1
|
Porter JJ, Ko W, Sorensen EG, Lueck JD. Optimization of ACE-tRNAs function in translation for suppression of nonsense mutations. Nucleic Acids Res 2024; 52:14112-14132. [PMID: 39673265 DOI: 10.1093/nar/gkae1112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 12/16/2024] Open
Abstract
Nonsense suppressor transfer RNAs (tRNAs) or AntiCodon-Edited tRNAs (ACE-tRNAs) have long been envisioned as a therapeutic approach to overcome genetic diseases resulting from the introduction of premature termination codons (PTCs). The ACE-tRNA approach for the rescue of PTCs has been hampered by ineffective delivery through available modalities for gene therapy. Here we have screened a series of ACE-tRNA expression cassette sequence libraries containing >1800 members in an effort to optimize ACE-tRNA function and provide a roadmap for optimization in the future. By optimizing PTC suppression efficiency of ACE-tRNAs, we have decreased the amount of ACE-tRNA required by ∼16-fold for the most common cystic fibrosis-causing PTCs.
Collapse
Affiliation(s)
- Joseph J Porter
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Rochester, NY 14642, USA
| | - Wooree Ko
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Rochester, NY 14642, USA
| | - Emily G Sorensen
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Rochester, NY 14642, USA
| | - John D Lueck
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Rochester, NY 14642, USA
- Department of Neurology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Rochester, NY 14642, USA
| |
Collapse
|
2
|
De Dominicis A, Stregapede F, Colona VL, Nicita F, Sartorelli J, Sparascio FP, Terracciano A, Novelli A, Specchio N, Bertini ES, Trivisano M. POLR3B de novo variants are a rare cause of infantile myoclonic epilepsy. Seizure 2024; 121:141-146. [PMID: 39178560 DOI: 10.1016/j.seizure.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
PURPOSE To report on a new phenotype in a patient carrying a novel, undescribed de novo variant in POLR3B, affected by generalized myoclonic epilepsy and neurodevelopmental disorder, without neuropathy. It is known that biallelic pathogenic variants in POLR3B cause hypomyelinating leukodystrophy-8, and heterozygous de novo variants are described in association to a phenotype characterized by predominantly demyelinating sensory-motor peripheral neuropathy, ataxia, spasticity, intellectual disability and epilepsy, in which the peripheral neuropathy is often the main clinical presentation. METHODS We collected clinical, electrophysiological and neuroimaging data from the affected subject and performed a Trio-Clinical Exome Sequencing. RESULTS We detected a de novo novel heterozygous missense variant c.1132A>G in POLR3B (NM_018082.6) that was considered as likely pathogenic following ACMG criteria. We also consulted our custom genomic database of a total of 1485 patients that were genetically analysed from 2018 for epilepsy, and found no other de novo variants in the POLR3B gene. CONCLUSION We hypothesize a possible genotype-phenotype correlation, particularly regarding epilepsy. We also provide a review of the literature about the previously described POLR3B heterozygous patients, with particular attention to the epileptic phenotype, underlining the association between POLR3B and early onset myoclonic epilepsy, which can represent the main manifestation of the disease at its onset.
Collapse
Affiliation(s)
- Angela De Dominicis
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Fabrizia Stregapede
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Vito Luigi Colona
- Movement Analysis and Robotics Laboratory (MARlab), Research Unit of Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Research Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesco Nicita
- Research Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Jacopo Sartorelli
- Research Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Piceci Sparascio
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessandra Terracciano
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Nicola Specchio
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Enrico Silvio Bertini
- Research Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Marina Trivisano
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| |
Collapse
|
3
|
Malik Y, Goncalves Silva I, Diazgranados RR, Selman C, Alic N, Tullet JM. Timing of TORC1 inhibition dictates Pol III involvement in Caenorhabditis elegans longevity. Life Sci Alliance 2024; 7:e202402735. [PMID: 38740431 PMCID: PMC11091362 DOI: 10.26508/lsa.202402735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Organismal growth and lifespan are inextricably linked. Target of Rapamycin (TOR) signalling regulates protein production for growth and development, but if reduced, extends lifespan across species. Reduction in the enzyme RNA polymerase III, which transcribes tRNAs and 5S rRNA, also extends longevity. Here, we identify a temporal genetic relationship between TOR and Pol III in Caenorhabditis elegans, showing that they collaborate to regulate progeny production and lifespan. Interestingly, the lifespan interaction between Pol III and TOR is only revealed when TOR signaling is reduced, specifically in adulthood, demonstrating the importance of timing to control TOR regulated developmental versus adult programs. In addition, we show that Pol III acts in C. elegans muscle to promote both longevity and healthspan and that reducing Pol III even in late adulthood is sufficient to extend lifespan. This demonstrates the importance of Pol III for lifespan and age-related health in adult C. elegans.
Collapse
Affiliation(s)
- Yasir Malik
- Division of Natural Sciences, School of Biosciences, University of Kent, Canterbury, Kent
| | - Isabel Goncalves Silva
- Division of Natural Sciences, School of Biosciences, University of Kent, Canterbury, Kent
| | | | - Colin Selman
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland
| | - Nazif Alic
- UCL Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, London, UK
| | - Jennifer Ma Tullet
- Division of Natural Sciences, School of Biosciences, University of Kent, Canterbury, Kent
| |
Collapse
|
4
|
Rey F, Esposito L, Maghraby E, Mauri A, Berardo C, Bonaventura E, Tonduti D, Carelli S, Cereda C. Role of epigenetics and alterations in RNA metabolism in leukodystrophies. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1854. [PMID: 38831585 DOI: 10.1002/wrna.1854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 06/05/2024]
Abstract
Leukodystrophies are a class of rare heterogeneous disorders which affect the white matter of the brain, ultimately leading to a disruption in brain development and a damaging effect on cognitive, motor and social-communicative development. These disorders present a great clinical heterogeneity, along with a phenotypic overlap and this could be partially due to contributions from environmental stimuli. It is in this context that there is a great need to investigate what other factors may contribute to both disease insurgence and phenotypical heterogeneity, and novel evidence are raising the attention toward the study of epigenetics and transcription mechanisms that can influence the disease phenotype beyond genetics. Modulation in the epigenetics machinery including histone modifications, DNA methylation and non-coding RNAs dysregulation, could be crucial players in the development of these disorders, and moreover an aberrant RNA maturation process has been linked to leukodystrophies. Here, we provide an overview of these mechanisms hoping to supply a closer step toward the analysis of leukodystrophies not only as genetically determined but also with an added level of complexity where epigenetic dysregulation is of key relevance. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNA RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Federica Rey
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi," Department of Biomedical and Clinical Sciences, University of Milano, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | - Letizia Esposito
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi," Department of Biomedical and Clinical Sciences, University of Milano, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | - Erika Maghraby
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
- Department of Biology and Biotechnology "L. Spallanzani" (DBB), University of Pavia, Pavia, Italy
| | - Alessia Mauri
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi," Department of Biomedical and Clinical Sciences, University of Milano, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | - Clarissa Berardo
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi," Department of Biomedical and Clinical Sciences, University of Milano, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | - Eleonora Bonaventura
- Unit of Pediatric Neurology, COALA Center for Diagnosis and Treatment of Leukodystrophies, V. Buzzi Children's Hospital, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Davide Tonduti
- Unit of Pediatric Neurology, COALA Center for Diagnosis and Treatment of Leukodystrophies, V. Buzzi Children's Hospital, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Stephana Carelli
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi," Department of Biomedical and Clinical Sciences, University of Milano, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | - Cristina Cereda
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| |
Collapse
|
5
|
Coulombe B, Durcan TM, Bernard G, Moursli A, Poitras C, Faubert D, Pinard M. The 37TrillionCells initiative for improving global healthcare via cell-based interception and precision medicine: focus on neurodegenerative diseases. Mol Brain 2024; 17:18. [PMID: 38605409 PMCID: PMC11007934 DOI: 10.1186/s13041-024-01088-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/15/2024] [Indexed: 04/13/2024] Open
Abstract
One of the main burdens in the treatment of diseases is imputable to the delay between the appearance of molecular dysfunctions in the first affected disease cells and their presence in sufficient number for detection in specific tissues or organs. This delay obviously plays in favor of disease progression to an extent that makes efficient treatments difficult, as they arrive too late. The development of a novel medical strategy, termed cell-based interception and precision medicine, seeks to identify dysfunctional cells early, when tissue damages are not apparent and symptoms not yet present, and develop therapies to treat diseases early. Central to this strategy is the use of single-cell technologies that allow detection of molecular changes in cells at the time of phenotypical bifurcation from health to disease. In this article we describe a general procedure to support such an approach applied to neurodegenerative disorders. This procedure combines four components directed towards highly complementary objectives: 1) a high-performance single-cell proteomics (SCP) method (Detect), 2) the development of disease experimental cell models and predictive computational models of cell trajectories (Understand), 3) the discovery of specific targets and personalized therapies (Cure), and 4) the creation of a community of collaborating laboratories to accelerate the development of this novel medical paradigm (Collaborate). A global initiative named 37TrillionCells (37TC) was launched to advance the development of cell-based interception and precision medicine.
Collapse
Affiliation(s)
- Benoit Coulombe
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montreal, QC, H2W 1R7, Canada.
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada.
| | - Thomas M Durcan
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, Canada
| | - Geneviève Bernard
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, Canada
- Department Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montreal, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Asmae Moursli
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montreal, QC, H2W 1R7, Canada
| | - Christian Poitras
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montreal, QC, H2W 1R7, Canada
| | - Denis Faubert
- Mass Spectrometry and Proteomics Platform, Institut de Recherches Cliniques de Montréal, Montreal, QC, H2W1R7, Canada
| | - Maxime Pinard
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montreal, QC, H2W 1R7, Canada
| |
Collapse
|
6
|
Ruan DD, Ruan XL, Wang RL, Lin XF, Zhang YP, Lin B, Li SJ, Wu M, Chen Q, Zhang JH, Cheng Q, Zhang YW, Lin F, Luo JW, Zheng Z, Li YF. Clinical phenotype and genetic function analysis of a family with hypomyelinating leukodystrophy-7 caused by POLR3A mutation. Sci Rep 2024; 14:7638. [PMID: 38561452 PMCID: PMC10985069 DOI: 10.1038/s41598-024-58452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
Hypomyelinating leukodystrophy (HLD) is a rare genetic heterogeneous disease that can affect myelin development in the central nervous system. This study aims to analyze the clinical phenotype and genetic function of a family with HLD-7 caused by POLR3A mutation. The proband (IV6) in this family mainly showed progressive cognitive decline, dentin dysplasia, and hypogonadotropic hypogonadism. Her three old brothers (IV1, IV2, and IV4) also had different degrees of ataxia, dystonia, or dysarthria besides the aforementioned manifestations. Their brain magnetic resonance imaging showed bilateral periventricular white matter atrophy, brain atrophy, and corpus callosum atrophy and thinning. The proband and her two living brothers (IV2 and IV4) were detected to carry a homozygous mutation of the POLR3A (NM_007055.4) gene c. 2300G > T (p.Cys767Phe), and her consanguineous married parents (III1 and III2) were p.Cys767Phe heterozygous carriers. In the constructed POLR3A wild-type and p.Cys767Phe mutant cells, it was seen that overexpression of wild-type POLR3A protein significantly enhanced Pol III transcription of 5S rRNA and tRNA Leu-CAA. However, although the mutant POLR3A protein overexpression was increased compared to the wild-type protein overexpression, it did not show the expected further enhancement of Pol III function. On the contrary, Pol III transcription function was frustrated (POLR3A, BC200, and tRNA Leu-CAA expression decreased), and MBP and 18S rRNA expressions were decreased. This study indicates that the POLR3A p.Cys767Phe variant caused increased expression of mutated POLR3A protein and abnormal expression of Pol III transcripts, and the mutant POLR3A protein function was abnormal.
Collapse
Affiliation(s)
- Dan-Dan Ruan
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Xing-Lin Ruan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Ruo-Li Wang
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Institute of Emergency Medicine, Fujian Emergency Medical Center, Fuzhou, 350001, China
| | - Xin-Fu Lin
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Pediatrics Department, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Yan-Ping Zhang
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Bin Lin
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Shi-Jie Li
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Min Wu
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Qian Chen
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Jian-Hui Zhang
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Qiong Cheng
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Department of Neurology, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Yi-Wu Zhang
- Department of Neurology, Youxi County General Hospital, Sanming, 365100, China
| | - Fan Lin
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China.
- Department of Geriatric Medicine, Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, 350001, China.
| | - Jie-Wei Luo
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China.
| | - Zheng Zheng
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China.
- Department of Neurology, Fujian Provincial Hospital, Fuzhou, 350001, China.
| | - Yun-Fei Li
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China.
- Department of Neurology, Fujian Provincial Hospital, Fuzhou, 350001, China.
| |
Collapse
|
7
|
Iwata-Otsubo A, Skraban CM, Yoshimura A, Sakata T, Alves CAP, Fiordaliso SK, Kuroda Y, Vengoechea J, Grochowsky A, Ernste P, Lulis L, Nesbitt A, Tayoun AA, Gray C, Towne MC, Radtke K, Normand EA, Rhodes L, Seiler C, Shirahige K, Izumi K. Biallelic variants in GTF3C5, a regulator of RNA polymerase III-mediated transcription, cause a multisystem developmental disorder. Hum Genet 2024; 143:437-453. [PMID: 38520561 DOI: 10.1007/s00439-024-02656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/13/2024] [Indexed: 03/25/2024]
Abstract
General transcription factor IIIC subunit 5 (GTF3C5) encodes transcription factor IIIC63 (TFIIIC63). It binds to DNA to recruit another transcription factor, TFIIIB, and RNA polymerase III (Pol III) to mediate the transcription of small noncoding RNAs, such as tRNAs. Here, we report four individuals from three families presenting with a multisystem developmental disorder phenotype with biallelic variants in GTF3C5. The overlapping features include growth retardation, developmental delay, intellectual disability, dental anomalies, cerebellar malformations, delayed bone age, skeletal anomalies, and facial dysmorphism. Using lymphoblastoid cell lines (LCLs) from two affected individuals, we observed a reduction in TFIIIC63 protein levels compared to control LCLs. Genome binding of TFIIIC63 protein is also reduced in LCL from one of the affected individuals. Additionally, approximately 40% of Pol III binding regions exhibited reduction in the level of Pol III occupancy in the mutant genome relative to the control, while approximately 54% of target regions showed comparable levels of Pol III occupancy between the two, indicating partial impairment of Pol III occupancy in the mutant genome. Yeasts with subject-specific variants showed temperature sensitivity and impaired growth, supporting the notion that the identified variants have deleterious effects. gtf3c5 mutant zebrafish showed developmental defects, including a smaller body, head, and eyes. Taken together, our data show that GTF3C5 plays an important role in embryonic development, and that biallelic variants in this gene cause a multisystem developmental disorder. Our study adds GTF3C5-related disorder to the growing list of genetic disorders associated with Pol III transcription machinery.
Collapse
Affiliation(s)
- Aiko Iwata-Otsubo
- Division of Human Genetics/Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pathology, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA.
| | - Cara M Skraban
- Division of Human Genetics/Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Atsunori Yoshimura
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Toyonori Sakata
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Cesar Augusto P Alves
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Sarah K Fiordaliso
- Division of Human Genetics/Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Yukiko Kuroda
- Division of Human Genetics/Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jaime Vengoechea
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Angela Grochowsky
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Paige Ernste
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Invitae, San Francisco, CA, 94103, USA
| | - Lauren Lulis
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Addie Nesbitt
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Veritas Genetics, Danvers, MA, 01923, USA
| | - Ahmad Abou Tayoun
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Center for Genomic Discovery, Mohammed Bin Rashid University, Dubai Health, UAE
| | - Christopher Gray
- Division of Human Genetics/Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | | | | | | | | | - Christoph Seiler
- Zebrafish Core, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Kosuke Izumi
- Division of Human Genetics/Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Laboratory of Rare Disease Research, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.
- Division of Genetics and Metabolism, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-8573, USA.
| |
Collapse
|
8
|
Perrier S, Gauquelin L, Bernard G. Inherited white matter disorders: Hypomyelination (myelin disorders). HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:197-223. [PMID: 39322379 DOI: 10.1016/b978-0-323-99209-1.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Hypomyelinating leukodystrophies are a subset of genetic white matter diseases characterized by insufficient myelin deposition during development. MRI patterns are used to identify hypomyelinating disorders, and genetic testing is used to determine the causal genes implicated in individual disease forms. Clinical course can range from severe, with patients manifesting neurologic symptoms in infancy or early childhood, to mild, with onset in adolescence or adulthood. This chapter discusses the most common hypomyelinating leukodystrophies, including X-linked Pelizaeus-Merzbacher disease and other PLP1-related disorders, autosomal recessive Pelizaeus-Merzbacher-like disease, and POLR3-related leukodystrophy. PLP1-related disorders are caused by hemizygous pathogenic variants in the proteolipid protein 1 (PLP1) gene, and encompass classic Pelizaeus-Merzbacher disease, the severe connatal form, PLP1-null syndrome, spastic paraplegia type 2, and hypomyelination of early myelinating structures. Pelizaeus-Merzbacher-like disease presents a similar clinical picture to Pelizaeus-Merzbacher disease, however, it is caused by biallelic pathogenic variants in the GJC2 gene, which encodes for the gap junction protein Connexin-47. POLR3-related leukodystrophy, or 4H leukodystrophy (hypomyelination, hypodontia, and hypogonadotropic hypogonadism), is caused by biallelic pathogenic variants in genes encoding specific subunits of the transcription enzyme RNA polymerase III. In this chapter, the clinical features, disease pathophysiology and genetics, imaging patterns, as well as supportive and future therapies are discussed for each disorder.
Collapse
Affiliation(s)
- Stefanie Perrier
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Laurence Gauquelin
- Division of Pediatric Neurology, Department of Pediatrics, CHUL et Centre Mère-Enfant Soleil du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada; Departments of Pediatrics and Human Genetics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
9
|
Yang F, Sun H, Yang Y, Wang Y, Dai S, Lin Z, Shen Y, Liu H. Identification of POLR3B biallelic mutations-associated hypomyelinating leukodystrophy-8 in two siblings. Clin Genet 2023; 103:596-602. [PMID: 36650939 DOI: 10.1111/cge.14300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
POLR3B gene encodes the 2nd largest catalytic subunit and affects the function of RNA polymerase III enzymes in transcription. Bi-allelic variants in POLR3B pathogenically cause hypomyelinating leukodystrophy-8 (HLD8). Herein, we recruited a family with two patients, who presented clinically with cerebellar atrophy, intellectual disability, hypogonadotropic hypogonadism, and visual problems. We identified the two affected siblings carrying the compound heterozygous variations (c.165_167del; c.1615G>T) in POLR3B by trio-whole-exome sequencing (trio-WES). The qPCR and western blot showed that both transcriptional and translational levels of the mutation (c.165_167del, p.I55_K56delinsM) were sharply attenuated. Following that, a thorough functional examination of a zebrafish line disrupted for human POLR3B validated the pathogenic effects of the two mutations. Our research broadens the spectrum of HLD8-related pathogenic POLR3B mutations and provides new molecular and animal evidence.
Collapse
Affiliation(s)
- Fan Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Medical Genetics Department/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, China.,Medical Genetics/Prenatal Diagnostic Department, Luoyang Maternal and Child Health Hospital, Henan University, Luoyang, China
| | - Huaqin Sun
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, China.,Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yanting Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Medical Genetics Department/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, China
| | - Yanan Wang
- Medical Genetics/Prenatal Diagnostic Department, Luoyang Maternal and Child Health Hospital, Henan University, Luoyang, China
| | - Siyu Dai
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Medical Genetics Department/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, China
| | - Ziyuan Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, China.,Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ying Shen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, China.,Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hongqian Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Medical Genetics Department/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
The POLR3G Subunit of Human RNA Polymerase III Regulates Tumorigenesis and Metastasis in Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14235732. [PMID: 36497214 PMCID: PMC9735567 DOI: 10.3390/cancers14235732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
RNA polymerase (Pol) III transcribes short untranslated RNAs that contribute to the regulation of gene expression. Two isoforms of human Pol III have been described that differ by the presence of the POLR3G/RPC32α or POLR3GL/RPC32β subunits. POLR3G was found to be expressed in embryonic stem cells and at least a subset of transformed cells, whereas POLR3GL shows a ubiquitous expression pattern. Here, we demonstrate that POLR3G is specifically overexpressed in clinical samples of triple-negative breast cancer (TNBC) but not in other molecular subtypes of breast cancer. POLR3G KO in the MDA-MB231 TNBC cell line dramatically reduces anchorage-independent growth and invasive capabilities in vitro. In addition, the POLR3G KO impairs tumor growth and metastasis formation of orthotopic xenografts in mice. Moreover, KO of POLR3G induces expression of the pioneer transcription factor FOXA1 and androgen receptor. In contrast, the POLR3G KO neither alters proliferation nor the expression of epithelial-mesenchymal transition marker genes. These data demonstrate that POLR3G expression is required for TNBC tumor growth, invasiveness and dissemination and that its deletion affects triple-negative breast cancer-specific gene expression.
Collapse
|
11
|
Abstract
Idiopathic hypogonadotropic hypogonadism (IHH) is a group of rare developmental disorders characterized by low gonadotropin levels in the face of low sex steroid hormone concentrations. IHH is practically divided into two major groups according to the olfactory function: normal sense of smell (normosmia) nIHH, and reduced sense of smell (hyposmia/anosmia) Kallmann syndrome (KS). Although mutations in more than 50 genes have been associated with IHH so far, only half of those cases were explained by gene mutations. Various combinations of deleterious variants in different genes as causes of IHH have been increasingly recognized (Oligogenic etiology). In addition to the complexity of inheritance patterns, the spontaneous or sex steroid-induced clinical recovery from IHH, which is seen in approximately 10–20% of cases, blurs further the phenotype/genotype relationship in IHH, and poses challenging steps in new IHH gene discovery. Beyond helping for clinical diagnostics, identification of the genetic mutations in the pathophysiology of IHH is hoped to shed light on the central governance of the hypothalamo-pituitary-gonadal axis through life stages. This review aims to summarize the genetic etiology of IHH and discuss the clinical and physiological ramifications of the gene mutations.
Collapse
|
12
|
Oleari R, Massa V, Cariboni A, Lettieri A. The Differential Roles for Neurodevelopmental and Neuroendocrine Genes in Shaping GnRH Neuron Physiology and Deficiency. Int J Mol Sci 2021; 22:9425. [PMID: 34502334 PMCID: PMC8431607 DOI: 10.3390/ijms22179425] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/19/2023] Open
Abstract
Gonadotropin releasing hormone (GnRH) neurons are hypothalamic neuroendocrine cells that control sexual reproduction. During embryonic development, GnRH neurons migrate from the nose to the hypothalamus, where they receive inputs from several afferent neurons, following the axonal scaffold patterned by nasal nerves. Each step of GnRH neuron development depends on the orchestrated action of several molecules exerting specific biological functions. Mutations in genes encoding for these essential molecules may cause Congenital Hypogonadotropic Hypogonadism (CHH), a rare disorder characterized by GnRH deficiency, delayed puberty and infertility. Depending on their action in the GnRH neuronal system, CHH causative genes can be divided into neurodevelopmental and neuroendocrine genes. The CHH genetic complexity, combined with multiple inheritance patterns, results in an extreme phenotypic variability of CHH patients. In this review, we aim at providing a comprehensive and updated description of the genes thus far associated with CHH, by dissecting their biological relevance in the GnRH system and their functional relevance underlying CHH pathogenesis.
Collapse
Affiliation(s)
- Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy;
| | - Valentina Massa
- Department of Health Sciences, University of Milan, 20142 Milano, Italy;
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milano, Italy
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy;
| | - Antonella Lettieri
- Department of Health Sciences, University of Milan, 20142 Milano, Italy;
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milano, Italy
| |
Collapse
|
13
|
Lata E, Choquet K, Sagliocco F, Brais B, Bernard G, Teichmann M. RNA Polymerase III Subunit Mutations in Genetic Diseases. Front Mol Biosci 2021; 8:696438. [PMID: 34395528 PMCID: PMC8362101 DOI: 10.3389/fmolb.2021.696438] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
RNA polymerase (Pol) III transcribes small untranslated RNAs such as 5S ribosomal RNA, transfer RNAs, and U6 small nuclear RNA. Because of the functions of these RNAs, Pol III transcription is best known for its essential contribution to RNA maturation and translation. Surprisingly, it was discovered in the last decade that various inherited mutations in genes encoding nine distinct subunits of Pol III cause tissue-specific diseases rather than a general failure of all vital functions. Mutations in the POLR3A, POLR3C, POLR3E and POLR3F subunits are associated with susceptibility to varicella zoster virus-induced encephalitis and pneumonitis. In addition, an ever-increasing number of distinct mutations in the POLR3A, POLR3B, POLR1C and POLR3K subunits cause a spectrum of neurodegenerative diseases, which includes most notably hypomyelinating leukodystrophy. Furthermore, other rare diseases are also associated with mutations in genes encoding subunits of Pol III (POLR3H, POLR3GL) and the BRF1 component of the TFIIIB transcription initiation factor. Although the causal relationship between these mutations and disease development is widely accepted, the exact molecular mechanisms underlying disease pathogenesis remain enigmatic. Here, we review the current knowledge on the functional impact of specific mutations, possible Pol III-related disease-causing mechanisms, and animal models that may help to better understand the links between Pol III mutations and disease.
Collapse
Affiliation(s)
- Elisabeth Lata
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| | - Karine Choquet
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Francis Sagliocco
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| | - Bernard Brais
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Geneviève Bernard
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, QC, Canada
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Martin Teichmann
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| |
Collapse
|
14
|
Coulombe B, Derksen A, La Piana R, Brais B, Gauthier MS, Bernard G. POLR3-related leukodystrophy: How do mutations affecting RNA polymerase III subunits cause hypomyelination? Fac Rev 2021; 10:12. [PMID: 33659930 PMCID: PMC7894263 DOI: 10.12703/r/10-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Hypomyelinating leukodystrophies are a group of genetic disorders characterized by insufficient myelin deposition during development. A subset of hypomyelinating leukodystrophies, named RNA polymerase III (Pol III or POLR3)-related leukodystrophy or 4H (Hypomyelination, Hypodontia and Hypogonadotropic Hypogonadism) leukodystrophy, was found to be caused by biallelic variants in genes encoding subunits of the enzyme Pol III, including POLR3A, POLR3B, POLR3K, and POLR1C. Pol III is one of the three nuclear RNA polymerases that synthesizes small non-coding RNAs, such as tRNAs, 5S RNA, and others, that are involved in the regulation of essential cellular processes, including transcription, translation and RNA maturation. Affinity purification coupled with mass spectrometry (AP-MS) revealed that a number of mutations causing POLR3-related leukodystrophy impair normal assembly or biogenesis of Pol III, often causing a retention of the unassembled subunits in the cytoplasm. Even though these proteomic studies have helped to understand the molecular defects associated with leukodystrophy, how these mutations cause hypomyelination has yet to be defined. In this review we propose two main hypotheses to explain how mutations affecting Pol III subunits can cause hypomyelination.
Collapse
Affiliation(s)
- Benoit Coulombe
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
| | - Alexa Derksen
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Roberta La Piana
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Diagnostic Radiology, McGill University, Montréal, QC, Canada
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Marie-Soleil Gauthier
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
| | - Geneviève Bernard
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Department of Pediatrics, McGill University, Montréal, QC, Canada
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montréal, QC, Canada
| |
Collapse
|
15
|
Abstract
In this review, Yeganeh et al. summarize different human diseases that have been linked to defects in the Pol III transcription apparatus or to Pol III products imbalance and discuss the possible underlying mechanisms. RNA polymerase (Pol) III is responsible for transcription of different noncoding genes in eukaryotic cells, whose RNA products have well-defined functions in translation and other biological processes for some, and functions that remain to be defined for others. For all of them, however, new functions are being described. For example, Pol III products have been reported to regulate certain proteins such as protein kinase R (PKR) by direct association, to constitute the source of very short RNAs with regulatory roles in gene expression, or to control microRNA levels by sequestration. Consistent with these many functions, deregulation of Pol III transcribed genes is associated with a large variety of human disorders. Here we review different human diseases that have been linked to defects in the Pol III transcription apparatus or to Pol III products imbalance and discuss the possible underlying mechanisms.
Collapse
Affiliation(s)
- Meghdad Yeganeh
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Functions of paralogous RNA polymerase III subunits POLR3G and POLR3GL in mouse development. Proc Natl Acad Sci U S A 2020; 117:15702-15711. [PMID: 32576691 DOI: 10.1073/pnas.1922821117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mammalian cells contain two isoforms of RNA polymerase III (Pol III) that differ in only a single subunit, with POLR3G in one form (Pol IIIα) and the related POLR3GL in the other form (Pol IIIβ). Previous research indicates that POLR3G and POLR3GL are differentially expressed, with POLR3G expression being highly enriched in embryonic stem cells (ESCs) and tumor cells relative to the ubiquitously expressed POLR3GL. To date, the functional differences between these two subunits remain largely unexplored, especially in vivo. Here, we show that POLR3G and POLR3GL containing Pol III complexes bind the same target genes and assume the same functions both in vitro and in vivo and, to a significant degree, can compensate for each other in vivo. Notably, an observed defect in the differentiation ability of POLR3G knockout ESCs can be rescued by exogenous expression of POLR3GL. Moreover, whereas POLR3G knockout mice die at a very early embryonic stage, POLR3GL knockout mice complete embryonic development without noticeable defects but die at about 3 wk after birth with signs of both general growth defects and potential cerebellum-related neuronal defects. The different phenotypes of the knockout mice likely reflect differential expression levels of POLR3G and POLR3GL across developmental stages and between tissues and insufficient amounts of total Pol III in vivo.
Collapse
|
17
|
Verberne EA, Dalen Meurs L, Wolf NI, van Haelst MM. 4H leukodystrophy caused by a homozygous POLR3B mutation: Further delineation of the phenotype. Am J Med Genet A 2020; 182:1776-1779. [PMID: 32319736 PMCID: PMC7318643 DOI: 10.1002/ajmg.a.61600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/13/2020] [Accepted: 04/01/2020] [Indexed: 11/11/2022]
Abstract
4H leukodystrophy, also known as Pol III-related leukodystrophy, is a rare autosomal recessive neurodegenerative disorder characterized by hypomyelination, hypodontia, and hypogonadotropic hypogonadism. It is caused by biallelic mutations in POLR3A, POL3RB, or POLR1C. So far, only two patients have been described with homozygosity for the common c.1568T>A (p.Val523Glu) POLR3B mutation, both of them showing a remarkably mild clinical course. Here, we report another patient with homozygosity for the same mutation, but with a more severe phenotype including ataxia, developmental delay, and intellectual disability. This information is of importance for clinicians to provide comprehensive counseling to patients with 4H leukodystrophy and their families.
Collapse
Affiliation(s)
- Eline A Verberne
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Lotje Dalen Meurs
- Department of Pediatrics, Fundashon Mariadal, Kralendijk, Bonaire, Netherlands.,Department of Pediatrics, Meander Medical Centre, Amersfoort, Netherlands
| | - Nicole I Wolf
- Department of Child Neurology, Emma Children's Hospital, Amsterdam UMC, and Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, Netherlands
| | - Mieke M van Haelst
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
18
|
de Assis Pereira Matos PCA, Gama MTD, Bezerra MLE, da Rocha AJ, Barsottini OGP, Pedroso JL. POLR3A-Related Disorder Presenting with Late-Onset Dystonia and Spastic Paraplegia. Mov Disord Clin Pract 2020; 7:467-469. [PMID: 32373668 DOI: 10.1002/mdc3.12945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 11/09/2022] Open
Affiliation(s)
| | | | | | - Antônio José da Rocha
- Department of Radiology, Faculdade de Ciências Médicas da Santa Casa de São Paulo São Paulo Brazil
| | | | - José Luiz Pedroso
- Department of Neurology, Ataxia Unit Universidade Federal de São Paulo São Paulo Brazil
| |
Collapse
|
19
|
França MM, Mendonca BB. Genetics of Primary Ovarian Insufficiency in the Next-Generation Sequencing Era. J Endocr Soc 2020; 4:bvz037. [PMID: 32099950 PMCID: PMC7033037 DOI: 10.1210/jendso/bvz037] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/17/2019] [Indexed: 01/12/2023] Open
Abstract
Primary ovarian insufficiency (POI) is characterized by amenorrhea, increased follicle-stimulating hormone (FSH) levels, and hypoestrogenism, leading to infertility before the age of 40 years. Elucidating the cause of POI is a key point for diagnosing and treating affected women. Here, we review the genetic etiology of POI, highlighting new genes identified in the last few years using next-generation sequencing (NGS) approaches. We searched the MEDLINE/PubMed, Cochrane, and Web of Science databases for articles published in or translated to English. Several genes were found to be associated with POI genetic etiology in humans and animal models (SPIDR, BMPR2, MSH4, MSH5, GJA4, FANCM, POLR2C, MRPS22, KHDRBS1, BNC1, WDR62, ATG7/ATG9, BRCA2, NOTCH2, POLR3H, and TP63). The heterogeneity of POI etiology has been revealed to be remarkable in the NGS era, and discoveries have indicated that meiosis and DNA repair play key roles in POI development.
Collapse
Affiliation(s)
- Monica Malheiros França
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Berenice Bilharinho Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
20
|
Ayoubi LE, Dumay-Odelot H, Chernev A, Boissier F, Minvielle-Sébastia L, Urlaub H, Fribourg S, Teichmann M. The hRPC62 subunit of human RNA polymerase III displays helicase activity. Nucleic Acids Res 2019; 47:10313-10326. [PMID: 31529052 PMCID: PMC6821166 DOI: 10.1093/nar/gkz788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 08/30/2019] [Accepted: 09/12/2019] [Indexed: 11/20/2022] Open
Abstract
In Eukaryotes, tRNAs, 5S RNA and U6 RNA are transcribed by RNA polymerase (Pol) III. Human Pol III is composed of 17 subunits. Three specific Pol III subunits form a stable ternary subcomplex (RPC62-RPC39-RPC32α/β) being involved in pre-initiation complex formation. No paralogues for subunits of this subcomplex subunits have been found in Pols I or II, but hRPC62 was shown to be structurally related to the general Pol II transcription factor hTFIIEα. Here we show that these structural homologies extend to functional similarities. hRPC62 as well as hTFIIEα possess intrinsic ATP-dependent 3′-5′ DNA unwinding activity. The ATPase activities of both proteins are stimulated by single-stranded DNA. Moreover, the eWH domain of hTFIIEα can replace the first eWH (eWH1) domain of hRPC62 in ATPase and DNA unwinding assays. Our results identify intrinsic enzymatic activities in hRPC62 and hTFIIEα.
Collapse
Affiliation(s)
- Leyla El Ayoubi
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, 33000 Bordeaux, France
| | - Hélène Dumay-Odelot
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, 33000 Bordeaux, France
- Correspondence may also be addressed to Hélène Dumay-Odelot.
| | - Aleksandar Chernev
- Max Planck Institute for Biophysical Chemistry, Research group Mass Spectrometry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Fanny Boissier
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, 33000 Bordeaux, France
| | | | - Henning Urlaub
- Max Planck Institute for Biophysical Chemistry, Research group Mass Spectrometry, Am Faßberg 11, 37077 Göttingen, Germany
- Bioanalytics, Institute for Clinical Chemistry, University Medical Center, Robert-Koch-Strasse 420, 37075 Göttingen, Germany
| | - Sébastien Fribourg
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, 33000 Bordeaux, France
| | - Martin Teichmann
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, 33000 Bordeaux, France
- To whom correspondence should be addressed. Tel: +33 5 5757 4647;
| |
Collapse
|
21
|
Petrie JL, Swan C, Ingram RM, Frame FM, Collins AT, Dumay-Odelot H, Teichmann M, Maitland NJ, White RJ. Effects on prostate cancer cells of targeting RNA polymerase III. Nucleic Acids Res 2019; 47:3937-3956. [PMID: 30820548 PMCID: PMC6486637 DOI: 10.1093/nar/gkz128] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/13/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
RNA polymerase (pol) III occurs in two forms, containing either the POLR3G subunit or the related paralogue POLR3GL. Whereas POLR3GL is ubiquitous, POLR3G is enriched in undifferentiated cells. Depletion of POLR3G selectively triggers proliferative arrest and differentiation of prostate cancer cells, responses not elicited when POLR3GL is depleted. A small molecule pol III inhibitor can cause POLR3G depletion, induce similar differentiation and suppress proliferation and viability of cancer cells. This response involves control of the fate-determining factor NANOG by small RNAs derived from Alu short interspersed nuclear elements. Tumour initiating activity in vivo can be reduced by transient exposure to the pol III inhibitor. Untransformed prostate cells appear less sensitive than cancer cells to pol III depletion or inhibition, raising the possibility of a therapeutic window.
Collapse
Affiliation(s)
- John L Petrie
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Caroline Swan
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Richard M Ingram
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Fiona M Frame
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Anne T Collins
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Hélène Dumay-Odelot
- Université de Bordeaux, ARNA Laboratory, F-33076 Bordeaux, France INSERM, U1212 - CNRS UMR 5320, ARNA Laboratory, F-33000 Bordeaux, France
| | - Martin Teichmann
- Université de Bordeaux, ARNA Laboratory, F-33076 Bordeaux, France INSERM, U1212 - CNRS UMR 5320, ARNA Laboratory, F-33000 Bordeaux, France
| | - Norman J Maitland
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Robert J White
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
22
|
Wu S, Bai Z, Dong X, Yang D, Chen H, Hua J, Zhou L, Lv H. Novel mutations of the POLR3A gene caused POLR3-related leukodystrophy in a Chinese family: a case report. BMC Pediatr 2019; 19:289. [PMID: 31438894 PMCID: PMC6704677 DOI: 10.1186/s12887-019-1656-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022] Open
Abstract
Background POLR3-related leukodystrophy is an autosomal recessive neurodegenerative disorder characterized by onset time ranging from the neonatal period to late childhood, progressive motor decline that manifests as spasticity, ataxia, tremor, and cerebellar symptoms, as well as mild cognitive regression and hypodontia. POLR3-related leukodystrophy belongs to the family of RNA polymerase III-related leukodystrophy, which are caused by biallelic mutations in the POLR3A, POLR3B, POLRC1, or POLR3K genes. Case presentation In this study, we report a female child with POLR3-related leukodystrophy manifesting as cognitive decline, moderate dysarthria, motor decline, cerebellar syndrome, short stature, dysphagia, hypodontia, and mild delayed myelination by brain imaging. Interestingly, polytrichia and bronchodysplasia were first observed in a POLR3-related leukodystrophy patient. Medical exome sequencing with high coverage depth was employed to identify potential genetic variants in the patient. Novel compound heterozygous mutations of the POLR3A gene, c.1771-6C > G and c.2611del (p.M871Cfs*8), were detected. One of them is an uncommon splice site mutation, and this is the first report of this mutation in a Chinese family. The father was determined to be a heterozygous carrier of the c.2611del (p.M871Cfs*8) mutation and the mother a heterozygous carrier of the c.1771-6C > G mutation. Conclusion The patient’s newly emerged clinical features and mutations provide useful information for further exploration of genotype-phenotype correlations of POLR3-related leukodystrophy.
Collapse
Affiliation(s)
- Shuiyan Wu
- Department of Intensive Care Unit, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhenjiang Bai
- Department of Intensive Care Unit, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xingqiang Dong
- Department of Intensive Care Unit, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Daoping Yang
- Department of Intensive Care Unit, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hongmei Chen
- Department of Intensive Care Unit, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jun Hua
- Department of Intensive Care Unit, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Libing Zhou
- Department of Intensive Care Unit, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Haitao Lv
- Department of Cardiovascular Medicine, Children's Hospital of Soochow University, No.92, Zhongnan street, Suzhou Industrial Park, Suzhou, Jiangsu, China.
| |
Collapse
|
23
|
Franca MM, Han X, Funari MFA, Lerario AM, Nishi MY, Fontenele EGP, Domenice S, Jorge AAL, Garcia-Galiano D, Elias CF, Mendonca BB. Exome Sequencing Reveals the POLR3H Gene as a Novel Cause of Primary Ovarian Insufficiency. J Clin Endocrinol Metab 2019; 104:2827-2841. [PMID: 30830215 PMCID: PMC6543511 DOI: 10.1210/jc.2018-02485] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/26/2019] [Indexed: 12/21/2022]
Abstract
CONTEXT Primary ovarian insufficiency (POI) is a cause of female infertility. However, the genetic etiology of this disorder remains unknown in most patients with POI. OBJECTIVE To investigate the genetic etiology of idiopathic POI. PATIENTS AND METHODS We performed whole-exome sequencing of 11 families with idiopathic POI. To gain insights into the potential mechanisms associated with this mutation, we generated two mouse lines via clustered regularly interspaced short palindromic repeats/Cas9 technology. RESULTS A pathogenic homozygous missense mutation (c.149A>G; p.Asp50Gly) in the POLR3H gene in two unrelated families was identified. Pathogenic mutations in this subunit have not been associated with human disorders. Loss-of-function Polr3h mutation in mice caused early embryonic lethality. Mice with homozygous point mutation (Polr3hD50G) were viable but showed delayed pubertal development, characterized by late first estrus or preputial separation. The Polr3hD50G female and male mice showed decreased fertility later in life, associated with small litter size and increased time to pregnancy or to impregnate a female. Polr3hD50G mice displayed decreased expression of ovarian Foxo3a and lower numbers of primary follicles. CONCLUSION Our manuscript provides a case of POI caused by missense mutation in POLR3H, expanding the knowledge of molecular pathways of the ovarian function and human infertility. Screening of the POLR3H gene may elucidate POI cases without previously identified genetic causes, supporting approaches of genetic counseling.
Collapse
Affiliation(s)
- Monica M Franca
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Xingfa Han
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Isotope Research Laboratory, Sichuan Agricultural University, Ya’an, China
| | - Mariana F A Funari
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Antonio M Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan
| | - Mirian Y Nishi
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
- Laboratorio de Sequenciamento em Larga Escala, Faculdade de Medicina Universidade de São Paulo, São Paulo, SP, Brazil
| | - Eveline G P Fontenele
- Serviço de Endocrinologia e Diabetes do Hospital Universitario Walter Cantidio, Universidade Federal do Ceara, Fortaleza, CE, Brazil
| | - Sorahia Domenice
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alexander A L Jorge
- Unidade de Endocrinologia Genetica/LIM25, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - David Garcia-Galiano
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Carol F Elias
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
- Correspondence and Reprint Requests: Berenice B. Mendonca, MD, PhD, Hospital das Clinicas, Laboratorio de Hormonios e Genetica Molecular, Avenida Doutor Eneas de Carvalho Aguiar, 155, 2nd Andar, Bloco 6 CEP: 05403-900, São Paulo, Brazil. E-mail: ; or Carol F. Elias, PhD, 1137 East Catherine Street, 7732B Med Sci II, Ann Arbor, Michigan 48109-5622. E-mail:
| | - Berenice B Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
- Laboratorio de Sequenciamento em Larga Escala, Faculdade de Medicina Universidade de São Paulo, São Paulo, SP, Brazil
- Correspondence and Reprint Requests: Berenice B. Mendonca, MD, PhD, Hospital das Clinicas, Laboratorio de Hormonios e Genetica Molecular, Avenida Doutor Eneas de Carvalho Aguiar, 155, 2nd Andar, Bloco 6 CEP: 05403-900, São Paulo, Brazil. E-mail: ; or Carol F. Elias, PhD, 1137 East Catherine Street, 7732B Med Sci II, Ann Arbor, Michigan 48109-5622. E-mail:
| |
Collapse
|
24
|
Wambach JA, Wegner DJ, Patni N, Kircher M, Willing MC, Baldridge D, Xing C, Agarwal AK, Vergano SAS, Patel C, Grange DK, Kenney A, Najaf T, Nickerson DA, Bamshad MJ, Cole FS, Garg A. Bi-allelic POLR3A Loss-of-Function Variants Cause Autosomal-Recessive Wiedemann-Rautenstrauch Syndrome. Am J Hum Genet 2018; 103:968-975. [PMID: 30414627 PMCID: PMC6288318 DOI: 10.1016/j.ajhg.2018.10.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/09/2018] [Indexed: 12/31/2022] Open
Abstract
Wiedemann-Rautenstrauch syndrome (WRS), also known as neonatal progeroid syndrome, is a rare disorder of unknown etiology. It has been proposed to be autosomal-recessive and is characterized by variable clinical features, such as intrauterine growth restriction and poor postnatal weight gain, characteristic facial features (triangular appearance to the face, convex nasal profile or pinched nose, and small mouth), widened fontanelles, pseudohydrocephalus, prominent scalp veins, lipodystrophy, and teeth abnormalities. A previous report described a single WRS patient with bi-allelic truncating and splicing variants in POLR3A. Here we present seven additional infants, children, and adults with WRS and bi-allelic truncating and/or splicing variants in POLR3A. POLR3A, the largest subunit of RNA polymerase III, is a DNA-directed RNA polymerase that transcribes many small noncoding RNAs that regulate transcription, RNA processing, and translation. Bi-allelic missense variants in POLR3A have been associated with phenotypes distinct from WRS: hypogonadotropic hypogonadism and hypomyelinating leukodystrophy with or without oligodontia. Our findings confirm the association of bi-allelic POLR3A variants with WRS, expand the clinical phenotype of WRS, and suggest specific POLR3A genotypes associated with WRS and hypomyelinating leukodystrophy.
Collapse
Affiliation(s)
- Jennifer A Wambach
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; St. Louis Children's Hospital, St. Louis, MO 63110, USA.
| | - Daniel J Wegner
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Nivedita Patni
- Department of Pediatrics and Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Martin Kircher
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Marcia C Willing
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Dustin Baldridge
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Chao Xing
- McDermott Center for Human Growth and Development, Department of Bioinformatics and Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anil K Agarwal
- Division of Nutrition Metabolic Diseases, Department of Internal Medicine, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samantha A Schrier Vergano
- Division of Medical Genetics and Metabolism, Children's Hospital of The King's Daughters, Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD 4029, Australia
| | - Dorothy K Grange
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Amy Kenney
- Division of Medical Genetics and Metabolism, Children's Hospital of The King's Daughters, Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Tasnim Najaf
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; St. Louis Children's Hospital, St. Louis, MO 63110, USA; Fetal Care Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Michael J Bamshad
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - F Sessions Cole
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Abhimanyu Garg
- Division of Nutrition Metabolic Diseases, Department of Internal Medicine, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
25
|
Dorboz I, Dumay-Odelot H, Boussaid K, Bouyacoub Y, Barreau P, Samaan S, Jmel H, Eymard-Pierre E, Cances C, Bar C, Poulat AL, Rousselle C, Renaldo F, Elmaleh-Bergès M, Teichmann M, Boespflug-Tanguy O. Mutation in POLR3K causes hypomyelinating leukodystrophy and abnormal ribosomal RNA regulation. NEUROLOGY-GENETICS 2018; 4:e289. [PMID: 30584594 PMCID: PMC6283457 DOI: 10.1212/nxg.0000000000000289] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/05/2018] [Indexed: 11/17/2022]
Abstract
Objective To identify the genetic cause of hypomyelinating leukodystrophy in 2 consanguineous families. Methods Homozygosity mapping combined with whole-exome sequencing of consanguineous families was performed. Mutation consequences were determined by studying the structural change of the protein and by the RNA analysis of patients' fibroblasts. Results We identified a biallelic mutation in a gene coding for a Pol III–specific subunit, POLR3K (c.121C>T/p.Arg41Trp), that cosegregates with the disease in 2 unrelated patients. Patients expressed neurologic and extraneurologic signs found in POLR3A- and POLR3B-related leukodystrophies with a peculiar severe digestive dysfunction. The mutation impaired the POLR3K-POLR3B interactions resulting in zebrafish in abnormal gut development. Functional studies in the 2 patients' fibroblasts revealed a severe decrease (60%–80%) in the expression of 5S and 7S ribosomal RNAs in comparison with control. Conclusions These analyses underlined the key role of ribosomal RNA regulation in the development and maintenance of the white matter and the cerebellum as already reported for diseases related to genes involved in transfer RNA or translation initiation factors.
Collapse
Affiliation(s)
- Imen Dorboz
- INSERM UMR 1141 PROTECT (I.D., P.B., S.S., O.B.-T.), Université Paris Diderot- Sorbonne Paris Cité; INSERM U1212-CNRS UMR 5320 (H.D.-O., M.T.), Université de Bordeaux; Neurologie Pédiatrique et Maladies Métaboliques (K.B., F.R., O.B-.T.), Centre de référence des leucodystrophies et leucoencéphalopathies de cause rare (LEUKOFRANCE), CHU APHP Robert-Debré, Paris, France; LR11IPT05, Biomedical Genomics and Oncogenetics Laboratory (H.J., Y.B.), Institut Pasteur de Tunis; Department of Medical Genetics, UF Molecular Genetics (S.S.), CHU APHP Robert-Debré Paris; Service de Cytogénétique Médicale (E.E.P.), CHU Clermont-Ferrand; Neurologie Pédiatrique (C.C.), Endocrinologie Pédiatrique (C.B.), CHU Hôpital des Enfants, Toulouse; Hôpital Femme Mère Enfant, Neurologie Pédiatrique (A.L.P., C.R.), Hospices Civils de Lyon, Bron; Department of Pediatric Radiology (M.E.-B.), CHU APHP Robert-Debré, Paris, France
| | - Hélene Dumay-Odelot
- INSERM UMR 1141 PROTECT (I.D., P.B., S.S., O.B.-T.), Université Paris Diderot- Sorbonne Paris Cité; INSERM U1212-CNRS UMR 5320 (H.D.-O., M.T.), Université de Bordeaux; Neurologie Pédiatrique et Maladies Métaboliques (K.B., F.R., O.B-.T.), Centre de référence des leucodystrophies et leucoencéphalopathies de cause rare (LEUKOFRANCE), CHU APHP Robert-Debré, Paris, France; LR11IPT05, Biomedical Genomics and Oncogenetics Laboratory (H.J., Y.B.), Institut Pasteur de Tunis; Department of Medical Genetics, UF Molecular Genetics (S.S.), CHU APHP Robert-Debré Paris; Service de Cytogénétique Médicale (E.E.P.), CHU Clermont-Ferrand; Neurologie Pédiatrique (C.C.), Endocrinologie Pédiatrique (C.B.), CHU Hôpital des Enfants, Toulouse; Hôpital Femme Mère Enfant, Neurologie Pédiatrique (A.L.P., C.R.), Hospices Civils de Lyon, Bron; Department of Pediatric Radiology (M.E.-B.), CHU APHP Robert-Debré, Paris, France
| | - Karima Boussaid
- INSERM UMR 1141 PROTECT (I.D., P.B., S.S., O.B.-T.), Université Paris Diderot- Sorbonne Paris Cité; INSERM U1212-CNRS UMR 5320 (H.D.-O., M.T.), Université de Bordeaux; Neurologie Pédiatrique et Maladies Métaboliques (K.B., F.R., O.B-.T.), Centre de référence des leucodystrophies et leucoencéphalopathies de cause rare (LEUKOFRANCE), CHU APHP Robert-Debré, Paris, France; LR11IPT05, Biomedical Genomics and Oncogenetics Laboratory (H.J., Y.B.), Institut Pasteur de Tunis; Department of Medical Genetics, UF Molecular Genetics (S.S.), CHU APHP Robert-Debré Paris; Service de Cytogénétique Médicale (E.E.P.), CHU Clermont-Ferrand; Neurologie Pédiatrique (C.C.), Endocrinologie Pédiatrique (C.B.), CHU Hôpital des Enfants, Toulouse; Hôpital Femme Mère Enfant, Neurologie Pédiatrique (A.L.P., C.R.), Hospices Civils de Lyon, Bron; Department of Pediatric Radiology (M.E.-B.), CHU APHP Robert-Debré, Paris, France
| | - Yosra Bouyacoub
- INSERM UMR 1141 PROTECT (I.D., P.B., S.S., O.B.-T.), Université Paris Diderot- Sorbonne Paris Cité; INSERM U1212-CNRS UMR 5320 (H.D.-O., M.T.), Université de Bordeaux; Neurologie Pédiatrique et Maladies Métaboliques (K.B., F.R., O.B-.T.), Centre de référence des leucodystrophies et leucoencéphalopathies de cause rare (LEUKOFRANCE), CHU APHP Robert-Debré, Paris, France; LR11IPT05, Biomedical Genomics and Oncogenetics Laboratory (H.J., Y.B.), Institut Pasteur de Tunis; Department of Medical Genetics, UF Molecular Genetics (S.S.), CHU APHP Robert-Debré Paris; Service de Cytogénétique Médicale (E.E.P.), CHU Clermont-Ferrand; Neurologie Pédiatrique (C.C.), Endocrinologie Pédiatrique (C.B.), CHU Hôpital des Enfants, Toulouse; Hôpital Femme Mère Enfant, Neurologie Pédiatrique (A.L.P., C.R.), Hospices Civils de Lyon, Bron; Department of Pediatric Radiology (M.E.-B.), CHU APHP Robert-Debré, Paris, France
| | - Pauline Barreau
- INSERM UMR 1141 PROTECT (I.D., P.B., S.S., O.B.-T.), Université Paris Diderot- Sorbonne Paris Cité; INSERM U1212-CNRS UMR 5320 (H.D.-O., M.T.), Université de Bordeaux; Neurologie Pédiatrique et Maladies Métaboliques (K.B., F.R., O.B-.T.), Centre de référence des leucodystrophies et leucoencéphalopathies de cause rare (LEUKOFRANCE), CHU APHP Robert-Debré, Paris, France; LR11IPT05, Biomedical Genomics and Oncogenetics Laboratory (H.J., Y.B.), Institut Pasteur de Tunis; Department of Medical Genetics, UF Molecular Genetics (S.S.), CHU APHP Robert-Debré Paris; Service de Cytogénétique Médicale (E.E.P.), CHU Clermont-Ferrand; Neurologie Pédiatrique (C.C.), Endocrinologie Pédiatrique (C.B.), CHU Hôpital des Enfants, Toulouse; Hôpital Femme Mère Enfant, Neurologie Pédiatrique (A.L.P., C.R.), Hospices Civils de Lyon, Bron; Department of Pediatric Radiology (M.E.-B.), CHU APHP Robert-Debré, Paris, France
| | - Simon Samaan
- INSERM UMR 1141 PROTECT (I.D., P.B., S.S., O.B.-T.), Université Paris Diderot- Sorbonne Paris Cité; INSERM U1212-CNRS UMR 5320 (H.D.-O., M.T.), Université de Bordeaux; Neurologie Pédiatrique et Maladies Métaboliques (K.B., F.R., O.B-.T.), Centre de référence des leucodystrophies et leucoencéphalopathies de cause rare (LEUKOFRANCE), CHU APHP Robert-Debré, Paris, France; LR11IPT05, Biomedical Genomics and Oncogenetics Laboratory (H.J., Y.B.), Institut Pasteur de Tunis; Department of Medical Genetics, UF Molecular Genetics (S.S.), CHU APHP Robert-Debré Paris; Service de Cytogénétique Médicale (E.E.P.), CHU Clermont-Ferrand; Neurologie Pédiatrique (C.C.), Endocrinologie Pédiatrique (C.B.), CHU Hôpital des Enfants, Toulouse; Hôpital Femme Mère Enfant, Neurologie Pédiatrique (A.L.P., C.R.), Hospices Civils de Lyon, Bron; Department of Pediatric Radiology (M.E.-B.), CHU APHP Robert-Debré, Paris, France
| | - Haifa Jmel
- INSERM UMR 1141 PROTECT (I.D., P.B., S.S., O.B.-T.), Université Paris Diderot- Sorbonne Paris Cité; INSERM U1212-CNRS UMR 5320 (H.D.-O., M.T.), Université de Bordeaux; Neurologie Pédiatrique et Maladies Métaboliques (K.B., F.R., O.B-.T.), Centre de référence des leucodystrophies et leucoencéphalopathies de cause rare (LEUKOFRANCE), CHU APHP Robert-Debré, Paris, France; LR11IPT05, Biomedical Genomics and Oncogenetics Laboratory (H.J., Y.B.), Institut Pasteur de Tunis; Department of Medical Genetics, UF Molecular Genetics (S.S.), CHU APHP Robert-Debré Paris; Service de Cytogénétique Médicale (E.E.P.), CHU Clermont-Ferrand; Neurologie Pédiatrique (C.C.), Endocrinologie Pédiatrique (C.B.), CHU Hôpital des Enfants, Toulouse; Hôpital Femme Mère Enfant, Neurologie Pédiatrique (A.L.P., C.R.), Hospices Civils de Lyon, Bron; Department of Pediatric Radiology (M.E.-B.), CHU APHP Robert-Debré, Paris, France
| | - Eleonore Eymard-Pierre
- INSERM UMR 1141 PROTECT (I.D., P.B., S.S., O.B.-T.), Université Paris Diderot- Sorbonne Paris Cité; INSERM U1212-CNRS UMR 5320 (H.D.-O., M.T.), Université de Bordeaux; Neurologie Pédiatrique et Maladies Métaboliques (K.B., F.R., O.B-.T.), Centre de référence des leucodystrophies et leucoencéphalopathies de cause rare (LEUKOFRANCE), CHU APHP Robert-Debré, Paris, France; LR11IPT05, Biomedical Genomics and Oncogenetics Laboratory (H.J., Y.B.), Institut Pasteur de Tunis; Department of Medical Genetics, UF Molecular Genetics (S.S.), CHU APHP Robert-Debré Paris; Service de Cytogénétique Médicale (E.E.P.), CHU Clermont-Ferrand; Neurologie Pédiatrique (C.C.), Endocrinologie Pédiatrique (C.B.), CHU Hôpital des Enfants, Toulouse; Hôpital Femme Mère Enfant, Neurologie Pédiatrique (A.L.P., C.R.), Hospices Civils de Lyon, Bron; Department of Pediatric Radiology (M.E.-B.), CHU APHP Robert-Debré, Paris, France
| | - Claude Cances
- INSERM UMR 1141 PROTECT (I.D., P.B., S.S., O.B.-T.), Université Paris Diderot- Sorbonne Paris Cité; INSERM U1212-CNRS UMR 5320 (H.D.-O., M.T.), Université de Bordeaux; Neurologie Pédiatrique et Maladies Métaboliques (K.B., F.R., O.B-.T.), Centre de référence des leucodystrophies et leucoencéphalopathies de cause rare (LEUKOFRANCE), CHU APHP Robert-Debré, Paris, France; LR11IPT05, Biomedical Genomics and Oncogenetics Laboratory (H.J., Y.B.), Institut Pasteur de Tunis; Department of Medical Genetics, UF Molecular Genetics (S.S.), CHU APHP Robert-Debré Paris; Service de Cytogénétique Médicale (E.E.P.), CHU Clermont-Ferrand; Neurologie Pédiatrique (C.C.), Endocrinologie Pédiatrique (C.B.), CHU Hôpital des Enfants, Toulouse; Hôpital Femme Mère Enfant, Neurologie Pédiatrique (A.L.P., C.R.), Hospices Civils de Lyon, Bron; Department of Pediatric Radiology (M.E.-B.), CHU APHP Robert-Debré, Paris, France
| | - Céline Bar
- INSERM UMR 1141 PROTECT (I.D., P.B., S.S., O.B.-T.), Université Paris Diderot- Sorbonne Paris Cité; INSERM U1212-CNRS UMR 5320 (H.D.-O., M.T.), Université de Bordeaux; Neurologie Pédiatrique et Maladies Métaboliques (K.B., F.R., O.B-.T.), Centre de référence des leucodystrophies et leucoencéphalopathies de cause rare (LEUKOFRANCE), CHU APHP Robert-Debré, Paris, France; LR11IPT05, Biomedical Genomics and Oncogenetics Laboratory (H.J., Y.B.), Institut Pasteur de Tunis; Department of Medical Genetics, UF Molecular Genetics (S.S.), CHU APHP Robert-Debré Paris; Service de Cytogénétique Médicale (E.E.P.), CHU Clermont-Ferrand; Neurologie Pédiatrique (C.C.), Endocrinologie Pédiatrique (C.B.), CHU Hôpital des Enfants, Toulouse; Hôpital Femme Mère Enfant, Neurologie Pédiatrique (A.L.P., C.R.), Hospices Civils de Lyon, Bron; Department of Pediatric Radiology (M.E.-B.), CHU APHP Robert-Debré, Paris, France
| | - Anne-Lise Poulat
- INSERM UMR 1141 PROTECT (I.D., P.B., S.S., O.B.-T.), Université Paris Diderot- Sorbonne Paris Cité; INSERM U1212-CNRS UMR 5320 (H.D.-O., M.T.), Université de Bordeaux; Neurologie Pédiatrique et Maladies Métaboliques (K.B., F.R., O.B-.T.), Centre de référence des leucodystrophies et leucoencéphalopathies de cause rare (LEUKOFRANCE), CHU APHP Robert-Debré, Paris, France; LR11IPT05, Biomedical Genomics and Oncogenetics Laboratory (H.J., Y.B.), Institut Pasteur de Tunis; Department of Medical Genetics, UF Molecular Genetics (S.S.), CHU APHP Robert-Debré Paris; Service de Cytogénétique Médicale (E.E.P.), CHU Clermont-Ferrand; Neurologie Pédiatrique (C.C.), Endocrinologie Pédiatrique (C.B.), CHU Hôpital des Enfants, Toulouse; Hôpital Femme Mère Enfant, Neurologie Pédiatrique (A.L.P., C.R.), Hospices Civils de Lyon, Bron; Department of Pediatric Radiology (M.E.-B.), CHU APHP Robert-Debré, Paris, France
| | - Christophe Rousselle
- INSERM UMR 1141 PROTECT (I.D., P.B., S.S., O.B.-T.), Université Paris Diderot- Sorbonne Paris Cité; INSERM U1212-CNRS UMR 5320 (H.D.-O., M.T.), Université de Bordeaux; Neurologie Pédiatrique et Maladies Métaboliques (K.B., F.R., O.B-.T.), Centre de référence des leucodystrophies et leucoencéphalopathies de cause rare (LEUKOFRANCE), CHU APHP Robert-Debré, Paris, France; LR11IPT05, Biomedical Genomics and Oncogenetics Laboratory (H.J., Y.B.), Institut Pasteur de Tunis; Department of Medical Genetics, UF Molecular Genetics (S.S.), CHU APHP Robert-Debré Paris; Service de Cytogénétique Médicale (E.E.P.), CHU Clermont-Ferrand; Neurologie Pédiatrique (C.C.), Endocrinologie Pédiatrique (C.B.), CHU Hôpital des Enfants, Toulouse; Hôpital Femme Mère Enfant, Neurologie Pédiatrique (A.L.P., C.R.), Hospices Civils de Lyon, Bron; Department of Pediatric Radiology (M.E.-B.), CHU APHP Robert-Debré, Paris, France
| | - Florence Renaldo
- INSERM UMR 1141 PROTECT (I.D., P.B., S.S., O.B.-T.), Université Paris Diderot- Sorbonne Paris Cité; INSERM U1212-CNRS UMR 5320 (H.D.-O., M.T.), Université de Bordeaux; Neurologie Pédiatrique et Maladies Métaboliques (K.B., F.R., O.B-.T.), Centre de référence des leucodystrophies et leucoencéphalopathies de cause rare (LEUKOFRANCE), CHU APHP Robert-Debré, Paris, France; LR11IPT05, Biomedical Genomics and Oncogenetics Laboratory (H.J., Y.B.), Institut Pasteur de Tunis; Department of Medical Genetics, UF Molecular Genetics (S.S.), CHU APHP Robert-Debré Paris; Service de Cytogénétique Médicale (E.E.P.), CHU Clermont-Ferrand; Neurologie Pédiatrique (C.C.), Endocrinologie Pédiatrique (C.B.), CHU Hôpital des Enfants, Toulouse; Hôpital Femme Mère Enfant, Neurologie Pédiatrique (A.L.P., C.R.), Hospices Civils de Lyon, Bron; Department of Pediatric Radiology (M.E.-B.), CHU APHP Robert-Debré, Paris, France
| | - Monique Elmaleh-Bergès
- INSERM UMR 1141 PROTECT (I.D., P.B., S.S., O.B.-T.), Université Paris Diderot- Sorbonne Paris Cité; INSERM U1212-CNRS UMR 5320 (H.D.-O., M.T.), Université de Bordeaux; Neurologie Pédiatrique et Maladies Métaboliques (K.B., F.R., O.B-.T.), Centre de référence des leucodystrophies et leucoencéphalopathies de cause rare (LEUKOFRANCE), CHU APHP Robert-Debré, Paris, France; LR11IPT05, Biomedical Genomics and Oncogenetics Laboratory (H.J., Y.B.), Institut Pasteur de Tunis; Department of Medical Genetics, UF Molecular Genetics (S.S.), CHU APHP Robert-Debré Paris; Service de Cytogénétique Médicale (E.E.P.), CHU Clermont-Ferrand; Neurologie Pédiatrique (C.C.), Endocrinologie Pédiatrique (C.B.), CHU Hôpital des Enfants, Toulouse; Hôpital Femme Mère Enfant, Neurologie Pédiatrique (A.L.P., C.R.), Hospices Civils de Lyon, Bron; Department of Pediatric Radiology (M.E.-B.), CHU APHP Robert-Debré, Paris, France
| | - Martin Teichmann
- INSERM UMR 1141 PROTECT (I.D., P.B., S.S., O.B.-T.), Université Paris Diderot- Sorbonne Paris Cité; INSERM U1212-CNRS UMR 5320 (H.D.-O., M.T.), Université de Bordeaux; Neurologie Pédiatrique et Maladies Métaboliques (K.B., F.R., O.B-.T.), Centre de référence des leucodystrophies et leucoencéphalopathies de cause rare (LEUKOFRANCE), CHU APHP Robert-Debré, Paris, France; LR11IPT05, Biomedical Genomics and Oncogenetics Laboratory (H.J., Y.B.), Institut Pasteur de Tunis; Department of Medical Genetics, UF Molecular Genetics (S.S.), CHU APHP Robert-Debré Paris; Service de Cytogénétique Médicale (E.E.P.), CHU Clermont-Ferrand; Neurologie Pédiatrique (C.C.), Endocrinologie Pédiatrique (C.B.), CHU Hôpital des Enfants, Toulouse; Hôpital Femme Mère Enfant, Neurologie Pédiatrique (A.L.P., C.R.), Hospices Civils de Lyon, Bron; Department of Pediatric Radiology (M.E.-B.), CHU APHP Robert-Debré, Paris, France
| | - Odile Boespflug-Tanguy
- INSERM UMR 1141 PROTECT (I.D., P.B., S.S., O.B.-T.), Université Paris Diderot- Sorbonne Paris Cité; INSERM U1212-CNRS UMR 5320 (H.D.-O., M.T.), Université de Bordeaux; Neurologie Pédiatrique et Maladies Métaboliques (K.B., F.R., O.B-.T.), Centre de référence des leucodystrophies et leucoencéphalopathies de cause rare (LEUKOFRANCE), CHU APHP Robert-Debré, Paris, France; LR11IPT05, Biomedical Genomics and Oncogenetics Laboratory (H.J., Y.B.), Institut Pasteur de Tunis; Department of Medical Genetics, UF Molecular Genetics (S.S.), CHU APHP Robert-Debré Paris; Service de Cytogénétique Médicale (E.E.P.), CHU Clermont-Ferrand; Neurologie Pédiatrique (C.C.), Endocrinologie Pédiatrique (C.B.), CHU Hôpital des Enfants, Toulouse; Hôpital Femme Mère Enfant, Neurologie Pédiatrique (A.L.P., C.R.), Hospices Civils de Lyon, Bron; Department of Pediatric Radiology (M.E.-B.), CHU APHP Robert-Debré, Paris, France
| |
Collapse
|
26
|
Tangprasittipap A, Kaewprommal P, Sripichai O, Sathirapongsasuti N, Satirapod C, Shaw PJ, Piriyapongsa J, Hongeng S. Comparison of gene expression profiles between human erythroid cells derived from fetal liver and adult peripheral blood. PeerJ 2018; 6:e5527. [PMID: 30186694 PMCID: PMC6120446 DOI: 10.7717/peerj.5527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/07/2018] [Indexed: 12/23/2022] Open
Abstract
Background A key event in human development is the establishment of erythropoietic progenitors in the bone marrow, which is accompanied by a fetal-to-adult switch in hemoglobin expression. Understanding of this event could lead to medical application, notably treatment of sickle cell disease and β-thalassemia. The changes in gene expression of erythropoietic progenitor cells as they migrate from the fetal liver and colonize the bone marrow are still rather poorly understood, as primary fetal liver (FL) tissues are difficult to obtain. Methods We obtained human FL tissue and adult peripheral blood (AB) samples from Thai subjects. Primary CD34+ cells were cultured in vitro in a fetal bovine serum-based culture medium. After 8 days of culture, erythroid cell populations were isolated by flow cytometry. Gene expression in the FL- and AB-derived cells was studied by Affymetrix microarray and reverse-transcription quantitative PCR. The microarray data were combined with that from a previous study of human FL and AB erythroid development, and meta-analysis was performed on the combined dataset. Results FL erythroid cells showed enhanced proliferation and elevated fetal hemoglobin relative to AB cells. A total of 1,391 fetal up-regulated and 329 adult up-regulated genes were identified from microarray data generated in this study. Five hundred ninety-nine fetal up-regulated and 284 adult up-regulated genes with reproducible patterns between this and a previous study were identified by meta-analysis of the combined dataset, which constitute a core set of genes differentially expressed between FL and AB erythroid cells. In addition to these core genes, 826 and 48 novel genes were identified only from data generated in this study to be FL up- and AB up-regulated, respectively. The in vivo relevance for some of these novel genes was demonstrated by pathway analysis, which showed novel genes functioning in pathways known to be important in proliferation and erythropoiesis, including the mitogen-activated protein kinase (MAPK) and the phosphatidyl inositol 3 kinase (PI3K)-Akt pathways. Discussion The genes with upregulated expression in FL cells, which include many novel genes identified from data generated in this study, suggest that cellular proliferation pathways are more active in the fetal stage. Erythroid progenitor cells may thus undergo a reprogramming during ontogenesis in which proliferation is modulated by changes in expression of key regulators, primarily MYC, and others including insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), neuropilin and tolloid-like 2 (NETO2), branched chain amino acid transaminase 1 (BCAT1), tenascin XB (TNXB) and proto-oncogene, AP-1 transcription factor subunit (JUND). This reprogramming may thus be necessary for acquisition of the adult identity and switching of hemoglobin expression.
Collapse
Affiliation(s)
| | - Pavita Kaewprommal
- Biostatistics and Bioinformatics Laboratory, Genome Technology Research Unit, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Orapan Sripichai
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | | | | | - Philip J Shaw
- Protein-Ligand Engineering and Molecular Biology Laboratory, Medical Molecular Biology Research Unit, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Jittima Piriyapongsa
- Biostatistics and Bioinformatics Laboratory, Genome Technology Research Unit, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Suradej Hongeng
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
27
|
Durrieu-Gaillard S, Dumay-Odelot H, Boldina G, Tourasse NJ, Allard D, André F, Macari F, Choquet A, Lagarde P, Drutel G, Leste-Lasserre T, Petitet M, Lesluyes T, Lartigue-Faustin L, Dupuy JW, Chibon F, Roeder RG, Joubert D, Vagner S, Teichmann M. Regulation of RNA polymerase III transcription during transformation of human IMR90 fibroblasts with defined genetic elements. Cell Cycle 2018; 17:605-615. [PMID: 29171785 DOI: 10.1080/15384101.2017.1405881] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
RNA polymerase (Pol) III transcribes small untranslated RNAs that are essential for cellular homeostasis and growth. Its activity is regulated by inactivation of tumor suppressor proteins and overexpression of the oncogene c-MYC, but the concerted action of these tumor-promoting factors on Pol III transcription has not yet been assessed. In order to comprehensively analyse the regulation of Pol III transcription during tumorigenesis we employ a model system that relies on the expression of five genetic elements to achieve cellular transformation. Expression of these elements in six distinct transformation intermediate cell lines leads to the inactivation of TP53, RB1, and protein phosphatase 2A, as well as the activation of RAS and the protection of telomeres by TERT, thereby conducting to full tumoral transformation of IMR90 fibroblasts. Transformation is accompanied by moderately enhanced levels of a subset of Pol III-transcribed RNAs (7SK; MRP; H1). In addition, mRNA and/or protein levels of several Pol III subunits and transcription factors are upregulated, including increased protein levels of TFIIIB and TFIIIC subunits, of SNAPC1 and of Pol III subunits. Strikingly, the expression of POLR3G and of SNAPC1 is strongly enhanced during transformation in this cellular transformation model. Collectively, our data indicate that increased expression of several components of the Pol III transcription system accompanied by a 2-fold increase in steady state levels of a subset of Pol III RNAs is sufficient for sustaining tumor formation.
Collapse
Affiliation(s)
- Stéphanie Durrieu-Gaillard
- a Université de Bordeaux , ARNA Laboratory , F-33076 Bordeaux , France.,b INSERM, U1212 - CNRS UMR 5320 , ARNA Laboratory , F-33000 Bordeaux , France
| | - Hélène Dumay-Odelot
- a Université de Bordeaux , ARNA Laboratory , F-33076 Bordeaux , France.,b INSERM, U1212 - CNRS UMR 5320 , ARNA Laboratory , F-33000 Bordeaux , France
| | - Galina Boldina
- a Université de Bordeaux , ARNA Laboratory , F-33076 Bordeaux , France.,b INSERM, U1212 - CNRS UMR 5320 , ARNA Laboratory , F-33000 Bordeaux , France.,c Institut Gustave Roussy , INSERM U981 , F-94805 Villejuif , France
| | - Nicolas J Tourasse
- a Université de Bordeaux , ARNA Laboratory , F-33076 Bordeaux , France.,b INSERM, U1212 - CNRS UMR 5320 , ARNA Laboratory , F-33000 Bordeaux , France
| | - Delphine Allard
- c Institut Gustave Roussy , INSERM U981 , F-94805 Villejuif , France
| | - Fabrice André
- c Institut Gustave Roussy , INSERM U981 , F-94805 Villejuif , France
| | - Françoise Macari
- d Institut de Génomique Fonctionnelle , UMR 5203 CNRS , F-34000 Montpellier , France
| | - Armelle Choquet
- d Institut de Génomique Fonctionnelle , UMR 5203 CNRS , F-34000 Montpellier , France
| | - Pauline Lagarde
- e Department of Biopathology , Institut Bergonié , Molecular Pathology Unit , F-33000 Bordeaux , France.,f Génétique et Biologie des Sarcomes- INSERM U916 , F- 33000 Bordeaux , France.,g Université de Bordeaux , F-33076 Bordeaux , France
| | - Guillaume Drutel
- h NeuroCentre François Magendie , INSERM U862 , F-33077 Bordeaux , France
| | | | - Marion Petitet
- a Université de Bordeaux , ARNA Laboratory , F-33076 Bordeaux , France
| | - Tom Lesluyes
- e Department of Biopathology , Institut Bergonié , Molecular Pathology Unit , F-33000 Bordeaux , France.,f Génétique et Biologie des Sarcomes- INSERM U916 , F- 33000 Bordeaux , France
| | - Lydia Lartigue-Faustin
- e Department of Biopathology , Institut Bergonié , Molecular Pathology Unit , F-33000 Bordeaux , France.,f Génétique et Biologie des Sarcomes- INSERM U916 , F- 33000 Bordeaux , France
| | - Jean-William Dupuy
- i Université de Bordeaux , Plateforme Protéome - Centre Génomique Fonctionnelle Bordeaux , 33076 Bordeaux , France
| | - Frédéric Chibon
- e Department of Biopathology , Institut Bergonié , Molecular Pathology Unit , F-33000 Bordeaux , France.,f Génétique et Biologie des Sarcomes- INSERM U916 , F- 33000 Bordeaux , France
| | - Robert G Roeder
- j The Rockefeller University , 1230 York Avenue, New York , NY 10065 , USA
| | - Dominique Joubert
- d Institut de Génomique Fonctionnelle , UMR 5203 CNRS , F-34000 Montpellier , France
| | - Stéphan Vagner
- c Institut Gustave Roussy , INSERM U981 , F-94805 Villejuif , France.,k Institut Curie , CNRS UMR 3348, F-91405 Orsay , France
| | - Martin Teichmann
- a Université de Bordeaux , ARNA Laboratory , F-33076 Bordeaux , France.,b INSERM, U1212 - CNRS UMR 5320 , ARNA Laboratory , F-33000 Bordeaux , France
| |
Collapse
|
28
|
Mange F, Praz V, Migliavacca E, Willis IM, Schütz F, Hernandez N. Diurnal regulation of RNA polymerase III transcription is under the control of both the feeding-fasting response and the circadian clock. Genome Res 2017; 27:973-984. [PMID: 28341772 PMCID: PMC5453330 DOI: 10.1101/gr.217521.116] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/17/2017] [Indexed: 11/25/2022]
Abstract
RNA polymerase III (Pol III) synthesizes short noncoding RNAs, many of which are essential for translation. Accordingly, Pol III activity is tightly regulated with cell growth and proliferation by factors such as MYC, RB1, TRP53, and MAF1. MAF1 is a repressor of Pol III transcription whose activity is controlled by phosphorylation; in particular, it is inactivated through phosphorylation by the TORC1 kinase complex, a sensor of nutrient availability. Pol III regulation is thus sensitive to environmental cues, yet a diurnal profile of Pol III transcription activity is so far lacking. Here, we first use gene expression arrays to measure mRNA accumulation during the diurnal cycle in the livers of (1) wild-type mice, (2) arrhythmic Arntl knockout mice, (3) mice fed at regular intervals during both night and day, and (4) mice lacking the Maf1 gene, and so provide a comprehensive view of the changes in cyclic mRNA accumulation occurring in these different systems. We then show that Pol III occupancy of its target genes rises before the onset of the night, stays high during the night, when mice normally ingest food and when translation is known to be increased, and decreases in daytime. Whereas higher Pol III occupancy during the night reflects a MAF1-dependent response to feeding, the rise of Pol III occupancy before the onset of the night reflects a circadian clock-dependent response. Thus, Pol III transcription during the diurnal cycle is regulated both in response to nutrients and by the circadian clock, which allows anticipatory Pol III transcription.
Collapse
Affiliation(s)
- François Mange
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Viviane Praz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Eugenia Migliavacca
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Ian M Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Frédéric Schütz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
29
|
Minnerop M, Kurzwelly D, Wagner H, Soehn AS, Reichbauer J, Tao F, Rattay TW, Peitz M, Rehbach K, Giorgetti A, Pyle A, Thiele H, Altmüller J, Timmann D, Karaca I, Lennarz M, Baets J, Hengel H, Synofzik M, Atasu B, Feely S, Kennerson M, Stendel C, Lindig T, Gonzalez MA, Stirnberg R, Sturm M, Roeske S, Jung J, Bauer P, Lohmann E, Herms S, Heilmann-Heimbach S, Nicholson G, Mahanjah M, Sharkia R, Carloni P, Brüstle O, Klopstock T, Mathews KD, Shy ME, de Jonghe P, Chinnery PF, Horvath R, Kohlhase J, Schmitt I, Wolf M, Greschus S, Amunts K, Maier W, Schöls L, Nürnberg P, Zuchner S, Klockgether T, Ramirez A, Schüle R. Hypomorphic mutations in POLR3A are a frequent cause of sporadic and recessive spastic ataxia. Brain 2017; 140:1561-1578. [PMID: 28459997 PMCID: PMC6402316 DOI: 10.1093/brain/awx095] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/08/2017] [Accepted: 02/26/2017] [Indexed: 11/12/2022] Open
Abstract
Despite extensive efforts, half of patients with rare movement disorders such as hereditary spastic paraplegias and cerebellar ataxias remain genetically unexplained, implicating novel genes and unrecognized mutations in known genes. Non-coding DNA variants are suspected to account for a substantial part of undiscovered causes of rare diseases. Here we identified mutations located deep in introns of POLR3A to be a frequent cause of hereditary spastic paraplegia and cerebellar ataxia. First, whole-exome sequencing findings in a recessive spastic ataxia family turned our attention to intronic variants in POLR3A, a gene previously associated with hypomyelinating leukodystrophy type 7. Next, we screened a cohort of hereditary spastic paraplegia and cerebellar ataxia cases (n = 618) for mutations in POLR3A and identified compound heterozygous POLR3A mutations in ∼3.1% of index cases. Interestingly, >80% of POLR3A mutation carriers presented the same deep-intronic mutation (c.1909+22G>A), which activates a cryptic splice site in a tissue and stage of development-specific manner and leads to a novel distinct and uniform phenotype. The phenotype is characterized by adolescent-onset progressive spastic ataxia with frequent occurrence of tremor, involvement of the central sensory tracts and dental problems (hypodontia, early onset of severe and aggressive periodontal disease). Instead of the typical hypomyelination magnetic resonance imaging pattern associated with classical POLR3A mutations, cases carrying c.1909+22G>A demonstrated hyperintensities along the superior cerebellar peduncles. These hyperintensities may represent the structural correlate to the cerebellar symptoms observed in these patients. The associated c.1909+22G>A variant was significantly enriched in 1139 cases with spastic ataxia-related phenotypes as compared to unrelated neurological and non-neurological phenotypes and healthy controls (P = 1.3 × 10-4). In this study we demonstrate that (i) autosomal-recessive mutations in POLR3A are a frequent cause of hereditary spastic ataxias, accounting for about 3% of hitherto genetically unclassified autosomal recessive and sporadic cases; and (ii) hypomyelination is frequently absent in POLR3A-related syndromes, especially when intronic mutations are present, and thus can no longer be considered as the unifying feature of POLR3A disease. Furthermore, our results demonstrate that substantial progress in revealing the causes of Mendelian diseases can be made by exploring the non-coding sequences of the human genome.
Collapse
Affiliation(s)
- Martina Minnerop
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, 52425 Jülich, Germany
- Department of Neurology, University of Bonn, 53127 Bonn, Germany
| | - Delia Kurzwelly
- Department of Neurology, University of Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Holger Wagner
- Department of Psychiatry and Psychotherapy, University of Bonn, 53127 Bonn, Germany
| | - Anne S Soehn
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Jennifer Reichbauer
- Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Feifei Tao
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Tim W Rattay
- Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Michael Peitz
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Institute of Reconstructive Neurobiology, Life and Brain Center, 53127 Bonn, Germany
| | - Kristina Rehbach
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Institute of Reconstructive Neurobiology, Life and Brain Center, 53127 Bonn, Germany
| | - Alejandro Giorgetti
- Computational Biophysics, German Research School for Simulation Sciences, and Computational Biomedicine, Institute for Advanced Simulation (IAS-5) and Institute of Neuroscience and Medicine (INM-9), Research Centre Juelich, 52425 Jülich, Germany
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Angela Pyle
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany
| | - Dagmar Timmann
- Department of Neurology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Ilker Karaca
- Department of Psychiatry and Psychotherapy, University of Bonn, 53127 Bonn, Germany
| | - Martina Lennarz
- Department of Psychiatry and Psychotherapy, University of Bonn, 53127 Bonn, Germany
| | - Jonathan Baets
- Neurogenetics Group, VIB-Department of Molecular Genetics, VIB, 2610 Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, 2650 Antwerp, Belgium
- Institute Born-Bunge, University of Antwerp, 2610 Antwerp, Belgium
| | - Holger Hengel
- Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Matthis Synofzik
- Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Burcu Atasu
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Shawna Feely
- Department of Neurology, University of Iowa, 52242 Iowa, USA
| | - Marina Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord NSW 2139, Australia
- Molecular Medicine Laboratory, Concord Hospital, Concord NSW 2139, Australia
- Sydney Medical School, University of Sydney, Sydney NSW 2006, Australia
| | - Claudia Stendel
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-Universität, 80336 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81337 Munich, Germany
| | - Tobias Lindig
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Michael A Gonzalez
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Rüdiger Stirnberg
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Sandra Roeske
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Johanna Jung
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Ebba Lohmann
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Department of Neurology, Antwerp University Hospital, 2650 Antwerp, Belgium
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Turkey
| | - Stefan Herms
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany
- Department of Genomics, Life and Brain Center, University of Bonn, 53127, Bonn, Germany
- Division of Medical Genetics, University Hospital and Department of Biomedicine, University of Basel, CH-4058, Basel, Switzerland
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany
- Department of Genomics, Life and Brain Center, University of Bonn, 53127, Bonn, Germany
| | - Garth Nicholson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord NSW 2139, Australia
- Molecular Medicine Laboratory, Concord Hospital, Concord NSW 2139, Australia
- Sydney Medical School, University of Sydney, Sydney NSW 2006, Australia
| | - Muhammad Mahanjah
- Child Neurology and Development Center, Hillel-Yaffe Medical Center, 38100 Hadera, Israel
- Bruce and Ruth Rappaport Faculty of Medicine, Technion, 31096 Haifa, Israel
| | - Rajech Sharkia
- The Triangle Regional Research and Development Center, P. O. Box-2167, Kfar Qari' 30075, Israel
- Beit-Berl Academic College, Beit-Berl 44905, Israel
| | - Paolo Carloni
- Computational Biophysics, German Research School for Simulation Sciences, and Computational Biomedicine, Institute for Advanced Simulation (IAS-5) and Institute of Neuroscience and Medicine (INM-9), Research Centre Juelich, 52425 Jülich, Germany
| | - Oliver Brüstle
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Institute of Reconstructive Neurobiology, Life and Brain Center, 53127 Bonn, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-Universität, 80336 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81337 Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), 80336 Munich, Germany
| | - Katherine D Mathews
- Department of Pediatrics, Carver College of Medicine, University of Iowa, 52242 Iowa, USA
| | - Michael E Shy
- Department of Neurology, University of Iowa, 52242 Iowa, USA
| | - Peter de Jonghe
- Neurogenetics Group, VIB-Department of Molecular Genetics, VIB, 2610 Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, 2650 Antwerp, Belgium
- Institute Born-Bunge, University of Antwerp, 2610 Antwerp, Belgium
| | - Patrick F Chinnery
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
- Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Rita Horvath
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | | | - Ina Schmitt
- Department of Neurology, University of Bonn, 53127 Bonn, Germany
| | - Michael Wolf
- Departement of Orthodontics, University of Bonn, 53111 Bonn, Germany
| | - Susanne Greschus
- Department of Radiology, University of Bonn, 53127 Bonn, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, 52425 Jülich, Germany
- C. & O. Vogt-Institute of Brain Research, University of Düsseldorf, 40212 Düsseldorf, Germany
| | - Wolfgang Maier
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Department of Psychiatry and Psychotherapy, University of Bonn, 53127 Bonn, Germany
| | - Ludger Schöls
- Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Peter Nürnberg
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, 52425 Jülich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Thomas Klockgether
- Department of Neurology, University of Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Alfredo Ramirez
- Department of Psychiatry and Psychotherapy, University of Bonn, 53127 Bonn, Germany
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany
- Department of Psychiatry and Psychotherapy, University of Cologne, 50937 Cologne, Germany
| | - Rebecca Schüle
- Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| |
Collapse
|
30
|
Ahuja R, Kumar V. Stimulation of Pol III-dependent 5S rRNA and U6 snRNA gene expression by AP-1 transcription factors. FEBS J 2017; 284:2066-2077. [PMID: 28488757 DOI: 10.1111/febs.14104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 04/15/2017] [Accepted: 05/05/2017] [Indexed: 12/31/2022]
Abstract
RNA polymerase III transcribes structurally diverse group of essential noncoding RNAs including 5S ribosomal RNA (5SrRNA) and U6 snRNA. These noncoding RNAs are involved in RNA processing and ribosome biogenesis, thus, coupling Pol III activity to the rate of protein synthesis, cell growth, and proliferation. Even though a few Pol II-associated transcription factors have been reported to participate in Pol III-dependent transcription, its activation by activator protein 1 (AP-1) factors, c-Fos and c-Jun, has remained unexplored. Here, we show that c-Fos and c-Jun bind to specific sites in the regulatory regions of 5S rRNA (type I) and U6 snRNA (type III) gene promoters and stimulate their transcription. Our chromatin immunoprecipitation studies suggested that endogenous AP-1 factors bind to their cognate promoter elements during the G1/S transition of cell cycle apparently synchronous with Pol III transcriptional activity. Furthermore, the interaction of c-Jun with histone acetyltransferase p300 promoted the recruitment of p300/CBP complex on the promoters and facilitated the occupancy of Pol III transcriptional machinery via histone acetylation and chromatin remodeling. The findings of our study, together, suggest that AP-1 factors are novel regulators of Pol III-driven 5S rRNA and U6 snRNA expression with a potential role in cell proliferation.
Collapse
Affiliation(s)
- Richa Ahuja
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Vijay Kumar
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
31
|
Agarwal P, Enroth S, Teichmann M, Jernberg Wiklund H, Smit A, Westermark B, Singh U. Growth signals employ CGGBP1 to suppress transcription of Alu-SINEs. Cell Cycle 2017; 15:1558-71. [PMID: 25483050 PMCID: PMC4934077 DOI: 10.4161/15384101.2014.967094] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
CGGBP1 (CGG triplet repeat-binding protein 1) regulates cell proliferation, stress response, cytokinesis, telomeric integrity and transcription. It could affect these processes by modulating target gene expression under different conditions. Identification of CGGBP1-target genes and their regulation could reveal how a transcription regulator affects such diverse cellular processes. Here we describe the mechanisms of differential gene expression regulation by CGGBP1 in quiescent or growing cells. By studying global gene expression patterns and genome-wide DNA-binding patterns of CGGBP1, we show that a possible mechanism through which it affects the expression of RNA Pol II-transcribed genes in trans depends on Alu RNA. We also show that it regulates Alu transcription in cis by binding to Alu promoter. Our results also indicate that potential phosphorylation of CGGBP1 upon growth stimulation facilitates its nuclear retention, Alu-binding and dislodging of RNA Pol III therefrom. These findings provide insights into how Alu transcription is regulated in response to growth signals.
Collapse
Affiliation(s)
- Prasoon Agarwal
- a Department of Immunology, Genetics and Pathology, Rudbeck Laboratory , Uppsala University , Uppsala , Sweden
| | - Stefan Enroth
- a Department of Immunology, Genetics and Pathology, Rudbeck Laboratory , Uppsala University , Uppsala , Sweden
| | - Martin Teichmann
- b University of Bordeaux, IECB , ARNA laboratory, Equipe Labellisée Contre le Cancer , Pessac , France
| | - Helena Jernberg Wiklund
- a Department of Immunology, Genetics and Pathology, Rudbeck Laboratory , Uppsala University , Uppsala , Sweden
| | - Arian Smit
- c Institute for Systems Biology , Seattle , WA , USA
| | - Bengt Westermark
- a Department of Immunology, Genetics and Pathology, Rudbeck Laboratory , Uppsala University , Uppsala , Sweden
| | - Umashankar Singh
- a Department of Immunology, Genetics and Pathology, Rudbeck Laboratory , Uppsala University , Uppsala , Sweden
| |
Collapse
|
32
|
Johnson DL, Stiles BL. Maf1, A New PTEN Target Linking RNA and Lipid Metabolism. Trends Endocrinol Metab 2016; 27:742-750. [PMID: 27296319 PMCID: PMC5035567 DOI: 10.1016/j.tem.2016.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/22/2016] [Accepted: 04/29/2016] [Indexed: 01/07/2023]
Abstract
PTEN is a critical tumor suppressor whose dysregulation leads to metabolic disease and cancer. How these diseases are linked at a molecular level is poorly understood. Maf1 is a novel PTEN target that connects PTEN's ability to repress intracellular lipid accumulation with its tumor suppressor function. Maf1 represses the expression of rRNAs and tRNAs to restrain biosynthetic capacity and oncogenic transformation. Recent studies demonstrate that Maf1 also controls intracellular lipid accumulation. In animal models, dysregulation of RNA polymerase I- and III-dependent transcription, and subsequent upregulation of rRNAs and tRNAs, leads to altered lipid metabolism and storage. Together these results identify unexpected connections between RNA and lipid metabolism that may help explain the strong epidemiological association between obesity and cancer.
Collapse
|
33
|
Kieckhaefer JE, Lukovac S, Ye DZ, Lee D, Beetler DJ, Pack M, Kaestner KH. The RNA polymerase III subunit Polr3b is required for the maintenance of small intestinal crypts in mice. Cell Mol Gastroenterol Hepatol 2016; 2:783-795. [PMID: 28090567 PMCID: PMC5235342 DOI: 10.1016/j.jcmgh.2016.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS The continuously self-renewing mammalian intestinal epithelium, with high cellular turnover, depends on adequate protein synthesis for its proliferative capacity. RNA polymerase III activity is closely related to cellular growth and proliferation. Here, we studied the role of Polr3b, a large RNA polymerase III subunit, in the mammalian intestinal epithelium. METHODS We derived mice with an intestinal epithelium-specific hypomorphic mutation of the Polr3b gene, using VillinCre-mediated gene ablation. Phenotypic consequences of the Polr3b mutation on the intestinal epithelium in mice were assessed using histological and molecular methodologies, including genetic lineage tracing. RESULTS The Polr3b mutation severely reduced survival and growth in mice during the first postnatal week, the period when the expansion of the intestinal epithelium, and thus the requirement for protein synthesis, are highest. The neonatal intestinal epithelium of Polr3bloxP/loxP;VillinCre mice was characterized by areas with reduced proliferation, abnormal epithelial architecture, loss of Wnt signaling and a dramatic increase in apoptotic cells in crypts. Genetic lineage tracing using Polr3bLoxP/LoxP;Rosa26-lox-stop-lox-YFP;VillinCre mice demonstrated that in surviving mutant mice, Polr3b-deficient dying crypts were progressively replaced by 'Cre-escaper' cells that had retained wild type Polr3b function. In addition, enteroids cultured from Polr3bloxP/loxP;VillinCre mice show reduced proliferative activity and increased apoptosis. CONCLUSIONS We provide evidence for an essential role of the Pol III subunit Polr3b in orchestrating the maintenance of the intestinal crypt during early postnatal development in mice.
Collapse
Affiliation(s)
- Julia E. Kieckhaefer
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Sabina Lukovac
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Diana Z. Ye
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Dolim Lee
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Danielle J. Beetler
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michael Pack
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania,Michael Pack, MD, University of Pennsylvania, Perelman School of Medicine, 1212 Biomedical Research Building II/III, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104. fax: (215) 898-9871.University of PennsylvaniaPerelman School of Medicine1212 Biomedical Research Building II/III421 Curie BoulevardPhiladelphiaPennsylvania 19104
| | - Klaus H. Kaestner
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania,Correspondence Address correspondence to: Klaus H. Kaestner, PhD, 12-126 Smilow Center for Translational Research, University of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104. fax: (215) 573-5892.12-126 Smilow Center for Translational ResearchUniversity of PennsylvaniaPerelman School of Medicine3400 Civic Center BoulevardPhiladelphiaPennsylvania 19104
| |
Collapse
|
34
|
Richards MR, Plummer L, Chan YM, Lippincott MF, Quinton R, Kumanov P, Seminara SB. Phenotypic spectrum of POLR3B mutations: isolated hypogonadotropic hypogonadism without neurological or dental anomalies. J Med Genet 2016; 54:19-25. [PMID: 27512013 DOI: 10.1136/jmedgenet-2016-104064] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/21/2016] [Indexed: 11/03/2022]
Abstract
BACKGROUND A constellation of neurodegenerative disorders exists (Gordon Holmes syndrome, 4H leucodystrophy, Boucher-Neuhauser syndrome) in which patients suffer from both neurological disease (typically manifested by ataxia) and reproductive failure (idiopathic hypogonadotropic hypogonadism (IHH)). POLR3B, which encodes the second largest subunit of RNA polymerase III (pol III), and POLR3A, which forms the pol III catalytic centre, are associated with 4H leucodystrophy. METHODS Whole exome sequencing was performed on a large cohort of subjects with IHH (n=565). Detailed neuroendocrine studies were performed in some individuals within this cohort. RESULTS Four individuals (two of them siblings) were identified with two rare nucleotide variants in POLR3B. On initial evaluation, all subjects were free of neurological disease. One patient underwent treatment with exogenous pulsatile gonadotropin-releasing hormone for 8 weeks which failed to result in normalisation of his sex steroid milieu due to pituitary resistance. CONCLUSIONS These findings suggest that the spectrum of phenotypes resulting from POLR3B mutations is wider than previously believed and that POLR3B can be associated exclusively with disorders characterised by abnormal gonadotropin secretion.
Collapse
Affiliation(s)
- Mary R Richards
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lacey Plummer
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yee-Ming Chan
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Division of Endocrinology, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Margaret F Lippincott
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Richard Quinton
- Institute for Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Philip Kumanov
- Clinical Center of Endocrinology and Gerontology, Medical University of Sofia, Sofia, Bulgaria
| | - Stephanie B Seminara
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Zhang X, He X, Liu C, Liu J, Hu Q, Pan T, Duan X, Liu B, Zhang Y, Chen J, Ma X, Zhang X, Luo H, Zhang H. IL-4 Inhibits the Biogenesis of an Epigenetically Suppressive PIWI-Interacting RNA To Upregulate CD1a Molecules on Monocytes/Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2016; 196:1591-603. [PMID: 26755820 DOI: 10.4049/jimmunol.1500805] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 11/09/2015] [Indexed: 12/22/2022]
Abstract
The discovery of PIWI-interacting RNAs (piRNAs) revealed the complexity of the RNA world. Although piRNAs were first deemed to be germline specific, substantial evidence shows their various roles in somatic cells; however, their function in highly differentiated immune cells remains elusive. In this study, by initially screening with a small RNA deep-sequencing analysis, we found that a piRNA, tRNA-Glu-derived piRNA [td-piR(Glu)], was expressed much more abundantly in human monocytes than in dendritic cells. By regulating the polymerase III activity, IL-4 potently decreased the biogenesis of tRNA-Glu and, subsequently, td-piR(Glu). Further, we revealed that the td-piR(Glu)/PIWIL4 complex recruited SETDB1, SUV39H1, and heterochromatin protein 1β to the CD1A promoter region and facilitated H3K9 methylation. As a result, the transcription of CD1A was significantly inhibited. Collectively, we demonstrated that a piRNA acted as the signal molecule for a cytokine to regulate the expression of an important membrane protein for lipid Ag presentation.
Collapse
Affiliation(s)
- Xue Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xin He
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Chao Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jun Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Qifei Hu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Ting Pan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiaobing Duan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Bingfeng Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yiwen Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jingliang Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xingru Ma
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xu Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Haihua Luo
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
36
|
Dumay-Odelot H, Durrieu-Gaillard S, El Ayoubi L, Parrot C, Teichmann M. Contributions of in vitro transcription to the understanding of human RNA polymerase III transcription. Transcription 2015; 5:e27526. [PMID: 25764111 DOI: 10.4161/trns.27526] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human RNA polymerase III transcribes small untranslated RNAs that contribute to the regulation of essential cellular processes, including transcription, RNA processing and translation. Analysis of this transcription system by in vitro transcription techniques has largely contributed to the discovery of its transcription factors and to the understanding of the regulation of human RNA polymerase III transcription. Here we review some of the key steps that led to the identification of transcription factors and to the definition of minimal promoter sequences for human RNA polymerase III transcription.
Collapse
Affiliation(s)
- Hélène Dumay-Odelot
- a INSERM U869; University of Bordeaux; Institut Européen de Chimie et Biologie (IECB); 33607 Pessac, France
| | | | | | | | | |
Collapse
|
37
|
Recessive Mutations in POLR3B Encoding RNA Polymerase III Subunit Causing Diffuse Hypomyelination in Patients with 4H Leukodystrophy with Polymicrogyria and Cataracts. Clin Neuroradiol 2015; 27:213-220. [PMID: 26478204 PMCID: PMC5487884 DOI: 10.1007/s00062-015-0472-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/29/2015] [Indexed: 02/06/2023]
Abstract
The diagnosis of 4H leukodystrophy (hypomyelination, hypogonadotropic hypogonadism, and hypodontia) is based on clinical findings and magnetic resonance imaging (MRI). Recently, mutations of the genes encoding Pol III (RNA polymerase III) subunit A (POLR3A) and subunit B (POL3B) have been identified as the genetic causes of hypomyelination. We describe two Polish female siblings aged 5 and 10 years with compound heterozygous mutations in POLR3B. They both presented with similar clinical symptoms and MRI findings presenting as 4H leukodystrophy, and the association of polymicrogyria and cataract. According to our observation in young children with the absence of hypogonadotropic hypogonadism, brain MRI pattern is very essential in proper early diagnosis of 4H leukodystrophy. All clinical and radiological results are of course helpful, however genetic conformation is always necessary.
Collapse
|
38
|
Recessive mutations in POLR1C cause a leukodystrophy by impairing biogenesis of RNA polymerase III. Nat Commun 2015; 6:7623. [PMID: 26151409 PMCID: PMC4506509 DOI: 10.1038/ncomms8623] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 05/26/2015] [Indexed: 12/20/2022] Open
Abstract
A small proportion of 4H (Hypomyelination, Hypodontia and Hypogonadotropic Hypogonadism) or RNA polymerase III (POLR3)-related leukodystrophy cases are negative for mutations in the previously identified causative genes POLR3A and POLR3B. Here we report eight of these cases carrying recessive mutations in POLR1C, a gene encoding a shared POLR1 and POLR3 subunit, also mutated in some Treacher Collins syndrome (TCS) cases. Using shotgun proteomics and ChIP sequencing, we demonstrate that leukodystrophy-causative mutations, but not TCS mutations, in POLR1C impair assembly and nuclear import of POLR3, but not POLR1, leading to decreased binding to POLR3 target genes. This study is the first to show that distinct mutations in a gene coding for a shared subunit of two RNA polymerases lead to selective modification of the enzymes' availability leading to two different clinical conditions and to shed some light on the pathophysiological mechanism of one of the most common hypomyelinating leukodystrophies, POLR3-related leukodystrophy.
Collapse
|
39
|
Gutierrez M, Thiffault I, Guerrero K, Martos-Moreno GÁ, Tran LT, Benko W, van der Knaap MS, van Spaendonk RML, Wolf NI, Bernard G. Large exonic deletions in POLR3B gene cause POLR3-related leukodystrophy. Orphanet J Rare Dis 2015; 10:69. [PMID: 26045207 PMCID: PMC4520020 DOI: 10.1186/s13023-015-0279-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/30/2015] [Indexed: 12/03/2022] Open
Abstract
POLR3-related (or 4H) leukodystrophy is an autosomal recessive disorder caused by mutations in POLR3A or POLR3B and is characterized by neurological and non-neurological features. In a small proportion of patients, no mutation in either gene or only one mutation is found. Analysis of the POLR3B cDNA revealed a large deletion of exons 21–22 in one case and of exons 26–27 in another case. These are the first reports of long deletions causing POLR3-related leukodystrophy, suggesting that deletions and duplications in POLR3A or POLR3B should be investigated in patients with a compatible phenotype, especially if one pathogenic variant has been identified.
Collapse
Affiliation(s)
- Mariana Gutierrez
- Departments of Pediatrics, Neurology and Neurosurgery, Montreal Children's Hospital, McGill University Health Center, 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada.
| | - Isabelle Thiffault
- Departments of Pediatrics, Neurology and Neurosurgery, Montreal Children's Hospital, McGill University Health Center, 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada. .,Center for Pediatric Genomic Medicine, Children's Mercy Hospitals, 2420 Pershing Rd, suite 421, Kansas City, MO, 64108, USA.
| | - Kether Guerrero
- Departments of Pediatrics, Neurology and Neurosurgery, Montreal Children's Hospital, McGill University Health Center, 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada.
| | - Gabriel Á Martos-Moreno
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain. .,Department of Pediatrics, Universidad Autónoma de Madrid, CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| | - Luan T Tran
- Departments of Pediatrics, Neurology and Neurosurgery, Montreal Children's Hospital, McGill University Health Center, 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada.
| | - William Benko
- WellSpan Pediatric Neurology, WellSpan Medical Group, York, PA, USA.
| | - Marjo S van der Knaap
- Department of Child Neurology, VU University Medical Center, and Neuroscience Campus Amsterdam, Amsterdam, The Netherlands.
| | | | - Nicole I Wolf
- Department of Child Neurology, VU University Medical Center, and Neuroscience Campus Amsterdam, Amsterdam, The Netherlands.
| | - Geneviève Bernard
- Departments of Pediatrics, Neurology and Neurosurgery, Montreal Children's Hospital, McGill University Health Center, 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada.
| |
Collapse
|
40
|
Endocrine Aspects of 4H Leukodystrophy: A Case Report and Review of the Literature. Case Rep Endocrinol 2015; 2015:314594. [PMID: 26113998 PMCID: PMC4465690 DOI: 10.1155/2015/314594] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/18/2015] [Indexed: 11/22/2022] Open
Abstract
Introduction. 4H leukodystrophy is an autosomal recessive RNA polymerase III-related leukodystrophy, characterized by hypomyelination, with or without hypodontia (or other dental abnormalities) and hypogonadotropic hypogonadism. Case Presentation. We describe a 28-year-old female who presented with primary amenorrhea at the age of 19. She had a history of very mild neurological and dental abnormalities. She was found to have hypogonadotropic hypogonadism, and magnetic resonance imaging of the brain showed hypomyelination. The diagnosis of 4H leukodystrophy was made. She was subsequently found to have mutations in the POLR3B gene, which encodes the second largest subunit of RNA polymerase III. She wished to become pregnant and failed to respond to pulsatile GnRH but achieved normal follicular growth and ovulation with subcutaneous gonadotropin therapy. Discussion. Patients with 4H leukodystrophy may initially present with hypogonadotropic hypogonadism, particularly if neurological and dental manifestations are subtle. Making the diagnosis has important implications for prognosis and management. Progressive neurologic deterioration is expected, and progressive endocrine dysfunction may occur. Patients with 4H leukodystrophy should be counseled about disease progression and about this disease's autosomal recessive inheritance pattern. In those who wish to conceive, ovulation induction may be achieved with subcutaneous gonadotropin therapy, but pulsatile GnRH does not appear to be effective.
Collapse
|
41
|
Affiliation(s)
- Robyn D. Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- * E-mail: (RDM); (IMW)
| | - Ian M. Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- * E-mail: (RDM); (IMW)
| |
Collapse
|
42
|
Shimojima K, Shimada S, Tamasaki A, Akaboshi S, Komoike Y, Saito A, Furukawa T, Yamamoto T. Novel compound heterozygous mutations of POLR3A revealed by whole-exome sequencing in a patient with hypomyelination. Brain Dev 2014; 36:315-21. [PMID: 23694757 DOI: 10.1016/j.braindev.2013.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 04/16/2013] [Accepted: 04/23/2013] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Congenital white matter disorders are a heterogeneous group of hypomyelination disorders affecting the white matter of the brain. Recently, mutations in the genes encoding the subunits of RNA polymerase III (Pol III), POLR3A and POLR3B, have been identified as new genetic causes for hypomyelinating disorders. METHOD Whole-exome sequencing was applied to identify responsible gene mutations in a 29-year-old female patient showing hypomyelination of unknown cause. To investigate the pathological mechanism underlying the hypomyelination in this patient, the expression level of 7SL RNA, a transcriptional target of Pol III, was analyzed in cultured skin fibroblasts derived from the patient with POLR3A mutations. RESULTS Novel compound heterozygous mutations of POLR3A were identified in the patient, who started to show cerebellar signs at 3 years, lost ambulation at 7 years, and became bedridden at 18 years. Brain magnetic resonance imaging showed severe volume loss in the brainstem, the cerebellum, and the white matter associated with hypomyelination. In addition to hypodontia and hypogonadism, she showed many pituitary hormone-related deficiencies. The expression level of 7SL RNA in cultured skin fibroblasts derived from this patient showed no significant abnormality. CONCLUSION The many pituitary hormone-related deficiencies identified in this patient may be an essential finding for the Pol III-related leukodystrophies spectrum. Further investigation is needed for a better understanding of the disease mechanism.
Collapse
Affiliation(s)
- Keiko Shimojima
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo 162-8666, Japan
| | - Shino Shimada
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo 162-8666, Japan; Department of Pediatrics, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Akiko Tamasaki
- Division of Child Neurology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Shinjiro Akaboshi
- Department of Pediatrics, National Hospital Organization Tottori Medical Center, Tottori 689-0203, Japan
| | - Yuta Komoike
- Department of Hygiene and Public Health, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | | | - Toru Furukawa
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo 162-8666, Japan
| | - Toshiyuki Yamamoto
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo 162-8666, Japan.
| |
Collapse
|
43
|
Takanashi JI, Osaka H, Saitsu H, Sasaki M, Mori H, Shibayama H, Tanaka M, Nomura Y, Terao Y, Inoue K, Matsumoto N, Barkovich AJ. Different patterns of cerebellar abnormality and hypomyelination between POLR3A and POLR3B mutations. Brain Dev 2014; 36:259-63. [PMID: 23643445 DOI: 10.1016/j.braindev.2013.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/16/2013] [Accepted: 03/27/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Mutations of POLR3A and POLR3B have been reported to cause several allelic hypomyelinating disorders, including hypomyelination with hypogonadotropic hypogonadism and hypodontia (4H syndrome). PATIENTS AND METHODS To clarify the difference in MRI between the two genotypes, we reviewed MRI in three patients with POLR3B mutations, and three with POLR3A mutations. RESULTS Though small cerebellar hemispheres and vermis are common MRI findings with both types of mutations, MRI in patients with POLR3B mutations revealed smaller cerebellar structures, especially vermis, than those in POLR3A mutations. MRI also showed milder hypomyelination in patients with POLR3B mutations than those with POLR3A mutations, which might explain milder clinical manifestations. CONCLUSIONS MRI findings are distinct between patients with POLR3A and 3B mutations, and can provide important clues for the diagnosis, as these patients sometimes have no clinical symptoms suggesting 4H syndrome.
Collapse
Affiliation(s)
- Jun-ichi Takanashi
- Department of Pediatrics, Kameda Medical Center, Kamogawa, Japan; Department of Radiology, Toho University Sakura Medical Center, Sakura, Japan.
| | - Hitoshi Osaka
- Division of Neurology, Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Hirotomo Saitsu
- Department of Human Genetics, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Masayuki Sasaki
- Department of Child Neurology, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Harushi Mori
- Department of Radiology, The University of Tokyo, Tokyo, Japan
| | | | - Manabu Tanaka
- Division of Neurology, Saitama Children's Medical Center, Saitama, Japan
| | | | - Yasuo Terao
- Department of Neurology, The University of Tokyo, Tokyo, Japan
| | - Ken Inoue
- Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - A James Barkovich
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA, USA
| |
Collapse
|
44
|
Gjidoda A, Henry RW. RNA polymerase III repression by the retinoblastoma tumor suppressor protein. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:385-92. [PMID: 23063750 PMCID: PMC3549324 DOI: 10.1016/j.bbagrm.2012.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/28/2012] [Accepted: 09/30/2012] [Indexed: 12/29/2022]
Abstract
The retinoblastoma (RB) tumor suppressor protein regulates multiple pathways that influence cell growth, and as a key regulatory node, its function is inactivated in most cancer cells. In addition to its canonical roles in cell cycle control, RB functions as a global repressor of RNA polymerase (Pol) III transcription. Indeed, Pol III transcripts accumulate in cancer cells and their heightened levels are implicated in accelerated growth associated with RB dysfunction. Herein we review the mechanisms of RB repression for the different types of Pol III genes. For type 1 and type 2 genes, RB represses transcription through direct contacts with the core transcription machinery, notably Brf1-TFIIIB, and inhibits preinitiation complex formation and Pol III recruitment. A contrasting model for type 3 gene repression indicates that RB regulation involves stable and simultaneous promoter association by RB, the general transcription machinery including SNAPc, and Pol III, suggesting that RB may impede Pol III promoter escape or elongation. Interestingly, analysis of published genomic association data for RB and Pol III revealed added regulatory complexity for Pol III genes both during active growth and during arrested growth associated with quiescence and senescence. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Alison Gjidoda
- Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824
| | - R. William Henry
- Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824
| |
Collapse
|
45
|
Pascali C, Teichmann M. RNA polymerase III transcription - regulated by chromatin structure and regulator of nuclear chromatin organization. Subcell Biochem 2013; 61:261-287. [PMID: 23150255 DOI: 10.1007/978-94-007-4525-4_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RNA polymerase III (Pol III) transcription is regulated by modifications of the chromatin. DNA methylation and post-translational modifications of histones, such as acetylation, phosphorylation and methylation have been linked to Pol III transcriptional activity. In addition to being regulated by modifications of DNA and histones, Pol III genes and its transcription factors have been implicated in the organization of nuclear chromatin in several organisms. In yeast, the ability of the Pol III transcription system to contribute to nuclear organization seems to be dependent on direct interactions of Pol III genes and/or its transcription factors TFIIIC and TFIIIB with the structural maintenance of chromatin (SMC) protein-containing complexes cohesin and condensin. In human cells, Pol III genes and transcription factors have also been shown to colocalize with cohesin and the transcription regulator and genome organizer CCCTC-binding factor (CTCF). Furthermore, chromosomal sites have been identified in yeast and humans that are bound by partial Pol III machineries (extra TFIIIC sites - ETC; chromosome organizing clamps - COC). These ETCs/COC as well as Pol III genes possess the ability to act as boundary elements that restrict spreading of heterochromatin.
Collapse
Affiliation(s)
- Chiara Pascali
- Institut Européen de Chimie et Biologie (IECB), Université Bordeaux Segalen / INSERM U869, 2, rue Robert Escarpit, 33607, Pessac, France
| | | |
Collapse
|
46
|
Dieci G, Bosio MC, Fermi B, Ferrari R. Transcription reinitiation by RNA polymerase III. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:331-41. [PMID: 23128323 DOI: 10.1016/j.bbagrm.2012.10.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 01/11/2023]
Abstract
The retention of transcription proteins at an actively transcribed gene contributes to maintenance of the active transcriptional state and increases the rate of subsequent transcription cycles relative to the initial cycle. This process, called transcription reinitiation, generates the abundant RNAs in living cells. The persistence of stable preinitiation intermediates on activated genes representing at least a subset of basal transcription components has long been recognized as a shared feature of RNA polymerase (Pol) I, II and III-dependent transcription in eukaryotes. Studies of the Pol III transcription machinery and its target genes in eukaryotic genomes over the last fifteen years, has uncovered multiple details on transcription reinitiation. In addition to the basal transcription factors that recruit the polymerase, Pol III itself can be retained on the same gene through multiple transcription cycles by a facilitated recycling pathway. The molecular bases for facilitated recycling are progressively being revealed with advances in structural and functional studies. At the same time, progress in our understanding of Pol III transcriptional regulation in response to different environmental cues points to the specific mechanism of Pol III reinitiation as a key target of signaling pathway regulation of cell growth. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Giorgio Dieci
- Dipartimento di Bioscienze, Università degli Studi di Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy.
| | | | | | | |
Collapse
|
47
|
Vannini A. A structural perspective on RNA polymerase I and RNA polymerase III transcription machineries. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:258-64. [PMID: 23031840 DOI: 10.1016/j.bbagrm.2012.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/17/2012] [Accepted: 09/21/2012] [Indexed: 01/11/2023]
Abstract
RNA polymerase I and III are responsible for the bulk of nuclear transcription in actively growing cells and their activity impacts the cellular biosynthetic capacity. As a consequence, RNA polymerase I and III deregulation has been directly linked to cancer development. The complexity of RNA polymerase I and III transcription apparatuses has hampered their structural characterization. However, in the last decade tremendous progresses have been made, providing insights into the molecular and functional architecture of these multi-subunit transcriptional machineries. Here we summarize the available structural data on RNA polymerase I and III, including specific transcription factors and global regulators. Despite the overall scarcity of detailed structural data, the recent advances in the structural biology of RNA polymerase I and III represent the first step towards a comprehensive understanding of the molecular mechanism underlying RNA polymerase I and III transcription. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Alessandro Vannini
- Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
48
|
Teichmann M, Dumay-Odelot H, Fribourg S. Structural and functional aspects of winged-helix domains at the core of transcription initiation complexes. Transcription 2012; 3:2-7. [PMID: 22456313 DOI: 10.4161/trns.3.1.18917] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The winged helix (WH) domain is found in core components of transcription systems in eukaryotes and prokaryotes. It represents a sub-class of the helix-turn-helix motif. The WH domain participates in establishing protein-DNA and protein-protein-interactions. Here, we discuss possible explanations for the enrichment of this motif in transcription systems.
Collapse
Affiliation(s)
- Martin Teichmann
- Université de Bordeaux, Institut Européen de Chimie et Biologie, Pessac, France
| | | | | |
Collapse
|
49
|
Fedoriw AM, Starmer J, Yee D, Magnuson T. Nucleolar association and transcriptional inhibition through 5S rDNA in mammals. PLoS Genet 2012; 8:e1002468. [PMID: 22275877 PMCID: PMC3261910 DOI: 10.1371/journal.pgen.1002468] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 11/21/2011] [Indexed: 12/18/2022] Open
Abstract
Changes in the spatial positioning of genes within the mammalian nucleus have been associated with transcriptional differences and thus have been hypothesized as a mode of regulation. In particular, the localization of genes to the nuclear and nucleolar peripheries is associated with transcriptional repression. However, the mechanistic basis, including the pertinent cis- elements, for such associations remains largely unknown. Here, we provide evidence that demonstrates a 119 bp 5S rDNA can influence nucleolar association in mammals. We found that integration of transgenes with 5S rDNA significantly increases the association of the host region with the nucleolus, and their degree of association correlates strongly with repression of a linked reporter gene. We further show that this mechanism may be functional in endogenous contexts: pseudogenes derived from 5S rDNA show biased conservation of their internal transcription factor binding sites and, in some cases, are frequently associated with the nucleolus. These results demonstrate that 5S rDNA sequence can significantly contribute to the positioning of a locus and suggest a novel, endogenous mechanism for nuclear organization in mammals. Eukaryotic genomes are compartmentalized within nuclei such that physiological events, including transcription and DNA replication, can efficiently occur. The mechanisms that regulate this organization represent an exciting, and equally enigmatic, subject of research. In mammals, the identification of elements that influence these associations has been impeded by the complex nature of the genomes. Here, we report the identification and characterization of such an element. We demonstrate that the integration of a 5S rDNA gene, a 119 base pair noncoding RNA transcribed by RNA polymerase III, into a new genomic location can significantly influence the association of the host region with the nucleolus. This positioning has drastic, inhibitory effects on the transcription of a neighboring protein coding gene transcribed by RNA polymerase II, demonstrating a functional relationship between localization and gene expression. We also provide data that suggest this may be an endogenous phenomenon, through a class of repetitive sequences derived from 5S rDNA. Together, our data not only demonstrate a structural role for 5S rDNA but also suggest that nuclear organization of mammalian genomes may be strongly influenced by repetitive sequences.
Collapse
Affiliation(s)
- Andrew M. Fedoriw
- Department of Genetics, Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Joshua Starmer
- Department of Genetics, Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Della Yee
- Department of Genetics, Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Terry Magnuson
- Department of Genetics, Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
50
|
Tétreault M, Choquet K, Orcesi S, Tonduti D, Balottin U, Teichmann M, Fribourg S, Schiffmann R, Brais B, Vanderver A, Bernard G. Recessive mutations in POLR3B, encoding the second largest subunit of Pol III, cause a rare hypomyelinating leukodystrophy. Am J Hum Genet 2011; 89:652-5. [PMID: 22036172 DOI: 10.1016/j.ajhg.2011.10.006] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/07/2011] [Accepted: 10/16/2011] [Indexed: 10/15/2022] Open
Abstract
Mutations in POLR3A encoding the largest subunit of RNA polymerase III (Pol III) were found to be responsible for the majority of cases presenting with three clinically overlapping hypomyelinating leukodystrophy phenotypes. We uncovered in three cases without POLR3A mutation recessive mutations in POLR3B, which codes for the second largest subunit of Pol III. Mutations in genes coding for Pol III subunits are a major cause of childhood-onset hypomyelinating leukodystrophies with prominent cerebellar dysfunction, oligodontia, and hypogonadotropic hypogonadism.
Collapse
|