1
|
Zhang R, Chen S, Zhao F, Wang W, Liu D, Chen L, Bai T, Wu Z, Ji L, Zhang J. Sulforaphane enhanced muscle growth by promoting lipid oxidation through modulating key signaling pathways. Biosci Rep 2024; 44:BSR20240084. [PMID: 38868980 PMCID: PMC11224001 DOI: 10.1042/bsr20240084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/29/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024] Open
Abstract
Sulforaphane (SFN) has shown diverse effects on human health and diseases. SFN was administered daily to C57BL/6J mice at doses of 1 mg/kg (SFN1) and 3 mg/kg (SFN3) for 8 weeks. Both doses of SFN accelerated body weight increment. The cross-sectional area and diameter of Longissimus dorsi (LD) muscle fibers were enlarged in SFN3 group. Triglyceride (TG) and total cholesterol (TC) levels in LD muscle were decreased in SFN groups. RNA sequencing results revealed that 2455 and 2318 differentially expressed genes (DEGs) were found in SFN1 and SFN3 groups, respectively. Based on GO enrichment analysis, 754 and 911 enriched GO terms in the SFN1 and SFN3 groups, respectively. KEGG enrichment analysis shown that one KEGG pathway was enriched in the SFN1 group, while six KEGG pathways were enriched in the SFN3 group. The expressions of nine selected DEGs validated with qRT-PCR were in line with the RNA sequencing data. Furthermore, SFN treatment influenced lipid and protein metabolism related pathways including AMPK signaling, fatty acid metabolism signaling, cholesterol metabolism signalling, PPAR signaling, peroxisome signaling, TGFβ signaling, and mTOR signaling. In summary, SFN elevated muscle fibers size and reduced TG and TC content of in LD muscle by modulating protein and lipid metabolism-related signaling pathways.
Collapse
Affiliation(s)
- Rui Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Suqin Chen
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Feng Zhao
- Department of Oncology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Dayu Liu
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Lin Chen
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ting Bai
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhoulin Wu
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Lili Ji
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
2
|
Ahmad K, Lee EJ, Ali S, Han KS, Hur SJ, Lim JH, Choi I. Licochalcone A and B enhance muscle proliferation and differentiation by regulating Myostatin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155350. [PMID: 38237512 DOI: 10.1016/j.phymed.2024.155350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Myostatin (MSTN) inhibition has demonstrated promise for the treatment of diseases associated with muscle loss. In a previous study, we discovered that Glycyrrhiza uralensis (G. uralensis) crude water extract (CWE) inhibits MSTN expression while promoting myogenesis. Furthermore, three specific compounds of G. uralensis, namely liquiritigenin, tetrahydroxymethoxychalcone, and Licochalcone B (Lic B), were found to promote myoblast proliferation and differentiation, as well as accelerate the regeneration of injured muscle tissue. PURPOSE The purpose of this study was to build on our previous findings on G. uralensis and demonstrate the potential of its two components, Licochalcone A (Lic A) and Lic B, in muscle mass regulation (by inhibiting MSTN), aging and muscle formation. METHODS G. uralensis, Lic A, and Lic B were evaluated thoroughly using in silico, in vitro and in vivo approaches. In silico analyses included molecular docking, and dynamics simulations of these compounds with MSTN. Protein-protein docking was carried out for MSTN, as well as for the docked complex of MSTN-Lic with its receptor, activin type IIB receptor (ACVRIIB). Subsequent in vitro studies used C2C12 cell lines and primary mouse muscle stem cells to acess the cell proliferation and differentiation of normal and aged cells, levels of MSTN, Atrogin 1, and MuRF1, and plasma MSTN concentrations, employing techniques such as western blotting, immunohistochemistry, immunocytochemistry, cell proliferation and differentiation assays, and real-time RT-PCR. Furthermore, in vivo experiments using mouse models focused on measuring muscle fiber diameters. RESULTS CWE of G. uralensis and two of its components, namely Lic A and B, promote myoblast proliferation and differentiation by inhibiting MSTN and reducing Atrogin1 and MuRF1 expressions and MSTN protein concentration in serum. In silico interaction analysis revealed that Lic A (binding energy -6.9 Kcal/mol) and B (binding energy -5.9 Kcal/mol) bind to MSTN and reduce binding between it and ACVRIIB, thereby inhibiting downstream signaling. The experimental analysis, which involved both in vitro and in vivo studies, demonstrated that the levels of MSTN, Atrogin 1, and MuRF1 were decreased when G. uralensis CWE, Lic A, or Lic B were administered into mice or treated in the mouse primary muscle satellite cells (MSCs) and C2C12 myoblasts. The diameters of muscle fibers increased in orally treated mice, and the differentiation and proliferation of C2C12 cells were enhanced. G. uralensis CWE, Lic A, and Lic B also promoted cell proliferation in aged cells, suggesting that they may have anti-muslce aging properties. They also reduced the expression and phosphorylation of SMAD2 and SMAD3 (MSTN downstream effectors), adding to the evidence that MSTN is inhibited. CONCLUSION These findings suggest that CWE and its active constituents Lic A and Lic B have anti-mauscle aging potential. They also have the potential to be used as natural inhibitors of MSTN and as therapeutic options for disorders associated with muscle atrophy.
Collapse
Affiliation(s)
- Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Ki Soo Han
- Neo Cremar Co., Ltd., Seoul 05702, South Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea.
| |
Collapse
|
3
|
Yang M, Liu C, Jiang N, Liu Y, Luo S, Li C, Zhao H, Han Y, Chen W, Li L, Xiao L, Sun L. Myostatin: a potential therapeutic target for metabolic syndrome. Front Endocrinol (Lausanne) 2023; 14:1181913. [PMID: 37288303 PMCID: PMC10242177 DOI: 10.3389/fendo.2023.1181913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/04/2023] [Indexed: 06/09/2023] Open
Abstract
Metabolic syndrome is a complex metabolic disorder, its main clinical manifestations are obesity, hyperglycemia, hypertension and hyperlipidemia. Although metabolic syndrome has been the focus of research in recent decades, it has been proposed that the occurrence and development of metabolic syndrome is related to pathophysiological processes such as insulin resistance, adipose tissue dysfunction and chronic inflammation, but there is still a lack of favorable clinical prevention and treatment measures for metabolic syndrome. Multiple studies have shown that myostatin (MSTN), a member of the TGF-β family, is involved in the development and development of obesity, hyperlipidemia, diabetes, and hypertension (clinical manifestations of metabolic syndrome), and thus may be a potential therapeutic target for metabolic syndrome. In this review, we describe the transcriptional regulation and receptor binding pathway of MSTN, then introduce the role of MSTN in regulating mitochondrial function and autophagy, review the research progress of MSTN in metabolic syndrome. Finally summarize some MSTN inhibitors under clinical trial and proposed the use of MSTN inhibitor as a potential target for the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
4
|
Gao Y, Ma Y, Pan L, Li W, Peng X, Zhang M, Dong L, Wang J, Gu R. Comparative analysis of whey proteins in yak milk from different breeds in China using a data-independent acquisition proteomics method. J Dairy Sci 2023; 106:3791-3806. [PMID: 37164856 DOI: 10.3168/jds.2022-22525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/08/2023] [Indexed: 05/12/2023]
Abstract
Yak milk is rich in essential milk proteins of nutritional and therapeutic value. In this study, whey proteins of milk from 3 yak breeds (Gannan, GN; Huanhu, HH; Maiwa, MW) in China were comprehensively identified and compared using a data-independent acquisition quantitative proteomics approach. A total of 632 proteins were identified in yak milk whey samples, in which immune-related proteins were abundant. Compared with other milks, more proteins were involved in oxidation-reduction process and with ATP binding. In addition, we identified 96, 155, and 164 differentially expressed proteins (DEP) for GN versus HH, GN versus MW, and HH versus MW, respectively. "Phagosome" and "complement and coagulation cascades" were the most significant pathways for DEP of GN versus HH and GN or HH versus MW yak milk based on the Kyoto Encyclopedia of Genes and Genomes pathway analysis. Protein-protein interaction network analysis showed that DEP for the 3 comparisons had significant biological interactions but were associated with different functions. The results provide useful information on yak milk from different breeds in China, and elucidate the biological functions of yak milk proteins.
Collapse
Affiliation(s)
- Yu Gao
- Ausnutira Dairy (China) Co. Ltd., Changsha, Hunan, 410200, China; School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China; Hunan Ausnutria Institute of Food and Nutrition, Changsha, Hunan, 410200, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Lina Pan
- Ausnutira Dairy (China) Co. Ltd., Changsha, Hunan, 410200, China; Hunan Ausnutria Institute of Food and Nutrition, Changsha, Hunan, 410200, China
| | - Wei Li
- Ausnutira Dairy (China) Co. Ltd., Changsha, Hunan, 410200, China; Hunan Ausnutria Institute of Food and Nutrition, Changsha, Hunan, 410200, China
| | - Xiaoyu Peng
- Ausnutira Dairy (China) Co. Ltd., Changsha, Hunan, 410200, China; Hunan Ausnutria Institute of Food and Nutrition, Changsha, Hunan, 410200, China
| | - Min Zhang
- Ausnutira Dairy (China) Co. Ltd., Changsha, Hunan, 410200, China; Hunan Ausnutria Institute of Food and Nutrition, Changsha, Hunan, 410200, China
| | - Ling Dong
- Ausnutira Dairy (China) Co. Ltd., Changsha, Hunan, 410200, China; Hunan Ausnutria Institute of Food and Nutrition, Changsha, Hunan, 410200, China
| | - Jiaqi Wang
- Ausnutira Dairy (China) Co. Ltd., Changsha, Hunan, 410200, China; Hunan Ausnutria Institute of Food and Nutrition, Changsha, Hunan, 410200, China.
| | - Ruixia Gu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China.
| |
Collapse
|
5
|
Arora I, Li S, Crowley MR, Li Y, Tollefsbol TO. Genome-Wide Analysis on Transcriptome and Methylome in Prevention of Mammary Tumor Induced by Early Life Combined Botanicals. Cells 2022; 12:cells12010014. [PMID: 36611809 PMCID: PMC9818885 DOI: 10.3390/cells12010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is the most common malignancy and the second leading cause of cancer death among women in the United States. The consumption of natural dietary components such as broccoli sprouts (BSp) and green tea polyphenols (GTPs) has demonstrated exciting potential in reducing the risk of BC through the regulation of epigenetic mechanisms. However, little is known about their impacts on reversing epigenomic aberrations that are centrally involved in the initiation and progression of BC. Previously, we have determined the efficacy of combined BSp and GTPs treatment on the inhibition of the growth of a mammary tumor in a transgenic Her2/neu mouse model. We sought to extend our previous study to identify universal biomarkers that represent common mechanistic changes among different mouse models in response to this dietary regime by including a new transgenic mouse model, C3(1)-SV40 TAg (SV40). As a result, we identified novel target genes that were differentially expressed and methylated in response to dietary botanicals when administered singly (BSp and GTPs) and in combination (BSp + GTPs) in both mouse models. We discovered more differentially expressed and methylated genes in the combination treatment group compared to the singly administered groups. Subsequently, several biological pathways related to epigenetic regulations were identified in response to the combination treatment. Furthermore, when compared to the BSp and GTPs treatment alone, the combinatorial treatment showed a more significant impact on the regulation of the epigenetic modifier activities involved in DNA methylation and histone modifications. Our study provides key insights about the impact of the combined administration of BSp and GTPs on BC using a multi-omics analysis, suggesting a combinatorial approach is more efficacious in preventing and inhibiting BC by impacting key tumor-related genes at transcriptomic and methylomic levels. Our findings could be further extrapolated as a comprehensive source for understanding the epigenetic modifications that are associated with the effects of these dietary botanicals on BC prevention.
Collapse
Affiliation(s)
- Itika Arora
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shizhao Li
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael R. Crowley
- Heflin Center for Genomic Science, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yuanyuan Li
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
- Correspondence: (Y.L.); (T.O.T.)
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: (Y.L.); (T.O.T.)
| |
Collapse
|
6
|
Molecular mechanisms regulating spermatogenesis in vertebrates: Environmental, metabolic, and epigenetic factor effects. Anim Reprod Sci 2022; 246:106896. [PMID: 34893378 DOI: 10.1016/j.anireprosci.2021.106896] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022]
Abstract
The renewal of the natural resources is one of the most concerning aspects of modern farming. In animal production, there are many barriers breeders and researchers have to overcome to develop new practices to improve reproductive potential and hasten sexual maturation of the commercially viable species, while maintaining meat quality and sustainability. With the utilization of molecular biology techniques, there have been relevant advances in the knowledge of spermatogenesis, especially in mammals, resulting in new possibilities to control male fertility and the selection of desirable characteristics. Most of these discoveries have not been implemented in animal production. In this review, recent studies are highlighted on the molecular pathways involved in spermatogenesis in the context of animal production. There is also exploration of the interaction between environmental factors and spermatogenesis and how this knowledge may revolutionize animal production techniques. Furthermore, new insights are described about the inheritance of desired characteristics in mammals and there is a review of nefarious actions of pollutants, nutrition, and metabolism on reproductive potential in subsequent generations. Even though there are these advances in knowledge base, results from recent studies indicate there are previously unrecognized environmental effects on spermatogenesis. The molecular mechanisms underlying this interaction are not well understood. Research in spermatogenesis, therefore, remains pivotal as a pillar of animal production sustainability.
Collapse
|
7
|
Vargas-Mendoza N, Madrigal-Santillán E, Álvarez-González I, Madrigal-Bujaidar E, Anguiano-Robledo L, Aguilar-Faisal JL, Morales-Martínez M, Delgado-Olivares L, Rodríguez-Negrete EV, Morales-González Á, Morales-González JA. Phytochemicals in Skeletal Muscle Health: Effects of Curcumin (from Curcuma longa Linn) and Sulforaphane (from Brassicaceae) on Muscle Function, Recovery and Therapy of Muscle Atrophy. PLANTS (BASEL, SWITZERLAND) 2022; 11:2517. [PMID: 36235384 PMCID: PMC9573421 DOI: 10.3390/plants11192517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022]
Abstract
The mobility of the human body depends on, among other things, muscle health, which can be affected by several situations, such as aging, increased oxidative stress, malnutrition, cancer, and the lack or excess of physical exercise, among others. Genetic, metabolic, hormonal, and nutritional factors are intricately involved in maintaining the balance that allows proper muscle function and fiber recovery; therefore, the breakdown of the balance among these elements can trigger muscle atrophy. The study from the nutrigenomic perspective of nutritional factors has drawn wide attention recently; one of these is the use of certain compounds derived from foods and plants known as phytochemicals, to which various biological activities have been described and attributed in terms of benefiting health in many respects. This work addresses the effect that the phytochemicals curcumin from Curcuma longa Linn and sulforaphane from Brassicaceae species have shown to exert on muscle function, recovery, and the prevention of muscle atrophy, and describes the impact on muscle health in general. In the same manner, there are future perspectives in research on novel compounds as potential agents in the prevention or treatment of medical conditions that affect muscle health.
Collapse
Affiliation(s)
- Nancy Vargas-Mendoza
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Mexico City 11340, Mexico
| | - Eduardo Madrigal-Santillán
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Mexico City 11340, Mexico
| | - Isela Álvarez-González
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional A. López Mateos, Av. Wilfrido Massieu. Col., Zacatenco, Mexico City 07738, Mexico
| | - Eduardo Madrigal-Bujaidar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional A. López Mateos, Av. Wilfrido Massieu. Col., Zacatenco, Mexico City 07738, Mexico
| | - Liliana Anguiano-Robledo
- Laboratorio de Farmacología Molecular, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Mexico City 11340, Mexico
| | - José Leopoldo Aguilar-Faisal
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Mexico City 11340, Mexico
| | - Mauricio Morales-Martínez
- Licenciatura en Nutrición, Universidad Intercontinental, Insurgentes Sur 4303, Santa Úrsula Xitla, Alcaldía Tlalpan, Mexico City 14420, Mexico
| | - Luis Delgado-Olivares
- Centro de Investigación Interdisciplinario, Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Actopan-Tilcuauttla, s/n, Ex Hacienda la Concepción, San Agustín Tlaxiaca, Hidalgo 2160, Mexico
| | | | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz s/n Esquina Miguel Othón de Mendizabal, Unidad Profesional Adolfo López Mateos, Mexico City 07738, Mexico
| | - José A. Morales-González
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Mexico City 11340, Mexico
| |
Collapse
|
8
|
Yedigaryan L, Gatti M, Marini V, Maraldi T, Sampaolesi M. Shared and Divergent Epigenetic Mechanisms in Cachexia and Sarcopenia. Cells 2022; 11:2293. [PMID: 35892590 PMCID: PMC9332174 DOI: 10.3390/cells11152293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
Significant loss of muscle mass may occur in cachexia and sarcopenia, which are major causes of mortality and disability. Cachexia represents a complex multi-organ syndrome associated with cancer and chronic diseases. It is often characterized by body weight loss, inflammation, and muscle and adipose wasting. Progressive muscle loss is also a hallmark of healthy aging, which is emerging worldwide as a main demographic trend. A great challenge for the health care systems is the age-related decline in functionality which threatens the independence and quality of life of elderly people. This biological decline can also be associated with functional muscle loss, known as sarcopenia. Previous studies have shown that microRNAs (miRNAs) play pivotal roles in the development and progression of muscle wasting in both cachexia and sarcopenia. These small non-coding RNAs, often carried in extracellular vesicles, inhibit translation by targeting messenger RNAs, therefore representing potent epigenetic modulators. The molecular mechanisms behind cachexia and sarcopenia, including the expression of specific miRNAs, share common and distinctive trends. The aim of the present review is to compile recent evidence about shared and divergent epigenetic mechanisms, particularly focusing on miRNAs, between cachexia and sarcopenia to understand a facet in the underlying muscle wasting associated with these morbidities and disclose potential therapeutic interventions.
Collapse
Affiliation(s)
- Laura Yedigaryan
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (L.Y.); (V.M.)
| | - Martina Gatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (T.M.)
| | - Vittoria Marini
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (L.Y.); (V.M.)
| | - Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (T.M.)
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (L.Y.); (V.M.)
- Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
9
|
Li J, Wang Z, Li C, Song Y, Wang Y, Bo H, Zhang Y. Impact of Exercise and Aging on Mitochondrial Homeostasis in Skeletal Muscle: Roles of ROS and Epigenetics. Cells 2022; 11:cells11132086. [PMID: 35805170 PMCID: PMC9266156 DOI: 10.3390/cells11132086] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Aging causes degenerative changes such as epigenetic changes and mitochondrial dysfunction in skeletal muscle. Exercise can upregulate muscle mitochondrial homeostasis and enhance antioxidant capacity and represents an effective treatment to prevent muscle aging. Epigenetic changes such as DNA methylation, histone posttranslational modifications, and microRNA expression are involved in the regulation of exercise-induced adaptive changes in muscle mitochondria. Reactive oxygen species (ROS) play an important role in signaling molecules in exercise-induced muscle mitochondrial health benefits, and strong evidence emphasizes that exercise-induced ROS can regulate gene expression via epigenetic mechanisms. The majority of mitochondrial proteins are imported into mitochondria from the cytosol, so mitochondrial homeostasis is regulated by nuclear epigenetic mechanisms. Exercise can reverse aging-induced changes in myokine expression by modulating epigenetic mechanisms. In this review, we provide an overview of the role of exercise-generated ROS in the regulation of mitochondrial homeostasis mediated by epigenetic mechanisms. In addition, the potential epigenetic mechanisms involved in exercise-induced myokine expression are reviewed.
Collapse
Affiliation(s)
- Jialin Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
| | - Zhe Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
| | - Can Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
| | - Yu Song
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
| | - Yan Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
| | - Hai Bo
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
- Department of Military Training Medicines, Logistics University of Chinese People’s Armed Police Force, Tianjin 300162, China
- Correspondence: (H.B.); (Y.Z.)
| | - Yong Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
- Correspondence: (H.B.); (Y.Z.)
| |
Collapse
|
10
|
Baig MH, Ahmad K, Moon JS, Park SY, Ho Lim J, Chun HJ, Qadri AF, Hwang YC, Jan AT, Ahmad SS, Ali S, Shaikh S, Lee EJ, Choi I. Myostatin and its Regulation: A Comprehensive Review of Myostatin Inhibiting Strategies. Front Physiol 2022; 13:876078. [PMID: 35812316 PMCID: PMC9259834 DOI: 10.3389/fphys.2022.876078] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Myostatin (MSTN) is a well-reported negative regulator of muscle growth and a member of the transforming growth factor (TGF) family. MSTN has important functions in skeletal muscle (SM), and its crucial involvement in several disorders has made it an important therapeutic target. Several strategies based on the use of natural compounds to inhibitory peptides are being used to inhibit the activity of MSTN. This review delivers an overview of the current state of knowledge about SM and myogenesis with particular emphasis on the structural characteristics and regulatory functions of MSTN during myogenesis and its involvements in various muscle related disorders. In addition, we review the diverse approaches used to inhibit the activity of MSTN, especially in silico approaches to the screening of natural compounds and the design of novel short peptides derived from proteins that typically interact with MSTN.
Collapse
Affiliation(s)
- Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Jun Sung Moon
- Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu, South Korea
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Hee Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Afsha Fatima Qadri
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Ye Chan Hwang
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
- *Correspondence: Eun Ju Lee, ; Inho Choi,
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
- *Correspondence: Eun Ju Lee, ; Inho Choi,
| |
Collapse
|
11
|
Sulforaphane Enhanced Proliferation of Porcine Satellite Cells via Epigenetic Augmentation of SMAD7. Animals (Basel) 2022; 12:ani12111365. [PMID: 35681828 PMCID: PMC9179638 DOI: 10.3390/ani12111365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 12/10/2022] Open
Abstract
Satellite cells take an indispensable place in skeletal muscle regeneration, maintenance, and growth. However, only limited works have investigated effects of dietary compounds on the proliferation of porcine satellite cells (PSCs) and related mechanisms. Sulforaphane (SFN) at multiple levels was applied to PSCs. The PSCs’ viability and HDAC activity were measured with a WST-1 cell proliferation kit and Color-de-Lys® HDAC colorimetric activity assay kit. Gene expression and epigenetics modification were tested with qRT-PCR, Western blot, bisulfite sequencing, and ChIP-qPCR. This study found that SFN enhanced PSC proliferation and altered mRNA expression levels of myogenic regulatory factors. In addition, SFN inhibited histone deacetylase (HDAC) activity, disturbed mRNA levels of HDAC family members, and elevated acetylated histone H3 and H4 abundance in PSCs. Furthermore, both mRNA and protein levels of the Smad family member 7 (SMAD7) in PSCs were upregulated after SFN treatment. Finally, it was found that SFN increased the acetylation level of histone H4 in the SMAD7 promoter, decreased the expression of microRNAs, including ssc-miR-15a, ssc-miR-15b, ssc-miR-92a, ssc-miR-17-5p, ssc-miR-20a-5p, and ssc-miR-106a, targeting SMAD7, but did not impact on the SMAD7 promoter’s methylation status in PSCs. In summary, SFN was found to boost PSC proliferation and epigenetically increase porcine SMAD7 expression, which indicates a potential application of SFN in modulation of skeletal muscle growth.
Collapse
|
12
|
Yadav A, Yadav SS, Singh S, Dabur R. Natural products: Potential therapeutic agents to prevent skeletal muscle atrophy. Eur J Pharmacol 2022; 925:174995. [PMID: 35523319 DOI: 10.1016/j.ejphar.2022.174995] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 12/16/2022]
Abstract
The skeletal muscle (SkM) is the largest organ, which plays a vital role in controlling musculature, locomotion, body heat regulation, physical strength, and metabolism of the body. A sedentary lifestyle, aging, cachexia, denervation, immobilization, etc. Can lead to an imbalance between protein synthesis and degradation, which is further responsible for SkM atrophy (SmA). To date, the understanding of the mechanism of SkM mass loss is limited which also restricted the number of drugs to treat SmA. Thus, there is an urgent need to develop novel approaches to regulate muscle homeostasis. Presently, some natural products attained immense attraction to regulate SkM homeostasis. The natural products, i.e., polyphenols (resveratrol, curcumin), terpenoids (ursolic acid, tanshinone IIA, celastrol), flavonoids, alkaloids (tomatidine, magnoflorine), vitamin D, etc. exhibit strong potential against SmA. Some of these natural products have been reported to have equivalent potential to standard treatments to prevent body lean mass loss. Indeed, owing to the large complexity, diversity, and slow absorption rate of bioactive compounds made their usage quite challenging. Moreover, the use of natural products is controversial due to their partially known or elusive mechanism of action. Therefore, the present review summarizes various experimental and clinical evidence of some important bioactive compounds that shall help in the development of novel strategies to counteract SmA elicited by various causes.
Collapse
Affiliation(s)
- Aarti Yadav
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Surender Singh Yadav
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Sandeep Singh
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Rajesh Dabur
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
13
|
Li W, Swiderski K, Murphy KT, Lynch GS. Role for Plant-Derived Antioxidants in Attenuating Cancer Cachexia. Antioxidants (Basel) 2022; 11:183. [PMID: 35204066 PMCID: PMC8868096 DOI: 10.3390/antiox11020183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer cachexia is the progressive muscle wasting and weakness experienced by many cancer patients. It can compromise the response to gold standard cancer therapies, impair functional capacity and reduce overall quality of life. Cancer cachexia accounts for nearly one-third of all cancer-related deaths and has no effective treatment. The pathogenesis of cancer cachexia and its progression is multifactorial and includes increased oxidative stress derived from both the tumor and the host immune response. Antioxidants have therapeutic potential to attenuate cancer-related muscle loss, with polyphenols, a group of plant-derived antioxidants, being the most widely investigated. This review describes the potential of these plant-derived antioxidants for treating cancer cachexia.
Collapse
Affiliation(s)
| | | | | | - Gordon S. Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia; (W.L.); (K.S.); (K.T.M.)
| |
Collapse
|
14
|
Esposito P, Picciotto D, Battaglia Y, Costigliolo F, Viazzi F, Verzola D. Myostatin: Basic biology to clinical application. Adv Clin Chem 2021; 106:181-234. [PMID: 35152972 DOI: 10.1016/bs.acc.2021.09.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Myostatin is a member of the transforming growth factor (TGF)-β superfamily. It is expressed by animal and human skeletal muscle cells where it limits muscle growth and promotes protein breakdown. Its effects are influenced by complex mechanisms including transcriptional and epigenetic regulation and modulation by extracellular binding proteins. Due to its actions in promoting muscle atrophy and cachexia, myostatin has been investigated as a promising therapeutic target to counteract muscle mass loss in experimental models and patients affected by different muscle-wasting conditions. Moreover, growing evidence indicates that myostatin, beyond to regulate skeletal muscle growth, may have a role in many physiologic and pathologic processes, such as obesity, insulin resistance, cardiovascular and chronic kidney disease. In this chapter, we review myostatin biology, including intracellular and extracellular regulatory pathways, and the role of myostatin in modulating physiologic processes, such as muscle growth and aging. Moreover, we discuss the most relevant experimental and clinical evidence supporting the extra-muscle effects of myostatin. Finally, we consider the main strategies developed and tested to inhibit myostatin in clinical trials and discuss the limits and future perspectives of the research on myostatin.
Collapse
Affiliation(s)
- Pasquale Esposito
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Daniela Picciotto
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Yuri Battaglia
- Nephrology and Dialysis Unit, St. Anna University Hospital, Ferrara, Italy
| | - Francesca Costigliolo
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Viazzi
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniela Verzola
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
15
|
Moku G, Vangala S, Yakati V, Gali CC, Saha S, Madamsetty VS, Vyas A. Novel Suberoylanilide Hydroxamic Acid Analogs Inhibit Angiogenesis and Induce Apoptosis in Breast Cancer Cells. Anticancer Agents Med Chem 2021; 22:914-925. [PMID: 34488592 DOI: 10.2174/1871520621666210901102425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/31/2021] [Accepted: 06/05/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Histone deacetylases (HDACs) are the enzymes that catalyze the removal of the acetyl group from lysine residues and regulate several biological processes. Suberoylanilide hydroxamic acid (SAHA) is a notable HDAC inhibitor that exhibited remarkable anti-proliferative efficiency by alleviating gene regulation against solid and hematologic cancers. AIM The aim of this study was to develop new chemotherapeutic agents for breast cancer treatment, therefore, a novel series of Suberoylanilide hydroxamic acid (SAHA) analogs were investigated as anticancer agents. METHODS We designed and synthesized a novel series of analogs derived from SAHA by substituting alkyl, alkoxy, halo, and benzyl groups at different positions of the phenyl ring. The newly synthesized analogs were assessed for their cytotoxic potential against four human cancer cell lines in comparison with healthy cell lines, using several biological assays. RESULTS SAHA analogs displayed significant cytotoxic potential with IC50 values ranging from 1.6 to 19.2 µM in various tumor cell lines. Among these analogs, 2d (containing 3-chloro, 4-floro substitutions on phenyl moiety), 2h (containing 3,4-di chloro substitutions on phenyl moiety), and 2j (containing 4-chloro, 3-methyl substitutions on phenyl moiety) showed significant cytotoxic potential with IC50 values ranging from 1.6 to 1.8 µM in MCF-7 (breast carcinoma) cell line. More importantly, these analogs were found to be non-toxic towards healthy primary human hepatocytes (PHH) and mouse fibroblast cells (NIH3T3), which represent their tumor selectivity. These analogs were further analyzed for their effect on cell migration, BrdU incorporation, Annexin V-FITC and cell cycle arrest (Sub-G1 phase). Remarkably, analogs 2d, 2h, and 2j displayed significant HDAC inhibition than the parent SAHA molecule. Further studies also confirmed that these SAHA analogs are efficient in inducing apoptosis, as they regulated the expression of several proteins involved in mitochondrial or intrinsic apoptosis pathways. Findings in the Chick Chorioallantoic Membrane (CAM) assay studies revealed anti-angiogenic properties of the currently described SAHA analogs. CONCLUSION From anti-proliferative study results, it is clearly evident that 3,4-substitution at the SAHA phenyl ring improves the anti-proliferative activity of SAHA. Based on these findings, we presume that the synthesized novel SAHA analogs could be potential therapeutic agents in treating breast cancer.
Collapse
Affiliation(s)
- Gopikrishna Moku
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Uppal Road, Hyderabad 500 007. India
| | - Swathi Vangala
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Uppal Road, Hyderabad 500 007. India
| | - Venu Yakati
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Uppal Road, Hyderabad 500 007. India
| | - Chaitanya Chakravarthi Gali
- Institute of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz 8032. Austria
| | - Soumen Saha
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Uppal Road, Hyderabad 500 007. India
| | - Vijay Sagar Madamsetty
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Uppal Road, Hyderabad 500 007. India
| | - Amber Vyas
- Department of Pharmaceutics, University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492 010. India
| |
Collapse
|
16
|
Natural Compounds Attenuate Denervation-Induced Skeletal Muscle Atrophy. Int J Mol Sci 2021; 22:ijms22158310. [PMID: 34361076 PMCID: PMC8348757 DOI: 10.3390/ijms22158310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
The weight of skeletal muscle accounts for approximately 40% of the whole weight in a healthy individual, and the normal metabolism and motor function of the muscle are indispensable for healthy life. In addition, the skeletal muscle of the maxillofacial region plays an important role not only in eating and swallowing, but also in communication, such as facial expressions and conversations. In recent years, skeletal muscle atrophy has received worldwide attention as a serious health problem. However, the mechanism of skeletal muscle atrophy that has been clarified at present is insufficient, and a therapeutic method against skeletal muscle atrophy has not been established. This review provides views on the importance of skeletal muscle in the maxillofacial region and explains the differences between skeletal muscles in the maxillofacial region and other regions. We summarize the findings to change in gene expression in muscle remodeling and emphasize the advantages and disadvantages of denervation-induced skeletal muscle atrophy model. Finally, we discuss the newly discovered beneficial effects of natural compounds on skeletal muscle atrophy.
Collapse
|
17
|
Li S, Wu H, Tollefsbol TO. Combined Broccoli Sprouts and Green Tea Polyphenols Contribute to the Prevention of Estrogen Receptor-Negative Mammary Cancer via Cell Cycle Arrest and Inducing Apoptosis in HER2/neu Mice. J Nutr 2020; 151:73-84. [PMID: 33188406 PMCID: PMC7779229 DOI: 10.1093/jn/nxaa315] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/24/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Aberrations in the regulation of cell proliferation perturb cellular homeostasis and lead to malignancies in which dysregulation of the cell cycle and suppressed apoptosis are 2 common phenomena. Combinatorial nutritional approaches could be efficacious in ameliorating these aberrations. OBJECTIVES We sought to investigate the effect of dietary broccoli sprouts (BSp) and green tea polyphenol (GTP) administration on cell cycle progression and apoptosis in mammary tumors. METHODS Forty female HER2/neu transgenic mice were randomly divided into 4 groups and treated with control, 26% BSp (wt:wt) in food, 0.5% GTPs (wt:vol) in drinking water, or combined BSp and GTPs from dams' conception until their pups were killed at 29 wk of age. Pups' tumor growth was monitored weekly for 27 wk. Tumor cell cycle- and apoptosis-related protein expression was measured. Data were analyzed with 2-factor or 3-factor (repeated-measures) ANOVA. RESULTS Compared with the control group, BSp and/or GTPs decreased tumor incidence (P < 0.05) and combined BSp and GTPs synergistically [combination index (CIn) < 1] reduced tumor volume over time (P-time < 0.01). BSp and/or GTPs upregulated the expression of phosphatase and tension homolog, P16, and P53 (P < 0.05) and downregulated myelocytomatosis oncogene, Bmi1 polycomb ring finger oncogene, and telomerase reverse transcriptase (P < 0.05) compared with the control group. Combined BSp and GTPs synergistically (CIn < 1) downregulated the expression of cyclin B1, D1, and E1 and cyclin-dependent kinase 1, 2, and 4 (P < 0.05) compared with the control group. Moreover, combined BSp and GTPs induced apoptosis by regulating Bcl-2-associated X protein and B-cell lymphoma 2 (P < 0.05). BSp and/or GTPs also reduced the expression of DNA methyltransferase 1, 3A, and 3B and histone deacetylase 1 compared with the control group (P < 0.05). CONCLUSIONS Collectively, lifelong BSp and GTP administration can prevent estrogen receptor-negative mammary tumorigenesis through cell cycle arrest and inducing apoptosis in HER2/neu mice.
Collapse
Affiliation(s)
- Shizhao Li
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Huixin Wu
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | |
Collapse
|
18
|
Shirakawa T, Miyawaki A, Matsubara T, Okumura N, Okamoto H, Nakai N, Rojasawasthien T, Morikawa K, Inoue A, Goto A, Washio A, Tsujisawa T, Kawamoto T, Kokabu S. Daily Oral Administration of Protease-Treated Royal Jelly Protects Against Denervation-Induced Skeletal Muscle Atrophy. Nutrients 2020; 12:E3089. [PMID: 33050588 PMCID: PMC7600733 DOI: 10.3390/nu12103089] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
Honeybees produce royal jelly (RJ) from their cephalic glands. Royal jelly is a source of nutrition for the queen honey bee throughout its lifespan and is also involved in fertility and longevity. Royal jelly has long been considered beneficial to human health. We recently observed that RJ delayed impairment of motor function during aging, affecting muscle fiber size. However, how RJ affects skeletal muscle metabolism and the functional component of RJ is as of yet unidentified. We demonstrate that feeding mice with RJ daily prevents a decrease in myofiber size following denervation without affecting total muscle weight. RJ did not affect atrophy-related genes but stimulated the expression of myogenesis-related genes, including IGF-1 and IGF receptor. Trans-10-hydroxy-2-decenoic acid (10H2DA) and 10-hydroxydecanoic acid (10HDAA), two major fatty acids contained in RJ. After ingestion, 10H2DA and 10HDAA are metabolized into 2-decenedioic acid (2DA) and sebacic acid (SA) respectively. We found that 10H2DA, 10HDAA, 2DA, and SA all regulated myogenesis of C2C12 cells, murine myoblast cells. These novel findings may be useful for potential preventative and therapeutic applications for muscle atrophy disease included in Sarcopenia, an age-related decline in skeletal muscle mass and strength.
Collapse
Affiliation(s)
- Tomohiko Shirakawa
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka 803-8580, Japan; (T.S.); (A.M.); (T.M.); (N.N.); (T.R.); (A.I.); (A.G.)
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka 803-8580, Japan;
| | - Aki Miyawaki
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka 803-8580, Japan; (T.S.); (A.M.); (T.M.); (N.N.); (T.R.); (A.I.); (A.G.)
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka 803-8580, Japan; (T.S.); (A.M.); (T.M.); (N.N.); (T.R.); (A.I.); (A.G.)
| | - Nobuaki Okumura
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc., Tomata, Okayama 708-0393, Japan; (N.O.); (H.O.)
| | - Hideto Okamoto
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc., Tomata, Okayama 708-0393, Japan; (N.O.); (H.O.)
| | - Naoya Nakai
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka 803-8580, Japan; (T.S.); (A.M.); (T.M.); (N.N.); (T.R.); (A.I.); (A.G.)
| | - Thira Rojasawasthien
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka 803-8580, Japan; (T.S.); (A.M.); (T.M.); (N.N.); (T.R.); (A.I.); (A.G.)
| | - Kazumasa Morikawa
- Division of Pediatric and Special Care Dentistry, Department of Developmental Oral Health Science, School of Dentistry, Iwate Medical University, Shiwa, Iwate 028-3694, Japan;
| | - Asako Inoue
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka 803-8580, Japan; (T.S.); (A.M.); (T.M.); (N.N.); (T.R.); (A.I.); (A.G.)
| | - Akino Goto
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka 803-8580, Japan; (T.S.); (A.M.); (T.M.); (N.N.); (T.R.); (A.I.); (A.G.)
| | - Ayako Washio
- Division of Endodontics and Restorative Dentistry, Department of Oral Functions, Kyushu Dental University, Kitakyushu, Fukuoka 803-8580, Japan;
| | - Toshiyuki Tsujisawa
- School of Oral Health Sciences, Kyushu Dental University, Kitakyushu, Fukuoka 803-8580, Japan;
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka 803-8580, Japan;
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka 803-8580, Japan; (T.S.); (A.M.); (T.M.); (N.N.); (T.R.); (A.I.); (A.G.)
| |
Collapse
|
19
|
Faridvand Y, Haddadi P, Nejabati HR, Ghaffari S, Zamani-Gharehchamani E, Nozari S, Nouri M, Jodati A. Sulforaphane modulates CX3CL1/CX3CR1 axis and inflammation in palmitic acid-induced cell injury in C2C12 skeletal muscle cells. Mol Biol Rep 2020; 47:7971-7977. [PMID: 33034881 DOI: 10.1007/s11033-020-05875-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 09/29/2020] [Indexed: 11/28/2022]
Abstract
Studies have shown that sulforaphane (SFN) has potent anti-inflammatory and free radical scavenging effects on obesity and associated disorder such as diabetes, polycystic ovary syndrome, and metabolic syndrome. fractalkine (CX3CL1) and its receptor, CX3CR1, play an important role in muscle metabolism by improving insulin-sensitizing effects. Here, in this study we examined the SFN effect on CX3CL1 and its receptor, CX3CR1, in C2C12 myotubes in palmitic acid (PA)-induced oxidative stress and inflammation. The results showed that PA (750 μM) evoked lipotoxicity as a reduction in cell viability, increased IL-6 and TNF-α expression, and enhanced reactive oxygen species (ROS). However, SFN pretreatment attenuated the levels of, IL-6 and TNF-α in C2C12 myotubes exposure to PA. Moreover, SFN pretreatment up-regulated nuclear factor erythroid related factor 2 (Nrf2) /heme oxygenase-1(HO-1) pathway protein in C2C12 cells as indicated by a decrease in ROS levels. Interestingly, PA also caused an increase in CX3CL1 and CX3CR1 expression that SFN abrogated it. We also found the protective effect of SFN agonist PA-induced lipotoxicity with promotes in UCP3 gene expression in C2C12 cells. Collectively, these findings suggest that SFN hampers the PA-induced inflammation in C2C12 cells by modulation of the Nrf2/HO-1 pathway and CX3CL1/CX3CR1 axis and may propose a new therapeutic approach to protect against obesity-associated disorders in skeletal muscle cells.
Collapse
Affiliation(s)
- Yousef Faridvand
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parinaz Haddadi
- Department of Biochemistry, Faculty of Sciences, Tabriz University, Tabriz, Iran
| | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samad Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Samira Nozari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell and Regenerative Medicine (SCARM) Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ahmadreza Jodati
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Thompson RP, Nilsson E, Skinner MK. Environmental epigenetics and epigenetic inheritance in domestic farm animals. Anim Reprod Sci 2020; 220:106316. [PMID: 32094003 DOI: 10.1016/j.anireprosci.2020.106316] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 01/26/2023]
Abstract
Epigenetics refers to molecular factors and processes around DNA that can affect genome activity and gene expression independent of DNA sequence. Epigenetic mechanisms drive developmental processes and have also been shown to be tied to disease development. Many epigenetic studies have been done using plants, rodent, and human models, but fewer have focused on domestic livestock species. The goal of this review is to present current epigenetic findings in livestock species (cattle, pigs, sheep and poultry). Much of this research examined epigenetic effects following exposure to toxicants, nutritional changes or infectious disease in those animals directly exposed, or in the offspring they produced. A limited number of studies in domestic animals have examined epigenetic transgenerational inheritance in the absence of continued exposures. One example used a porcine model to investigate the effect that feeding males a diet supplemented with micronutrients had on liver DNA methylation and muscle mass in grand-offspring (the transgenerational F2 generation). Further research into how epigenetic mechanisms affect the health and production traits of domestic livestock and their offspring is important to elucidate.
Collapse
Affiliation(s)
- Ryan P Thompson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA.
| |
Collapse
|
21
|
Feng X, Zhang L, Nie S, Zhuang L, Wang W, Huang J, Yan X, Meng F. The Effect of Ras Homolog C/Rho-Associated Coiled-Protein Kinase (Rho/ROCK) Signaling Pathways on Proliferation and Apoptosis of Human Myeloma Cells. Med Sci Monit 2019; 25:7605-7616. [PMID: 31599230 PMCID: PMC6798802 DOI: 10.12659/msm.915998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The aim of this study was to explore the impact of Ras homolog C/Rho-associated coiled-protein kinase (Rho/ROCK) signaling pathways intervention on biological characteristics of the human multiple myeloma cell lines RPMI-8226 and U266 cells, and to investigate the expression of RhoC, ROCK1, and ROCK2 in RPMI-8226 and U266 cells. MATERIAL AND METHODS RPMI8226 and U266 cell lines were treated by 5-aza-2-deoxycytidine (5-Aza-Dc), trichostatin A (TSA), RhoA inhibitor CCG-1423, Rac1 inhibitor NSC23766, and ROCK inhibitor fasudil. Cell proliferation was examined by Cell Counting Kit-8 (CCK-8) assay and clone formation. Cell apoptosis was examined by flow cytometry and TUNEL assay. The mRNA and protein expressions of RhoC, ROCK1, and ROCK2 were detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot, respectively. RESULTS CCG-1423, NSC23766, and fasudil could significantly inhibit the proliferation of RPMI8226 and U266 cells. The inhibitory effect was dose- and time-dependent within a certain concentration range (P<0.05). After treatment with CCG-1423, NSC23766, and fasudil for 24 hours, the apoptosis rates of RPMI8226 and U266 cells were significantly higher than those of the control group, which were dose-dependent (P<0.05). Compared with the control group, the mRNA and protein expressions of RhoC, ROCK1, and ROCK2 in RPMI8226 and U266 cells were significantly decreased with single 5-Aza-Dc or TSA treatment. However, the effects were obviously stronger after combined treatment of 5-Aza-CdR and TSA (P<0.05). CONCLUSIONS We found that 5-Aza-Dc and TSA can effectively decrease the mRNA and protein expressions of RhoC, ROCK1, and ROCK2. Furthermore, Rho and ROCK inhibitors significantly inhibit cell growth and induce cell apoptosis in the human multiple myeloma cell lines RPMI-8226 and U266.
Collapse
Affiliation(s)
- Xianqi Feng
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Ling Zhang
- Department of Pediatrics, Laiwu People's Hospital, Laiwu, Shandong, China (mainland)
| | - Shumin Nie
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Likun Zhuang
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Wei Wang
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Junxia Huang
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Xueshen Yan
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Fanjun Meng
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| |
Collapse
|
22
|
Shen S, Yu H, Gan L, Ye Y, Lin L. Natural constituents from food sources: potential therapeutic agents against muscle wasting. Food Funct 2019; 10:6967-6986. [PMID: 31599912 DOI: 10.1039/c9fo00912d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Skeletal muscle wasting is highly correlated with not only reduced quality of life but also higher morbidity and mortality. Although an increasing number of patients are suffering from various kinds of muscle atrophy and weakness, there is still no effective therapy available, and skeletal muscle is considered as an under-medicated organ. Food provided not only essential macronutrients but also functional substances involved in the modulation of the physiological systems of our body. Natural constituents from commonly consumed dietary plants, either extracts or compounds, have attracted more and more attention to be developed as agents for preventing and treating muscle wasting due to their safety and effectiveness, as well as structural diversity. This review provides an overview of the mechanistic aspects of muscle wasting, and summarizes the extracts and compounds from food sources as potential therapeutic agents against muscle wasting.
Collapse
Affiliation(s)
- Shengnan Shen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Lishe Gan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yang Ye
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
23
|
Li Y, Yuan F, Wu T, Lu L, Liu J, Feng W, Chen SY. Sulforaphane protects against ethanol-induced apoptosis in neural crest cells through restoring epithelial-mesenchymal transition by epigenetically modulating the expression of Snail1. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2586-2594. [PMID: 31295528 DOI: 10.1016/j.bbadis.2019.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/14/2019] [Accepted: 07/06/2019] [Indexed: 12/15/2022]
Abstract
Ethanol-induced apoptosis in neural crest cells (NCCs), a multipotent progenitor cell population, is implicated in the Fetal Alcohol Spectrum Disorders (FASD). Studies have demonstrated that sulforaphane (SFN) can prevent ethanol-induced apoptosis in NCCs. The objective of this study is to investigate whether ethanol exposure can induce apoptosis in NCCs by inhibiting epithelial-mesenchymal transition (EMT) and whether SFN can prevent ethanol-induced apoptosis by epigenetically modulating the expression of Snail1, a key transcriptional factor that promotes EMT. We found that ethanol exposure resulted in a significant increase in apoptosis in NCCs. Co-treatment with SFN significantly reduced ethanol-induced apoptosis. Treatment with SFN also dramatically diminished ethanol-induced changes in the expression of E-cadherin and vimentin, and restored EMT in ethanol-exposed NCCs. In addition, ethanol exposure reduced the levels of trimethylation of histone H3 lysine 4 (H3K4me3) at the promoters of Snail1. SFN treatment diminished the ethanol-induced reduction of H3K4me3 at the promoter regions of the Snail1 gene, restored the expression of Snail1 and down-regulated Snail1 target gene E-cadherin. Knockdown of Snail1 significantly reduced the protective effects of SFN on ethanol-induced apoptosis. These results demonstrate that SFN can protect against ethanol-induced apoptosis by preventing ethanol-induced reduction in the levels of H3K4me3 at the promoters of Snail1, restoring the expression of Snail1 and EMT in ethanol-exposed NCCs.
Collapse
Affiliation(s)
- Yihong Li
- Department of Pharmacology and Toxicology, University of Louisville Health Science Center, Louisville, KY 40202, USA; University of Louisville Alcohol Research Center, Louisville, KY 40202, USA.
| | - Fuqiang Yuan
- Department of Pharmacology and Toxicology, University of Louisville Health Science Center, Louisville, KY 40202, USA; University of Louisville Alcohol Research Center, Louisville, KY 40202, USA.
| | - Ting Wu
- Department of Pharmacology and Toxicology, University of Louisville Health Science Center, Louisville, KY 40202, USA; University of Louisville Alcohol Research Center, Louisville, KY 40202, USA
| | - Lanhai Lu
- Department of Pharmacology and Toxicology, University of Louisville Health Science Center, Louisville, KY 40202, USA; University of Louisville Alcohol Research Center, Louisville, KY 40202, USA.
| | - Jie Liu
- Department of Pharmacology and Toxicology, University of Louisville Health Science Center, Louisville, KY 40202, USA; University of Louisville Alcohol Research Center, Louisville, KY 40202, USA.
| | - Wenke Feng
- University of Louisville Alcohol Research Center, Louisville, KY 40202, USA; Department of Medicine, University of Louisville, Louisville, KY 40292, USA.
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Science Center, Louisville, KY 40202, USA; University of Louisville Alcohol Research Center, Louisville, KY 40202, USA.
| |
Collapse
|
24
|
Li S, Chen M, Li Y, Tollefsbol TO. Prenatal epigenetics diets play protective roles against environmental pollution. Clin Epigenetics 2019; 11:82. [PMID: 31097039 PMCID: PMC6524340 DOI: 10.1186/s13148-019-0659-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
It is thought that germ cells and preimplantation embryos during development are most susceptible to endogenous and exogenous environmental factors because the epigenome in those cells is undergoing dramatic elimination and reconstruction. Exposure to environmental factors such as nutrition, climate, stress, pathogens, toxins, and even social behavior during gametogenesis and early embryogenesis has been shown to influence disease susceptibility in the offspring. Early-life epigenetic modifications, which determine the expression of genetic information stored in the genome, are viewed as one of the general mechanisms linking prenatal exposure and phenotypic changes later in life. From atmospheric pollution, endocrine-disrupting chemicals to heavy metals, research increasingly suggests that environmental pollutions have already produced significant consequences on human health. Moreover, mounting evidence now links such pollution to relevant modification in the epigenome. The epigenetics diet, referring to a class of bioactive dietary compounds such as isothiocyanates in broccoli, genistein in soybean, resveratrol in grape, epigallocatechin-3-gallate in green tea, and ascorbic acid in fruits, has been shown to modify the epigenome leading to beneficial health outcomes. This review will primarily focus on the causes and consequences of prenatal environment pollution exposure on the epigenome, and the potential protective role of the epigenetics diet, which could play a central role in neutralizing epigenomic aberrations against environmental pollutions.
Collapse
Affiliation(s)
- Shizhao Li
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Min Chen
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yuanyuan Li
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
25
|
Grade CVC, Mantovani CS, Alvares LE. Myostatin gene promoter: structure, conservation and importance as a target for muscle modulation. J Anim Sci Biotechnol 2019; 10:32. [PMID: 31044074 PMCID: PMC6477727 DOI: 10.1186/s40104-019-0338-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Myostatin (MSTN) is one of the key factors regulating myogenesis. Because of its role as a negative regulator of muscle mass deposition, much interest has been given to its protein and, in recent years, several studies have analysed MSTN gene regulation. This review discusses the MSTN gene promoter, focusing on its structure in several animal species, both vertebrate and invertebrate. We report the important binding sites considering their degree of phylogenetic conservation and roles they play in the promoter activity. Finally, we discuss recent studies focusing on MSTN gene regulation via promoter manipulation and the potential applications they have both in medicine and agriculture.
Collapse
Affiliation(s)
- Carla Vermeulen Carvalho Grade
- 1Universidade Federal da Integração Latino-Americana, UNILA, Instituto Latino-Americano de Ciências da Vida e da Natureza, Avenida Tarquínio Joslin dos Santos, 1000, Foz do Iguaçu, PR CEP 85870-901 Brazil
| | - Carolina Stefano Mantovani
- 2Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas - UNICAMP, Rua Monteiro Lobato, 255, Campinas, SP CEP 13083-862 Brazil
| | - Lúcia Elvira Alvares
- 2Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas - UNICAMP, Rua Monteiro Lobato, 255, Campinas, SP CEP 13083-862 Brazil
| |
Collapse
|
26
|
Samant SA, Pillai VB, Gupta MP. Cellular mechanisms promoting cachexia and how they are opposed by sirtuins 1. Can J Physiol Pharmacol 2019; 97:235-245. [PMID: 30407871 DOI: 10.1139/cjpp-2018-0479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many chronic diseases are associated with unintentional loss of body weight, which is termed "cachexia". Cachexia is a complex multifactorial syndrome associated with the underlying primary disease, and characterized by loss of skeletal muscle with or without loss of fat tissue. Patients with cachexia face dire symptoms like dyspnea, fatigue, edema, exercise intolerance, and low responsiveness to medical therapy, which worsen quality of life. Because cachexia is not a stand-alone disorder, treating primary disease - such as cancer - takes precedence for the physician, and it remains mostly a neglected illness. Existing clinical trials have demonstrated limited success mostly because of their monotherapeutic approach and late detection of the syndrome. To conquer cachexia, it is essential to identify as many molecular targets as possible using the latest technologies we have at our disposal. In this review, we have discussed different aspects of cachexia, which include various disease settings, active molecular pathways, and recent novel advances made in this field to understand consequences of this illness. We also discuss roles of the sirtuins, the NAD+-dependent lysine deacetylases, microRNAs, certain dietary options, and epigenetic drugs as potential approaches, which can be used to tackle cachexia as early as possible in its course.
Collapse
Affiliation(s)
- Sadhana A Samant
- Department of Surgery, Committee on Molecular and Cellular Physiology, Biological Sciences Division, Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
- Department of Surgery, Committee on Molecular and Cellular Physiology, Biological Sciences Division, Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Vinodkumar B Pillai
- Department of Surgery, Committee on Molecular and Cellular Physiology, Biological Sciences Division, Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
- Department of Surgery, Committee on Molecular and Cellular Physiology, Biological Sciences Division, Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Mahesh P Gupta
- Department of Surgery, Committee on Molecular and Cellular Physiology, Biological Sciences Division, Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
- Department of Surgery, Committee on Molecular and Cellular Physiology, Biological Sciences Division, Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
27
|
Bose C, Awasthi S, Sharma R, Beneš H, Hauer-Jensen M, Boerma M, Singh SP. Sulforaphane potentiates anticancer effects of doxorubicin and attenuates its cardiotoxicity in a breast cancer model. PLoS One 2018; 13:e0193918. [PMID: 29518137 PMCID: PMC5843244 DOI: 10.1371/journal.pone.0193918] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/20/2018] [Indexed: 11/19/2022] Open
Abstract
Breast cancer is the most common malignancy in women of the Western world. Doxorubicin (DOX) continues to be used extensively to treat early-stage or node-positive breast cancer, human epidermal growth factor receptor-2 (HER2)-positive breast cancer, and metastatic disease. We have previously demonstrated in a mouse model that sulforaphane (SFN), an isothiocyanate isolated from cruciferous vegetables, protects the heart from DOX-induced toxicity and damage. However, the effects of SFN on the chemotherapeutic efficacy of DOX in breast cancer are not known. Present studies were designed to investigate whether SFN alters the effects of DOX on breast cancer regression while also acting as a cardioprotective agent. Studies on rat neonatal cardiomyocytes and multiple rat and human breast cancer cell lines revealed that SFN protects cardiac cells but not cancer cells from DOX toxicity. Results of studies in a rat orthotopic breast cancer model indicated that SFN enhanced the efficacy of DOX in regression of tumor growth, and that the DOX dosage required to treat the tumor could be reduced when SFN was administered concomitantly. Additionally, SFN enhanced mitochondrial respiration in the hearts of DOX-treated rats and reduced cardiac oxidative stress caused by DOX, as evidenced by the inhibition of lipid peroxidation, the activation of NF-E2-related factor 2 (Nrf2) and associated antioxidant enzymes. These studies indicate that SFN not only acts synergistically with DOX in cancer regression, but also protects the heart from DOX toxicity through Nrf2 activation and protection of mitochondrial integrity and functions.
Collapse
Affiliation(s)
- Chhanda Bose
- University of Arkansas for Medical Sciences, Department of Geriatrics, Little Rock, Arkansas, United States of America
| | - Sanjay Awasthi
- Texas Tech Health Sciences Center, Division of Hematology & Oncology, Department of Internal Medicine, Lubbock, Texas, United States of America
| | - Rajendra Sharma
- University of Arkansas for Medical Sciences, Department of Pharmacology and Toxicology, Little Rock, Arkansas, United States of America
| | - Helen Beneš
- University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences, Little Rock, Arkansas, United States of America
| | - Martin Hauer-Jensen
- University of Arkansas for Medical Sciences, Division of Radiation Health, Little Rock, Arkansas, United States of America
| | - Marjan Boerma
- University of Arkansas for Medical Sciences, Division of Radiation Health, Little Rock, Arkansas, United States of America
| | - Sharda P. Singh
- Texas Tech Health Sciences Center, Division of Hematology & Oncology, Department of Internal Medicine, Lubbock, Texas, United States of America
- University of Arkansas for Medical Sciences, Department of Pharmacology and Toxicology, Little Rock, Arkansas, United States of America
- Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, United States of America
| |
Collapse
|
28
|
Abstract
As the cirrhosis progresses, development of complication like ascites, hepatic encephalopathy, variceal bleeding, kidney dysfunction, and hepatocellular carcinoma signify increasing risk of short term mortality. Malnutrition and muscle wasting (sarcopenia) is yet other complications that negatively impact survival, quality of life, and response to stressors, such as infection and surgery in patients with cirrhosis. Conventionally, these are not routinely looked for, because nutritional assessment can be a difficult especially if there is associated fluid retention and/or obesity. Patients with cirrhosis may have a combination of loss of skeletal muscle and gain of adipose tissue, culminating in the condition of "sarcopenic obesity." Sarcopenia in cirrhotic patients has been associated with increased mortality, sepsis complications, hyperammonemia, overt hepatic encephalopathy, and increased length of stay after liver transplantation. Assessment of muscles with cross-sectional imaging studies has become an attractive index of nutritional status evaluation in cirrhosis, as sarcopenia, the major component of malnutrition, is primarily responsible for the adverse clinical consequences seen in patients with liver disease. Cirrhosis is a state of accelerated starvation, with increased gluconeogenesis that requires amino acid diversion from other metabolic functions. Protein homeostasis is disturbed in cirrhosis due to several factors such as hyperammonemia, hormonal, and cytokine abnormalities, physical inactivity and direct effects of ethanol and its metabolites. New approaches to manage sarcopenia are being evolved. Branched chain amino acid supplementation, Myostatin inhibitors, and mitochondrial protective agents are currently in various stages of evaluation in preclinical studies to prevent and reverse sarcopenia, in cirrhosis.
Collapse
Key Words
- (PG) SGA, patient-generated SGA
- AMPK, 5′ adenosine monophosphate-activated protein kinase
- ASPEN, American Society of Parenteral and Enteral Nutrition
- ATP, adenosine triphosphate
- Akt/PKB, serine/threonine-specific protein kinase B
- BIA, bio-electric impedance analysis
- BMC, bone mineral content
- BMI, body mass index
- CT, computed tomography
- DDLT, deceased donor liver transplantation
- DRM, disease-related malnutrition
- DXA, dual X-ray absorptiometry
- ESPEN, European Society of Parenteral and Enteral Nutrition
- FFI, Fried Frailty Index
- FFM, fat free mass
- FFMI, fat free mass index
- FM, fat mass
- HE, hepatic encephalopathy
- LDLT, living donor liver transplant
- LST, lean soft tissue
- MAC, mid arm circumference
- MAMC, mid arm muscle circumference
- MELD, model for end-stage liver disease
- MNA, Mini Nutritional Assessment
- MRI, magnetic resonance imaging
- NASH, non-alcoholic steatohepatitis
- PCM, protein-calorie nalnutrition
- REE, resting energy expenditure
- RQ, respiratory quotient (or RQ or respiratory coefficient)
- SGA, Subjective Global Assessment
- SMI, Skeletal Muscle Index
- SPPB, Short Physical Performance Battery
- TIPS, trans jugular intrahepatic portocaval shunts
- TNF, tumour necrosis factor
- TSF, triceps skin fild thickness
- WHO, World Health Organisation
- YPA, total psoas area
- aKG, alfa keto glutarate
- cirrhosis
- mTORC1, mammalian target of rapamycin complex 1
- nutrition
Collapse
|
29
|
Son YH, Jang EJ, Kim YW, Lee JH. Sulforaphane prevents dexamethasone-induced muscle atrophy via regulation of the Akt/Foxo1 axis in C2C12 myotubes. Biomed Pharmacother 2017; 95:1486-1492. [DOI: 10.1016/j.biopha.2017.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/18/2017] [Accepted: 09/03/2017] [Indexed: 01/06/2023] Open
|
30
|
Carr RM, Enriquez-Hesles E, Olson RL, Jatoi A, Doles J, Fernandez-Zapico ME. Epigenetics of cancer-associated muscle catabolism. Epigenomics 2017; 9:1259-1265. [PMID: 28942676 DOI: 10.2217/epi-2017-0058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cancer patients are commonly affected by cachexia, a wasting process involving muscle and fat. Specifically, loss of the muscle compartment has been associated with poor prognosis and suboptimal response to therapy. Nutritional support has been ineffective in treating this process leading to investigations into the underlying molecular processes governing muscle catabolism. In this commentary, we discuss the molecular mechanisms of cancer-associated muscle metabolism and the epigenetic processes responsible for the muscle wasting phenotype. Ultimately, we highlight how the epigenome may serve as a promising therapeutic target in reversing cancer-associated muscle catabolism.
Collapse
Affiliation(s)
- Ryan M Carr
- Schulze Center for Novel Therapeutics, Mayo Clinic, MN, USA
| | | | - Rachel Lo Olson
- Schulze Center for Novel Therapeutics, Mayo Clinic, MN, USA.,Center for Learning Innovation, University of Minnesota Rochester, MN, USA
| | - Aminah Jatoi
- Department of Biochemistry & Molecular Biology, Mayo Clinic, MN, USA
| | - Jason Doles
- Department of Biochemistry & Molecular Biology, Mayo Clinic, MN, USA
| | | |
Collapse
|
31
|
Ikeda K, Ito A, Imada R, Sato M, Kawabe Y, Kamihira M. In vitro drug testing based on contractile activity of C2C12 cells in an epigenetic drug model. Sci Rep 2017; 7:44570. [PMID: 28300163 PMCID: PMC5353687 DOI: 10.1038/srep44570] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/09/2017] [Indexed: 11/23/2022] Open
Abstract
Skeletal muscle tissue engineering holds great promise for pharmacological studies. Herein, we demonstrated an in vitro drug testing system using tissue-engineered skeletal muscle constructs. In response to epigenetic drugs, myotube differentiation of C2C12 myoblast cells was promoted in two-dimensional cell cultures, but the levels of contractile force generation of tissue-engineered skeletal muscle constructs prepared by three-dimensional cell cultures were not correlated with the levels of myotube differentiation in two-dimensional cell cultures. In contrast, sarcomere formation and contractile activity in two-dimensional cell cultures were highly correlated with contractile force generation of tissue-engineered skeletal muscle constructs. Among the epigenetic drugs tested, trichostatin A significantly improved contractile force generation of tissue-engineered skeletal muscle constructs. Follistatin expression was also enhanced by trichostatin A treatment, suggesting the importance of follistatin in sarcomere formation of muscular tissues. These observations indicate that contractility data are indispensable for in vitro drug screening.
Collapse
Affiliation(s)
- Kazushi Ikeda
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akira Ito
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryusuke Imada
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masanori Sato
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshinori Kawabe
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masamichi Kamihira
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
32
|
Yang Q, Pröll MJ, Salilew-Wondim D, Zhang R, Tesfaye D, Fan H, Cinar MU, Große-Brinkhaus C, Tholen E, Islam MA, Hölker M, Schellander K, Uddin MJ, Neuhoff C. LPS-induced expression of CD14 in the TRIF pathway is epigenetically regulated by sulforaphane in porcine pulmonary alveolar macrophages. Innate Immun 2016; 22:682-695. [PMID: 27688705 DOI: 10.1177/1753425916669418] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pulmonary alveolar macrophages (AMs) are important in defense against bacterial lung inflammation. Cluster of differentiation 14 (CD14) is involved in recognizing bacterial lipopolysaccharide (LPS) through MyD88-dependent and TRIF pathways of innate immunity. Sulforaphane (SFN) shows anti-inflammatory activity and suppresses DNA methylation. To identify CD14 epigenetic changes by SFN in the LPS-induced TRIF pathway, an AMs model was investigated in vitro. CD14 gene expression was induced by 5 µg/ml LPS at the time point of 12 h and suppressed by 5 µM SFN. After 12 h of LPS stimulation, gene expression was significantly up-regulated, including TRIF, TRAF6, NF-κB, TRAF3, IRF7, TNF-α, IL-1β, IL-6, and IFN-β. LPS-induced TRAM, TRIF, RIPK1, TRAF3, TNF-α, IL-1β and IFN-β were suppressed by 5 µM SFN. Similarly, DNMT3a expression was increased by LPS but significantly down-regulated by 5 µM SFN. It showed positive correlation of CD14 gene body methylation with in LPS-stimulated AMs, and this methylation status was inhibited by SFN. This study suggests that SFN suppresses CD14 activation in bacterial inflammation through epigenetic regulation of CD14 gene body methylation associated with DNMT3a. The results provide insights into SFN-mediated epigenetic down-regulation of CD14 in LPS-induced TRIF pathway inflammation and may lead to new methods for controlling LPS-induced inflammation in pigs.
Collapse
Affiliation(s)
- Qin Yang
- 1 Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Germany
| | - Maren J Pröll
- 1 Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Germany
| | - Dessie Salilew-Wondim
- 1 Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Germany
| | - Rui Zhang
- 1 Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Germany
| | - Dawit Tesfaye
- 1 Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Germany
| | - Huitao Fan
- 2 Department of Basic Medical Sciences, and Purdue Center for Cancer Research, Purdue University, USA
| | - Mehmet U Cinar
- 3 Department of Animal Science, Faculty of Agriculture, Erciyes University, Turkey
| | - Christine Große-Brinkhaus
- 1 Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Germany
| | - Ernst Tholen
- 1 Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Germany
| | - Mohammad A Islam
- 4 Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Bangladesh
| | - Michael Hölker
- 1 Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Germany
| | - Karl Schellander
- 1 Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Germany
| | - Muhammad J Uddin
- 4 Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Bangladesh
| | - Christiane Neuhoff
- 1 Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Germany
| |
Collapse
|
33
|
Srinivas C, Swathi V, Priyanka C, Anjana Devi T, Subba Reddy BV, Janaki Ramaiah M, Bhadra U, Bhadra MP. Novel SAHA analogues inhibit HDACs, induce apoptosis and modulate the expression of microRNAs in hepatocellular carcinoma. Apoptosis 2016; 21:1249-1264. [DOI: 10.1007/s10495-016-1278-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Thaler R, Maurizi A, Roschger P, Sturmlechner I, Khani F, Spitzer S, Rumpler M, Zwerina J, Karlic H, Dudakovic A, Klaushofer K, Teti A, Rucci N, Varga F, van Wijnen AJ. Anabolic and Antiresorptive Modulation of Bone Homeostasis by the Epigenetic Modulator Sulforaphane, a Naturally Occurring Isothiocyanate. J Biol Chem 2016; 291:6754-71. [PMID: 26757819 DOI: 10.1074/jbc.m115.678235] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Indexed: 11/06/2022] Open
Abstract
Bone degenerative pathologies like osteoporosis may be initiated by age-related shifts in anabolic and catabolic responses that control bone homeostasis. Here we show that sulforaphane (SFN), a naturally occurring isothiocyanate, promotes osteoblast differentiation by epigenetic mechanisms. SFN enhances active DNA demethylation viaTet1andTet2and promotes preosteoblast differentiation by enhancing extracellular matrix mineralization and the expression of osteoblastic markers (Runx2,Col1a1,Bglap2,Sp7,Atf4, andAlpl). SFN decreases the expression of the osteoclast activator receptor activator of nuclear factor-κB ligand (RANKL) in osteocytes and mouse calvarial explants and preferentially induces apoptosis in preosteoclastic cells via up-regulation of theTet1/Fas/Caspase 8 and Caspase 3/7 pathway. These mechanistic effects correlate with higher bone volume (∼20%) in both normal and ovariectomized mice treated with SFN for 5 weeks compared with untreated mice as determined by microcomputed tomography. This effect is due to a higher trabecular number in these mice. Importantly, no shifts in mineral density distribution are observed upon SFN treatment as measured by quantitative backscattered electron imaging. Our data indicate that the food-derived compound SFN epigenetically stimulates osteoblast activity and diminishes osteoclast bone resorption, shifting the balance of bone homeostasis and favoring bone acquisition and/or mitigation of bone resorptionin vivo Thus, SFN is a member of a new class of epigenetic compounds that could be considered for novel strategies to counteract osteoporosis.
Collapse
Affiliation(s)
- Roman Thaler
- From the Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of Social Health Insurance Vienna (WGKK) and Austrian Social Insurance for Occupational Risks (AUVA) Trauma Center Meidling, First Medical Department, Hanusch Hospital, 1140 Vienna, Austria, Department of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, and
| | - Antonio Maurizi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Paul Roschger
- From the Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of Social Health Insurance Vienna (WGKK) and Austrian Social Insurance for Occupational Risks (AUVA) Trauma Center Meidling, First Medical Department, Hanusch Hospital, 1140 Vienna, Austria
| | - Ines Sturmlechner
- From the Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of Social Health Insurance Vienna (WGKK) and Austrian Social Insurance for Occupational Risks (AUVA) Trauma Center Meidling, First Medical Department, Hanusch Hospital, 1140 Vienna, Austria
| | - Farzaneh Khani
- Department of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, and
| | - Silvia Spitzer
- From the Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of Social Health Insurance Vienna (WGKK) and Austrian Social Insurance for Occupational Risks (AUVA) Trauma Center Meidling, First Medical Department, Hanusch Hospital, 1140 Vienna, Austria
| | - Monika Rumpler
- From the Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of Social Health Insurance Vienna (WGKK) and Austrian Social Insurance for Occupational Risks (AUVA) Trauma Center Meidling, First Medical Department, Hanusch Hospital, 1140 Vienna, Austria
| | - Jochen Zwerina
- From the Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of Social Health Insurance Vienna (WGKK) and Austrian Social Insurance for Occupational Risks (AUVA) Trauma Center Meidling, First Medical Department, Hanusch Hospital, 1140 Vienna, Austria
| | - Heidrun Karlic
- From the Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of Social Health Insurance Vienna (WGKK) and Austrian Social Insurance for Occupational Risks (AUVA) Trauma Center Meidling, First Medical Department, Hanusch Hospital, 1140 Vienna, Austria
| | - Amel Dudakovic
- Department of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, and
| | - Klaus Klaushofer
- From the Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of Social Health Insurance Vienna (WGKK) and Austrian Social Insurance for Occupational Risks (AUVA) Trauma Center Meidling, First Medical Department, Hanusch Hospital, 1140 Vienna, Austria
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Franz Varga
- From the Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of Social Health Insurance Vienna (WGKK) and Austrian Social Insurance for Occupational Risks (AUVA) Trauma Center Meidling, First Medical Department, Hanusch Hospital, 1140 Vienna, Austria,
| | - Andre J van Wijnen
- Department of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, and
| |
Collapse
|
35
|
Yang AY, Kim H, Li W, Kong ANT. Natural compound-derived epigenetic regulators targeting epigenetic readers, writers and erasers. Curr Top Med Chem 2016; 16:697-713. [PMID: 26306989 PMCID: PMC4955582 DOI: 10.2174/1568026615666150826114359] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 08/10/2015] [Indexed: 12/21/2022]
Abstract
Post-translational modifications can affect gene expression in a long-term manner without changes in the primary nucleotide sequence of the DNA. These epigenetic alterations involve dynamic processes that occur in histones, chromatin-associated proteins and DNA. In response to environmental stimuli, abnormal epigenetic alterations cause disorders in the cell cycle, apoptosis and other cellular processes and thus contribute to the incidence of diverse diseases, including cancers. In this review, we will summarize recent studies focusing on certain epigenetic readers, writers, and erasers associated with cancer development and how newly discovered natural compounds and their derivatives could interact with these targets. These advances provide insights into epigenetic alterations in cancers and the potential utility of these alterations as therapeutic targets for the future development of chemopreventive and chemotherapeutic drugs.
Collapse
Affiliation(s)
| | | | | | - Ah-Ng Tony Kong
- Rutgers, The State University of New Jersey, Ernest Mario School of Pharmacy, Room 228, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
36
|
Sharma M, McFarlane C, Kambadur R, Kukreti H, Bonala S, Srinivasan S. Myostatin: expanding horizons. IUBMB Life 2015; 67:589-600. [PMID: 26305594 DOI: 10.1002/iub.1392] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 05/29/2015] [Indexed: 12/13/2022]
Abstract
Myostatin is a secreted growth and differentiation factor that belongs to the TGF-β superfamily. Myostatin is predominantly synthesized and expressed in skeletal muscle and thus exerts a huge impact on muscle growth and function. In keeping with its negative role in myogenesis, myostatin expression is tightly regulated at several levels including epigenetic, transcriptional, post-transcriptional, and post-translational. New revelations regarding myostatin regulation also offer mechanisms that could be exploited for developing myostatin antagonists. Increasingly, it is becoming clearer that besides its conventional role in muscle, myostatin plays a critical role in metabolism. Hence, molecular mechanisms by which myostatin regulates several key metabolic processes need to be further explored.
Collapse
Affiliation(s)
- Mridula Sharma
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
- Department of Cell & Molecular Biology, Brenner Centre for Molecular Medicine, Singapore Institute of Clinical Sciences (SICS), Singapore
| | - Craig McFarlane
- Department of Cell & Molecular Biology, Brenner Centre for Molecular Medicine, Singapore Institute of Clinical Sciences (SICS), Singapore
| | - Ravi Kambadur
- Department of Cell & Molecular Biology, Brenner Centre for Molecular Medicine, Singapore Institute of Clinical Sciences (SICS), Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Himani Kukreti
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Sabeera Bonala
- Department of Cell & Molecular Biology, Brenner Centre for Molecular Medicine, Singapore Institute of Clinical Sciences (SICS), Singapore
| | - Shruti Srinivasan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| |
Collapse
|
37
|
Sulforaphane Reverses the Expression of Various Tumor Suppressor Genes by Targeting DNMT3B and HDAC1 in Human Cervical Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:412149. [PMID: 26161119 PMCID: PMC4487331 DOI: 10.1155/2015/412149] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/14/2015] [Accepted: 05/26/2015] [Indexed: 12/21/2022]
Abstract
Sulforaphane (SFN) may hinder carcinogenesis by altering epigenetic events in the cells; however, its molecular mechanisms are unclear. The present study investigates the role of SFN in modifying epigenetic events in human cervical cancer cells, HeLa. HeLa cells were treated with SFN (2.5 µM) for a period of 0, 24, 48, and 72 hours for all experiments. After treatment, expressions of DNMT3B, HDAC1, RARβ, CDH1, DAPK1, and GSTP1 were studied using RT-PCR while promoter DNA methylation of tumor suppressor genes (TSGs) was studied using MS-PCR. Inhibition assays of DNA methyl transferases (DNMTs) and histone deacetylases (HDACs) were performed at varying time points. Molecular modeling and docking studies were performed to explore the possible interaction of SFN with HDAC1 and DNMT3B. Time-dependent exposure to SFN decreases the expression of DNMT3B and HDAC1 and significantly reduces the enzymatic activity of DNMTs and HDACs. Molecular modeling data suggests that SFN may interact directly with DNMT3B and HDAC1 which may explain the inhibitory action of SFN. Interestingly, time-dependent reactivation of the studied TSGs via reversal of methylation in SFN treated cells correlates well with its impact on the epigenetic alterations accumulated during cancer development. Thus, SFN may have significant implications for epigenetic based therapy.
Collapse
|
38
|
Khan MA, Hussain A, Sundaram MK, Alalami U, Gunasekera D, Ramesh L, Hamza A, Quraishi U. (-)-Epigallocatechin-3-gallate reverses the expression of various tumor-suppressor genes by inhibiting DNA methyltransferases and histone deacetylases in human cervical cancer cells. Oncol Rep 2015; 33:1976-84. [PMID: 25682960 DOI: 10.3892/or.2015.3802] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 01/29/2015] [Indexed: 11/06/2022] Open
Abstract
There has been increasing evidence that numerous bioactive dietary agents can hamper the process of carcinogenesis by targeting epigenetic alterations including DNA methylation. This therapeutic approach is considered as a significant goal for cancer therapy due to the reversible nature of epigenetic-mediated gene silencing and warrants further attention. One such dietary agent, green tea catechin, (-)-epigallocatechin-3-gallate (EGCG) has been shown to modulate many cancer-related pathways. Thus, the present study was designed to investigate the role of EGCG as an epigenetic modifier in HeLa cells. DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibition assays were conducted, and the transcription levels of DNMT3B and HDAC1 were assessed by enzymatic activity assay and RT-PCR, respectively. Furthermore, we studied the binding interaction of EGCG with DNMT3B and HDAC1 by molecular modeling as well as promoter DNA methylation and expression of retinoic acid receptor-β (RARβ), cadherin 1 (CDH1) and death-associated protein kinase-1 (DAPK1) in EGCG-treated HeLa cells by RT-PCR and MS-PCR. In the present study, time-dependent EGCG-treated HeLa cells were found to have a significant reduction in the enzymatic activity of DNMT and HDAC. However, the expression of DNMT3B was significantly decreased in a time-dependent manner whereas there was no significant change in HDAC1 expression. Molecular modeling data also supported the EGCG-mediated DNMT3B and HDAC1 activity inhibition. Furthermore, time-dependent exposure to EGCG resulted in reactivation of known tumor-suppressor genes (TSGs) in HeLa cells due to marked changes in the methylation of the promoter regions of these genes. Overall, the present study suggests that EGCG may have a significant impact on the development of novel epigenetic-based therapy.
Collapse
Affiliation(s)
- Munawwar Ali Khan
- Department of Natural Science and Public Health, College of Sustainability Sciences and Humanities, Zayed University, Dubai, United Arab Emirates
| | - Arif Hussain
- School of Life Sciences, Manipal University, Dubai, United Arab Emirates
| | | | - Usama Alalami
- Department of Natural Science and Public Health, College of Sustainability Sciences and Humanities, Zayed University, Dubai, United Arab Emirates
| | - Dian Gunasekera
- School of Life Sciences, Manipal University, Dubai, United Arab Emirates
| | - Laveena Ramesh
- School of Life Sciences, Manipal University, Dubai, United Arab Emirates
| | - Amina Hamza
- School of Life Sciences, Manipal University, Dubai, United Arab Emirates
| | - Uzma Quraishi
- School of Life Sciences, Manipal University, Dubai, United Arab Emirates
| |
Collapse
|
39
|
Kim YS, Sayers TJ, Colburn NH, Milner JA, Young HA. Impact of dietary components on NK and Treg cell function for cancer prevention. Mol Carcinog 2015; 54:669-78. [PMID: 25845339 DOI: 10.1002/mc.22301] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/09/2014] [Accepted: 01/21/2015] [Indexed: 01/11/2023]
Abstract
An important characteristic of cancer is that the disease can overcome the surveillance of the immune system. A possible explanation for this resistance arises from the ability of tumor cells to block the tumoricidal activity of host immune cells such as natural killer (NK) cells by inducing the localized accumulation of regulatory T (Treg) cells. Evidence exists that components in commonly consumed foods including vitamins A, D, and E, water-soluble constituents of mushrooms, polyphenolics in fruits and vegetables, and n-3 fatty acids in fish oil can modulate NK cell activities, Treg cell properties, and the interactions between those two cell types. Thus, it is extremely important for cancer prevention to understand the involvement of dietary components with the early stage dynamics of interactions among these immune cells. This review addresses the potential significance of diet in supporting the function of NK cells, Treg cells, and the balance between those two cell types, which ultimately results in decreased cancer risk.
Collapse
Affiliation(s)
- Young S Kim
- Nutritional Science Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland
| | - Thomas J Sayers
- Frederick National Laboratory, Center for Cancer Research, NCI, Frederick, Maryland
| | - Nancy H Colburn
- Frederick National Laboratory, Center for Cancer Research, NCI, Frederick, Maryland
| | - John A Milner
- Human Nutrition Research Center, USDA/ARS, Beltsville, Maryland
| | - Howard A Young
- Frederick National Laboratory, Center for Cancer Research, NCI, Frederick, Maryland
| |
Collapse
|
40
|
Sulforaphane epigenetically regulates innate immune responses of porcine monocyte-derived dendritic cells induced with lipopolysaccharide. PLoS One 2015; 10:e0121574. [PMID: 25793534 PMCID: PMC4368608 DOI: 10.1371/journal.pone.0121574] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 02/17/2015] [Indexed: 12/22/2022] Open
Abstract
Histone acetylation, regulated by histone deacetylases (HDACs) is a key epigenetic mechanism controlling gene expressions. Although dendritic cells (DCs) are playing pivotal roles in host immune responses, the effect of epigenetic modulation of DCs immune responses remains unknown. Sulforaphane (SFN) as a HDAC inhibitor has anti-inflammatory properties, which is used to investigate the epigenetic regulation of LPS-induced immune gene and HDAC family gene expressions in porcine monocyte-derived dendritic cells (moDCs). SFN was found to inhibit the lipopolysaccharide LPS induced HDAC6, HDAC10 and DNA methyltransferase (DNMT3a) gene expression, whereas up-regulated the expression of DNMT1 gene. Additionally, SFN was observed to inhibit the global HDAC activity, and suppressed moDCs differentiation from immature to mature DCs through down-regulating the CD40, CD80 and CD86 expression and led further to enhanced phagocytosis of moDCs. The SFN pre-treated of moDCs directly altered the LPS-induced TLR4 and MD2 gene expression and dynamically regulated the TLR4-induced activity of transcription factor NF-κB and TBP. SFN showed a protective role in LPS induced cell apoptosis through suppressing the IRF6 and TGF-ß1 production. SFN impaired the pro-inflammatory cytokine TNF-α and IL-1ß secretion into the cell culture supernatants that were induced in moDCs by LPS stimulation, whereas SFN increased the cellular-resident TNF-α accumulation. This study demonstrates that through the epigenetic mechanism the HDAC inhibitor SFN could modulate the LPS induced innate immune responses of porcine moDCs.
Collapse
|
41
|
Royston KJ, Tollefsbol TO. The Epigenetic Impact of Cruciferous Vegetables on Cancer Prevention. CURRENT PHARMACOLOGY REPORTS 2015; 1:46-51. [PMID: 25774338 PMCID: PMC4354933 DOI: 10.1007/s40495-014-0003-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The answer to chemoprevention has perhaps been available to the general public since the dawn of time. The epigenetic diet is of extreme interest, for research suggests that cruciferous vegetables are not only an important source of nutrients, but perhaps a key to eliminating cancer as life threatening disease. Cruciferous vegetables such as kale, cabbage, Brussels sprouts, and broccoli sprouts contain chemical components, such as sulforaphane (SFN) and indole-3-carbinol (I3C), which have been revealed to be regulators of microRNAs (miRNAs) and inhibitors of histone deacetylases (HDACs) and DNA methyltransferases (DNMTs). The mis-regulation and overexpression of these genes are responsible for the uncontrolled cellular proliferation and viability of various types of cancer cells. The field of epigenetics and its incorporation into modern medicinal investigation is an exponentially growing field of interest and it is becoming increasingly apparent that the incorporation of an epigenetic diet may in fact be the key to chemoprevention.
Collapse
Affiliation(s)
- Kendra J. Royston
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
- Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3 Avenue South, Birmingham, AL 35294, USA
- Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6 Avenue South, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| |
Collapse
|
42
|
Fu X, Wang H, Hu P. Stem cell activation in skeletal muscle regeneration. Cell Mol Life Sci 2015; 72:1663-77. [PMID: 25572293 PMCID: PMC4412728 DOI: 10.1007/s00018-014-1819-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/21/2014] [Accepted: 12/22/2014] [Indexed: 12/31/2022]
Abstract
Muscle stem cell (satellite cell) activation post muscle injury is a transient and critical step in muscle regeneration. It is regulated by physiological cues, signaling molecules, and epigenetic regulatory factors. The mechanisms that coherently turn on the complex activation process shortly after trauma are just beginning to be illuminated. In this review, we will discuss the current knowledge of satellite cell activation regulation.
Collapse
Affiliation(s)
- Xin Fu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | | | | |
Collapse
|
43
|
Feeney A, Nilsson E, Skinner MK. Epigenetics and transgenerational inheritance in domesticated farm animals. J Anim Sci Biotechnol 2014; 5:48. [PMID: 25810901 PMCID: PMC4373098 DOI: 10.1186/2049-1891-5-48] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/14/2014] [Indexed: 01/10/2023] Open
Abstract
Epigenetics provides a molecular mechanism of inheritance that is not solely dependent on DNA sequence and that can account for non-Mendelian inheritance patterns. Epigenetic changes underlie many normal developmental processes, and can lead to disease development as well. While epigenetic effects have been studied in well-characterized rodent models, less research has been done using agriculturally important domestic animal species. This review will present the results of current epigenetic research using farm animal models (cattle, pigs, sheep and chickens). Much of the work has focused on the epigenetic effects that environmental exposures to toxicants, nutrients and infectious agents has on either the exposed animals themselves or on their direct offspring. Only one porcine study examined epigenetic transgenerational effects; namely the effect diet micronutrients fed to male pigs has on liver DNA methylation and muscle mass in grand-offspring (F2 generation). Healthy viable offspring are very important in the farm and husbandry industry and epigenetic differences can be associated with production traits. Therefore further epigenetic research into domestic animal health and how exposure to toxicants or nutritional changes affects future generations is imperative.
Collapse
Affiliation(s)
- Amanda Feeney
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, 99164-4236 Pullman, WA USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, 99164-4236 Pullman, WA USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, 99164-4236 Pullman, WA USA
| |
Collapse
|
44
|
Wagner AE, Will O, Sturm C, Lipinski S, Rosenstiel P, Rimbach G. DSS-induced acute colitis in C57BL/6 mice is mitigated by sulforaphane pre-treatment. J Nutr Biochem 2014; 24:2085-91. [PMID: 24231100 DOI: 10.1016/j.jnutbio.2013.07.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/29/2013] [Accepted: 07/29/2013] [Indexed: 12/18/2022]
Abstract
The Brassica-derived isothiocyanate sulforaphane (SFN) is known to induce factor erythroid 2-related factor 2 (Nrf2), a transcription factor centrally involved in chemoprevention. Furthermore, SFN exhibits anti-inflammatory properties in vitro and in vivo. However, little is known regarding the anti-inflammatory properties of SFN in severe inflammatory phenotypes. In the present study, we tested if pre-treatment with SFN protects mice from dextran sodium sulphate (DSS)-induced colitis. C57BL/6 mice received either phosphate-buffered saline (control) or 25 mg/kg body weight (BW) SFN per os for 7 days. Subsequently, acute colitis was induced by administering 4% DSS via drinking water for 5 days and BWs, stool consistency and faecal blood loss were recorded. Following endoscopic colonoscopy, mice were sacrificed, the organs excised and spleen weights and colon lengths measured. For histopathological analysis, distal colon samples were fixed in 4% para-formaldehyde, sectioned and stained with hematoxylin/eosin. Inflammatory biomarkers were also measured in distal colon. Treatment with SFN prior to colitis induction significantly minimised both BW loss and the disease activity index compared to control mice. Furthermore, colon lengths in SFN pre-treated mice were significantly longer than in control mice. Both macroscopic and microscopic analysis of the colon revealed attenuated inflammation in SFN pre-treated animals. mRNA analysis of distal colon samples confirmed reduced expression of inflammatory markers and increased expression of Nrf2-dependent genes in SFN pre-treated mice. Our results indicate that pre-treating mice with SFN confers protection from DSS-induced colitis. These protective effects were corroborated macroscopically, microscopically and at the molecular level.
Collapse
Affiliation(s)
- Anika E Wagner
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University Kiel, 24118 Kiel, Germany.
| | | | | | | | | | | |
Collapse
|
45
|
Qu X, Cinar MU, Fan H, Pröll M, Tesfaye D, Tholen E, Looft C, Hölker M, Schellander K, Uddin MJ. Comparison of the innate immune responses of porcine monocyte-derived dendritic cells and splenic dendritic cells stimulated with LPS. Innate Immun 2014; 21:242-54. [PMID: 24648487 DOI: 10.1177/1753425914526266] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dendritic cell (DC) subsets form a remarkable cellular network that regulate innate and adaptive immune responses. Although pigs are the most approximate model to humans, little is known about the regulation of monocyte-derived DCs (moDCs) and splenic DCs (SDCs) in the initiation of immune responses under inflammatory conditions. We investigated the activation and maturation of porcine moDC and SDC subpopulations following LPS stimulation. Porcine monocytes that would differentiate into moDCs were isolated. SDCs were isolated directly from the porcine spleen. Following LPS stimulation, phagocytosis activity, TLR4/MyD88-dependent gene expression, co-stimulatory molecule, and pro-inflammatory cytokine (TNF-α, IL-1β) and chemokine (IL-8) expressions were increased in both cell subsets. Furthermore, moDCs showed higher levels of gene and protein expression compared with SDCs. Interestingly, moDCs were found to be more responsive via the TLR4/TRAF-dependent signalling pathway of activation. Only SDCs expressed higher level of IL-12p40 gene and protein, whereas, IFN-γ gene and protein expression were likely to be unchanged after LPS stimulation in both cell subtypes. These data demonstrate that porcine moDCs display a greater ability to initiate innate immune responses, and could be used as a model to investigate immune responses against Ags.
Collapse
Affiliation(s)
- Xueqi Qu
- Institute of Animal Science, University of Bonn, Bonn, Germany
| | - Mehmet U Cinar
- Institute of Animal Science, University of Bonn, Bonn, Germany Department of Animal Science, Faculty of Agriculture, Erciyes University, Kayseri, Turkey
| | - Huitao Fan
- Institute of Animal Science, University of Bonn, Bonn, Germany Department of Basic Medical Science and Centre for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Maren Pröll
- Institute of Animal Science, University of Bonn, Bonn, Germany
| | - Dawit Tesfaye
- Institute of Animal Science, University of Bonn, Bonn, Germany
| | - Ernst Tholen
- Institute of Animal Science, University of Bonn, Bonn, Germany
| | - Christian Looft
- Institute of Animal Science, University of Bonn, Bonn, Germany
| | - Michael Hölker
- Institute of Animal Science, University of Bonn, Bonn, Germany
| | | | | |
Collapse
|
46
|
Li X, Wang SJ, Tan SC, Chew PL, Liu L, Wang L, Wen L, Ma L. The A55T and K153R polymorphisms ofMSTNgene are associated with the strength training-induced muscle hypertrophy among Han Chinese men. J Sports Sci 2014; 32:883-91. [DOI: 10.1080/02640414.2013.865252] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
Health promoting effects of brassica-derived phytochemicals: from chemopreventive and anti-inflammatory activities to epigenetic regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:964539. [PMID: 24454992 PMCID: PMC3885109 DOI: 10.1155/2013/964539] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/20/2013] [Indexed: 12/19/2022]
Abstract
A high intake of brassica vegetables may be associated with a decreased chronic disease risk. Health promoting effects of Brassicaceae have been partly attributed to glucosinolates and in particular to their hydrolyzation products including isothiocyanates. In vitro and in vivo studies suggest a chemopreventive activity of isothiocyanates through the redox-sensitive transcription factor Nrf2. Furthermore, studies in cultured cells, in laboratory rodents, and also in humans support an anti-inflammatory effect of brassica-derived phytochemicals. However, the underlying mechanisms of how these compounds mediate their health promoting effects are yet not fully understood. Recent findings suggest that brassica-derived compounds are regulators of epigenetic mechanisms. It has been shown that isothiocyanates may inhibit histone deacetylase transferases and DNA-methyltransferases in cultured cells. Only a few papers have dealt with the effect of brassica-derived compounds on epigenetic mechanisms in laboratory animals, whereas data in humans are currently lacking. The present review aims to summarize the current knowledge regarding the biological activities of brassica-derived phytochemicals regarding chemopreventive, anti-inflammatory, and epigenetic pathways.
Collapse
|
48
|
Ahmad A, Li Y, Bao B, Kong D, Sarkar FH. Epigenetic regulation of miRNA-cancer stem cells nexus by nutraceuticals. Mol Nutr Food Res 2013; 58:79-86. [PMID: 24272883 DOI: 10.1002/mnfr.201300528] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 10/06/2013] [Accepted: 10/08/2013] [Indexed: 01/15/2023]
Abstract
Nutraceuticals, the bioactive food components represented by many naturally occurring dietary compounds, have been investigated for a few decades for their numerous beneficial effects, including their anticancer properties. The initial interest in the cancer-preventing/therapeutic ability of these agents was based on their ability to affect multiple signaling pathways that are deregulated in cancer cells. With a shift in the focus of cancer research to the emerging areas such as epigenetic regulation, microRNAs (miRNAs) and the cancer stem cells (CSCs), nutraceuticals initially appeared out of place. However, research investigations over the last several years have slowly but firmly presented evidence that supports a relevance of these agents in modern day research. While nutraceuticals are increasingly being realized to alter miRNA/CSCs expression and function, the molecular mechanism(s) are not very clearly understood. Epigenetic regulation is one mechanism by which these agents exert their anticancer effects. In this focused mini review, we summarize our current understanding of epigenetic regulation of miRNAs and CSCs by nutraceuticals. We discuss both direct and indirect evidences that support such an activity of these compounds.
Collapse
Affiliation(s)
- Aamir Ahmad
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | | | |
Collapse
|