1
|
Chintalaramulu N, Singh DP, Sapkota B, Raman D, Alahari S, Francis J. Caveolin-1: an ambiguous entity in breast cancer. Mol Cancer 2025; 24:109. [PMID: 40197489 PMCID: PMC11974173 DOI: 10.1186/s12943-025-02297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/07/2025] [Indexed: 04/10/2025] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer in women and the second leading cause of death from cancer among women. Metastasis is the major cause of BC-associated mortality. Accumulating evidence implicates Caveolin-1 (Cav-1), a structural protein of plasma membrane caveolae, in BC metastasis. Cav-1 exhibits a dual role, as both a tumor suppressor and promoter depending on the cellular context and BC subtype. This review highlights the role of Cav-1 in modulating glycolytic metabolism, tumor-stromal interactions, apoptosis, and senescence. Additionally, stromal Cav-1's expression is identified as a potential prognostic marker, offering insights into its contrasting roles in tumor suppression and progression. Furthermore, Cav-1's context-dependent effects are explored in BC subtypes including hormone receptor-positive, HER2-positive, and triple-negative BC (TNBC). The review further delves into the role of Cav-1 in regulating the metastatic cascade including extracellular matrix interactions, cell migration and invasion, and premetastatic niche formation. The later sections discuss the therapeutic targeting of Cav-1 by metabolic inhibitors such as betulinic acid and Cav-1 modulating compounds. While Cav-1 may be a potential biomarker and therapeutic target, its heterogeneous expression and context-specific activity necessitates further research to develop precise interventions. Future studies investigating the mechanistic role of Cav-1 in metastasis may pave the way for effective treatment of metastatic BC.
Collapse
Affiliation(s)
- Naveen Chintalaramulu
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | | | - Biplov Sapkota
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Dayanidhi Raman
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, USA
| | | | - Joseph Francis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
2
|
Zhao Z, Hu Y, Li H, Lu T, He X, Ma Y, Huang M, Li M, Yang L, Shi C. Inhibition of stromal MAOA leading activation of WNT5A enhance prostate cancer immunotherapy by involving the transition of cancer-associated fibroblasts. J Immunother Cancer 2025; 13:e010555. [PMID: 40121032 PMCID: PMC11931948 DOI: 10.1136/jitc-2024-010555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND The interaction between stromal cells and the tumor immune microenvironment (TIME) is acknowledged as a critical driver in the progression of prostate cancer (PCa). Monoamine oxidase A (MAOA), a mitochondrial enzyme that catalyzes the degradation of monoamine neurotransmitters and dietary amines, has been linked to the promotion of prostate tumorigenesis, particularly when upregulated in stromal cells. However, the detailed mechanisms of MAOA's interaction with TIME have not been fully elucidated. METHODS We reanalyzed a single-cell sequencing dataset to evaluate the role of MAOA in the stroma, verify the impact of stromal MAOA alterations on CD8+ T cell responses by co-culturing stromal cells and immune cells in vitro. Furthermore, C57BL/6J mouse subcutaneous transplant tumor models and dual humanized mouse models were established to investigate the function of MAOA in vivo and the potential of its inhibitors for immunotherapy. RESULTS Our study demonstrates that inhibiting MAOA in stromal cells facilitates the conversion of myofibroblastic cancer-associated fibroblasts (myCAFs), thereby improving the immunosuppressive environment of PCa. The strategic combination of MAOA inhibition with immune checkpoint inhibitors elicits a synergistic antitumor effect. Specifically, MAOA inhibition in stromal cells leads to increased production of WNT5A, which subsequently activates the cytotoxic capacity of CD8+ T cells through the Ca2+-NFATC1 signaling pathway. CONCLUSIONS Our findings highlight the critical role of MAOA in modulating cancer-associated fibroblasts within the PCa immune microenvironment, presenting a novel therapeutic strategy to augment the efficacy of immunotherapy for PCa.
Collapse
Affiliation(s)
- Zhite Zhao
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yaohua Hu
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hui Li
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tong Lu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xinglin He
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yifan Ma
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Minli Huang
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Mengyao Li
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lijun Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Changhong Shi
- Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Ren F, Meng L, Zheng S, Cui J, Song S, Li X, Wang D, Li X, Liu Q, Bu W, Sun H. Myeloid cell-derived apCAFs promote HNSCC progression by regulating proportion of CD4 + and CD8 + T cells. J Exp Clin Cancer Res 2025; 44:33. [PMID: 39891284 PMCID: PMC11783918 DOI: 10.1186/s13046-025-03290-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025] Open
Abstract
It is well-known that cancer-associated fibroblasts (CAFs) are involved in the desmoplastic responses in Head and Neck Squamous Cell Carcinoma (HNSCC). CAFs are pivotal in the tumor microenvironment (TME) molding, and exert a profound influence on tumor development. The origin and roles of CAFs, however, are still unclear in the HNSCC, especially antigen-presenting cancer-associated fibroblasts (apCAFs). Our current study tried to explore the origin, mechanism, and function of the apCAFs in the HNSCC. Data from single-cell transcriptomics elucidated the presence of apCAFs in the HNSCC. Leveraging cell trajectory and Cellchat analysis along with robust lineage-tracing assays revealed that apCAFs were primarily derived from myeloid cells. This transdifferentiation was propelled by the macrophage migration inhibitory factor (MIF), which was secreted by tumor cells and activated the JAK/STAT3 signaling pathway. Analysis of the TCGA database has revealed that markers of apCAFs were inversely correlated with survival rates in patients with HNSCC. In vivo experiments have demonstrated that apCAFs could facilitate tumor progression. Furthermore, apCAFs could modulate ratio of CD4+ T cells/CD8+ T cells, such as higher ratio of CD4+ T cells/CD8+ T cells could promote tumor progression. Most importantly, data from in vivo assays revealed that inhibitors of MIF and p-STAT3 could significantly inhibit the OSCC growth. Therefore, our findings show potential innovative therapeutic approaches for the HNSCC.Significance: ApCAFs derived from myeloid cells promote the progression of HNSCC by increasing the ratio of CD4+/CD8+ cells, indicating potential novel targets to be used to treat the human HNSCC.
Collapse
Affiliation(s)
- Feilong Ren
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
| | - Lin Meng
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Shize Zheng
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
| | - Jiasen Cui
- School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China
| | - Shaoyi Song
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
| | - Xing Li
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
| | - Dandan Wang
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
| | - Xing Li
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
| | - Qilin Liu
- Hospital of Stomatology, Jilin University, Changchun, 130021, China.
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| | - Wenhuan Bu
- Hospital of Stomatology, Jilin University, Changchun, 130021, China.
- Jilin Provincial Key Laboratory Oral Biomedical Engineering, Jilin University, Changchun, 130021, China.
| | - Hongchen Sun
- Hospital of Stomatology, Jilin University, Changchun, 130021, China.
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China.
| |
Collapse
|
4
|
Wang X, Qu Y, Ji J, Liu H, Luo H, Li J, Han X. Colorectal cancer cells establish metabolic reprogramming with cancer-associated fibroblasts (CAFs) through lactate shuttle to enhance invasion, migration, and angiogenesis. Int Immunopharmacol 2024; 143:113470. [PMID: 39471692 DOI: 10.1016/j.intimp.2024.113470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/09/2024] [Accepted: 10/20/2024] [Indexed: 11/01/2024]
Abstract
Fibroblasts undergo metabolic reprogramming after contact with cancer cells in tumor microenvironment, producing lactate to provide a metabolic substrate for neighboring tumor cells. The exchange of lactate between cancer cells and fibroblasts via monocarboxylate transporters (MCTs) is known as the lactate shuttle. Colorectal cancer cells may establish a metabolic coupling akin to the lactate shuttle in collaboration with cancer-associated fibroblasts (CAFs) to augment their invasive and migratory capabilities. However, the specific phenomena and underlying mechanisms are not clear. In this study, we investigated the phenomena and explored the correlation and possible mechanism between CAFs and the invasion and migration of colorectal cancer cells by using two different co-culture models. The results showed that colorectal cancer cells established a lactate metabolic coupling with fibroblasts through the oxidative stress effect, triggering the metabolic reprogramming process of themselves and those of fibroblasts. In addition, lactate enhanced the invasion and migration of colorectal cancer by stabilizing the protein expression levels of nuclear factor kappa-B (NF-κB) and hypoxia-inducible factor-1α (HIF-1α). Blocking oxidative stress and lactate metabolic coupling with reactive oxygen species removers and MCT1-specific inhibitors, respectively, could effectively suppress metastasis in colorectal cancer. These findings suggest that targeting the lactate metabolic coupling between tumor cells and CAFs will offer a new strategy to combat colorectal cancer.
Collapse
Affiliation(s)
- Xingchen Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Yaru Qu
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Jianbo Ji
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - He Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Huiyuan Luo
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Junnan Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Xiuzhen Han
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China; Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University; Shandong Cancer Hospital and Institute, 440 Jiyan Road, Jinan 250117, Shandong Province, China.
| |
Collapse
|
5
|
Nair SG, Benny S, Jose WM, Aneesh TP. Epigenetics as a strategic intervention for early diagnosis and combatting glycolyis-induced chemoresistance in gynecologic cancers. Life Sci 2024; 358:123167. [PMID: 39447732 DOI: 10.1016/j.lfs.2024.123167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/08/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Prospective prediction from the Australian Institute of Health and Welfare (AIHW) showed a likely incidence of 1 in 23 women diagnosed with gynaecological malignancy, where the incidence of relapse with a drug-resistant clone poses a significant challenge in dealing with it even after initial treatment. Glucose metabolism has been exploited as a therapeutic target under anti-metabolomic study, but the non-specificity narrowed its applicability in cancer. Novel updates over epigenetics as a target in gynaecological cancer offer a rational idea of using this in the metabolic rewiring in mutated glycolytic flux-induced drug resistance. This review focuses on the application of epigenetic intervention at a diagnostic and therapeutic level to shift the current treatment paradigm of gynaecological cancers from reactive medicine to predictive, preventive, and personalised medicine. It presents the likely epigenetic targets that can be exploited potentially to prevent the therapeutic failure associated with glucose metabolism-induced chemotherapeutic drug resistance.
Collapse
Affiliation(s)
- Sachin G Nair
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, Kerala, India
| | - Sonu Benny
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, Kerala, India
| | - Wesley M Jose
- Department of Medical Oncology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, AIMS PO, Kochi 682041, Kerala, India.
| | - T P Aneesh
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, Kerala, India.
| |
Collapse
|
6
|
Adham SA, Al Kalbani A, Al Zeheimi N, Al Dalali M, Al Kharusi N, Siddiqi A, Al Maskari A. Glycemic load impacts the response of acquired resistance in breast cancer cells to chemotherapeutic drugs in vitro. PLoS One 2024; 19:e0311345. [PMID: 39576770 PMCID: PMC11584130 DOI: 10.1371/journal.pone.0311345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/17/2024] [Indexed: 11/24/2024] Open
Abstract
Resisting chemotherapy is a significant hurdle in treating breast cancer. Locally advanced breast cancer patients undergo four cycles of Adriamycin and Cyclophosphamide, followed by four cycles of Paclitaxel before surgery. Some patients resist this regimen, and their cancer recurred. Our study aimed to understand the underlying mechanisms of acquired resistance during these specific treatment phases. We explored how breast cancer cells, resistant to chemotherapy, respond to different glucose levels, shedding light on the intricate relationship between diabetes, breast cancer subtype, and resistance to preoperative chemotherapy. We examined two groups of cell lines: the standard MDA-MB-231 and MCF7 cells and their resistant counterparts after exposure to four cycles of Adriamycin and cyclophosphamide (4xAC) or four cycles of 4xAC and Paclitaxel (4xAC+4xPAC), aiming to unravel the mechanisms and cellular responses at these critical treatment stages. Notably, under normal and low glucose conditions, the resistant MDA-MB-231 cells showed accelerated growth compared to the control cells, while the resistant MCF7 cells proliferated more slowly than their original counterparts. Resistance to 4xAC resulted in significant cell death in both cell lines, especially under low glucose conditions, in contrast to control or 4xAC+4xPAC-resistant cells. The similarity between the MCF7 4xAC+4xPAC resistant cells and the control might be due to the P-AKT expression pattern in response to glucose levels since the levels were constant in MCF7 4xAC in all glucose concentrations. Molecular analysis revealed specific protein accumulations explaining the heightened proliferation and invasion in resistant MDA-MB-231 cells and their ability to withstand low glucose levels compared to MCF7. In conclusion, increased drug involvement corresponds to increased cell resistance, and changes in glucose levels differentially impact resistant variant cells to different drugs. The findings can be translated clinically to explain patients' differential responses to preoperative chemotherapy cycles considering their breast cancer subtype and diabetic status.
Collapse
Affiliation(s)
- Sirin A. Adham
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Azza Al Kalbani
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Noura Al Zeheimi
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Muna Al Dalali
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Noor Al Kharusi
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Azeeza Siddiqi
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Aliya Al Maskari
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
7
|
Miripour ZS, Aminifar M, Hoseinpour P, Abbasvandi F, Karimi K, Ghahremani A, Parniani M, Ghaderinia M, Makiyan F, Aghaee P, Akbari ME, Abdolahad M. The presence of cancer-associated fibroblast in breast cavity side margins is in correlation with the expression of oncoproteins by adjacent epithelial cells: a new era in cancerous potential. J Cancer Res Clin Oncol 2024; 150:421. [PMID: 39287633 PMCID: PMC11408549 DOI: 10.1007/s00432-024-05943-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE Cancer-associated fibroblasts (CAFs) are one of the most critical cells in the tumor environment, with crucial roles in cancer progression and metastasis. Due to Field-Effect phenomena (also called field cancerization), the adjacent cavity side area of the margin is histologically normal, but it has been entered into neoplastic transformation due to MCT4 and MCT1 pathways activated by H2O2/ROS oxidative stress agents secreted by CAF in adjacent tumor bed microenvironment. This paper specifically focused on the role of cancer-associated fibroblast in breast tumor beds and its correlation with the presence of scattered cancer cells or onco-protein-activated cells (may be high risk but not completely transformed cancer cells) in the cavity side margins. METHODS In this study, the glycolytic behavior of non-tumoral cavity side margins was examined using carbon nanotube-based electrochemical biosensors integrated into a cancer diagnostic probe. This method enabled the detection of CAF accumulation sites in non-cancerous neighboring tissues of tumors, with a correlation to CAF concentration. Subsequently, RT-PCR, fluorescent, histopathological, and invasion assays were conducted on hyperglycolytic lesions to explore any correlation between the abundance of CAFs and the electrochemical responses of the non-cancerous tissues surrounding the tumor, as well as their neoplastic potential. RESULTS We observed overexpression of cancer-associated transcriptomes as well as the presence and hyperactivation of CAFs in cavity-side regions in which glycolytic metabolism was recorded, independent of the histopathological state of the lesion. At mean 70.4%, 66.7%, 70.4%, and 44.5% increments were observed in GLUT-1, MMP-2, N-cadherin, and MMP-9 transcriptomes by highly glycolytic but histologically cancer-free expression samples in comparison with negative controls (histologically non-cancer lesions with low glycolytic behavior). CONCLUSION The presence of CAFs is correlated with the presence of high glycolytic metabolism in the cavity margin lesion, high ROS level in the lesion, and finally aggressive cancer-associated proteins (such as MMP2, …) in the margin while these metabolomes, molecules, and proteins are absent in the margins with negatively scored CDP response and low ROS level. So, it seems that when we observe CAFs in glycolytic lesions with high ROS levels, some high-risk epithelial breast cells may exist while no histological trace of cancer cells was observed. Further research on CAFs could provide valuable insights into the local recurrence of malignant breast diseases. Hence, real-time sensors can be used to detect and investigate CAFs in the non-tumoral regions surrounding tumors in cancer patients, potentially aiding in the prevention of cancer recurrence.
Collapse
Affiliation(s)
- Zohreh Sadat Miripour
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
- UT&TUMS Cancer Electronics Research Center, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Mina Aminifar
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Parisa Hoseinpour
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
- SEPAS Pathology Lab, P. O. Box 1991945391, Tehran, Iran
| | - Fereshteh Abbasvandi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. Box 15179/64311, Tehran, Iran
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box 15179/64311, Tehran, Iran
| | - Koosha Karimi
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Alireza Ghahremani
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Mohammad Parniani
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. Box 15179/64311, Tehran, Iran
| | - Mohammadreza Ghaderinia
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Faride Makiyan
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Parisa Aghaee
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran
| | - Mohammad Esmaeil Akbari
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box 15179/64311, Tehran, Iran
| | - Mohammad Abdolahad
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran.
- UT&TUMS Cancer Electronics Research Center, University of Tehran, P.O. Box 14395/515, Tehran, Iran.
- Cancer Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, P.O. Box 1419733141, Tehran, Iran.
| |
Collapse
|
8
|
Jia S, Bode AM, Chen X, Luo X. Unlocking the potential: Targeting metabolic pathways in the tumor microenvironment for Cancer therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189166. [PMID: 39111710 DOI: 10.1016/j.bbcan.2024.189166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Cancer incidence and mortality are increasing and impacting global life expectancy. Metabolic reprogramming in the tumor microenvironment (TME) is intimately related to tumorigenesis, progression, metastasis and drug resistance. Tumor cells drive metabolic reprogramming of other cells in the TME through metabolic induction of cytokines and metabolites, and metabolic substrate competition. Consequently, this boosts tumor cell growth by providing metabolic support and facilitating immunosuppression and angiogenesis. The metabolic interplay in the TME presents potential therapeutic targets. Here, we focus on the metabolic reprogramming of four principal cell subsets in the TME: CAFs, TAMs, TILs and TECs, and their interaction with tumor cells. We also summarize medications and therapies targeting these cells' metabolic pathways, particularly in the context of immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Siyuan Jia
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Xue Chen
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China.
| | - Xiangjian Luo
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
9
|
Singh SB, Shrestha BB, Gandhi OH, Shah RP, Mukhtiar V, Ayubcha C, Desai V, Eberts CE, Paudyal P, Jha G, Singh A, Shi Y, Kumar T. The comparative utility of FAPI-based PET radiotracers over [ 18F]FDG in the assessment of malignancies. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2024; 14:190-207. [PMID: 39309420 PMCID: PMC11411191 DOI: 10.62347/jxzi9315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/28/2024] [Indexed: 09/25/2024]
Abstract
Fibroblast activation protein (FAP) is a type II transmembrane serine protease overexpressed in cancer-associated fibroblasts (CAFs) and has been associated with poor prognosis. PET/CT imaging with radiolabeled FAP inhibitors (FAPI) is currently being studied for various malignancies. This review identifies the uses and limitations of FAPI PET/CT in malignancies and compares the advantages and disadvantages of FAPI and 18F-fluorodeoxyglucose ([18F]FDG). Due to high uptake, rapid clearance from the circulation, and limited uptake in normal tissue, FAPI tumor-to-background contrast ratios are equivalent to or better than [18F]FDG in most applications. In several settings, FAPI has shown greater uptake specificity than [18F]FDG and improved sensitivity in detecting lymph node, bone, and visceral tissue metastases. Therefore, FAPI PET/CT may be complementary in distinguishing pathological lesions with conventional imaging, determining the primary site of malignancy, improving tumor staging, and detecting disease recurrence, especially in patients with inconclusive [18F]FDG PET/CT findings. Nevertheless, FAPI has limitations, including certain settings with non-specific uptake, modified uptake with age and menopause status, challenges with clinical access, and limited clinical evidence.
Collapse
Affiliation(s)
- Shashi B Singh
- Stanford University School of MedicineStanford, CA 94305, USA
| | | | - Om H Gandhi
- Hospital of The University of Pennsylvania3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Rajendra P Shah
- Department of Cardiology, HCA Houston HealthcareHouston, TX 77004, USA
| | | | - Cyrus Ayubcha
- Harvard Medical School25 Shattuck Street, Boston, MA 02115, USA
| | - Vineet Desai
- Harvard Medical School25 Shattuck Street, Boston, MA 02115, USA
| | - Christine E Eberts
- University of California, San Diego School of Medicine9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Pranita Paudyal
- Bridgeport Hospital267 Grant Street, Bridgeport, CT 06610, USA
| | - Goody Jha
- University of California Davis Medical Center4301 X Street, Sacramento, CA 95817, USA
| | - Anurag Singh
- Trijuddha Mahavir Prasad Raghuvir Ram Madhyamik VidyalayaBirgunj, Parsa 44300, Nepal
| | - Yangyang Shi
- University of Arizona College of Medicine1501 N Campbell Avenue, Tucson, AZ 85724, USA
| | - Tushar Kumar
- University of Washington Medical Center, Main Hospital1959 NE Pacific Street, Seattle, WA 98195, USA
| |
Collapse
|
10
|
Ayub A, Hasan MK, Mahmud Z, Hossain MS, Kabir Y. Dissecting the multifaceted roles of autophagy in cancer initiation, growth, and metastasis: from molecular mechanisms to therapeutic applications. Med Oncol 2024; 41:183. [PMID: 38902544 DOI: 10.1007/s12032-024-02417-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024]
Abstract
Autophagy is a cytoplasmic defense mechanism that cells use to break and reprocess their intracellular components. This utilization of autophagy is regarded as a savior in nutrient-deficient and other stressful conditions. Hence, autophagy keeps contact with and responds to miscellaneous cellular tensions and diverse pathways of signal transductions, such as growth signaling and cellular death. Importantly, autophagy is regarded as an effective tumor suppressor because regular autophagic breakdown is essential for cellular maintenance and minimizing cellular damage. However, paradoxically, autophagy has also been observed to promote the events of malignancies. This review discussed the dual role of autophagy in cancer, emphasizing its influence on tumor survival and progression. Possessing such a dual contribution to the malignant establishment, the prevention of autophagy can potentially advocate for the advancement of malignant transformation. In contrast, for the context of the instituted tumor, the agents of preventing autophagy potently inhibit the advancement of the tumor. Key regulators, including calpain 1, mTORC1, and AMPK, modulate autophagy in response to nutritional conditions and stress. Oncogenic mutations like RAS and B-RAF underscore autophagy's pivotal role in cancer development. The review also delves into autophagy's context-dependent roles in tumorigenesis, metastasis, and the tumor microenvironment (TME). It also discusses the therapeutic effectiveness of autophagy for several cancers. The recent implication of autophagy in the control of both innate and antibody-mediated immune systems made it a center of attention to evaluating its role concerning tumor antigens and treatments of cancer.
Collapse
Affiliation(s)
- Afia Ayub
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University, Gazipur, 1704, Bangladesh
| | - Md Kamrul Hasan
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University, Gazipur, 1704, Bangladesh.
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St. W., Hamilton, L8S 4K1, Canada.
- Department of Public Health, North South University, Dhaka, Bangladesh.
| | - Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Md Sabbir Hossain
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University, Gazipur, 1704, Bangladesh
| | - Yearul Kabir
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
11
|
Oberholtzer N, Mills S, Mehta S, Chakraborty P, Mehrotra S. Role of antioxidants in modulating anti-tumor T cell immune resposne. Adv Cancer Res 2024; 162:99-124. [PMID: 39069371 DOI: 10.1016/bs.acr.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
It has been well established that in addition to oxygen's vital in cellular respiration, a disruption of oxygen balance can lead to increased stress and oxidative injury. Similarly, reduced oxygen during tumor proliferation and invasion generates a hypoxic tumor microenvironment, resulting in dysfunction of immune cells and providing a conducive milieu for tumors to adapt and grow. Strategies to improve the persistence tumor reactive T cells in the highly oxidative tumor environment are being pursued for enhancing immunotherapy outcomes. To this end, we have focused on various strategies that can help increase or maintain the antioxidant capacity of T cells, thus reducing their susceptibility to oxidative stress/damage. Herein we lay out an overview on the role of oxygen in T cell signaling and how pathways regulating oxidative stress or antioxidant signaling can be targeted to enhance immunotherapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Nathaniel Oberholtzer
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Stephanie Mills
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Shubham Mehta
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Paramita Chakraborty
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Shikhar Mehrotra
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
12
|
Lior C, Barki D, Halperin C, Iacobuzio-Donahue CA, Kelsen D, Shouval RS. Mapping the tumor stress network reveals dynamic shifts in the stromal oxidative stress response. Cell Rep 2024; 43:114236. [PMID: 38758650 PMCID: PMC11156623 DOI: 10.1016/j.celrep.2024.114236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/02/2024] [Accepted: 04/30/2024] [Indexed: 05/19/2024] Open
Abstract
The tumor microenvironment (TME) presents cells with challenges such as variable pH, hypoxia, and free radicals, triggering stress responses that affect cancer progression. In this study, we examine the stress response landscape in four carcinomas-breast, pancreas, ovary, and prostate-across five pathways: heat shock, oxidative stress, hypoxia, DNA damage, and unfolded protein stress. Using a combination of experimental and computational methods, we create an atlas of stress responses across various types of carcinomas. We find that stress responses vary within the TME and are especially active near cancer cells. Focusing on the non-immune stroma we find, across tumor types, that NRF2 and the oxidative stress response are distinctly activated in immune-regulatory cancer-associated fibroblasts and in a unique subset of cancer-associated pericytes. Our study thus provides an interactome of stress responses in cancer, offering ways to intersect survival pathways within the tumor, and advance cancer therapy.
Collapse
Affiliation(s)
- Chen Lior
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Debra Barki
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Coral Halperin
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Christine A Iacobuzio-Donahue
- Rubenstein Center for Pancreatic Cancer Research and Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David Kelsen
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Ruth Scherz- Shouval
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
13
|
Moulton C, Murri A, Benotti G, Fantini C, Duranti G, Ceci R, Grazioli E, Cerulli C, Sgrò P, Rossi C, Magno S, Di Luigi L, Caporossi D, Parisi A, Dimauro I. The impact of physical activity on promoter-specific methylation of genes involved in the redox-status and disease progression: A longitudinal study on post-surgery female breast cancer patients undergoing medical treatment. Redox Biol 2024; 70:103033. [PMID: 38211440 PMCID: PMC10821067 DOI: 10.1016/j.redox.2024.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
Most anticancer treatments act on oxidative-stress pathways by producing reactive oxygen species (ROS) to kill cancer cells, commonly resulting in consequential drug-induced systemic cytotoxicity. Physical activity (PA) has arisen as an integrative cancer therapy, having positive health effects, including in redox-homeostasis. Here, we investigated the impact of an online supervised PA program on promoter-specific DNA methylation, and corresponding gene expression/activity, in 3 antioxidants- (SOD1, SOD2, and CAT) and 3 breast cancer (BC)-related genes (BRCA1, L3MBTL1 and RASSF1A) in a population-based sample of women diagnosed with primary BC, undergoing medical treatment. We further examined mechanisms involved in methylating and demethylating pathways, predicted biological pathways and interactions of exercise-modulated molecules, and the functional relevance of modulated antioxidant markers on parameters related to aerobic capacity/endurance, physical fatigue and quality of life (QoL). PA maintained levels of SOD activity in blood plasma, and at the cellular level significantly increased SOD2 mRNA (≈+77 %), contrary to their depletion due to medical treatment. This change was inversely correlated with DNA methylation in SOD2 promoter (≈-20 %). Similarly, we found a significant effect of PA only on L3MBTL1 promoter methylation (≈-25 %), which was inversely correlated with its mRNA (≈+43 %). Finally, PA increased TET1 mRNA levels (≈+15 %) and decreased expression of DNMT3B mRNA (≈-28 %). Our results suggest that PA-modulated DNA methylation affects several signalling pathways/biological activities involved in the cellular oxidative stress response, chromatin organization/regulation, antioxidant activity and DNA/protein binding. These changes may positively impact clinical outcomes and improve the response to cancer treatment in post-surgery BC patients.
Collapse
Affiliation(s)
- Chantalle Moulton
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Arianna Murri
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Gianmarco Benotti
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Cristina Fantini
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Guglielmo Duranti
- Unit of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Roberta Ceci
- Unit of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Elisa Grazioli
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Claudia Cerulli
- Unit of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Paolo Sgrò
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Cristina Rossi
- Center for Integrative Oncology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Italy
| | - Stefano Magno
- Center for Integrative Oncology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Italy
| | - Luigi Di Luigi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Attilio Parisi
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy.
| |
Collapse
|
14
|
Pu T, Wang J, Wei J, Zeng A, Zhang J, Chen J, Yin L, Li J, Lin TP, Melamed J, Corey E, Gao AC, Wu BJ. Stromal-derived MAOB promotes prostate cancer growth and progression. SCIENCE ADVANCES 2024; 10:eadi4935. [PMID: 38335292 PMCID: PMC10857382 DOI: 10.1126/sciadv.adi4935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
Prostate cancer (PC) develops in a microenvironment where the stromal cells modulate adjacent tumor growth and progression. Here, we demonstrated elevated levels of monoamine oxidase B (MAOB), a mitochondrial enzyme that degrades biogenic and dietary monoamines, in human PC stroma, which was associated with poor clinical outcomes of PC patients. Knockdown or overexpression of MAOB in human prostate stromal fibroblasts indicated that MAOB promotes cocultured PC cell proliferation, migration, and invasion and co-inoculated prostate tumor growth in mice. Mechanistically, MAOB induces a reactive stroma with activated marker expression, increased extracellular matrix remodeling, and acquisition of a protumorigenic phenotype through enhanced production of reactive oxygen species. Moreover, MAOB transcriptionally activates CXCL12 through Twist1 synergizing with TGFβ1-dependent Smads in prostate stroma, which stimulates tumor-expressed CXCR4-Src/JNK signaling in a paracrine manner. Pharmacological inhibition of stromal MAOB restricted PC xenograft growth in mice. Collectively, these findings characterize the contribution of MAOB to PC and suggest MAOB as a potential stroma-based therapeutic target.
Collapse
Affiliation(s)
- Tianjie Pu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Jing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Jing Wei
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Alan Zeng
- Undergraduate Programs, University of Washington, Seattle, WA 98195, USA
| | - Jinglong Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Jingrui Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Lijuan Yin
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jingjing Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Tzu-Ping Lin
- Department of Urology, Taipei Veterans General Hospital, Taipei 11217, Taiwan, Republic of China
- Department of Urology, School of Medicine and Shu-Tien Urological Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan, Republic of China
| | - Jonathan Melamed
- Department of Pathology, Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Allen C. Gao
- Department of Urologic Surgery, University of California, Davis, Sacramento, CA 95817, USA
| | - Boyang Jason Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
15
|
Xu Y, Shao B, Zhang Y. The significance of targeting lysosomes in cancer immunotherapy. Front Immunol 2024; 15:1308070. [PMID: 38370407 PMCID: PMC10869645 DOI: 10.3389/fimmu.2024.1308070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Lysosomes are intracellular digestive organelles that participate in various physiological and pathological processes, including the regulation of immune checkpoint molecules, immune cell function in the tumor microenvironment, antigen presentation, metabolism, and autophagy. Abnormalities or dysfunction of lysosomes are associated with the occurrence, development, and drug resistance of tumors. Lysosomes play a crucial role and have potential applications in tumor immunotherapy. Targeting lysosomes or harnessing their properties is an effective strategy for tumor immunotherapy. However, the mechanisms and approaches related to lysosomes in tumor immunotherapy are not fully understood at present, and further basic and clinical research is needed to provide better treatment options for cancer patients. This review focuses on the research progress related to lysosomes and tumor immunotherapy in these.
Collapse
Affiliation(s)
- Yanxin Xu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Bo Shao
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Yafeng Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
- Institute for Hospital Management of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Choi ME, Lee MY, Won CH, Chang SE, Lee MW, Lee WJ. Spatially Resolved Transcriptomes of CD30+-Transformed Mycosis Fungoides and Cutaneous Anaplastic Large-Cell Lymphoma. J Invest Dermatol 2024; 144:331-340.e2. [PMID: 37544586 DOI: 10.1016/j.jid.2023.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 08/08/2023]
Abstract
Mycosis fungoides with large-cell transformation (MF-LCT) occurs in a minor proportion of aggressive lesions, which express CD30 similar to primary cutaneous anaplastic large-cell lymphoma (pcALCL). We investigated the differences in spatially resolved transcriptome profiles of MF-LCT and pcALCL using CD30 morphology markers and 28 and 24 regions of interest (ROIs) in MF-LCT and pcALCL, respectively. Differentially expressed genes, pathway analysis, and immune-cell deconvolution by selective analysis of CD30-positive tumor cells and CD30-negative extratumoral areas were undertaken. In CD30-positive ROIs of MF-LCT, 190 differentially expressed genes were upregulated (29 were directly or indirectly associated with extracellular matrix remodeling), whereas 255 differentially expressed genes were downregulated, compared with those of pcALCL. Except for cornified envelope formation and keratinization, all six pathways enriched in CD30-positive ROIs of MF-LCT were associated with extracellular matrix remodeling. In CD30-positive ROIs in MF-LCT compared with those in pcALCL, immune-cell deconvolution revealed significantly increased fibroblasts and M2 macrophages (P = 0.012 and P = 0.023, respectively) but decreased M1 macrophages (P = 0.031). In CD30-negative ROIs in MF-LCT compared with those in pcALCL, memory B (P = 0.021), plasma (P = 0.023), and CD8 memory T (P = 0.001) cells significantly decreased, whereas regulatory T cells (P = 0.024) increased. Predomination of extracellular matrix remodeling pathways and immunosuppressive microenvironment in MF-LCT indicates pathophysiological differences between MF-LCT and pcALCL.
Collapse
Affiliation(s)
- Myoung Eun Choi
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Mi Young Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chong Hyun Won
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung Eun Chang
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Mi Woo Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Woo Jin Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Ahuja S, Zaheer S. Multifaceted TGF-β signaling, a master regulator: From bench-to-bedside, intricacies, and complexities. Cell Biol Int 2024; 48:87-127. [PMID: 37859532 DOI: 10.1002/cbin.12097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Physiological embryogenesis and adult tissue homeostasis are regulated by transforming growth factor-β (TGF-β), an evolutionarily conserved family of secreted polypeptide factors, acting in an autocrine and paracrine manner. The role of TGF-β in inflammation, fibrosis, and cancer is complex and sometimes even contradictory, exhibiting either inhibitory or promoting effects depending on the stage of the disease. Under pathological conditions, especially fibrosis and cancer, overexpressed TGF-β causes extracellular matrix deposition, epithelial-mesenchymal transition, cancer-associated fibroblast formation, and/or angiogenesis. In this review article, we have tried to dive deep into the mechanism of action of TGF-β in inflammation, fibrosis, and carcinogenesis. As TGF-β and its downstream signaling mechanism are implicated in fibrosis and carcinogenesis blocking this signaling mechanism appears to be a promising avenue. However, targeting TGF-β carries substantial risk as this pathway is implicated in multiple homeostatic processes and is also known to have tumor-suppressor functions. There is a need for careful dosing of TGF-β drugs for therapeutic use and patient selection.
Collapse
Affiliation(s)
- Sana Ahuja
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
18
|
Hao S, Cai D, Gou S, Li Y, Liu L, Tang X, Chen Y, Zhao Y, Shen J, Wu X, Li M, Chen M, Li X, Sun Y, Gu L, Li W, Wang F, Cho CH, Xiao Z, Du F. Does each Component of Reactive Oxygen Species have a Dual Role in the Tumor Microenvironment? Curr Med Chem 2024; 31:4958-4986. [PMID: 37469162 PMCID: PMC11340293 DOI: 10.2174/0929867331666230719142202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/14/2023] [Accepted: 06/02/2023] [Indexed: 07/21/2023]
Abstract
Reactive oxygen species (ROS) are a class of highly reactive oxidizing molecules, including superoxide anion (O2 •-) and hydrogen peroxide (H2O2), among others. Moderate levels of ROS play a crucial role in regulating cellular signaling and maintaining cellular functions. However, abnormal ROS levels or persistent oxidative stress can lead to changes in the tumor microenvironment (TME) that favor cancer development. This review provides an overview of ROS generation, structure, and properties, as well as their effects on various components of the TME. Contrary to previous studies, our findings reveal a dual effect of ROS on different components of the TME, whereby ROS can either enhance or inhibit certain factors, ultimately leading to the promotion or suppression of the TME. For example, H2O2 has dual effects on immune cells and non-- cellular components within the TME, while O2 •- has dual effects on T cells and fibroblasts. Furthermore, each component demonstrates distinct mechanisms of action and ranges of influence. In the final section of the article, we summarize the current clinical applications of ROS in cancer treatment and identify certain limitations associated with existing therapeutic approaches. Therefore, this review aims to provide a comprehensive understanding of ROS, highlighting their dual effects on different components of the TME, and exploring the potential clinical applications that may pave the way for future treatment and prevention strategies.
Collapse
Affiliation(s)
- Siyu Hao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646600, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China
| | - Dan Cai
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646600, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646600, China
| | - Shuang Gou
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646600, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China
| | - Yan Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646600, China
| | - Lin Liu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646600, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646600, China
| | - Xiaolong Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646600, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646600, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646600, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646600, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646600, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646600, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646600, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646600, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646600, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646600, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646600, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646600, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646600, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646600, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646600, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646600, China
| | - Fang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646600, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646600, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China;
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646600, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646600, China
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Sichuan Luzhou 646600, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan Luzhou 646600, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Sichuan Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Sichuan Luzhou 646600, China
| |
Collapse
|
19
|
Lee S, Son JY, Lee J, Cheong H. Unraveling the Intricacies of Autophagy and Mitophagy: Implications in Cancer Biology. Cells 2023; 12:2742. [PMID: 38067169 PMCID: PMC10706449 DOI: 10.3390/cells12232742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Autophagy is an essential lysosome-mediated degradation pathway that maintains cellular homeostasis and viability in response to various intra- and extracellular stresses. Mitophagy is a type of autophagy that is involved in the intricate removal of dysfunctional mitochondria during conditions of metabolic stress. In this review, we describe the multifaceted roles of autophagy and mitophagy in normal physiology and the field of cancer biology. Autophagy and mitophagy exhibit dual context-dependent roles in cancer development, acting as tumor suppressors and promoters. We also discuss the important role of autophagy and mitophagy within the cancer microenvironment and how autophagy and mitophagy influence tumor host-cell interactions to overcome metabolic deficiencies and sustain the activity of cancer-associated fibroblasts (CAFs) in a stromal environment. Finally, we explore the dynamic interplay between autophagy and the immune response in tumors, indicating their potential as immunomodulatory targets in cancer therapy. As the field of autophagy and mitophagy continues to evolve, this comprehensive review provides insights into their important roles in cancer and cancer microenvironment.
Collapse
Affiliation(s)
- Sunmi Lee
- Branch of Molecular Cancer Biology, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang-si 10408, Republic of Korea; (S.L.); (J.-Y.S.)
| | - Ji-Yoon Son
- Branch of Molecular Cancer Biology, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang-si 10408, Republic of Korea; (S.L.); (J.-Y.S.)
| | - Jinkyung Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science & Policy, National Cancer Center, Goyang-si 10408, Republic of Korea;
| | - Heesun Cheong
- Branch of Molecular Cancer Biology, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang-si 10408, Republic of Korea; (S.L.); (J.-Y.S.)
- Department of Cancer Biomedical Science, Graduate School of Cancer Science & Policy, National Cancer Center, Goyang-si 10408, Republic of Korea;
| |
Collapse
|
20
|
George S, Serpe L. Exploring the redox potential induced by low-intensity focused ultrasound on tumor masses. Life Sci 2023; 332:122040. [PMID: 37633418 DOI: 10.1016/j.lfs.2023.122040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Cancer is still a major health problem worldwide despite huge efforts being spent on its biomedical research. Beyond the mainstream therapeutic interventions (i.e., surgery, chemotherapy, immunotherapy and radiotherapy), further significant progresses in anticancer therapy could rely on the development of novel treatment paradigms. To this end, one emerging approach consists in the use of non-thermal low-intensity focused ultrasound (LIFU) for conditioning cancer molecules and/or cancer-targeted compounds, thereby leading to cancer cell death with least side-effects. Cellular redox homeostasis manifested as the generation of reactive oxygen species (ROS) during energy metabolism as well as the antioxidant capacity is interwoven to the composition, size and anatomical location of the tumor masses. The higher content of "oxide free radicals" in cancers makes them vulnerable to disruption of redox homeostasis than in the healthy cells and therefore, one of the best options for preferentially eradicating them is increasing their oxidative stress, excessively. A little is known about the modulation of cellular redox homeostasis by LIFU, and so it will be of great interest and utility to understand the effects of LIFU on the energy metabolism of cancer cells. This review is intended to improve our knowledge on the effect of LIFU on cancer cells with particular reference to its redox metabolism for ultrasound-based therapies. Thereby, it could pave the way for exploring novel methodologies and designing combined anti-cancer therapies, especially, for faster and safer eradication of drug resistant and metastasizing solid tumors.
Collapse
Affiliation(s)
- Sajan George
- School of Bio Sciences & Technology, Vellore Institute of Technology, TN 632 014, India; Laser Research Centre, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Loredana Serpe
- Department of Drug Science & Technology, University of Turin, Turin 10125, Italy
| |
Collapse
|
21
|
Jaworska M, Szczudło J, Pietrzyk A, Shah J, Trojan SE, Ostrowska B, Kocemba-Pilarczyk KA. The Warburg effect: a score for many instruments in the concert of cancer and cancer niche cells. Pharmacol Rep 2023:10.1007/s43440-023-00504-1. [PMID: 37332080 PMCID: PMC10374743 DOI: 10.1007/s43440-023-00504-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Although Warburg's discovery of intensive glucose uptake by tumors, followed by lactate fermentation in oxygen presence of oxygen was made a century ago, it is still an area of intense research and development of new hypotheses that, layer by layer, unravel the complexities of neoplastic transformation. This seemingly simple metabolic reprogramming of cancer cells reveals an intriguing, multi-faceted nature that may link various phenomena including cell signaling, cell proliferation, ROS generation, energy supply, macromolecules synthesis/biosynthetic precursor supply, immunosuppression, or cooperation of cancerous cells with cancer-associated fibroblasts (CAFs), known as reversed Warburg effect. According to the current perception of the causes and consequences of the Warburg effect, PI3K/Akt/mTOR are the main signaling pathways that, in concert with the transcription factors HIF-1, p53, and c-Myc, modulate the activity/expression of key regulatory enzymes, including PKM2, and PDK1 to tune in the most optimal metabolic setting for the cancer cell. This in turn secures adequate levels of biosynthetic precursors, NADPH, NAD+, and rapid ATP production to meet the increased demands of intensively proliferating tumor cells. The end-product of "aerobic glycolysis", lactate, an oncometabolite, may provide fuel to neighboring cancer cells, and facilitate metastasis and immunosuppression together enabling cancer progression. The importance and possible applicability of the presented issue are best illustrated by numerous trials with various agents targeting the Warburg effect, constituting a promising strategy in future anti-cancer regimens. In this review, we present the key aspects of this multifactorial phenomenon, depicting the mechanisms and benefits behind the Warburg effect, and also pointing to selected aspects in the field of anticancer therapy.
Collapse
Affiliation(s)
- Martyna Jaworska
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Julia Szczudło
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Adrian Pietrzyk
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Jay Shah
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
- Government Medical College Miraj, Miraj, Maharashtra, India
| | - Sonia E Trojan
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Barbara Ostrowska
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Kinga A Kocemba-Pilarczyk
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
22
|
Moulton C, Grazioli E, Antinozzi C, Fantini C, Cerulli C, Murri A, Duranti G, Ceci R, Vulpiani MC, Pellegrini P, Nusca SM, Cavaliere F, Fabbri S, Sgrò P, Di Luigi L, Caporossi D, Parisi A, Dimauro I. Online Home-Based Physical Activity Counteracts Changes of Redox-Status Biomarkers and Fitness Profiles during Treatment Programs in Postsurgery Female Breast Cancer Patients. Antioxidants (Basel) 2023; 12:antiox12051138. [PMID: 37238004 DOI: 10.3390/antiox12051138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/06/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Breast cancer (BC) is one of the most commonly diagnosed types of cancer in women. Oxidative stress may contribute to cancer etiology through several mechanisms. A large body of evidence indicates that physical activity (PA) has positive effects on different aspects of BC evolution, including mitigation of negative effects induced by medical treatment. With the aim to verify the capacity of PA to counteract negative effects of BC treatment on systemic redox homeostasis in postsurgery female BC patients, we have examined the modulation of circulating levels of oxidative stress and inflammation markers. Moreover, we evaluated the impacts on physical fitness and mental well-being by measuring functional parameters, body mass index, body composition, health-related quality of life (QoL), and fatigue. Our investigation revealed that PA was effective in maintaining plasma levels of superoxide dismutase (SOD) activity and tGSH, as well as peripheral blood mononuclear cells' (PBMCs) mRNA levels of SOD1 and heat-shock protein 27. Moreover, we found a significant decrease in plasma interleukin-6 (≈0.57 ± 0.23-fold change, p < 0.05) and increases in both interleukin-10 (≈1.15 ± 0.35-fold change, p < 0.05) and PBMCs' mRNA level of SOD2 (≈1.87 ± 0.36-fold change, p < 0.05). Finally, PA improves functional parameters (6 min walking test, ≈+6.50%, p < 0.01; Borg, ≈-58.18%, p < 0.01; sit-and-reach, ≈+250.00%, p < 0.01; scratch right, ≈-24.12%, and left, ≈-18.81%, p < 0.01) and body composition (free fat mass, ≈+2.80%, p < 0.05; fat mass, ≈-6.93%, p < 0.05) as well as the QoL (physical function, ≈+5.78%, p < 0.05) and fatigue (cognitive fatigue, ≈-60%, p < 0.05) parameters. These results suggest that a specific PA program not only is effective in improving functional and anthropometric parameters but may also activate cellular responses through a multitude of actions in postsurgery BC patients undergoing adjuvant therapy. These may include modulation of gene expression and protein activity and impacting several signaling pathways/biological activities involved in tumor-cell growth; metastasis; and inflammation, as well as moderating distress symptoms known to negatively affect QoL.
Collapse
Affiliation(s)
- Chantalle Moulton
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Elisa Grazioli
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Cristina Antinozzi
- Endocrinology Unit, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Cristina Fantini
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Claudia Cerulli
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Arianna Murri
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Guglielmo Duranti
- Unit of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Roberta Ceci
- Unit of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Maria Chiara Vulpiani
- Department of Medical-Surgical and Translational Medicine Sciences, La Sapienza University of Rome, 00185 Rome, Italy
| | - Patrizia Pellegrini
- Department of Medical-Surgical and Translational Medicine Sciences, La Sapienza University of Rome, 00185 Rome, Italy
| | - Sveva Maria Nusca
- Department of Medical-Surgical and Translational Medicine Sciences, La Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Cavaliere
- Unit of Breast Surgery, Center of Breast of Belcolle Hospital, 01100 Viterbo, Italy
| | - Simona Fabbri
- Unit of Breast Surgery, Center of Breast of Belcolle Hospital, 01100 Viterbo, Italy
| | - Paolo Sgrò
- Endocrinology Unit, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Luigi Di Luigi
- Endocrinology Unit, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Attilio Parisi
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| |
Collapse
|
23
|
Chang J, Lo ZHY, Alenizi S, Kovacevic Z. Re-Shaping the Pancreatic Cancer Tumor Microenvironment: A New Role for the Metastasis Suppressor NDRG1. Cancers (Basel) 2023; 15:2779. [PMID: 37345116 DOI: 10.3390/cancers15102779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Pancreatic cancer (PaC) is a highly aggressive disease, with poor response to current treatments and 5-year survival rates of 10-15%. PaC progression is facilitated by its interaction with the complex and multifaceted tumor microenvironment (TME). In the TME, cancer cells and surrounding stromal cells constantly communicate with each other via the secretion and uptake of factors including cytokines, chemokines, growth factors, metabolites, and extracellular vesicles (EVs), reshaping the landscape of PaC. Recent studies demonstrated that the metastasis suppressor N-myc downstream regulated 1 (NDRG1) not only inhibits oncogenic signaling pathways in PaC cells but also alters the communication between PaC cells and the surrounding stroma. In fact, NDRG1 was found to influence the secretome of PaC cells, alter cancer cell metabolism, and interfere with intracellular trafficking and intercellular communication between PaC cells and surrounding fibroblasts. This review will present recent advancements in understanding the role of NDRG1 in PaC progression, with a focus on how this molecule influences PaC-stroma communication and its potential for re-shaping the PaC TME.
Collapse
Affiliation(s)
- Jiawei Chang
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
- Department of Physiology, School of Biomedical Sciences, Faculty of Medicine & Health, University of NSW, Sydney 2052, Australia
| | - Zoe H Y Lo
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
| | - Shafi Alenizi
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
| | - Zaklina Kovacevic
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
- Department of Physiology, School of Biomedical Sciences, Faculty of Medicine & Health, University of NSW, Sydney 2052, Australia
| |
Collapse
|
24
|
Chen Y, Zhang X, Yang H, Liang T, Bai X. The "Self-eating" of cancer-associated fibroblast: A potential target for cancer. Biomed Pharmacother 2023; 163:114762. [PMID: 37100015 DOI: 10.1016/j.biopha.2023.114762] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023] Open
Abstract
Autophagy helps maintain energy homeostasis and protect cells from stress effects by selectively removing misfolded/polyubiquitylated proteins, lipids, and damaged mitochondria. Cancer-associated fibroblasts (CAFs) are cellular components of tumor microenvironment (TME). Autophagy in CAFs inhibits tumor development in the early stages; however, it has a tumor-promoting effect in advanced stages. In this review, we aimed to summarize the modulators responsible for the induction of autophagy in CAFs, such as hypoxia, nutrient deprivation, mitochondrial stress, and endoplasmic reticulum stress. In addition, we aimed to present autophagy-related signaling pathways in CAFs, and role of autophagy in CAF activation, tumor progression, tumor immune microenvironment. Autophagy in CAFs may be an emerging target for tumor therapy. In summary, autophagy in CAFs is regulated by a variety of modulators and can reshape tumor immune microenvironment, affecting tumor progression and treatment.
Collapse
Affiliation(s)
- Yan Chen
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hanshen Yang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
25
|
Kim YJ, Song J, Lee DH, Um SH, Bhang SH. Suppressing cancer by damaging cancer cell DNA using LED irradiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 243:112714. [PMID: 37084656 DOI: 10.1016/j.jphotobiol.2023.112714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND High-energy irradiation eliminates cancer cells by destroying their genetic components. However, there are several side effects from doing this, such as fatigue, dermatitis, and hair loss, which remain obstacles to this treatment. Here, we propose a moderate method that uses low-energy white light from a light-emitting diode (LED) to selectively inhibit cancer cell proliferation without affecting normal cells. METHODS The association between LED irradiation and cancer cell growth arrest was evaluated based on cell proliferation, viability, and apoptotic activity. Immunofluorescence, polymerase chain reaction, and western blotting were performed in vitro and in vivo to identify the metabolism related to the inhibition of HeLa cell proliferation. RESULTS LED irradiation aggravated the defective p53 signaling pathway and induced cell growth arrest in cancer cells. Consequently, cancer cell apoptosis was induced by the increased DNA damage. Additionally, LED irradiation inhibited the proliferation of cancer cells by suppressing the MAPK pathway. Furthermore, the suppression of cancer growth by the regulation of p53 and MAPK was observed in cancer-bearing mice irradiated with LED. CONCLUSIONS Our findings suggest that LED irradiation can suppress cancer cell activity and may contribute to preventing the proliferation of cancer cells after medical surgery without causing side effects.
Collapse
Affiliation(s)
- Yu-Jin Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jihun Song
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Dong-Hyun Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Soong Ho Um
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
26
|
Chhabra Y, Weeraratna AT. Fibroblasts in cancer: Unity in heterogeneity. Cell 2023; 186:1580-1609. [PMID: 37059066 PMCID: PMC11422789 DOI: 10.1016/j.cell.2023.03.016] [Citation(s) in RCA: 166] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 04/16/2023]
Abstract
Tumor cells do not exist in isolation in vivo, and carcinogenesis depends on the surrounding tumor microenvironment (TME), composed of a myriad of cell types and biophysical and biochemical components. Fibroblasts are integral in maintaining tissue homeostasis. However, even before a tumor develops, pro-tumorigenic fibroblasts in close proximity can provide the fertile 'soil' to the cancer 'seed' and are known as cancer-associated fibroblasts (CAFs). In response to intrinsic and extrinsic stressors, CAFs reorganize the TME enabling metastasis, therapeutic resistance, dormancy and reactivation by secreting cellular and acellular factors. In this review, we summarize the recent discoveries on CAF-mediated cancer progression with a particular focus on fibroblast heterogeneity and plasticity.
Collapse
Affiliation(s)
- Yash Chhabra
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Department of Oncology, Sidney Kimmel Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Department of Oncology, Sidney Kimmel Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
27
|
Li S, Zeng H, Fan J, Wang F, Xu C, Li Y, Tu J, Nephew KP, Long X. Glutamine metabolism in breast cancer and possible therapeutic targets. Biochem Pharmacol 2023; 210:115464. [PMID: 36849062 DOI: 10.1016/j.bcp.2023.115464] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Cancer is characterized by metabolic reprogramming, which is a hot topic in tumor treatment research. Cancer cells alter metabolic pathways to promote their growth, and the common purpose of these altered metabolic pathways is to adapt the metabolic state to the uncontrolled proliferation of cancer cells. Most cancer cells in a state of nonhypoxia will increase the uptake of glucose and produce lactate, called the Warburg effect. Increased glucose consumption is used as a carbon source to support cell proliferation, including nucleotide, lipid and protein synthesis. In the Warburg effect, pyruvate dehydrogenase activity decreases, thereby disrupting the TCA cycle. In addition to glucose, glutamine is also an important nutrient for the growth and proliferation of cancer cells, an important carbon bank and nitrogen bank for the growth and proliferation of cancer cells, providing ribose, nonessential amino acids, citrate, and glycerin necessary for cancer cell growth and proliferation and compensating for the reduction in oxidative phosphorylation pathways in cancer cells caused by the Warburg effect. In human plasma, glutamine is the most abundant amino acid. Normal cells produce glutamine via glutamine synthase (GLS), but the glutamine synthesized by tumor cells is insufficient to meet their high growth needs, resulting in a "glutamine-dependent phenomenon." Most cancers have an increased glutamine demand, including breast cancer. Metabolic reprogramming not only enables tumor cells to maintain the reduction-oxidation (redox) balance and commit resources to biosynthesis but also establishes heterogeneous metabolic phenotypes of tumor cells that are distinct from those of nontumor cells. Thus, targeting the metabolic differences between tumor and nontumor cells may be a promising and novel anticancer strategy. Glutamine metabolic compartments have emerged as promising candidates, especially in TNBC and drug-resistant breast cancer. In this review, the latest discoveries of breast cancer and glutamine metabolism are discussed, novel treatment methods based on amino acid transporters and glutaminase are discussed, and the relationship between glutamine metabolism and breast cancer metastasis, drug resistance, tumor immunity and ferroptosis are explained, which provides new ideas for the clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Shiqi Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Zeng
- Center of Clinical Laboratory, Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Junli Fan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chen Xu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiancheng Tu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kenneth P Nephew
- Medical Sciences Program, Indiana University, Bloomington, IN, USA.
| | - Xinghua Long
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
28
|
Jiménez MC, Prieto K, Lasso P, Gutiérrez M, Rodriguez-Pardo V, Fiorentino S, Barreto A. Plant extract from Caesalpinia spinosa inhibits cancer-associated fibroblast-like cells generation and function in a tumor microenvironment model. Heliyon 2023; 9:e14148. [PMID: 36923867 PMCID: PMC10009686 DOI: 10.1016/j.heliyon.2023.e14148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Interactions in the tumor microenvironment (TME) between tumor cells and stromal cells such as cancer-associated fibroblasts (CAF) favor increased survival, progression, and transformation of cancer cells by activating mechanisms of invasion and metastasis. The design of new therapies to modulate or eliminate the CAF phenotype or functionality has been the subject of recent research including natural product-based therapies. We have previously described the generation of a standardized extract rich in polyphenols obtained from the Caesalpinia spinosa plant (P2Et), which present antitumor activities in breast cancer and melanoma models through activities that modulate the metabolism of tumor cells or induce the development of the immune response. In this work, a model of CAF generation was initially developed from the exposure of 3T3 fibroblasts to the cytokine TGFβ1. CAF-like cells generated in this way exhibited changes in the expression of Caveolin-1 and α-SMA, and alterations in glucose metabolism and redox status, typical of CAFs isolated from tumor tissues. Then, P2Et was shown to counteract in vitro-induced CAF-like cell generation, preventing caveolin-1 loss and attenuating changes in glucose uptake and redox profile. This protective effect of P2Et translates into a decrease in the functional ability of CAFs to support colony formation and migration of 4T1 murine breast cancer tumor cells. In addition to the functional interference, the P2Et extract also decreased the expression of genes associated with the epithelial-mesenchymal transition (EMT) and functional activities related to the modulation of the cancer stem cells (CSC) population. This work is an in vitro approach to evaluate natural extracts' effect on the interaction between CAF and tumor cells in the tumor microenvironment; thus, these results open the chance to design a more profound and mechanistic analysis to explore the molecular mechanisms of P2Et multimolecular activity and extent this analysis to an in vivo perspective. In summary, we present here a standardized polymolecular natural extract that has the potential to act in the TME by interfering with CAF generation and functionality.
Collapse
Affiliation(s)
- Maria Camila Jiménez
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Colombia
| | - Karol Prieto
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Colombia
| | - Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Colombia
| | - Melisa Gutiérrez
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Colombia
| | - Viviana Rodriguez-Pardo
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Colombia
| | - Alfonso Barreto
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Colombia
| |
Collapse
|
29
|
Andrade de Oliveira K, Sengupta S, Yadav AK, Clarke R. The complex nature of heterogeneity and its roles in breast cancer biology and therapeutic responsiveness. Front Endocrinol (Lausanne) 2023; 14:1083048. [PMID: 36909339 PMCID: PMC9997040 DOI: 10.3389/fendo.2023.1083048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
Heterogeneity is a complex feature of cells and tissues with many interacting components. Depending on the nature of the research context, interacting features of cellular, drug response, genetic, molecular, spatial, temporal, and vascular heterogeneity may be present. We describe the various forms of heterogeneity with examples of their interactions and how they play a role in affecting cellular phenotype and drug responses in breast cancer. While cellular heterogeneity may be the most widely described and invoked, many forms of heterogeneity are evident within the tumor microenvironment and affect responses to the endocrine and cytotoxic drugs widely used in standard clinical care. Drug response heterogeneity is a critical determinant of clinical response and curative potential and also is multifaceted when encountered. The interactive nature of some forms of heterogeneity is readily apparent. For example, the process of metastasis has the properties of both temporal and spatial heterogeneity within the host, whereas each individual metastatic deposit may exhibit cellular, genetic, molecular, and vascular heterogeneity. This review describes the many forms of heterogeneity, their integrated activities, and offers some insights into how heterogeneity may be understood and studied in the future.
Collapse
Affiliation(s)
- Karla Andrade de Oliveira
- The Hormel Institute, University of Minnesota, Austin, MN, United States
- Department of Biochemistry and Pharmacology, Universidade Federal do Piaui, Piauí, Brazil
| | - Surojeet Sengupta
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Anil Kumar Yadav
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Robert Clarke
- The Hormel Institute, University of Minnesota, Austin, MN, United States
- *Correspondence: Robert Clarke,
| |
Collapse
|
30
|
Welch DR, Foster C, Rigoutsos I. Roles of mitochondrial genetics in cancer metastasis. Trends Cancer 2022; 8:1002-1018. [PMID: 35915015 PMCID: PMC9884503 DOI: 10.1016/j.trecan.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/27/2022] [Accepted: 07/07/2022] [Indexed: 01/31/2023]
Abstract
The contributions of mitochondria to cancer have been recognized for decades. However, the focus on the metabolic role of mitochondria and the diminutive size of the mitochondrial genome compared to the nuclear genome have hindered discovery of the roles of mitochondrial genetics in cancer. This review summarizes recent data demonstrating the contributions of mitochondrial DNA (mtDNA) copy-number variants (CNVs), somatic mutations, and germline polymorphisms to cancer initiation, progression, and metastasis. The goal is to summarize accumulating data to establish a framework for exploring the contributions of mtDNA to neoplasia and metastasis.
Collapse
Affiliation(s)
- Danny R Welch
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Department of Internal Medicine (Hematology/Oncology), The Kansas University Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Department of Molecular and Integrative Physiology, The Kansas University Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Department of Pathology, The Kansas University Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; The University of Kansas Comprehensive Cancer Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| | - Christian Foster
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel College of Medicine, Thomas Jefferson University, 1020 Locust Street, Suite M81, Philadelphia, PA 19107, USA
| |
Collapse
|
31
|
Mostafavi S, Zalpoor H, Hassan ZM. The promising therapeutic effects of metformin on metabolic reprogramming of cancer-associated fibroblasts in solid tumors. Cell Mol Biol Lett 2022; 27:58. [PMID: 35869449 PMCID: PMC9308248 DOI: 10.1186/s11658-022-00356-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/22/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor-infiltrated lymphocytes are exposed to many toxic metabolites and molecules in the tumor microenvironment (TME) that suppress their anti-tumor activity. Toxic metabolites, such as lactate and ketone bodies, are produced mainly by catabolic cancer-associated fibroblasts (CAFs) to feed anabolic cancer cells. These catabolic and anabolic cells make a metabolic compartment through which high-energy metabolites like lactate can be transferred via the monocarboxylate transporter channel 4. Moreover, a decrease in molecules, including caveolin-1, has been reported to cause deep metabolic changes in normal fibroblasts toward myofibroblast differentiation. In this context, metformin is a promising drug in cancer therapy due to its effect on oncogenic signal transduction pathways, leading to the inhibition of tumor proliferation and downregulation of key oncometabolites like lactate and succinate. The cross-feeding and metabolic coupling of CAFs and tumor cells are also affected by metformin. Therefore, the importance of metabolic reprogramming of stromal cells and also the pivotal effects of metformin on TME and oncometabolites signaling pathways have been reviewed in this study.
Collapse
|
32
|
Lopez T, Wendremaire M, Lagarde J, Duquet O, Alibert L, Paquette B, Garrido C, Lirussi F. Wound Healing versus Metastasis: Role of Oxidative Stress. Biomedicines 2022; 10:2784. [PMID: 36359304 PMCID: PMC9687595 DOI: 10.3390/biomedicines10112784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/20/2022] [Accepted: 10/29/2022] [Indexed: 10/24/2023] Open
Abstract
Many signaling pathways, molecular and cellular actors which are critical for wound healing have been implicated in cancer metastasis. These two conditions are a complex succession of cellular biological events and accurate regulation of these events is essential. Apart from inflammation, macrophages-released ROS arise as major regulators of these processes. But, whatever the pathology concerned, oxidative stress is a complicated phenomenon to control and requires a finely tuned balance over the different stages and responding cells. This review provides an overview of the pivotal role of oxidative stress in both wound healing and metastasis, encompassing the contribution of macrophages. Indeed, macrophages are major ROS producers but also appear as their targets since ROS interfere with their differentiation and function. Elucidating ROS functions in wound healing and metastatic spread may allow the development of innovative therapeutic strategies involving redox modulators.
Collapse
Affiliation(s)
- Tatiana Lopez
- UMR 1231, Lipides Nutrition Cancer, INSERM, 21000 Dijon, France
- UFR des Sciences de Santé, Université Bourgogne Franche-Comté, 25000 Besançon, France
| | - Maeva Wendremaire
- UMR 1231, Lipides Nutrition Cancer, INSERM, 21000 Dijon, France
- UFR des Sciences de Santé, Université Bourgogne Franche-Comté, 25000 Besançon, France
| | - Jimmy Lagarde
- UMR 1231, Lipides Nutrition Cancer, INSERM, 21000 Dijon, France
- UFR des Sciences de Santé, Université Bourgogne Franche-Comté, 25000 Besançon, France
| | - Oriane Duquet
- UFR des Sciences de Santé, Université Bourgogne Franche-Comté, 25000 Besançon, France
- Plateforme PACE, Laboratoire de Pharmacologie-Toxicologie, Centre Hospitalo-Universitaire Besançon, 25000 Besançon, France
| | - Line Alibert
- Service de Chirurgie, Centre Hospitalo-Universitaire Besançon, 25000 Besançon, France
| | - Brice Paquette
- Service de Chirurgie, Centre Hospitalo-Universitaire Besançon, 25000 Besançon, France
| | - Carmen Garrido
- UMR 1231, Lipides Nutrition Cancer, INSERM, 21000 Dijon, France
- UFR des Sciences de Santé, Université Bourgogne Franche-Comté, 25000 Besançon, France
- Centre Georges François Leclerc, 21000 Dijon, France
| | - Frédéric Lirussi
- UMR 1231, Lipides Nutrition Cancer, INSERM, 21000 Dijon, France
- UFR des Sciences de Santé, Université Bourgogne Franche-Comté, 25000 Besançon, France
- Plateforme PACE, Laboratoire de Pharmacologie-Toxicologie, Centre Hospitalo-Universitaire Besançon, 25000 Besançon, France
| |
Collapse
|
33
|
Li Z, Low V, Luga V, Sun J, Earlie E, Parang B, Shobana Ganesh K, Cho S, Endress J, Schild T, Hu M, Lyden D, Jin W, Guo C, Dephoure N, Cantley LC, Laughney AM, Blenis J. Tumor-produced and aging-associated oncometabolite methylmalonic acid promotes cancer-associated fibroblast activation to drive metastatic progression. Nat Commun 2022; 13:6239. [PMID: 36266345 PMCID: PMC9584945 DOI: 10.1038/s41467-022-33862-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 10/05/2022] [Indexed: 12/25/2022] Open
Abstract
The systemic metabolic shifts that occur during aging and the local metabolic alterations of a tumor, its stroma and their communication cooperate to establish a unique tumor microenvironment (TME) fostering cancer progression. Here, we show that methylmalonic acid (MMA), an aging-increased oncometabolite also produced by aggressive cancer cells, activates fibroblasts in the TME, which reciprocally secrete IL-6 loaded extracellular vesicles (EVs) that drive cancer progression, drug resistance and metastasis. The cancer-associated fibroblast (CAF)-released EV cargo is modified as a result of reactive oxygen species (ROS) generation and activation of the canonical and noncanonical TGFβ signaling pathways. EV-associated IL-6 functions as a stroma-tumor messenger, activating the JAK/STAT3 and TGFβ signaling pathways in tumor cells and promoting pro-aggressive behaviors. Our findings define the role of MMA in CAF activation to drive metastatic reprogramming, unveiling potential therapeutic avenues to target MMA at the nexus of aging, the tumor microenvironment and metastasis.
Collapse
Affiliation(s)
- Zhongchi Li
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Vivien Low
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Valbona Luga
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Janet Sun
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Ethan Earlie
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Bobak Parang
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Kripa Shobana Ganesh
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Sungyun Cho
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jennifer Endress
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Tanya Schild
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Mengying Hu
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
- Departments of Pediatrics, and Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - David Lyden
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
- Departments of Pediatrics, and Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Wenbing Jin
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Chunjun Guo
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Noah Dephoure
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Ashley M Laughney
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA.
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10021, USA.
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
34
|
Liu Y, Wu X, Chen F, Li H, Wang T, Liu N, Sun K, Zhou G, Tao K. Modulating cancer-stroma crosstalk by a nanoparticle-based photodynamic method to pave the way for subsequent therapies. Biomaterials 2022; 289:121813. [PMID: 36152513 DOI: 10.1016/j.biomaterials.2022.121813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
Abstract
Cancer cells and their stromal microenvironment are mutually supportive. Either destroying cancer cells or damaging stromal components cannot guarantee a satisfactory outcome in the long-term treatment. Herein, we showed that the tumor-stroma crosstalk was disturbed by nanoparticle-based photodynamic therapy (PDT) in pancreatic tumor models, leading to the persistent inhibition of extracellular matrix (ECM) secretion and the enhanced therapeutic effect. By employing a conditioned medium method, we found that the nanoparticulate PDT at a sub-lethal dosage down-regulated TGFβ signaling pathways, leading to the decrease in drug resistance, proliferation, and migration of the cancer cells. Meanwhile, pancreatic stellate cells (PSCs) were inactivated by PDT, hindering the secretion of ECM. Combining the results that PDT indiscriminately killed PSCs and cancer cells, we showed that the mutual support between the cancer cells and the stroma was interrupted. We further presented the inhibition of the crosstalk persistently enhanced tumor penetration in stroma-rich pancreatic tumor models. The loosened stroma not only facilitated tumor eradication by subsequent therapy but also improved the efficiency of gemcitabine treatment on monthly later recurrent tumors. Therefore, our work may boost the potential of PDT to be a valuable individual or adjuvant treatment for desmoplastic cancers.
Collapse
Affiliation(s)
- Yan Liu
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China; State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xiaodi Wu
- Research Institute of Plastic Surgery, Wei Fang Medical College, Wei Fang, Shandong, 261042, PR China
| | - Feifan Chen
- Research Institute of Plastic Surgery, Wei Fang Medical College, Wei Fang, Shandong, 261042, PR China
| | - Hao Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Tao Wang
- Research Institute of Plastic Surgery, Wei Fang Medical College, Wei Fang, Shandong, 261042, PR China
| | - Ningning Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Kang Sun
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Guangdong Zhou
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China; Research Institute of Plastic Surgery, Wei Fang Medical College, Wei Fang, Shandong, 261042, PR China.
| | - Ke Tao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
35
|
Claiborne MD, Leone R. Differential glutamine metabolism in the tumor microenvironment – studies in diversity and heterogeneity: A mini-review. Front Oncol 2022; 12:1011191. [PMID: 36203456 PMCID: PMC9531032 DOI: 10.3389/fonc.2022.1011191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
Increased glutamine metabolism is a hallmark of many cancer types. In recent years, our understanding of the distinct and diverse metabolic pathways through which glutamine can be utilized has grown more refined. Additionally, the different metabolic requirements of the diverse array of cell types within the tumor microenvironment complicate the strategy of targeting any particular glutamine pathway as cancer therapy. In this Mini-Review, we discuss recent advances in further clarifying the cellular fate of glutamine through different metabolic pathways. We further discuss potential promising strategies which exploit the different requirements of cells in the tumor microenvironment as it pertains to glutamine metabolism in an attempt to suppress cancer growth and enhance anti-tumor immune responses.
Collapse
Affiliation(s)
- Michael D. Claiborne
- Department of Medicine, Scripps Green Hospital and Scripps Clinic, La Jolla, CA, United States
| | - Robert Leone
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, MD, United States
- *Correspondence: Robert Leone,
| |
Collapse
|
36
|
Shi X, Yang J, Deng S, Xu H, Wu D, Zeng Q, Wang S, Hu T, Wu F, Zhou H. TGF-β signaling in the tumor metabolic microenvironment and targeted therapies. J Hematol Oncol 2022; 15:135. [PMID: 36115986 PMCID: PMC9482317 DOI: 10.1186/s13045-022-01349-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/24/2022] [Indexed: 12/30/2022] Open
Abstract
AbstractTransforming growth factor-β (TGF-β) signaling has a paradoxical role in cancer progression, and it acts as a tumor suppressor in the early stages but a tumor promoter in the late stages of cancer. Once cancer cells are generated, TGF-β signaling is responsible for the orchestration of the immunosuppressive tumor microenvironment (TME) and supports cancer growth, invasion, metastasis, recurrence, and therapy resistance. These progressive behaviors are driven by an “engine” of the metabolic reprogramming in cancer. Recent studies have revealed that TGF-β signaling regulates cancer metabolic reprogramming and is a metabolic driver in the tumor metabolic microenvironment (TMME). Intriguingly, TGF-β ligands act as an “endocrine” cytokine and influence host metabolism. Therefore, having insight into the role of TGF-β signaling in the TMME is instrumental for acknowledging its wide range of effects and designing new cancer treatment strategies. Herein, we try to illustrate the concise definition of TMME based on the published literature. Then, we review the metabolic reprogramming in the TMME and elaborate on the contribution of TGF-β to metabolic rewiring at the cellular (intracellular), tissular (intercellular), and organismal (cancer-host) levels. Furthermore, we propose three potential applications of targeting TGF-β-dependent mechanism reprogramming, paving the way for TGF-β-related antitumor therapy from the perspective of metabolism.
Collapse
|
37
|
Jiang X, Yan N, Deng D, Yan C. Structural aspects of the glucose and monocarboxylate transporters involved in the Warburg effect. IUBMB Life 2022; 74:1180-1199. [PMID: 36082803 DOI: 10.1002/iub.2668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022]
Abstract
Cancer cells shift their glucose catabolism from aerobic respiration to lactic fermentation even in the presence of oxygen, and this is known as the "Warburg effect". To accommodate the high glucose demands and to avoid lactate accumulation, the expression levels of human glucose transporters (GLUTs) and human monocarboxylate transporters (MCTs) are elevated to maintain metabolic homeostasis. Therefore, inhibition of GLUTs and/or MCTs provides potential therapeutic strategies for cancer treatment. Here, we summarize recent advances in the structural characterization of GLUTs and MCTs, providing a comprehensive understanding of their transport and inhibition mechanisms to facilitate further development of anticancer therapies.
Collapse
Affiliation(s)
- Xin Jiang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - Nieng Yan
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Dong Deng
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Chuangye Yan
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
38
|
Choucair K, Naqash AR, Nebhan CA, Nipp R, Johnson DB, Saeed A. Immune Checkpoint Inhibitors: The Unexplored Landscape of Geriatric Oncology. Oncologist 2022; 27:778-789. [PMID: 35781739 PMCID: PMC9438919 DOI: 10.1093/oncolo/oyac119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is classically considered a disease of aging, with over half of all new cancer diagnoses occurring in patients over the age of 65 years. Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment, yet the participation of older adults with cancer in ICI trials has been suboptimal, particularly at the extremes of age. Despite significant improvement in treatment response and an improved toxicity profile when compared with conventional cytotoxic chemotherapies, many cancers develop resistance to ICIs, and these drugs are not free of toxicities. This becomes particularly important in the setting of older adults with cancer, who are generally frailer and harbor more comorbidities than do their younger counterparts. Immunosenescence, a concept involving age-related changes in immune function, may also play a role in differential responses to ICI treatment in older patients. Data on ICI treatment response in older adult with cancers remains inconclusive, with multiple studies revealing conflicting results. The molecular mechanisms underlying response to ICIs in older cancer patients are poorly understood, and predictors of response that can delineate responders from non-responders remain to be elucidated. In this review, we explore the unique geriatric oncology population by analyzing existing retrospective datasets, and we also sought to highlight potential cellular, inflammatory, and molecular changes associated with aging as potential biomarkers for response to ICIs.
Collapse
Affiliation(s)
- Khalil Choucair
- University of Kansas School of Medicine-Wichita, Department of Internal Medicine, Wichita, KS, USA
| | - Abdul Rafeh Naqash
- The University of Oklahoma College of Medicine, Department of Internal Medicine, Division of Hematology/Oncology; Stephenson Cancer Center, Oklahoma City, OK, USA
| | - Caroline A Nebhan
- Vanderbilt University Medical Center, Department of Medicine, Division of Hematology/Oncology, Nashville, TN, USA
| | - Ryan Nipp
- The University of Oklahoma College of Medicine, Department of Internal Medicine, Division of Hematology/Oncology; Stephenson Cancer Center, Oklahoma City, Oklahoma, USA
| | - Douglas B Johnson
- Vanderbilt University Medical Center, Department of Medicine, Division of Hematology/Oncology, Nashville, Tennessee, USA
| | - Anwaar Saeed
- Kansas University Cancer Center, Department of Medicine, Division of Medical Oncology, Kansas City, KS, USA
| |
Collapse
|
39
|
Del'haye GG, Nulmans I, Bouteille SP, Sermon K, Wellekens B, Rombaut M, Vanhaecke T, Vander Heyden Y, De Kock J. Development of an adverse outcome pathway network for breast cancer: a comprehensive representation of the pathogenesis, complexity and diversity of the disease. Arch Toxicol 2022; 96:2881-2897. [PMID: 35927586 DOI: 10.1007/s00204-022-03351-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022]
Abstract
Adverse outcome pathways (AOPs), introduced in modern toxicology, intend to provide an evidence-based representation of toxicological effects and facilitate safety assessment of chemicals not solely based on laboratory animal in vivo experiments. However, some toxicological processes are too complicated to represent in one AOP. Therefore, AOP networks are developed that help understanding and predicting toxicological processes where complex exposure scenarios interact and lead to the emergence of the adverse outcome. In this study, we present an AOP network for breast cancer, developed after an in-depth survey of relevant scientific literature. Several molecular initiating events (MIE) were identified and various key events that link the MIEs with breast cancer were described. The AOP was developed according to Organization of Economic Co-Operation and Development (OECD) guidance, weight of evidence was assessed through the Bradford Hill criteria and confidence was tested by the OECD key questions. The AOP network provides a straightforward understanding of the disease onset and progression at different biological levels. It can be used to pinpoint knowledge gaps, identify novel therapeutic targets and act as a stepping stone for the development of novel in vitro test methods for hazard identification and risk assessment of newly developed chemicals and drugs.
Collapse
Affiliation(s)
- Gigly G Del'haye
- Research Group of Analytical Chemistry, Applied Chemometrics and Molecular Modeling, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium. .,Research Group of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Ine Nulmans
- Liver Therapy & Evolution Team, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Sandrine P Bouteille
- Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Karolien Sermon
- Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Brecht Wellekens
- Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Matthias Rombaut
- Liver Therapy & Evolution Team, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Tamara Vanhaecke
- Liver Therapy & Evolution Team, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Yvan Vander Heyden
- Research Group of Analytical Chemistry, Applied Chemometrics and Molecular Modeling, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Joery De Kock
- Liver Therapy & Evolution Team, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| |
Collapse
|
40
|
The cross-talk of autophagy and apoptosis in breast carcinoma: implications for novel therapies? Biochem J 2022; 479:1581-1608. [PMID: 35904454 DOI: 10.1042/bcj20210676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/12/2022]
Abstract
Breast cancer is still the most common cancer in women worldwide. Resistance to drugs and recurrence of the disease are two leading causes of failure in treatment. For a more efficient treatment of patients, the development of novel therapeutic regimes is needed. Recent studies indicate that modulation of autophagy in concert with apoptosis induction may provide a promising novel strategy in breast cancer treatment. Apoptosis and autophagy are two tightly regulated distinct cellular processes. To maintain tissue homeostasis abnormal cells are disposed largely by means of apoptosis. Autophagy, however, contributes to tissue homeostasis and cell fitness by scavenging of damaged organelles, lipids, proteins, and DNA. Defects in autophagy promote tumorigenesis, whereas upon tumor formation rapidly proliferating cancer cells may rely on autophagy to survive. Given that evasion of apoptosis is one of the characteristic hallmarks of cancer cells, inhibiting autophagy and promoting apoptosis can negatively influence cancer cell survival and increase cell death. Hence, combination of antiautophagic agents with the enhancement of apoptosis may restore apoptosis and provide a therapeutic advantage against breast cancer. In this review, we discuss the cross-talk of autophagy and apoptosis and the diverse facets of autophagy in breast cancer cells leading to novel models for more effective therapeutic strategies.
Collapse
|
41
|
Dynamic Co-Evolution of Cancer Cells and Cancer-Associated Fibroblasts: Role in Right- and Left-Sided Colon Cancer Progression and Its Clinical Relevance. BIOLOGY 2022; 11:biology11071014. [PMID: 36101394 PMCID: PMC9312176 DOI: 10.3390/biology11071014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/22/2022]
Abstract
Simple Summary The versatile crosstalk between cancer cells and cancer-associated fibroblasts (CAFs) of the tumour microenvironment (TME) drives colorectal carcinogenesis and heterogeneity. Colorectal cancer (CRC) can be classified by the anatomical sites from which the cancer arises, either from the right or left colon. Although the cancer cell–CAF interaction is being widely studied, its role in the progression of cancer in the right and left colon and cancer heterogeneity are still yet to be elucidated. Further insight into the complex interaction between different cellular components in the cancer niche, their evolutionary process and their influence on cancer progression would propel the discovery of effective targeted CRC therapy. Abstract Cancer is a result of a dynamic evolutionary process. It is composed of cancer cells and the tumour microenvironment (TME). One of the major cellular constituents of TME, cancer-associated fibroblasts (CAFs) are known to interact with cancer cells and promote colorectal carcinogenesis. The accumulation of these activated fibroblasts is linked to poor diagnosis in colorectal cancer (CRC) patients and recurrence of the disease. However, the interplay between cancer cells and CAFs is yet to be described, especially in relation to the sidedness of colorectal carcinogenesis. CRC, which is the third most commonly diagnosed cancer globally, can be classified according to the anatomical region from which they originate: left-sided (LCRC) and right-sided CRC (RCR). Both cancers differ in many aspects, including in histology, evolution, and molecular signatures. Despite occurring at lower frequency, RCRC is often associated with worse diagnosis compared to LCRC. The differences in molecular profiles between RCRC and LCRC also influence the mode of treatment that can be used to specifically target these cancer entities. A better understanding of the cancer cell–CAF interplay and its association with RCRC and LRCR progression will provide better insight into potential translational aspects of targeted treatment for CRC.
Collapse
|
42
|
Wu G, Wang Y, Wan Y. Establishing an 8-gene immune prognostic model based on TP53 status for lung adenocarcinoma. J Clin Lab Anal 2022; 36:e24538. [PMID: 35689561 PMCID: PMC9279974 DOI: 10.1002/jcla.24538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 05/22/2022] [Indexed: 12/30/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) results in a majority of cancer burden worldwide. TP53 is the most commonly mutated in LUAD. This study aimed to reveal the relation between TP53 and tumor microenvironment (TME) for improving LUAD treatment. Methods Differentially expressed genes (DEGs) related to immunity were analyzed between TP53‐WT and TP53‐MUT groups. Least absolute shrinkage and selection operator (LASSO) Cox regression was applied to screen prognostic DEGs. Two independent datasets were included to evaluate the robustness of the prognostic model. Results An 8‐gene prognostic model containing ANLN, CCNB1, DLGAP5, FAM83A, GJB2, NAPSA, SFTPB, and SLC2A1 was established based on DEGs. LUAD samples were classified into high‐ and low‐risk groups with differential overall survival in the two datasets. M0 macrophages, M1 macrophages, and activated memory CD4 T cells were more enriched in high‐risk group. Immune checkpoints of PDCD1, LAG3, and CD274 were also high‐expressed in high‐risk group. Conclusion The study improved the understanding of the role of TP53 in the TME modulation. The 8‐gene model had robust performance to predict LUAD prognosis in clinical practice. In addition, the eight prognostic genes may also serve as potential targets for designing therapeutic drugs for LUAD patients.
Collapse
Affiliation(s)
- Guodong Wu
- Thoracic Surgery, Shenzhen Second People's Hospital, Shenzhen, China
| | - Youyu Wang
- Thoracic Surgery, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yanhui Wan
- Thoracic Surgery, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
43
|
Domingo-Vidal M, Whitaker-Menezes D, Mollaee M, Lin Z, Tuluc M, Philp N, Johnson JM, Zhan T, Curry J, Martinez-Outschoorn U. Monocarboxylate Transporter 4 in Cancer-Associated Fibroblasts Is a Driver of Aggressiveness in Aerodigestive Tract Cancers. Front Oncol 2022; 12:906494. [PMID: 35814364 PMCID: PMC9259095 DOI: 10.3389/fonc.2022.906494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The most common cancers of the aerodigestive tract (ADT) are non-small cell lung cancer (NSCLC) and head and neck squamous cell carcinoma (HNSCC). The tumor stroma plays an important role in ADT cancer development and progression, and contributes to the metabolic heterogeneity of tumors. Cancer-associated fibroblasts (CAFs) are the most abundant cell type in the tumor stroma of ADT cancers and exert pro-tumorigenic functions. Metabolically, glycolytic CAFs support the energy needs of oxidative (OXPHOS) carcinoma cells. Upregulation of the monocarboxylate transporter 4 (MCT4) and downregulation of isocitrate dehydrogenase 3α (IDH3α) are markers of glycolysis in CAFs, and upregulation of the monocarboxylate transporter 1 (MCT1) and the translocase of the outer mitochondrial membrane 20 (TOMM20) are markers of OXPHOS in carcinoma cells. It is unknown if glycolytic metabolism in CAFs is a driver of ADT cancer aggressiveness. In this study, co-cultures in vitro and co-injections in mice of ADT carcinoma cells with fibroblasts were used as experimental models to study the effects of fibroblasts on metabolic compartmentalization, oxidative stress, carcinoma cell proliferation and apoptosis, and overall tumor growth. Glycolytic metabolism in fibroblasts was modulated using the HIF-1α inhibitor BAY 87-2243, the antioxidant N-acetyl cysteine, and genetic depletion of MCT4. We found that ADT human tumors express markers of metabolic compartmentalization and that co-culture models of ADT cancers recapitulate human metabolic compartmentalization, have high levels of oxidative stress, and promote carcinoma cell proliferation and survival. In these models, BAY 87-2243 rescues IDH3α expression and NAC reduces MCT4 expression in fibroblasts, and these treatments decrease ADT carcinoma cell proliferation and increase cell death. Genetic depletion of fibroblast MCT4 decreases proliferation and survival of ADT carcinoma cells in co-culture. Moreover, co-injection of ADT carcinoma cells with fibroblasts lacking MCT4 reduces tumor growth and decreases the expression of markers of metabolic compartmentalization in tumors. In conclusion, metabolic compartmentalization with high expression of MCT4 in CAFs drives aggressiveness in ADT cancers.
Collapse
Affiliation(s)
- Marina Domingo-Vidal
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Diana Whitaker-Menezes
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Mehri Mollaee
- Lewis Katz School of Medicine, Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Zhao Lin
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Madalina Tuluc
- Sidney Kimmel Cancer Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nancy Philp
- Sidney Kimmel Cancer Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jennifer M. Johnson
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Tingting Zhan
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, United States
| | - Joseph Curry
- Sidney Kimmel Cancer Center, Department of Otolaryngology - Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ubaldo Martinez-Outschoorn
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Ubaldo Martinez-Outschoorn,
| |
Collapse
|
44
|
Papaccio F, D′Arino A, Caputo S, Bellei B. Focus on the Contribution of Oxidative Stress in Skin Aging. Antioxidants (Basel) 2022; 11:1121. [PMID: 35740018 PMCID: PMC9220264 DOI: 10.3390/antiox11061121] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
Skin aging is one of the most evident signs of human aging. Modification of the skin during the life span is characterized by fine lines and wrinkling, loss of elasticity and volume, laxity, rough-textured appearance, and pallor. In contrast, photoaged skin is associated with uneven pigmentation (age spot) and is markedly wrinkled. At the cellular and molecular level, it consists of multiple interconnected processes based on biochemical reactions, genetic programs, and occurrence of external stimulation. The principal cellular perturbation in the skin driving senescence is the alteration of oxidative balance. In chronological aging, reactive oxygen species (ROS) are produced mainly through cellular oxidative metabolism during adenosine triphosphate (ATP) generation from glucose and mitochondrial dysfunction, whereas in extrinsic aging, loss of redox equilibrium is caused by environmental factors, such as ultraviolet radiation, pollution, cigarette smoking, and inadequate nutrition. During the aging process, oxidative stress is attributed to both augmented ROS production and reduced levels of enzymatic and non-enzymatic protectors. Apart from the evident appearance of structural change, throughout aging, the skin gradually loses its natural functional characteristics and regenerative potential. With aging, the skin immune system also undergoes functional senescence manifested as a reduced ability to counteract infections and augmented frequency of autoimmune and neoplastic diseases. This review proposes an update on the role of oxidative stress in the appearance of the clinical manifestation of skin aging, as well as of the molecular mechanisms that underline this natural phenomenon sometimes accelerated by external factors.
Collapse
Affiliation(s)
| | | | | | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (F.P.); (S.C.)
| |
Collapse
|
45
|
Feng B, Wu J, Shen B, Jiang F, Feng J. Cancer-associated fibroblasts and resistance to anticancer therapies: status, mechanisms, and countermeasures. Cancer Cell Int 2022; 22:166. [PMID: 35488263 PMCID: PMC9052457 DOI: 10.1186/s12935-022-02599-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are critical components of the tumor microenvironment (TME) with diverse functions such as extracellular matrix (ECM) remodeling, modulation of metabolism and angiogenesis, and crosstalk with both cancer cells and infiltrating immune cells by production of growth factors, cytokines, and chemokines. Within the TME milieu, CAFs exhibit morphological and functional transitions with relatively specific markers and hold tremendous potential to facilitate tumorigenesis, development, and resistance towards multiple therapeutic strategies including chemotherapy, radiotherapy, targeted therapy, anti-angiogenesis therapy, immunotherapy, and endocrine therapy. Accordingly, CAFs themselves and the downstream effectors and/or signaling pathways are potential targets for optimizing the sensitivity of anti-cancer therapies. This review aims to provide a detailed landscape of the role that CAFs play in conferring therapeutic resistance in different cancers and the underlying mechanisms. The translational and therapeutic perspectives of CAFs in the individualized treatment of malignant tumors are also discussed.
Collapse
Affiliation(s)
- Bing Feng
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China
| | - Jianzhong Wu
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China
| | - Bo Shen
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China
| | - Feng Jiang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China.
| | - Jifeng Feng
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China.
| |
Collapse
|
46
|
Hu D, Li Z, Zheng B, Lin X, Pan Y, Gong P, Zhuo W, Hu Y, Chen C, Chen L, Zhou J, Wang L. Cancer-associated fibroblasts in breast cancer: Challenges and opportunities. Cancer Commun (Lond) 2022; 42:401-434. [PMID: 35481621 PMCID: PMC9118050 DOI: 10.1002/cac2.12291] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/06/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment is proposed to contribute substantially to the progression of cancers, including breast cancer. Cancer-associated fibroblasts (CAFs) are the most abundant components of the tumor microenvironment. Studies have revealed that CAFs in breast cancer originate from several types of cells and promote breast cancer malignancy by secreting factors, generating exosomes, releasing nutrients, reshaping the extracellular matrix, and suppressing the function of immune cells. CAFs are also becoming therapeutic targets for breast cancer due to their specific distribution in tumors and their unique biomarkers. Agents interrupting the effect of CAFs on surrounding cells have been developed and applied in clinical trials. Here, we reviewed studies examining the heterogeneity of CAFs in breast cancer and expression patterns of CAF markers in different subtypes of breast cancer. We hope that summarizing CAF-related studies from a historical perspective will help to accelerate the development of CAF-targeted therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Dengdi Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Zhaoqing Li
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Bin Zheng
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Xixi Lin
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Yuehong Pan
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Peirong Gong
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Wenying Zhuo
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China.,Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Yujie Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Cong Chen
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Lini Chen
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Jichun Zhou
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Linbo Wang
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| |
Collapse
|
47
|
Dai W, White R, Liu J, Liu H. Organelles coordinate milk production and secretion during lactation: Insights into mammary pathologies. Prog Lipid Res 2022; 86:101159. [PMID: 35276245 DOI: 10.1016/j.plipres.2022.101159] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022]
Abstract
The mammary gland undergoes a spectacular series of changes during its development and maintains a remarkable capacity to remodel and regenerate during progression through the lactation cycle. This flexibility of the mammary gland requires coordination of multiple processes including cell proliferation, differentiation, regeneration, stress response, immune activity, and metabolic changes under the control of diverse cellular and hormonal signaling pathways. The lactating mammary epithelium orchestrates synthesis and apical secretion of macromolecules including milk lipids, milk proteins, and lactose as well as other minor nutrients that constitute milk. Knowledge about the subcellular compartmentalization of these metabolic and signaling events, as they relate to milk production and secretion during lactation, is expanding. Here we review how major organelles (endoplasmic reticulum, Golgi apparatus, mitochondrion, lysosome, and exosome) within mammary epithelial cells collaborate to initiate, mediate, and maintain lactation, and how study of these organelles provides insight into options to maintain mammary/breast health.
Collapse
Affiliation(s)
- Wenting Dai
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Robin White
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Jianxin Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hongyun Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
48
|
Krauß D, Fari O, Sibilia M. Lipid Metabolism Interplay in CRC—An Update. Metabolites 2022; 12:metabo12030213. [PMID: 35323656 PMCID: PMC8951276 DOI: 10.3390/metabo12030213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) to date still ranks as one of the deadliest cancer entities globally, and despite recent advances, the incidence in young adolescents is dramatically increasing. Lipid metabolism has recently received increased attention as a crucial element for multiple aspects of carcinogenesis and our knowledge of the underlying mechanisms is steadily growing. However, the mechanism how fatty acid metabolism contributes to CRC is still not understood in detail. In this review, we aim to summarize our vastly growing comprehension and the accompanied complexity of cellular fatty acid metabolism in CRC by describing inputs and outputs of intracellular free fatty acid pools and how these contribute to cancer initiation, disease progression and metastasis. We highlight how different lipid pathways can contribute to the aggressiveness of tumors and affect the prognosis of patients. Furthermore, we focus on the role of lipid metabolism in cell communication and interplay within the tumor microenvironment (TME) and beyond. Understanding these interactions in depth might lead to the discovery of novel markers and new therapeutic interventions for CRC. Finally, we discuss the crucial role of fatty acid metabolism as new targetable gatekeeper in colorectal cancer.
Collapse
|
49
|
Yu J, Perri M, Jones JW, Pierzchalski K, Ceaicovscaia N, Cione E, Kane MA. Altered RBP1 Gene Expression Impacts Epithelial Cell Retinoic Acid, Proliferation, and Microenvironment. Cells 2022; 11:792. [PMID: 35269414 PMCID: PMC8909206 DOI: 10.3390/cells11050792] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Abstract
Vitamin A is an essential diet-derived nutrient that has biological activity affected through an active metabolite, all-trans retinoic acid (atRA). Retinol-binding protein type 1 (RBP1) is an intracellular chaperone that binds retinol and retinal with high affinity, protects retinoids from non-specific oxidation, and delivers retinoids to specific enzymes to facilitate biosynthesis of RA. RBP1 expression is reduced in many of the most prevalent cancers, including breast cancer. Here, we sought to understand the relationship between RBP1 expression and atRA biosynthesis in mammary epithelial cells, as well as RBP1 expression and atRA levels in human mammary tissue. We additionally aimed to investigate the impact of RBP1 expression and atRA on the microenvironment as well as the potential for therapeutic restoration of RBP1 expression and endogenous atRA production. Using human mammary ductal carcinoma samples and a series of mammary epithelial cell lines representing different stages of tumorigenesis, we investigated the relationship between RBP1 expression as determined by QPCR and atRA via direct liquid chromatography-multistage-tandem mass spectrometry-based quantification. The functional effect of RBP1 expression and atRA in epithelial cells was investigated via the expression of direct atRA targets using QPCR, proliferation using Ki-67 staining, and collagen deposition via picrosirius red staining. We also investigated the atRA content of stromal cells co-cultured with normal and tumorigenic epithelial cells. Results show that RBP1 and atRA are reduced in mammary tumor tissue and tumorigenic epithelial cell lines. Knock down of RBP1 expression using shRNA or overexpression of RBP1 supported a direct relationship between RBP1 expression with atRA. Increases in cellular atRA were able to activate atRA direct targets, inhibit proliferation and inhibit collagen deposition in epithelial cell lines. Conditions encountered in tumor microenvironments, including low glucose and hypoxia, were able to reduce RBP1 expression and atRA. Treatment with either RARα agonist AM580 or demethylating agent Decitabine were able to increase RBP1 expression and atRA. Cellular content of neighboring fibroblasts correlated with the RA producing capacity of epithelial cells in co-culture. This work establishes a direct relationship between RBP1 expression and atRA, which is maintained when RBP1 expression is restored therapeutically. The results demonstrate diseases with reduced RBP1 could potentially benefit from therapeutics that restore RBP1 expression and endogenous atRA.
Collapse
Affiliation(s)
- Jianshi Yu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (J.Y.); (M.P.); (J.W.J.); (K.P.); (N.C.)
| | - Mariarita Perri
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (J.Y.); (M.P.); (J.W.J.); (K.P.); (N.C.)
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Ed. Polifunzionale, I-87036 Arcavacata di Rende, CS, Italy;
| | - Jace W. Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (J.Y.); (M.P.); (J.W.J.); (K.P.); (N.C.)
| | - Keely Pierzchalski
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (J.Y.); (M.P.); (J.W.J.); (K.P.); (N.C.)
| | - Natalia Ceaicovscaia
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (J.Y.); (M.P.); (J.W.J.); (K.P.); (N.C.)
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Ed. Polifunzionale, I-87036 Arcavacata di Rende, CS, Italy;
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (J.Y.); (M.P.); (J.W.J.); (K.P.); (N.C.)
| |
Collapse
|
50
|
A “Weird” Mitochondrial Fatty Acid Oxidation as a Metabolic “Secret” of Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2339584. [PMID: 35178152 PMCID: PMC8847026 DOI: 10.1155/2022/2339584] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022]
Abstract
Cancer metabolism is an extensively studied field since the discovery of the Warburg effect about 100 years ago and continues to be increasingly intriguing and enigmatic so far. It has become clear that glycolysis is not the only abnormally activated metabolic pathway in the cancer cells, but the same is true for the fatty acid synthesis (FAS) and mevalonate pathway. In the last decade, a lot of data have been accumulated on the pronounced mitochondrial fatty acid oxidation (mFAO) in many types of cancer cells. In this article, we discuss how mFAO can escape normal regulation under certain conditions and be overactivated. Such abnormal activation of mitochondrial β-oxidation can also be combined with mutations in certain enzymes of the Krebs cycle that are common in cancer. If overactivated β-oxidation is combined with other common cancer conditions, such as dysfunctions in the electron transport complexes, and/or hypoxia, this may alter the redox state of the mitochondrial matrix. We propose the idea that the altered mitochondrial redox state and/or inhibited Krebs cycle at certain segments may link mitochondrial β-oxidation to the citrate-malate shuttle instead to the Krebs cycle. We call this abnormal metabolic condition “β-oxidation shuttle”. It is unconventional mFAO, a separate metabolic pathway, unexplored so far as a source of energy, as well as a source of cataplerosis, leading to biomass accumulation, accelerated oxygen consumption, and ultimately a source of proliferation. It is inefficient as an energy source and must consume significantly more oxygen per mole of ATP produced when combined with acetyl-CoA consuming pathways, such as the FAS and mevalonate pathway.
Collapse
|