related ligands that have pleiotropic activity on most cell types of the body. They act through common heterotetrameric TGF-β type II and type I transmembrane dual specificity kinase receptor complexes, and the outcome of signaling is context-dependent. In normal tissue, they serve a role in maintaining homeostasis. In many diseased states, particularly fibrosis and cancer, TGF-β ligands are overexpressed and the outcome of signaling is diverted toward disease progression. There has therefore been a concerted effort to develop drugs that block TGF-β signaling for therapeutic benefit. This review will cover the basics of TGF-β signaling and its biological activities relevant to oncology, present a summary of pharmacological TGF-β blockade strategies, and give an update on preclinical and clinical trials for TGF-β blockade in a variety of solid tumor types.
Collapse
Affiliation(s)
- Rosemary J Akhurst
- Department of Anatomy and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158-9001
| |
Collapse
|
44
|
Ou L, Lin S, Song B, Liu J, Lai R, Shao L. The mechanisms of graphene-based materials-induced programmed cell death: a review of apoptosis, autophagy, and programmed necrosis. Int J Nanomedicine 2017; 12:6633-6646. [PMID: 28924347 PMCID: PMC5595361 DOI: 10.2147/ijn.s140526] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Graphene-based materials (GBMs) are widely used in many fields, including biomedicine. To date, much attention had been paid to the potential unexpected toxic effects of GBMs. Here, we review the recent literature regarding the impact of GBMs on programmed cell death (PCD). Apoptosis, autophagy, and programmed necrosis are three major PCDs. Mechanistic studies demonstrated that the mitochondrial pathways and MAPKs (JNK, ERK, and p38)- and TGF-β-related signaling pathways are implicated in GBMs-induced apoptosis. Autophagy, unlike apoptosis and necroptosis which are already clear cell death types, plays a vital pro-survival role in cell homeostasis, so its role in cell death should be carefully considered. However, GBMs always induce unrestrained autophagy accelerating cell death. GBMs trigger autophagy through inducing autophagosome accumulation and lysosome impairment. Mitochondrial dysfunction, ER stress, TLRs signaling pathways, and p38 MAPK and NF-κB pathways participate in GBMs-induced autophagy. Programmed necrosis can be activated by RIP kinases, PARP, and TLR-4 signaling in macrophages after GBMs exposure. Though apoptosis, autophagy, and necroptosis are distinguished by some characteristics, their numerous signaling pathways comprise an interconnected network and correlate with each other, such as the TLRs, p53 signaling pathways, and the Beclin-1 and Bcl-2 interaction. A better understanding of the mechanisms of PCD induced by GBMs may allow for a thorough study of the toxicology of GBMs and a more precise determination of the consequences of human exposure to GBMs. These determinations will also benefit safety assessments of the biomedical and therapeutic applications of GBMs.
Collapse
Affiliation(s)
- Lingling Ou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Stomatology, the First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Shaoqiang Lin
- Department of Stomatology, the First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Bin Song
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jia Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Renfa Lai
- Department of Stomatology, the First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Longquan Shao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
45
|
Eritja N, Felip I, Dosil MA, Vigezzi L, Mirantes C, Yeramian A, Navaridas R, Santacana M, Llobet-Navas D, Yoshimura A, Nomura M, Encinas M, Matias-Guiu X, Dolcet X. A Smad3-PTEN regulatory loop controls proliferation and apoptotic responses to TGF-β in mouse endometrium. Cell Death Differ 2017; 24:1443-1458. [PMID: 28524854 DOI: 10.1038/cdd.2017.73] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 03/24/2017] [Accepted: 04/05/2017] [Indexed: 02/07/2023] Open
Abstract
The TGF-β/Smad and the PI3K/AKT signaling pathways are important regulators of proliferation and apoptosis, and their alterations lead to cancer development. TGF-β acts as a tumor suppressor in premalignant cells, but it is a tumor promoter for cancerous cells. Such dichotomous actions are dictated by different cellular contexts. Here, we have unveiled a PTEN-Smad3 regulatory loop that provides a new insight in the complex cross talk between TGF-β/Smad and PI3K/AKT signaling pathways. We demonstrate that TGF-β triggers apoptosis of wild-type polarized endometrial epithelial cells by a Smad3-dependent activation of PTEN transcription, which results in the inhibition of PI3K/AKT signaling pathway. We show that specific Smad3 knockdown or knockout reduces basal and TGF-β-induced PTEN expression in endometrial cells, resulting in a blockade of TGF-β-induced apoptosis and an enhancement of cell proliferation. Likewise Smad3 deletion, PTEN knockout prevents TGF-β-induced apoptosis and increases cell proliferation by increasing PI3K/AKT/mTOR signaling. In summary, our results demonstrate that Smad3-PTEN signaling axis determine cellular responses to TGF-β.
Collapse
Affiliation(s)
- Nuria Eritja
- Department de Ciències Mèdiques Bàsiques, Oncologic Pathology Group, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Isidre Felip
- Department de Ciències Mèdiques Bàsiques, Oncologic Pathology Group, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | - Mari Alba Dosil
- Department de Ciències Mèdiques Bàsiques, Oncologic Pathology Group, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Lucia Vigezzi
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Salud y Ambiente del Litoral (ISAL) - CONICET, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Cristina Mirantes
- Department de Ciències Mèdiques Bàsiques, Oncologic Pathology Group, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | - Andree Yeramian
- Department de Ciències Mèdiques Bàsiques, Oncologic Pathology Group, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Raúl Navaridas
- Department de Ciències Mèdiques Bàsiques, Oncologic Pathology Group, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | - Maria Santacana
- Department de Ciències Mèdiques Bàsiques, Oncologic Pathology Group, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - David Llobet-Navas
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Tokyo 160-8582, Japan
| | - Masatoshi Nomura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Science, Kyushu University, Maidashi, Fukuoka 812-8582, Japan
| | - Mario Encinas
- Department Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | - Xavier Matias-Guiu
- Department de Ciències Mèdiques Bàsiques, Oncologic Pathology Group, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Xavi Dolcet
- Department de Ciències Mèdiques Bàsiques, Oncologic Pathology Group, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, Lleida, Spain.,Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| |
Collapse
|
46
|
Zucca E, Corsini E, Galbiati V, Lange-Consiglio A, Ferrucci F. Evaluation of amniotic mesenchymal cell derivatives on cytokine production in equine alveolar macrophages: an in vitro approach to lung inflammation. Stem Cell Res Ther 2016; 7:137. [PMID: 27651133 PMCID: PMC5028987 DOI: 10.1186/s13287-016-0398-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/24/2016] [Accepted: 08/30/2016] [Indexed: 01/01/2023] Open
Abstract
Background Data obtained in both animal models and clinical trials suggest that cell-based therapies represent a potential therapeutic strategy for lung repair and remodeling. Recently, new therapeutic approaches based on the use of stem cell derivatives (e.g., conditioned medium (CM) and microvesicles (MVs)) to regenerate tissues and improve their functions were proposed. The aim of this study was to investigate the immunomodulatory effects of equine amniotic mesenchymal cell derivatives on lipopolysaccharide (LPS)-induced cytokine production in equine alveolar macrophages, which may be beneficial in lung inflammatory disorders such as recurrent airway obstruction (RAO) in horses. RAO shares many features with human asthma, including an increased number of cells expressing mRNA for interleukin (IL)-4 and IL-5 and a decreased expression of IFN-γ in bronchoalveolar lavage fluid (BALF) of affected horses. Methods The release of TNF-α, IL-6, and TGF-β1 at different time points (1, 24, 48, and 72 h) was measured in equine alveolar macrophages stimulated or not with LPS (10 and 100 ng/mL) in the presence or absence of 10 % CM or 50 × 106 MVs/mL. Cytokines were measured using commercially available ELISA kits. For multiple comparisons, analysis of variance was used with Tukey post-hoc test. Differences were considered significant at p ≤ 0.05. Results Significant modulatory effects of CM on LPS-induced TNF-α release at 24 h, and of both CM and MVs on TNF-α release at 48 h were observed. A trend toward a modulatory effect of both CM and MVs on the release of TGF-β and possibly IL-6 was visible over time. Conclusions Results support the potential use of CM and MVs in lung regenerative medicine, especially in situations in which TGF-β may be detrimental, such as respiratory allergy. Further studies should evaluate the potential clinical applications of CM and MVs in equine lung diseases, such as RAO and other inflammatory disorders.
Collapse
Affiliation(s)
- Enrica Zucca
- Department of Health, Animal Science and Food Safety (VESPA), Università degli Studi di Milano, Via Celoria 10, 20133, Milano, Italy
| | - Emanuela Corsini
- Laboratory of Toxicology, DiSFeB, Università degli Studi di Milano, Milan, Italy
| | - Valentina Galbiati
- Laboratory of Toxicology, DiSFeB, Università degli Studi di Milano, Milan, Italy
| | - Anna Lange-Consiglio
- Large Animal Hospital, Reproduction Unit, Università degli Studi di Milano, Lodi, Italy.
| | - Francesco Ferrucci
- Department of Health, Animal Science and Food Safety (VESPA), Università degli Studi di Milano, Via Celoria 10, 20133, Milano, Italy
| |
Collapse
|
47
|
Dudek I, Skoda M, Jarosz A, Szukiewicz D. The Molecular Influence of Graphene and Graphene Oxide on the Immune System Under In Vitro and In Vivo Conditions. Arch Immunol Ther Exp (Warsz) 2015; 64:195-215. [PMID: 26502273 DOI: 10.1007/s00005-015-0369-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/31/2015] [Indexed: 12/20/2022]
Abstract
Graphene and graphene oxide (GO), due to their physicochemical properties and biocompatibility, can be used as an innovative biomedical material in biodetection, drug distribution in the body, treating neoplasms, regenerative medicine, and in implant surgery. Research on the biomedical use of graphene and GO that has been carried out until now is very promising and shows that carbon nanomaterials present high biocompatibility. However, the intolerance of the immune system to graphene nanomaterials, however low, may in consequence make it impossible to use them in medicine. This paper shows the specific mechanism of the molecular influence of graphene and GO on macrophages and lymphocytes under in vitro and in vivo conditions and their practical application in medicine. Under in vitro conditions graphene and GO cause an increased production of pro-inflammatory cytokines, mainly IL-1, IL-6, IL-10 and TNF-α, as a result of the activation of Toll-like receptors in macrophages. Graphene activates apoptosis in macrophages through the TGFbr/Smad/Bcl-2 pathway and also through JNK kinases that are stimulated by an increase of ROS in the cell or through a signal received by Smad proteins. Under in vivo conditions, graphene nanomaterials induce the development of the local inflammatory reaction and the development of granulomas in parenchymal organs. However, there is a huge discrepancy between the results obtained by different research groups, which requires a detailed analysis. In this work we decided to collect and analyze existing research and tried to explain the discrepancies. Understanding the precise mechanism of how this nanomaterial influences immune system cells allows estimating the potential influence of grapheme and GO on the human body.
Collapse
Affiliation(s)
- Ilona Dudek
- Department of General and Experimental Pathology with Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Pawińskiego 3C, 02-106, Warsaw, Poland.
| | - Marta Skoda
- Department of General and Experimental Pathology with Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Pawińskiego 3C, 02-106, Warsaw, Poland
| | - Anna Jarosz
- Department of General and Experimental Pathology with Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Pawińskiego 3C, 02-106, Warsaw, Poland
| | - Dariusz Szukiewicz
- Department of General and Experimental Pathology with Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Pawińskiego 3C, 02-106, Warsaw, Poland
| |
Collapse
|
48
|
Marlow LA, Bok I, Smallridge RC, Copland JA. RhoB upregulation leads to either apoptosis or cytostasis through differential target selection. Endocr Relat Cancer 2015. [PMID: 26206775 PMCID: PMC4559850 DOI: 10.1530/erc-14-0302] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Anaplastic thyroid carcinoma is a highly aggressive undifferentiated carcinoma with a mortality rate near 100% due to an assortment of genomic abnormalities which impede the success of therapeutic options. Our laboratory has previously identified that RhoB upregulation serves as a novel molecular therapeutic target and agents upregulating RhoB combined with paclitaxel lead to antitumor synergy. Knowing that histone deacetylase 1 (HDAC1) transcriptionally suppresses RhoB, we sought to extend our findings to other HDACs and to identify the HDAC inhibitor (HDACi) that optimally synergize with paclitaxel. Here we identify HDAC6 as a newly discovered RhoB repressor. By using isoform selective HDAC inhibitors (HDACi) and shRNAs, we show that RhoB has divergent downstream signaling partners, which are dependent on the HDAC isoform that is inhibited. When RhoB upregulates only p21 (cyclin kinase inhibitor) using a class I HDACi (romidepsin), cells undergo cytostasis. When RhoB upregulates BIMEL using class II/(I) HDACi (belinostat or vorinostat), apoptosis occurs. Combinatorial synergy with paclitaxel is dependent upon RhoB and BIMEL while upregulation of RhoB and only p21 blocks synergy. This bifurcated regulation of the cell cycle by RhoB is novel and silencing either p21 or BIMEL turns the previously silenced pathway on, leading to phenotypic reversal. This study intimates that the combination of belinostat/vorinostat with paclitaxel may prove to be an effective therapeutic strategy via the novel observation that class II/(I) HDACi antagonize HDAC6-mediated suppression of RhoB and subsequent BIMEL, thereby promoting antitumor synergy. These overall observations may provide a mechanistic understanding of optimal therapeutic response.
Collapse
Affiliation(s)
- Laura A Marlow
- Departments of Cancer BiologyInternal MedicineDivision of EndocrinologyEndocrine Malignancy Working GroupMayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| | - Ilah Bok
- Departments of Cancer BiologyInternal MedicineDivision of EndocrinologyEndocrine Malignancy Working GroupMayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| | - Robert C Smallridge
- Departments of Cancer BiologyInternal MedicineDivision of EndocrinologyEndocrine Malignancy Working GroupMayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA Departments of Cancer BiologyInternal MedicineDivision of EndocrinologyEndocrine Malignancy Working GroupMayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA Departments of Cancer BiologyInternal MedicineDivision of EndocrinologyEndocrine Malignancy Working GroupMayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| | - John A Copland
- Departments of Cancer BiologyInternal MedicineDivision of EndocrinologyEndocrine Malignancy Working GroupMayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA Departments of Cancer BiologyInternal MedicineDivision of EndocrinologyEndocrine Malignancy Working GroupMayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| |
Collapse
|
49
|
Ratliff M, Alter S, McAvoy K, Frasca D, Wright JA, Zinkel SS, Khan WN, Blomberg BB, Riley RL. In aged mice, low surrogate light chain promotes pro-B-cell apoptotic resistance, compromises the PreBCR checkpoint, and favors generation of autoreactive, phosphorylcholine-specific B cells. Aging Cell 2015; 14:382-90. [PMID: 25727904 PMCID: PMC4406667 DOI: 10.1111/acel.12302] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2014] [Indexed: 01/13/2023] Open
Abstract
In aged mice, new B-cell development is diminished and the antibody repertoire becomes more autoreactive. Our studies suggest that (i) apoptosis contributes to reduced B lymphopoiesis in old age and preferentially eliminates those B-cell precursors with higher levels of the surrogate light chain (SLC) proteins (λ5/VpreB) and (ii) λ5(low) B-cell precursors generate new B cells which show increased reactivity to the self-antigen/bacterial antigen phosphorylcholine (PC). Pro-B cells in old bone marrow as well as pro-B cells from young adult λ5-deficient mice are resistant to cytokine-induced apoptosis (TNFα; TGFβ), indicating that low λ5 expression in pro-B cells is sufficient to cause increased survival. Transfer of TNFα-producing 'age-associated B cells' (ABC; CD21/35(-) CD23(-)) or follicular (FO) B cells from aged mice into RAG-2 KO recipients led to preferential loss of λ5(high) pro-B cells, but retention of λ5(low), apoptosis-resistant pro-B cells. In old mice, there is increased reactivity to PC in both immature bone marrow B cells and mature splenic FO B cells. In young mice, absence of λ5 expression led to a similar increase in PC reactivity among bone marrow and splenic B cells. We propose that in old age, increased apoptosis, mediated in part by TNFα-producing B cells, results in preferential loss of SLC(high) pro-B cells within the bone marrow. Further B-cell development then occurs via an 'SLC(low)' pathway that not only impairs B-cell generation, but promotes autoreactivity within the naïve antibody repertoires in the bone marrow and periphery.
Collapse
Affiliation(s)
- Michelle Ratliff
- Department of Microbiology & Immunology University of Miami Miller School of Medicine Miami FL 33136 USA
| | - Sarah Alter
- Department of Microbiology & Immunology University of Miami Miller School of Medicine Miami FL 33136 USA
| | - Kelly McAvoy
- Department of Microbiology & Immunology University of Miami Miller School of Medicine Miami FL 33136 USA
| | - Daniela Frasca
- Department of Microbiology & Immunology University of Miami Miller School of Medicine Miami FL 33136 USA
| | - Jacqueline A. Wright
- Department of Microbiology & Immunology University of Miami Miller School of Medicine Miami FL 33136 USA
| | - Sandra S. Zinkel
- Department of Medicine Division of Hematology/Oncology Vanderbilt University School of Medicine Nashville TN 37232 USA
| | - Wasif N. Khan
- Department of Microbiology & Immunology University of Miami Miller School of Medicine Miami FL 33136 USA
| | - Bonnie B. Blomberg
- Department of Microbiology & Immunology University of Miami Miller School of Medicine Miami FL 33136 USA
| | - Richard L. Riley
- Department of Microbiology & Immunology University of Miami Miller School of Medicine Miami FL 33136 USA
| |
Collapse
|
50
|
TGFβ Signaling in Tumor Initiation, Epithelial-to-Mesenchymal Transition, and Metastasis. JOURNAL OF ONCOLOGY 2015; 2015:587193. [PMID: 25883652 PMCID: PMC4389829 DOI: 10.1155/2015/587193] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/14/2014] [Indexed: 01/07/2023]
Abstract
Retaining the delicate balance in cell signaling activity is a prerequisite for the maintenance of physiological tissue homeostasis. Transforming growth factor-beta (TGFβ) signaling is an essential pathway that plays crucial roles during embryonic development as well as in adult tissues. Aberrant TGFβ signaling activity regulates tumor progression in a cancer cell-autonomous or non-cell-autonomous fashion and these effects may be tumor suppressing or tumor promoting depending on the cellular context. The fundamental role of this pathway in promoting cancer progression in multiple stages of the metastatic process, including epithelial-to-mesenchymal transition (EMT), is also becoming increasingly clear. In this review, we discuss the latest advances in the effort to unravel the inherent complexity of TGFβ signaling and its role in cancer progression and metastasis. These findings provide important insights into designing personalized therapeutic strategies against advanced cancers.
Collapse
|