1
|
Jiao P, Lu H, Hao L, Degen AA, Cheng J, Yin Z, Mao S, Xue Y. Nutrigenetic and Epigenetic Mechanisms of Maternal Nutrition-Induced Glucolipid Metabolism Changes in the Offspring. Nutr Rev 2025; 83:728-748. [PMID: 38781288 DOI: 10.1093/nutrit/nuae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Maternal nutrition during pregnancy regulates the offspring's metabolic homeostasis, including insulin sensitivity and the metabolism of glucose and lipids. The fetus undergoes a crucial period of plasticity in the uterus; metabolic changes in the fetus during pregnancy caused by maternal nutrition not only influence fetal growth and development but also have a long-term or even life-long impact for the offspring. Epigenetic modifications, such as DNA methylation, histone modification, and non-coding RNAs, play important roles in intergenerational and transgenerational effects. In this context, this narrative review comprehensively summarizes and analyzes the molecular mechanisms underlying how maternal nutrition, including a high-fat diet, polyunsaturated fatty acid diet, methyl donor nutrient supplementation, feed restriction, and protein restriction during pregnancy, impacts the genes involved in glucolipid metabolism in the liver, adipose tissue, hypothalamus, muscle, and oocytes of the offspring in terms of the epigenetic modifications. This will provide a foundation for the further exploration of nutrigenetic and epigenetic mechanisms for integrative mother-child nutrition and promotion of the offspring's health through the regulation of maternal nutrition during pregnancy. Note: This paper is part of the Nutrition Reviews Special Collection on Precision Nutrition.
Collapse
Affiliation(s)
- Peng Jiao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Huizhen Lu
- Biotechnology Center, Anhui Agricultural University, Hefei, China
| | - Lizhuang Hao
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Plateau Yak Research Center, Qinghai Academy of Science and Veterinary Medicine of Qinghai University, Xining, China
| | - A Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jianbo Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Shengyong Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanfeng Xue
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
2
|
Basak S, Mallick R, Navya Sree B, Duttaroy AK. Placental Epigenome Impacts Fetal Development: Effects of Maternal Nutrients and Gut Microbiota. Nutrients 2024; 16:1860. [PMID: 38931215 PMCID: PMC11206482 DOI: 10.3390/nu16121860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Evidence is emerging on the role of maternal diet, gut microbiota, and other lifestyle factors in establishing lifelong health and disease, which are determined by transgenerationally inherited epigenetic modifications. Understanding epigenetic mechanisms may help identify novel biomarkers for gestation-related exposure, burden, or disease risk. Such biomarkers are essential for developing tools for the early detection of risk factors and exposure levels. It is necessary to establish an exposure threshold due to nutrient deficiencies or other environmental factors that can result in clinically relevant epigenetic alterations that modulate disease risks in the fetus. This narrative review summarizes the latest updates on the roles of maternal nutrients (n-3 fatty acids, polyphenols, vitamins) and gut microbiota on the placental epigenome and its impacts on fetal brain development. This review unravels the potential roles of the functional epigenome for targeted intervention to ensure optimal fetal brain development and its performance in later life.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India; (S.B.); (B.N.S.)
| | - Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Boga Navya Sree
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India; (S.B.); (B.N.S.)
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
3
|
Howard SL, Beaudin SA, Strupp BJ, Smith DR. Maternal choline supplementation lessens the behavioral dysfunction produced by developmental manganese exposure in a rodent model of ADHD. Neurotoxicol Teratol 2024; 102:107337. [PMID: 38423398 DOI: 10.1016/j.ntt.2024.107337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Studies in children have reported associations between elevated manganese (Mn) exposure and ADHD-related symptoms of inattention, impulsivity/hyperactivity, and psychomotor impairment. Maternal choline supplementation (MCS) during pregnancy/lactation may hold promise as a protective strategy because it has been shown to lessen cognitive dysfunction caused by numerous early insults. Our objectives were to determine whether (1) developmental Mn exposure alters behavioral reactivity/emotion regulation, in addition to impairing learning, attention, impulse control, and sensorimotor function, and (2) MCS protects against these Mn-induced impairments. Pregnant Long-Evans rats were given standard diet, or a diet supplemented with additional choline throughout gestation and lactation (GD 3 - PND 21). Male offspring were exposed orally to 0 or 50 mg Mn/kg/day over PND 1-21. In adulthood, animals were tested in a series of learning, attention, impulse control, and sensorimotor tasks. Mn exposure caused lasting dysfunction in attention, reactivity to errors and reward omission, learning, and sensorimotor function, recapitulating the constellation of symptoms seen in ADHD children. MCS lessened Mn-induced attentional dysfunction and partially normalized reactivity to committing an error or not receiving an expected reward but provided no protection against Mn-induced learning or sensorimotor dysfunction. In the absence of Mn exposure, MCS produces lasting offspring benefits in learning, attention, and reactivity to errors. To conclude, developmental Mn exposure produces a constellation of deficits consistent with ADHD symptomology, and MCS offered some protection against the adverse Mn effects, adding to the evidence that maternal choline supplementation is neuroprotective for offspring and improves offspring cognitive functioning.
Collapse
Affiliation(s)
- Shanna L Howard
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Stephane A Beaudin
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Barbara J Strupp
- Division of Nutritional Sciences and Department of Psychology, Cornell University, Ithaca, NY, USA
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA.
| |
Collapse
|
4
|
Freij K, Cleveland B, Biga P. Maternal dietary choline levels cause transcriptome shift due to genotype-by-diet interactions in rainbow trout (Oncorhynchus mykiss). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101193. [PMID: 38309055 DOI: 10.1016/j.cbd.2024.101193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/05/2024]
Abstract
The objective of this study was to identify metabolic regulatory mechanisms affected by choline availability in rainbow trout (Oncorhynchus mykiss) broodstock diets associated with increased offspring growth performance. Three customized diets were formulated to have different levels of choline: (a) 0 % choline supplementation (Low Choline: 2065 ppm choline), (b) 0.6 % choline supplementation (Medium Choline: 5657 ppm choline), and (c) 1.2 % choline supplementation (High Choline: 9248 ppm choline). Six all-female rainbow trout families were fed experimental diets beginning 18 months post-hatch until spawning at 22 months post-hatch; their offspring were fed a commercial diet. Experimental broodstock diet did not affect overall choline, fatty acid, or amino acid content in the oocytes (p > 0.05), apart from tyrosine (p ≤ 0.05). Offspring body weights from the High and Low Choline diets did not differ from those in the Medium Choline diet (p > 0.05); however, family-by-diet and sire-by-diet interactions on offspring growth were detected (p ≤ 0.05). The High Choline diet did not improve growth performance in the six broodstock families at final harvest (520-days post-hatch, or dph). Numerous genes associated with muscle development and lipid metabolism were identified as affected by broodstock diet, including myosin, troponin C, and fatty acid binding proteins, which were associated with key signaling pathways of lipid metabolism, muscle cell development, muscle cell proliferation, and muscle cell differentiation. These findings indicate that supplementing broodstock diets with choline does regulate expression of genes related to growth and nutrient partitioning but does not lead to growth benefits in rainbow trout families selected for disease resistance.
Collapse
Affiliation(s)
- Khalid Freij
- Department of Biology, The University of Alabama at Birmingham, Birmingham 35294, AL, USA. https://twitter.com/FreijKhalid
| | - Beth Cleveland
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service (ARS-USDA), Kearneysville 25430, WV, USA
| | - Peggy Biga
- Department of Biology, The University of Alabama at Birmingham, Birmingham 35294, AL, USA.
| |
Collapse
|
5
|
Lucena-Valera A, Ruz-Zafra P, Ampuero J. [Wilson's disease: overview]. Med Clin (Barc) 2023; 160:261-267. [PMID: 36697289 DOI: 10.1016/j.medcli.2022.12.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023]
Abstract
Wilson's disease (WD) is an uncommon hereditary disorder caused by a deficiency in the ATP7B transporter. The protein codified by this gene facilitates the incorporation of the copper into ceruloplasmin. Therefore, WD accumulates copper primary in the liver and secondary in other organs, such as the central nervous system. It represents a wide spectrum of disease, ranging from being asymptomatic in some patients to promote an acute liver failure in others. The diagnosis requires a combination of clinical signs and symptoms, as well as some diagnostic tests such as the measurement of serum ceruloplasmin, the urinary excretion of copper, the liver biopsy or the genetic testing. The treatment must be maintained lifelong and includes some drugs such as chelating agents (penicillamine and trientine) and inhibitors of the copper absorption (zinc salts). Lastly, the liver transplant should be an option for patients with end-stage liver disease.
Collapse
Affiliation(s)
- Ana Lucena-Valera
- Departamento de Enfermedades Digestivas, Hospital Universitario Virgen del Rocío, Sevilla, España
| | - Pilar Ruz-Zafra
- Departamento de Enfermedades Digestivas, Hospital Universitario Virgen del Rocío, Sevilla, España
| | - Javier Ampuero
- Departamento de Enfermedades Digestivas, Hospital Universitario Virgen del Rocío, Sevilla, España; Instituto de Biomedicina de Sevilla (IBiS), Sevilla, España; Universidad de Sevilla, Sevilla, España; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, España.
| |
Collapse
|
6
|
Washington-Hughes CL, Roy S, Seneviratne HK, Karuppagounder SS, Morel Y, Jones JW, Zak A, Xiao T, Boronina TN, Cole RN, Bumpus NN, Chang CJ, Dawson TM, Lutsenko S. Atp7b-dependent choroid plexus dysfunction causes transient copper deficit and metabolic changes in the developing mouse brain. PLoS Genet 2023; 19:e1010558. [PMID: 36626371 PMCID: PMC9870141 DOI: 10.1371/journal.pgen.1010558] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/23/2023] [Accepted: 12/07/2022] [Indexed: 01/11/2023] Open
Abstract
Copper (Cu) has a multifaceted role in brain development, function, and metabolism. Two homologous Cu transporters, Atp7a (Menkes disease protein) and Atp7b (Wilson disease protein), maintain Cu homeostasis in the tissue. Atp7a mediates Cu entry into the brain and activates Cu-dependent enzymes, whereas the role of Atp7b is less clear. We show that during postnatal development Atp7b is necessary for normal morphology and function of choroid plexus (ChPl). Inactivation of Atp7b causes reorganization of ChPl' cytoskeleton and cell-cell contacts, loss of Slc31a1 from the apical membrane, and a decrease in the length and number of microvilli and cilia. In ChPl lacking Atp7b, Atp7a is upregulated but remains intracellular, which limits Cu transport into the brain and results in significant Cu deficit, which is reversed only in older animals. Cu deficiency is associated with down-regulation of Atp7a in locus coeruleus and catecholamine imbalance, despite normal expression of dopamine-β-hydroxylase. In addition, there are notable changes in the brain lipidome, which can be attributed to inhibition of diacylglyceride-to-phosphatidylethanolamine conversion. These results identify the new role for Atp7b in developing brain and identify metabolic changes that could be exacerbated by Cu chelation therapy.
Collapse
Affiliation(s)
| | - Shubhrajit Roy
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Herana Kamal Seneviratne
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Senthilkumar S. Karuppagounder
- Neurodegeneration and Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yulemni Morel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Jace W. Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Alex Zak
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tong Xiao
- Department of Chemistry, University of California Berkeley, California, United States of America
| | - Tatiana N. Boronina
- Department of Biological Chemistry Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert N. Cole
- Department of Biological Chemistry Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Namandjé N. Bumpus
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher J. Chang
- Department of Chemistry, University of California Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California Berkeley, California
- Helen Wills Neuroscience Institute, University of California Berkeley, California
| | - Ted M. Dawson
- Neurodegeneration and Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland; United States of America
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
7
|
Li L, Chen M, Liu W, Tai P, Liu X, Liu JX. Zebrafish cox17 modulates primitive erythropoiesis via regulation of mitochondrial metabolism to facilitate hypoxia tolerance. FASEB J 2022; 36:e22596. [PMID: 36208295 DOI: 10.1096/fj.202200829r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022]
Abstract
Cox17 is required in the assembly of mitochondrial intermembrane space (IMS) and Cu metallization of cytochrome C oxidase (CcO) in mitochondria as well as Cu homeostasis in cells. Cox deficiency is associated with hematopoietic diseases such as tubulopathy and leukodystrophy, but whether and how cox17 functions in hematopoiesis are still unknown. Here, we report the effects of zebrafish cox17 deficiency on primitive erythropoiesis, mitochondrial metabolism, and hypoxia tolerance. Cox17-/- larvae were sensitive to hypoxia stress, with reduced primitive erythropoiesis. Meanwhile, cox17-/- mutants showed a significant reduction in the expression of pivotal transcriptional regulators in erythropoiesis, such as scl, lmo2, and gata1a at 14 h post fertilization (hpf), with expression remaining downregulated for scl but upregulated for lmo2 and gata1a at 24 hpf. Mechanistically, cox17-/- mutants showed impaired mitochondrial metabolism, coupled with a significant decrease in the mitochondrial membrane potential, ATP and SAM content, and the ratio of SAM and SAH. Additionally, disrupting mitochondrial metabolism in wild type (WT) larvae treated with carbonyl cyanide 3-chlorophenylhydrazone (CCCP) could mimic the primitive erythropoiesis defects observed in cox17-/- mutants. Moreover, cox17-/- mutants exhibited significantly downregulated WNT signaling and upregulated ER stress, with a significant reduction of beta-Catenin in gata1a+ cells and of binding enrichment in both scl and lmo2 promoters of the WNT transcriptional factor TCF4. This is the first report on the novel linkage of cox17 deficiency with defective primitive erythropoiesis and reduced hypoxia tolerance. This study has shed light on the potential mechanism by which Cox deficiency, especially cox17 deficiency, induces Cu homeostasis imbalance, leading to hematopoietic diseases.
Collapse
Affiliation(s)
- LingYa Li
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - MingYue Chen
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - WenYe Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - PengZhi Tai
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science; Guangzhou Medical University, Guangzhou, China
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Samadzadeh S, Kruschel T, Novak M, Kallenbach M, Hefter H. Different Response Behavior to Therapeutic Approaches in Homozygotic Wilson's Disease Twins with Clinical Phenotypic Variability: Case Report and Literature Review. Genes (Basel) 2022; 13:1217. [PMID: 35885998 PMCID: PMC9318625 DOI: 10.3390/genes13071217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/17/2022] Open
Abstract
Background: Wilson’s disease (WD) is an autosomal-recessive disorder of copper deposition caused by pathogenic variants in the copper-transporting ATP7B gene. There is not a clear correlation between genotype and phenotype in WD regarding symptom manifestations. This is supported by the presentation of genetically identical WD twins with phenotypic discordance and different response behavior to WD-specific therapy. Case Presentation: One of the female homozygous twins (age: 26 yrs) developed writing, speaking, swallowing and walking deficits which led to in-patient examination without conclusive results but recommended genetic testing. Both sisters were tested and were heterozygous for the C.2304dupC;p(Met769Hisf*26) and the C.3207C>A;p(His1069Gln) mutation. Self-medication of the affected sibling with 450 mg D-penicillamine (DPA) did not prevent further deterioration. She developed a juvenile parkinsonian syndrome and became wheelchair-bound and anarthric. A percutaneous endoscopic gastrostomy was applied. Her asymptomatic sister helped her with her daily life. Despite the immediate increase of the DPA dose (up to 1800 mg within 3 weeks) in the severely affected patient and the initiation of DPA therapy (up to 600 mg within 2 weeks) in the asymptomatic patient after the first visit in our institution, liver function tests further deteriorated in both patients. After 2 months, the parkinsonian patient started to improve and walk again, but experienced several falls, broke her right shoulder and underwent two necessary surgical interventions. With further consequent copper elimination therapy, liver dysfunction improved in both patients, without need for orthotopic liver transplantation (LTX) in the severely affected patient. Her excellent recovery of liver and brain dysfunction was only transiently interrupted by the development of a nephrotic syndrome which disappeared after switching to Cuprior®. Unfortunately, she died from fulminant pneumonia. Conclusion: Despite identical genetic disposition, WD symptom presentations may develop differently in monozygotic twins, and they may need to be placed on a very different therapeutical regimen. The underlying gene-environment interaction is unclear so far.
Collapse
Affiliation(s)
- Sara Samadzadeh
- Department of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany; (S.S.); (T.K.); (M.N.)
| | - Theodor Kruschel
- Department of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany; (S.S.); (T.K.); (M.N.)
| | - Max Novak
- Department of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany; (S.S.); (T.K.); (M.N.)
| | - Michael Kallenbach
- Department of Gastroenterology, University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany;
| | - Harald Hefter
- Department of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany; (S.S.); (T.K.); (M.N.)
| |
Collapse
|
9
|
Korsmo HW, Dave B, Trasino S, Saxena A, Liu J, Caviglia JM, Edwards K, Dembitzer M, Sheeraz S, Khaldi S, Jiang X. Maternal Choline Supplementation and High-Fat Feeding Interact to Influence DNA Methylation in Offspring in a Time-Specific Manner. Front Nutr 2022; 9:841787. [PMID: 35165655 PMCID: PMC8837519 DOI: 10.3389/fnut.2022.841787] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 11/18/2022] Open
Abstract
Maternal methyl donor supplementation during pregnancy has demonstrated lasting influence on offspring DNA methylation. However, it is unknown whether an adverse postnatal environment, such as high-fat (HF) feeding, overrides the influence of prenatal methyl donor supplementation on offspring epigenome. In this study, we examined whether maternal supplementation of choline (CS), a methyl donor, interacts with prenatal and postnatal HF feeding to alter global and site-specific DNA methylation in offspring. We fed wild-type C57BL/6J mouse dams a HF diet with or without CS throughout gestation. After weaning, the offspring were exposed to HF feeding for 6 weeks resembling a continued obesogenic environment. Our results suggest that maternal CS under the HF condition (HFCS) increased global DNA methylation and DNA methyltransferase 1 (Dnmt1) expression in both fetal liver and brain. However, during the postnatal period, HFCS offspring demonstrated lower global DNA methylation and Dnmt1 expression was unaltered in both the liver and visceral adipose tissue. Site-specific DNA methylation analysis during both fetal and postnatal periods demonstrated that HFCS offspring had higher methylation of CpGs in the promoter of Srebf1, a key mediator of de novo lipogenesis. In conclusion, the influence of maternal CS on offspring DNA methylation is specific to HF feeding status during prenatal and postnatal periods. Without continued CS during the postnatal period, global DNA methylation enhanced by prenatal CS in the offspring was overridden by postnatal HF feeding.
Collapse
Affiliation(s)
- Hunter W. Korsmo
- Department of Biochemistry, The Graduate Center, City University of New York (CUNY), New York, NY, United States
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY, United States
| | - Bhoomi Dave
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY, United States
| | - Steven Trasino
- School of Urban Public Health, Hunter College of the CUNY, New York, NY, United States
| | - Anjana Saxena
- Department of Biochemistry, The Graduate Center, City University of New York (CUNY), New York, NY, United States
- Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY, United States
| | - Jia Liu
- Advanced Science Research Center at the Graduate Center of the CUNY, New York, NY, United States
| | - Jorge Matias Caviglia
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY, United States
| | - Kaydine Edwards
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY, United States
| | - Moshe Dembitzer
- Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY, United States
| | - Shameera Sheeraz
- Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY, United States
| | - Sarah Khaldi
- Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY, United States
| | - Xinyin Jiang
- Department of Biochemistry, The Graduate Center, City University of New York (CUNY), New York, NY, United States
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY, United States
| |
Collapse
|
10
|
Yiqin C, Yan S, Peiwen W, Yiwei G, Qi W, Qian X, Panglin W, Sunjie Y, Wenxiang W. Copper exposure disrupts ovarian steroidogenesis in human ovarian granulosa cells via the FSHR/CYP19A1 pathway and alters methylation patterns on the SF-1 gene promoter. Toxicol Lett 2021; 356:11-20. [PMID: 34871762 DOI: 10.1016/j.toxlet.2021.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/31/2022]
Abstract
Information on the effects of copper on reproduction is limited. Our previous study indicated that copper induces abnormal steroidogenesis in human ovarian granulosa cells, but the underlying mechanism remains unclear. In this study, human ovarian granulosa cells were treated with multiple concentrations of copper for 24 h. After treatment, the 17-estradiol levels were significantly increased (29.83 % and 45.12 %, respectively) in the 1.0 and 2.0 μg/mL groups but decreased (23.06 % and 31.56 %, respectively) in the 20.0 and 40.0 μg/mL groups (P < 0.05). Similar changes in the levels of FSHR, StAR, CYP11A1, CYP19A1, HSD3β1, and SF-1 were observed. The protein levels of FSHR were increased in the 2.0 μg/mL group but decreased in the 20.0 and 40.0 μg/mL groups (P < 0.05). Moreover, copper partially reversed the FSH-induced increase in FSHR, CYP19A1 and 17-estradiol levels, and the decreased effect of the FSH receptor binding inhibitor fragment on FSHR, CYP19A1, and 17-estradiol became more apparent after adding copper. Additionally, the total methylation levels of the SF-1 promoter and DNMTs expression were significantly decreased following copper treatment. Overall, our results indicate that copper exposure induces steroidogenesis disorders via the FSHR/CYP19A1 pathway and changes DNA methylation on the SF-1 promoter in human ovarian granulosa cells.
Collapse
Affiliation(s)
- Chen Yiqin
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China; Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Sun Yan
- Center for Reproductive Medicine, Teaching Hospital of Fujian Medical University, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Wu Peiwen
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Guo Yiwei
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, Fujian, China
| | - Wang Qi
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Xu Qian
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Wang Panglin
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yan Sunjie
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.
| | - Wang Wenxiang
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China; Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
11
|
Weyde KVF, Olsen AK, Duale N, Kamstra JH, Skogheim TS, Caspersen IH, Engel SM, Biele G, Xia Y, Meltzer HM, Aase H, Villanger GD. Gestational blood levels of toxic metal and essential element mixtures and associations with global DNA methylation in pregnant women and their infants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147621. [PMID: 34000534 DOI: 10.1016/j.scitotenv.2021.147621] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/24/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pregnant women and their fetuses are exposed to multiple toxic metals that together with variations in essential element levels may alter epigenetic regulation, such as DNA methylation. OBJECTIVES The aim of the study was to investigate the associations between gestational levels of toxic metals and essential elements and mixtures thereof, with global DNA methylation levels in pregnant women and their newborn children. METHODS Using 631 mother-child pairs from a prospective birth cohort (The Norwegian Mother, Father and Child Cohort Study), we measured maternal blood concentration (gestation week ~18) of five toxic metals and seven essential elements. We investigated associations as individual exposures and two-way interactions, using elastic net regression, and total mixture, using quantile g-computation, with blood levels of 5-methylcytocine (5mC) and 5-hydroxymethylcytosine (5hmC) in mothers during pregnancy and their newborn children (cord blood). Multiple testing was adjusted for using the Benjamini and Hochberg false discovery rate (FDR) approach. RESULTS The most sensitive marker of DNA methylation appeared to be 5mC levels. In pregnant mothers, elastic net regression indicated associations between 5mC and selenium and lead (non-linear), while in newborns results indicated relationships between maternal selenium, cobalt (non-linear) and mercury and 5mC, as well as copper (non-linear) and 5hmC levels. Several possible two-way interactions were identified (e.g. arsenic and mercury, and selenium and maternal smoking in newborns). None of these findings met the FDR threshold for multiple testing. No net effect was observed in the joint (mixture) exposure-approach using quantile g-computation. CONCLUSION We identified few associations between gestational levels of several toxic metals and essential elements and global DNA methylation in pregnant mothers and their newborn children. As DNA methylation dysregulation might be a key mechanism in disease development and thus of high importance for public health, our results should be considered as important candidates to investigate in future studies.
Collapse
Affiliation(s)
| | | | - Nur Duale
- Norwegian Institute of Public Health, Oslo, Norway
| | - Jorke H Kamstra
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | | | | | - Stephanie M Engel
- Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Guido Biele
- Norwegian Institute of Public Health, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | | | - Heidi Aase
- Norwegian Institute of Public Health, Oslo, Norway
| | | |
Collapse
|
12
|
Lucena-Valera A, Perez-Palacios D, Muñoz-Hernandez R, Romero-Gómez M, Ampuero J. Wilson's disease: Revisiting an old friend. World J Hepatol 2021; 13:634-649. [PMID: 34239699 PMCID: PMC8239488 DOI: 10.4254/wjh.v13.i6.634] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/21/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
Wilson's disease (WD) is a rare condition caused by copper accumulation primarily in the liver and secondly in other organs, such as the central nervous system. It is a hereditary autosomal recessive disease caused by a deficiency in the ATP7B transporter. This protein facilitates the incorporation of copper into ceruloplasmin. More than 800 mutations associated with WD have been described. The onset of the disease frequently includes manifestations related to the liver (as chronic liver disease or acute liver failure) and neurological symptoms, although it can sometimes be asymptomatic. Despite it being more frequent in young people, WD has been described in all life stages. Due to its fatal prognosis, WD should be suspected in all patients with unexplained biochemical liver abnormalities or neurological or psychiatric symptoms. The diagnosis is established with a combination of clinical signs and tests, including the measurement of ceruloplasmin, urinary copper excretion, copper quantification in liver biopsy, or genetic assessment. The pharmacological therapies include chelating drugs, such as D-penicillamine or trientine, and zinc salts, which are able to change the natural history of the disease, increasing the survival of these patients. In some cases of end-stage liver disease or acute liver failure, liver transplantation must be an option to increase survival. In this narrative review, we offer an overview of WD, focusing on the importance of clinical suspicion, the correct diagnosis, and treatment.
Collapse
Affiliation(s)
- Ana Lucena-Valera
- Department of Gastroenterology, Hospital Universitario Virgen del Rocio, Sevilla 41013, Spain
| | - Domingo Perez-Palacios
- Department of Gastroenterology, Hospital Universitario Virgen del Rocio, Sevilla 41013, Spain
| | - Rocio Muñoz-Hernandez
- SeLiver Group, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, España
| | - Manuel Romero-Gómez
- Department of Unit of Digestive Diseases, Hospital Universitario Virgen del Rocio, Sevilla 41014, Spain
| | - Javier Ampuero
- Department of Unit of Digestive Diseases, Hospital Universitario Virgen del Rocio, Sevilla 41014, Spain.
| |
Collapse
|
13
|
Michniewicz F, Saletta F, Rouaen JRC, Hewavisenti RV, Mercatelli D, Cirillo G, Giorgi FM, Trahair T, Ziegler D, Vittorio O. Copper: An Intracellular Achilles' Heel Allowing the Targeting of Epigenetics, Kinase Pathways, and Cell Metabolism in Cancer Therapeutics. ChemMedChem 2021; 16:2315-2329. [PMID: 33890721 DOI: 10.1002/cmdc.202100172] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Copper is an essential transition metal frequently increased in cancer known to strongly influence essential cellular processes. Targeted therapy protocols utilizing both novel and repurposed drug agents initially demonstrate strong efficacy, before failing in advanced cancers as drug resistance develops and relapse occurs. Overcoming this limitation involves the development of strategies and protocols aimed at a wider targeting of the underlying molecular changes. Receptor Tyrosine Kinase signaling pathways, epigenetic mechanisms and cell metabolism are among the most common therapeutic targets, with molecular investigations increasingly demonstrating the strong influence each mechanism exerts on the others. Interestingly, all these mechanisms can be influenced by intracellular copper. We propose that copper chelating agents, already in clinical trial for multiple cancers, may simultaneously target these mechanisms across a wide variety of cancers, serving as an excellent candidate for targeted combination therapy. This review summarizes the known links between these mechanisms, copper, and copper chelation therapy.
Collapse
Affiliation(s)
- Filip Michniewicz
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Federica Saletta
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Jourdin R C Rouaen
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Rehana V Hewavisenti
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Daniele Mercatelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Federico M Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Toby Trahair
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - David Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Orazio Vittorio
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
14
|
Vizán P, Di Croce L, Aranda S. Functional and Pathological Roles of AHCY. Front Cell Dev Biol 2021; 9:654344. [PMID: 33869213 PMCID: PMC8044520 DOI: 10.3389/fcell.2021.654344] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/24/2021] [Indexed: 11/25/2022] Open
Abstract
Adenosylhomocysteinase (AHCY) is a unique enzyme and one of the most conserved proteins in living organisms. AHCY catalyzes the reversible break of S-adenosylhomocysteine (SAH), the by-product and a potent inhibitor of methyltransferases activity. In mammals, AHCY is the only enzyme capable of performing this reaction. Controlled subcellular localization of AHCY is believed to facilitate local transmethylation reactions, by removing excess of SAH. Accordingly, AHCY is recruited to chromatin during replication and active transcription, correlating with increasing demands for DNA, RNA, and histone methylation. AHCY deletion is embryonic lethal in many organisms (from plants to mammals). In humans, AHCY deficiency is associated with an incurable rare recessive disorder in methionine metabolism. In this review, we focus on the AHCY protein from an evolutionary, biochemical, and functional point of view, and we discuss the most recent, relevant, and controversial contributions to the study of this enzyme.
Collapse
Affiliation(s)
- Pedro Vizán
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Sergi Aranda
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
15
|
Toxic milk mice models of Wilson's disease. Mol Biol Rep 2021; 48:1903-1914. [PMID: 33590415 PMCID: PMC7925478 DOI: 10.1007/s11033-021-06192-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/28/2021] [Indexed: 10/24/2022]
Abstract
Wilson's disease (WD) is a rare genetic disorder inherited as an autosomal recessive trait. The signs and symptoms of this disease are related to dysfunctional ATP7B protein which leads to copper accumulation and cellular damage. The organs that are most commonly affected by WD are the liver and brain. The dysfunctional ATP7B homolog has previously been identified in many different species, including two naturally occurring murine models called toxic milk mice. The aim of this paper was to compare the toxic milk mouse described by Rauch (tx) to that from Jackson Laboratory (txJ) through a review of studies on these two groups of mice. The two mice strains differ in the type of carried mutation and the phenotype of the disease. The data of the studies showed that the tx mice developed mild chronic hepatitis but suffered severe organ destruction with faster progression to full-liver cirrhosis. No changes were noted in the neurological and behavioral status of this strain despite the described toxic accumulation of copper and neuronal destruction in their brain. On the other hand, though the Jackson toxic milk mice (txJ) also presented chronic hepatitis, the condition was a bit milder with slower progression to end-stage disease. Moreover, hepatocyte suitable to perform neurobehavioral research as their phenotype characterized by tremors and locomotor disabilities better corresponds with the cliniconeurological picture of the humans.
Collapse
|
16
|
System Pharmacology-Based Strategy to Decode the Synergistic Mechanism of GanDouLing for Wilson's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1248920. [PMID: 33564316 PMCID: PMC7864764 DOI: 10.1155/2021/1248920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/12/2020] [Accepted: 01/13/2021] [Indexed: 11/18/2022]
Abstract
Results Firstly, 324 active compounds have been identified in the GDL formula. Meanwhile, we identified 1496 human genes which are related to WD or liver cirrhosis. Functional and pathway enrichment analysis indicated that NOD-like receptor signaling pathway, bile secretion, calcium signaling pathway, steroid hormone biosynthesis, T cell receptor signaling pathway, apoptosis, MAPK signaling pathway, and so forth can be obviously regulated by GDL. Further, in a mouse model of WD, in vivo experiments showed that GDL treatment can not only reduce the pathological symptoms of the liver but also reduce the apoptosis of hepatocytes. Conclusions In this study, systemic pharmacological methods were proposed and the mechanism of GDL combined therapy for WD was explored. This method can be used as a reference for the study of other mechanisms of traditional Chinese medicine.
Collapse
|
17
|
Espinós C, Ferenci P. Are the new genetic tools for diagnosis of Wilson disease helpful in clinical practice? JHEP Rep 2020; 2:100114. [PMID: 32613181 PMCID: PMC7322184 DOI: 10.1016/j.jhepr.2020.100114] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
The diagnosis of Wilson disease is not always easy. For many patients, a combination of tests reflecting disturbed copper metabolism may be needed. Testing for ATP7B variants has become part of the routine diagnostic approach. The methods of genetic testing include analysis of the 21 coding exons and intronic flanking sequences, in which exons with recurrent variants would be prioritised depending on the mutation frequency in the local population. If sequencing the entire ATP7B gene cannot identify 2 variants and the suspicion for Wilson disease is high, after reviewing the clinical data, WES (whole-exome sequencing) or WGS (whole-genome sequencing) could be applied. A workflow based on the type and number of ATP7B variants responsible for Wilson disease is proposed. Genetic testing is indicated for confirmation of diagnosis, family screening, and screening of newborns and infants and in unclear cases suspected of suffering from Wilson disease. However, genetic testing is not a routine screening test for Wilson disease. If no additional variants can be identified, it can be assumed that other hereditary disorders may mimic Wilson disease (congenital disorders of glycosylation, MEDNIK syndrome, idiopathic or primary copper toxicoses).
Collapse
Affiliation(s)
- Carmen Espinós
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, Valencia, Spain
- Department of Genetics, Universitat de València, Valencia, Spain
| | - Peter Ferenci
- Department of Internal Medicine 3, Gastroenterology and Hepatology, Medical University of Vienna, Austria
| |
Collapse
|
18
|
Prenatal Choline Supplementation during High-Fat Feeding Improves Long-Term Blood Glucose Control in Male Mouse Offspring. Nutrients 2020; 12:nu12010144. [PMID: 31947955 PMCID: PMC7019888 DOI: 10.3390/nu12010144] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/25/2019] [Accepted: 01/02/2020] [Indexed: 12/19/2022] Open
Abstract
Maternal obesity increases the risk of metabolic dysregulation in rodent offspring, especially when offspring are exposed to a high-fat (HF), obesogenic diet later in life. We previously demonstrated that maternal choline supplementation (MCS) in HF-fed mouse dams during gestation prevents fetal overgrowth and excess adiposity. In this study, we examined the long-term metabolic influence of MCS. C57BL/6J mice were fed a HF diet with or without choline supplementation prior to and during gestation. After weaning, their pups were exposed to either a HF or control diet for 6 weeks before measurements. Prenatal and post-weaning dietary treatments led to sexually dimorphic responses. In male offspring, while post-weaning HF led to impaired fasting glucose and worse glucose tolerance (p < 0.05), MCS in HF dams (HFCS) attenuated these changes. HFCS (versus maternal normal fat control) appeared to improve metabolic functioning of visceral adipose tissue during post-weaning HF feeding, preventing the elevation in leptin and increasing (p < 0.05) mRNA expression of insulin receptor substrate 1 (Irs1) that promotes peripheral insulin signaling in male offspring. In contrast, MCS had minimal effects on metabolic outcomes of female offspring. In conclusion, MCS during HF feeding in mice improves long-term blood glucose homeostasis in male offspring when they are faced with a postnatal obesogenic environment.
Collapse
|
19
|
Choline: Exploring the Growing Science on Its Benefits for Moms and Babies. Nutrients 2019; 11:nu11081823. [PMID: 31394787 PMCID: PMC6722688 DOI: 10.3390/nu11081823] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/23/2022] Open
Abstract
The importance of ensuring adequate choline intakes during pregnancy is increasingly recognized. Choline is critical for a number of physiological processes during the prenatal period with roles in membrane biosynthesis and tissue expansion, neurotransmission and brain development, and methyl group donation and gene expression. Studies in animals and humans have shown that supplementing the maternal diet with additional choline improves several pregnancy outcomes and protects against certain neural and metabolic insults. Most pregnant women in the U.S. are not achieving choline intake recommendations of 450 mg/day and would likely benefit from boosting their choline intakes through dietary and/or supplemental approaches.
Collapse
|
20
|
Gogou M, Kolios G. Nutritional Supplements During Gestation and Autism Spectrum Disorder: What Do We Really Know and How Far Have We Gone? J Am Coll Nutr 2019; 39:261-271. [PMID: 31318329 DOI: 10.1080/07315724.2019.1635920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nutritional interventions are gaining remarkable attention as complementary management options for autism. Our aim is to provide literature data about the impact of the administration of dietary supplements during pregnancy on the risk of autism spectrum disorder in the offspring. A comprehensive search was undertaken by 2 reviewers independently using PubMed as the medical database source. Prospective clinical and experimental studies were considered and no year-of-publication restriction was placed. We were able to identify 4 basic (conducted in rodents) and 3 clinical research papers fulfilling our selection criteria. Supplements studied included folic acid, iron, multivitamins, choline, vitamin D, and docosahexaenoic acid. Choline and folic acid had a significant impact on the expression of autism-related genes. However, from a clinical point of view, prenatal folate administration did not reduce the risk of autism. Similarly, iron had no significant impact, while the use of multivitamins in moderate frequency had a protective effect. The use of vitamin D and docosahexaenoic acid during gestation decreased the incidence of autism in animal models. In conclusion, available data are controversial and cannot change current routine practice. More large-scale prospective studies are needed to identify the real effect of nutritional supplements and also optimize their administration.Key teaching pointsMultivitamins use during pregnancy can exert a protective effect on the risk of autism, although depending on the frequency of use. Nevertheless, prenatal iron and folate were not shown to have any significant impact.Research based on animal models showed that choline and folic acid can have a significant impact on the expression of autism-related genes in a sex-specific manner.Furthermore, the use of vitamin D and docosahexaenoic acid during gestation seem to decrease the incidence of autism in animal offspring.In the future, more clinical, large-scale prospective and methodologically homogenous clinical studies are needed to further investigate the effect of the periconceptional use of nutritional supplements on autism risk.
Collapse
Affiliation(s)
- Maria Gogou
- 2nd Department of Pediatrics, School of Medicine, Aristotle University of Thessaloniki, University General Hospital AHEPA, Thessaloniki, Greece
| | - George Kolios
- Laboratory of Pharmacology, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
21
|
Medici V, LaSalle JM. Genetics and epigenetic factors of Wilson disease. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S58. [PMID: 31179295 PMCID: PMC6531661 DOI: 10.21037/atm.2019.01.67] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 12/13/2022]
Abstract
Wilson disease (WD) is a complex condition due to copper accumulation mainly in the liver and brain. The genetic base of WD is represented by pathogenic mutations of the copper-transporting gene ATP7B with consequent lack of copper excretion through the biliary tract. ATP7B is the only gene so far identified and known to be responsible for the development of the disease. Our understanding of the disease has been evolving as functional studies have associated specific disease-causing mutations with specific copper-transporter impairments. The most frequent variant in patients of European descent is the H1069Q missense mutation and it has been associated with protein misfolding, aberrant phosphorylation of the P-domain, and altered ATP binding orientation and affinity. Conversely, there is much less understanding of the relation between the genotype and the clinical manifestations of WD. WD is characterized by a highly varied and unpredictable presentation with different combined hepatic, neurological, and psychiatric symptoms. Several studies have attempted to correlate genotype and phenotype but the most recent evidences on larger populations failed to identify a relation between genotype and clinical presentations. Given that so far also modifier genes have not shown convincing association with WD, there is growing interest to identify epigenetic mechanisms of gene expression regulation as underlying the onset and progression of WD phenotype. Evidence from animal models indicated changes in methionine metabolism regulation with possible effects on DNA methylation. Mouse models of WD have indicated transcript level changes of genes related to DNA methylation in fetal and adult livers. And finally, evidence is accumulating regarding DNA methylation changes in patients with WD. It is unexplored how ATP7B genetic mutations combine with epigenetic changes to affect the phenotype. In conclusion, WD is a genetic disease with a complex regulation of its phenotype that includes molecular genetics and epigenetic mechanisms.
Collapse
Affiliation(s)
- Valentina Medici
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, Sacramento, California, USA
| | - Janine M. LaSalle
- Department of Medical Microbiology and Immunology, University of California Davis, Sacramento, California, USA
| |
Collapse
|
22
|
Samblas M, Milagro FI, Martínez A. DNA methylation markers in obesity, metabolic syndrome, and weight loss. Epigenetics 2019; 14:421-444. [PMID: 30915894 DOI: 10.1080/15592294.2019.1595297] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The fact that not all individuals exposed to the same environmental risk factors develop obesity supports the hypothesis of the existence of underlying genetic and epigenetic elements. There is suggestive evidence that environmental stimuli, such as dietary pattern, particularly during pregnancy and early life, but also in adult life, can induce changes in DNA methylation predisposing to obesity and related comorbidities. In this context, the DNA methylation marks of each individual have emerged not only as a promising tool for the prediction, screening, diagnosis, and prognosis of obesity and metabolic syndrome features, but also for the improvement of weight loss therapies in the context of precision nutrition. The main objectives in this field are to understand the mechanisms involved in transgenerational epigenetic inheritance, and featuring the nutritional and lifestyle factors implicated in the epigenetic modifications. Likewise, DNA methylation modulation caused by diet and environment may be a target for newer therapeutic strategies concerning the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Mirian Samblas
- a Department of Nutrition, Food Science and Physiology; Centre for Nutrition Research , University of Navarra , Pamplona , Spain
| | - Fermín I Milagro
- a Department of Nutrition, Food Science and Physiology; Centre for Nutrition Research , University of Navarra , Pamplona , Spain.,b CIBERobn, CIBER Fisiopatología de la Obesidad y Nutrición , Instituto de Salud Carlos III. Madrid , Spain.,c IdiSNA, Instituto de Investigación Sanitaria de Navarra (IdiSNA) , Pamplona , Spain
| | - Alfredo Martínez
- a Department of Nutrition, Food Science and Physiology; Centre for Nutrition Research , University of Navarra , Pamplona , Spain.,b CIBERobn, CIBER Fisiopatología de la Obesidad y Nutrición , Instituto de Salud Carlos III. Madrid , Spain.,c IdiSNA, Instituto de Investigación Sanitaria de Navarra (IdiSNA) , Pamplona , Spain.,d IMDEA, Research Institute on Food & Health Sciences , Madrid , Spain
| |
Collapse
|
23
|
Sarode GV, Kim K, Kieffer DA, Shibata NM, Litwin T, Czlonkowska A, Medici V. Metabolomics profiles of patients with Wilson disease reveal a distinct metabolic signature. Metabolomics 2019; 15:43. [PMID: 30868361 PMCID: PMC6568258 DOI: 10.1007/s11306-019-1505-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/04/2019] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Wilson disease (WD) is characterized by excessive intracellular copper accumulation in liver and brain due to defective copper biliary excretion. With highly varied phenotypes and a lack of biomarkers for the different clinical manifestations, diagnosis and treatment can be difficult. OBJECTIVE The aim of the present study was to analyze serum metabolomics profiles of patients with Wilson disease compared to healthy subjects, with the goal of identifying differentially abundant metabolites as potential biomarkers for this condition. METHODS Hydrophilic interaction liquid chromatography-quadrupole time of flight mass spectrometry was used to evaluate the untargeted serum metabolome of 61 patients with WD (26 hepatic and 25 neurologic subtypes, 10 preclinical) compared to 15 healthy subjects. We conducted analysis of covariance with potential confounders (body mass index, age, sex) as covariates and partial least-squares analysis. RESULTS After adjusting for clinical covariates and multiple testing, we identified 99 significantly different metabolites (FDR < 0.05) between WD and healthy subjects. Subtype comparisons also revealed significantly different metabolites compared to healthy subjects: WD hepatic subtype (67), WD neurologic subtype (57), WD hepatic-neurologic combined (77), and preclinical (36). Pathway analysis revealed these metabolites are involved in amino acid metabolism, the tricarboxylic acid cycle, choline metabolism, and oxidative stress. CONCLUSIONS Patients with WD are characterized by a distinct metabolomics profile providing new insights into WD pathogenesis and identifying new potential diagnostic biomarkers.
Collapse
Affiliation(s)
- Gaurav V Sarode
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA, 95817, USA
| | - Kyoungmi Kim
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Dorothy A Kieffer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA, 95817, USA
| | - Noreene M Shibata
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA, 95817, USA
| | - Tomas Litwin
- Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Anna Czlonkowska
- Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Valentina Medici
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA, 95817, USA.
| |
Collapse
|
24
|
Mordaunt CE, Kieffer DA, Shibata NM, Członkowska A, Litwin T, Weiss KH, Zhu Y, Bowlus CL, Sarkar S, Cooper S, Wan YJY, Ali MR, LaSalle JM, Medici V. Epigenomic signatures in liver and blood of Wilson disease patients include hypermethylation of liver-specific enhancers. Epigenetics Chromatin 2019; 12:10. [PMID: 30709419 PMCID: PMC6357467 DOI: 10.1186/s13072-019-0255-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/21/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Wilson disease (WD) is an autosomal recessive disease caused by mutations in ATP7B encoding a copper transporter. Consequent copper accumulation results in a variable WD clinical phenotype involving hepatic, neurologic, and psychiatric symptoms, without clear genotype-phenotype correlations. The goal of this study was to analyze alterations in DNA methylation at the whole-genome level in liver and blood from patients with WD to investigate epigenomic alterations associated with WD diagnosis and phenotype. We used whole-genome bisulfite sequencing (WGBS) to examine distinct cohorts of WD subjects to determine whether DNA methylation could differentiate patients from healthy subjects and subjects with other liver diseases and distinguish between different WD phenotypes. RESULTS WGBS analyses in liver identified 969 hypermethylated and 871 hypomethylated differentially methylated regions (DMRs) specifically identifying patients with WD, including 18 regions with genome-wide significance. WD-specific liver DMRs were associated with genes enriched for functions in folate and lipid metabolism and acute inflammatory response and could differentiate early from advanced fibrosis in WD patients. Functional annotation revealed that WD-hypermethylated liver DMRs were enriched in liver-specific enhancers, flanking active liver promoters, and binding sites of liver developmental transcription factors, including Hepatocyte Nuclear Factor 4 alpha (HNF4A), Retinoid X Receptor alpha (RXRA), Forkhead Box A1 (FOXA1), and FOXA2. DMRs associated with WD progression were also identified, including 15 with genome-wide significance. However, WD DMRs in liver were not related to large-scale changes in proportions of liver cell types. DMRs detected in blood differentiated WD patients from healthy and disease control subjects, and distinguished between patients with hepatic and neurologic WD manifestations. WD phenotype DMRs corresponded to genes enriched for functions in mental deterioration, abnormal B cell physiology, and as members of the polycomb repressive complex 1 (PRC1). 44 DMRs associated with WD phenotype tested in a small validation cohort had a predictive value of 0.9. CONCLUSIONS We identified a disease-mechanism relevant epigenomic signature of WD that reveals new insights into potential biomarkers and treatments for this complex monogenic disease.
Collapse
Affiliation(s)
- Charles E Mordaunt
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California Davis, Davis, CA, USA
| | - Dorothy A Kieffer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA
| | - Noreene M Shibata
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA
| | - Anna Członkowska
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Tomasz Litwin
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Karl-Heinz Weiss
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Yihui Zhu
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California Davis, Davis, CA, USA
| | - Christopher L Bowlus
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA
| | - Souvik Sarkar
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA
| | - Stewart Cooper
- California Pacific Medical Center, San Francisco, CA, USA
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, USA
| | - Mohamed R Ali
- Department of Surgery, University of California Davis, Sacramento, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California Davis, Davis, CA, USA
| | - Valentina Medici
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
25
|
Tai Z, Guan P, Wang Z, Li L, Zhang T, Li G, Liu JX. Common responses of fish embryos to metals: an integrated analysis of transcriptomes and methylomes in zebrafish embryos under the stress of copper ions or silver nanoparticles. Metallomics 2019; 11:1452-1464. [DOI: 10.1039/c9mt00125e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study demonstrated the common responses of differentially expressed genes (DEGs) and differentially methylated regions (DMRs) under Cu2+ or AgNPs stresses in zebrafish, and verified the correlation of the gene transcription and the methylation status of some common DMGs.
Collapse
Affiliation(s)
- ZhiPeng Tai
- College of Fisheries
- Key Laboratory of Freshwater Animal Breeding
- Ministry of Agriculture
- Huazhong Agricultural University
- Wuhan
| | - PengPeng Guan
- College of Informatics
- Agricultural Bioinformatics Key Laboratory of Hubei Province
- Hubei Engineering Technology Research Center of Agricultural Big Data
- Huazhong Agricultural University
- Wuhan
| | - ZiYang Wang
- College of Fisheries
- Key Laboratory of Freshwater Animal Breeding
- Ministry of Agriculture
- Huazhong Agricultural University
- Wuhan
| | - LingYa Li
- College of Fisheries
- Key Laboratory of Freshwater Animal Breeding
- Ministry of Agriculture
- Huazhong Agricultural University
- Wuhan
| | - Ting Zhang
- College of Fisheries
- Key Laboratory of Freshwater Animal Breeding
- Ministry of Agriculture
- Huazhong Agricultural University
- Wuhan
| | - GuoLiang Li
- College of Informatics
- Agricultural Bioinformatics Key Laboratory of Hubei Province
- Hubei Engineering Technology Research Center of Agricultural Big Data
- Huazhong Agricultural University
- Wuhan
| | - Jing-Xia Liu
- College of Fisheries
- Key Laboratory of Freshwater Animal Breeding
- Ministry of Agriculture
- Huazhong Agricultural University
- Wuhan
| |
Collapse
|
26
|
Mordaunt CE, Shibata NM, Kieffer DA, Członkowska A, Litwin T, Weiss KH, Gotthardt DN, Olson K, Wei D, Cooper S, Wan YJY, Ali MR, LaSalle JM, Medici V. Epigenetic changes of the thioredoxin system in the tx-j mouse model and in patients with Wilson disease. Hum Mol Genet 2018; 27:3854-3869. [PMID: 30010856 PMCID: PMC6216211 DOI: 10.1093/hmg/ddy262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 06/02/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
Abstract
Wilson disease (WD) is caused by mutations in the copper transporter ATP7B, leading to copper accumulation in the liver and brain. Excess copper inhibits S-adenosyl-L-homocysteine hydrolase, leading to variable WD phenotypes from widespread alterations in DNA methylation and gene expression. Previously, we demonstrated that maternal choline supplementation in the Jackson toxic milk (tx-j) mouse model of WD corrected higher thioredoxin 1 (TNX1) transcript levels in fetal liver. Here, we investigated the effect of maternal choline supplementation on genome-wide DNA methylation patterns in tx-j fetal liver by whole-genome bisulfite sequencing (WGBS). Tx-j Atp7b genotype-dependent differences in DNA methylation were corrected by choline for genes including, but not exclusive to, oxidative stress pathways. To examine phenotypic effects of postnatal choline supplementation, tx-j mice were randomized to one of six treatment groups: with or without maternal and/or continued choline supplementation, and with or without copper chelation with penicillamine (PCA) treatment. Hepatic transcript levels of TXN1 and peroxiredoxin 1 (Prdx1) were significantly higher in mice receiving maternal and continued choline with or without PCA treatment compared to untreated mice. A WGBS comparison of human WD liver and tx-j mouse liver demonstrated a significant overlap of differentially methylated genes associated with ATP7B deficiency. Further, eight genes in the thioredoxin (TXN) pathway were differentially methylated in human WD liver samples. In summary, Atp7b deficiency and choline supplementation have a genome-wide impact, including on TXN system-related genes, in tx-j mice. These findings could explain the variability of WD phenotype and suggest new complementary treatment options for WD.
Collapse
Affiliation(s)
- Charles E Mordaunt
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, California, USA
| | - Noreene M Shibata
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California, Davis, California, USA
| | - Dorothy A Kieffer
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California, Davis, California, USA
| | - Anna Członkowska
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Karl Heinz Weiss
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Daniel N Gotthardt
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Kristin Olson
- Department of Pathology, University of California, Davis, California, USA
| | - Dongguang Wei
- Department of Pathology, University of California, Davis, California, USA
| | - Stewart Cooper
- California Pacific Medical Center, San Francisco, California, USA
| | - Yu-Jui Yvonne Wan
- Department of Pathology, University of California, Davis, California, USA
| | - Mohamed R Ali
- Department of Surgery, University of California, Davis, California, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, California, USA
| | - Valentina Medici
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California, Davis, California, USA
| |
Collapse
|
27
|
Członkowska A, Litwin T, Dusek P, Ferenci P, Lutsenko S, Medici V, Rybakowski JK, Weiss KH, Schilsky ML. Wilson disease. Nat Rev Dis Primers 2018; 4:21. [PMID: 30190489 PMCID: PMC6416051 DOI: 10.1038/s41572-018-0018-3] [Citation(s) in RCA: 528] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Wilson disease (WD) is a potentially treatable, inherited disorder of copper metabolism that is characterized by the pathological accumulation of copper. WD is caused by mutations in ATP7B, which encodes a transmembrane copper-transporting ATPase, leading to impaired copper homeostasis and copper overload in the liver, brain and other organs. The clinical course of WD can vary in the type and severity of symptoms, but progressive liver disease is a common feature. Patients can also present with neurological disorders and psychiatric symptoms. WD is diagnosed using diagnostic algorithms that incorporate clinical symptoms and signs, measures of copper metabolism and DNA analysis of ATP7B. Available treatments include chelation therapy and zinc salts, which reverse copper overload by different mechanisms. Additionally, liver transplantation is indicated in selected cases. New agents, such as tetrathiomolybdate salts, are currently being investigated in clinical trials, and genetic therapies are being tested in animal models. With early diagnosis and treatment, the prognosis is good; however, an important issue is diagnosing patients before the onset of serious symptoms. Advances in screening for WD may therefore bring earlier diagnosis and improvements for patients with WD.
Collapse
Affiliation(s)
- Anna Członkowska
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland.
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland.
| | - Tomasz Litwin
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Petr Dusek
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Peter Ferenci
- Internal Medicine 3, Department of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valentina Medici
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California, Davis, Sacramento, CA, USA
| | - Janusz K Rybakowski
- Department of Adult Psychiatry, Poznań University of Medical Sciences, Poznań, Poland
| | - Karl Heinz Weiss
- Department of Gastroenterology and Hepatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael L Schilsky
- Section of Digestive Diseases and Transplantation and Immunology, Department of Medicine and Surgery, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
28
|
Pajares MA, Pérez-Sala D. Mammalian Sulfur Amino Acid Metabolism: A Nexus Between Redox Regulation, Nutrition, Epigenetics, and Detoxification. Antioxid Redox Signal 2018; 29:408-452. [PMID: 29186975 DOI: 10.1089/ars.2017.7237] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Transsulfuration allows conversion of methionine into cysteine using homocysteine (Hcy) as an intermediate. This pathway produces S-adenosylmethionine (AdoMet), a key metabolite for cell function, and provides 50% of the cysteine needed for hepatic glutathione synthesis. The route requires the intake of essential nutrients (e.g., methionine and vitamins) and is regulated by their availability. Transsulfuration presents multiple interconnections with epigenetics, adenosine triphosphate (ATP), and glutathione synthesis, polyol and pentose phosphate pathways, and detoxification that rely mostly in the exchange of substrates or products. Major hepatic diseases, rare diseases, and sensorineural disorders, among others that concur with oxidative stress, present impaired transsulfuration. Recent Advances: In contrast to the classical view, a nuclear branch of the pathway, potentiated under oxidative stress, is emerging. Several transsulfuration proteins regulate gene expression, suggesting moonlighting activities. In addition, abnormalities in Hcy metabolism link nutrition and hearing loss. CRITICAL ISSUES Knowledge about the crossregulation between pathways is mostly limited to the hepatic availability/removal of substrates and inhibitors. However, advances regarding protein-protein interactions involving oncogenes, identification of several post-translational modifications (PTMs), and putative moonlighting activities expand the potential impact of transsulfuration beyond methylations and Hcy. FUTURE DIRECTIONS Increasing the knowledge on transsulfuration outside the liver, understanding the protein-protein interaction networks involving these enzymes, the functional role of their PTMs, or the mechanisms controlling their nucleocytoplasmic shuttling may provide further insights into the pathophysiological implications of this pathway, allowing design of new therapeutic interventions. Antioxid. Redox Signal. 29, 408-452.
Collapse
Affiliation(s)
- María A Pajares
- 1 Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC) , Madrid, Spain .,2 Molecular Hepatology Group, Instituto de Investigación Sanitaria La Paz (IdiPAZ) , Madrid, Spain
| | - Dolores Pérez-Sala
- 1 Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC) , Madrid, Spain
| |
Collapse
|
29
|
Seo GH, Kim YM, Oh SH, Chung SJ, Choi IH, Kim GH, Yum MS, Choi JH, Kim KM, Ko TS, Lee BH, Yoo HW. Biochemical and molecular characterisation of neurological Wilson disease. J Med Genet 2018; 55:587-593. [DOI: 10.1136/jmedgenet-2017-105214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/07/2018] [Accepted: 03/22/2018] [Indexed: 12/30/2022]
Abstract
BackgroundTo identify biochemical and genetic features that characterise neurological Wilson disease as a distinct disease subgroup.MethodsDetailed biochemical profiles and genotypic characteristics of neurological (86 patients) and hepatic subgroups (233 patients) from 368 unrelated Korean families were analysed.ResultsCompared with patients in the hepatic subgroup, patients in the neurological subgroup had a later age at onset, a higher proportion with Kayser-Fleischer rings and higher serum creatinine levels, and a lower proportion with favourable outcome (62% vs 80%, P<0.016). At diagnosis, the neurological subgroup had lower serum ceruloplasmin (3.1±2.1 mg/dL vs 4.2±3.2 mg/dL, P<0.001), total copper (26.4±13.8 µg/dL vs 35.8±42.4 µg/dL, P=0.005), free copper (17.2±12.5 µg/dL vs 23.5±38.2 µg/dL, P=0.038) and urinary copper (280.9±162.9 µg/day vs 611.1±1124.2 µg/day, P<0.001) levels. Serum aspartate aminotransferase, alanine aminotransferase, gamma glutamyltransferase and total bilirubin levels, as well as prothrombin time, were also lower in the neurological subgroup. Liver cirrhosis was more common but mostly compensated in the neurological subgroup. Frameshift, nonsense or splice-site ATP7B mutations and mutations in transduction or ATP hinge domains (2.4% vs 23.1%, P=0.006) were less common in the neurological subgroup.ConclusionThe neurological subgroup had distinct clinical, biochemical and genetic profiles. Further studies are required to identify the factors, with or without association with copper metabolism, underlying the neurological presentation for which treatment needs to be targeted to improve the clinical outcome of this subgroup.
Collapse
|
30
|
Pérez-Sala D, Martínez-Costa ÓH, Aragón JJ, Pajares MA. Alterations in Nucleocytoplasmic Localization of the Methionine Cycle Induced by Oxidative Stress During Liver Disease. THE LIVER 2018:21-41. [DOI: 10.1016/b978-0-12-803951-9.00003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
31
|
Kieffer DA, Medici V. Wilson disease: At the crossroads between genetics and epigenetics-A review of the evidence. LIVER RESEARCH 2017; 1:121-130. [PMID: 29270329 PMCID: PMC5734098 DOI: 10.1016/j.livres.2017.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Environmental factors, including diet, exercise, stress, and toxins, profoundly impact disease phenotypes. This review examines how Wilson disease (WD), an autosomal recessive genetic disorder, is influenced by genetic and environmental inputs. WD is caused by mutations in the copper-transporter gene ATP7B, leading to the accumulation of copper in the liver and brain, resulting in hepatic, neurological, and psychiatric symptoms. These symptoms range in severity and can first appear anytime between early childhood and old age. Over 300 disease-causing mutations in ATP7B have been identified, but attempts to link genotype to the phenotypic presentation have yielded little insight, prompting investigators to identify alternative mechanisms, such as epigenetics, to explain the highly varied clinical presentation. Further, WD is accompanied by structural and functional abnormalities in mitochondria, potentially altering the production of metabolites that are required for epigenetic regulation of gene expression. Notably, environmental exposure affects the regulation of gene expression and mitochondrial function. We present the "multi-hit" hypothesis of WD progression, which posits that the initial hit is an environmental factor that affects fetal gene expression and epigenetic mechanisms and subsequent "hits" are environmental exposures that occur in the offspring after birth. These environmental hits and subsequent changes in epigenetic regulation may impact copper accumulation and ultimately WD phenotype. Lifestyle changes, including diet, increased physical activity, stress reduction, and toxin avoidance, might influence the presentation and course of WD, and therefore may serve as potential adjunctive or replacement therapies.
Collapse
|
32
|
|
33
|
|
34
|
|
35
|
Medici V, Kieffer DA, Shibata NM, Chima H, Kim K, Canovas A, Medrano JF, Islas-Trejo AD, Kharbanda KK, Olson K, Su RJ, Islam MS, Syed R, Keen CL, Miller AY, Rutledge JC, Halsted CH, LaSalle JM. Wilson Disease: Epigenetic effects of choline supplementation on phenotype and clinical course in a mouse model. Epigenetics 2016; 11:804-818. [PMID: 27611852 DOI: 10.1080/15592294.2016.1231289] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Wilson disease (WD), a genetic disorder affecting copper transport, is characterized by hepatic and neurological manifestations with variable and often unpredictable presentation. Global DNA methylation in liver was previously modified by dietary choline in tx-j mice, a spontaneous mutant model of WD. We therefore hypothesized that the WD phenotype and hepatic gene expression of tx-j offspring could be modified by maternal methyl supplementation during pregnancy. In an initial experiment, female tx-j mice or wild type mice were fed control or choline-supplemented diets 2 weeks prior to mating through embryonic day 17. Transcriptomic analysis (RNA-seq) on embryonic livers revealed tx-j-specific differences in genes related to oxidative phosphorylation, mitochondrial dysfunction, and the neurological disorders Huntington's disease and Alzheimer disease. Maternal choline supplementation restored the transcript levels of a subset of genes to wild type levels. In a separate experiment, a group of tx-j offspring continued to receive choline-supplemented or control diets, with or without the copper chelator penicillamine (PCA) for 12 weeks until 24 weeks of age. Combined choline supplementation and PCA treatment of 24-week-old tx-j mice was associated with increased liver transcript levels of methionine metabolism and oxidative phosphorylation-related genes. Sex differences in gene expression within each treatment group were also observed. These results demonstrate that the transcriptional changes in oxidative phosphorylation and methionine metabolism genes in WD that originate during fetal life are, in part, prevented by prenatal maternal choline supplementation, a finding with potential relevance to preventive treatments of WD.
Collapse
Affiliation(s)
- Valentina Medici
- a Department of Internal Medicine, Division of Gastroenterology and Hepatology , University of California Davis , CA , USA
| | - Dorothy A Kieffer
- a Department of Internal Medicine, Division of Gastroenterology and Hepatology , University of California Davis , CA , USA
| | - Noreene M Shibata
- a Department of Internal Medicine, Division of Gastroenterology and Hepatology , University of California Davis , CA , USA
| | - Harpreet Chima
- b Department of Nutrition , University of California Davis , CA , USA
| | - Kyoungmi Kim
- c Department of Public Health Sciences, Division of Biostatistics , University of California Davis , CA , USA
| | - Angela Canovas
- d Department of Animal Science , University of California Davis , CA , USA
| | - Juan F Medrano
- d Department of Animal Science , University of California Davis , CA , USA
| | - Alma D Islas-Trejo
- d Department of Animal Science , University of California Davis , CA , USA
| | - Kusum K Kharbanda
- e Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System , Omaha , NE , USA
| | - Kristin Olson
- f Department of Pathology , University of California Davis , CA , USA
| | - Ruijun J Su
- f Department of Pathology , University of California Davis , CA , USA
| | - Mohammad S Islam
- g Department of Medical Microbiology and Immunology , Genome Center, and MIND Institute, University of California Davis , CA , USA
| | - Raisa Syed
- a Department of Internal Medicine, Division of Gastroenterology and Hepatology , University of California Davis , CA , USA
| | - Carl L Keen
- b Department of Nutrition , University of California Davis , CA , USA
| | - Amy Y Miller
- h Department of Internal Medicine, Division of Cardiovascular Medicine , University of California Davis , CA , USA
| | - John C Rutledge
- h Department of Internal Medicine, Division of Cardiovascular Medicine , University of California Davis , CA , USA
| | - Charles H Halsted
- a Department of Internal Medicine, Division of Gastroenterology and Hepatology , University of California Davis , CA , USA
| | - Janine M LaSalle
- g Department of Medical Microbiology and Immunology , Genome Center, and MIND Institute, University of California Davis , CA , USA
| |
Collapse
|
36
|
Roberts EA. Broadening the implications of gene discovery. Hepatology 2016; 63:1765-7. [PMID: 26822144 DOI: 10.1002/hep.28474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 01/27/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Eve A Roberts
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, Genetics and Genome Medicine Program, The Hospital for Sick Children Research Institute, Departments of Paediatrics, Medicine, and Pharmacology and of Therapeutics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
37
|
The role of epigenetic modifications in cardiovascular disease: A systematic review. Int J Cardiol 2016; 212:174-83. [DOI: 10.1016/j.ijcard.2016.03.062] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 01/11/2023]
|
38
|
Bhattacharjee A, Yang H, Duffy M, Robinson E, Conrad-Antoville A, Lu YW, Capps T, Braiterman L, Wolfgang M, Murphy MP, Yi L, Kaler SG, Lutsenko S, Ralle M. The Activity of Menkes Disease Protein ATP7A Is Essential for Redox Balance in Mitochondria. J Biol Chem 2016; 291:16644-58. [PMID: 27226607 PMCID: PMC4974379 DOI: 10.1074/jbc.m116.727248] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Indexed: 11/13/2022] Open
Abstract
Copper-transporting ATPase ATP7A is essential for mammalian copper homeostasis. Loss of ATP7A activity is associated with fatal Menkes disease and various other pathologies. In cells, ATP7A inactivation disrupts copper transport from the cytosol into the secretory pathway. Using fibroblasts from Menkes disease patients and mouse 3T3-L1 cells with a CRISPR/Cas9-inactivated ATP7A, we demonstrate that ATP7A dysfunction is also damaging to mitochondrial redox balance. In these cells, copper accumulates in nuclei, cytosol, and mitochondria, causing distinct changes in their redox environment. Quantitative imaging of live cells using GRX1-roGFP2 and HyPer sensors reveals highest glutathione oxidation and elevation of H2O2 in mitochondria, whereas the redox environment of nuclei and the cytosol is much less affected. Decreasing the H2O2 levels in mitochondria with MitoQ does not prevent glutathione oxidation; i.e. elevated copper and not H2O2 is a primary cause of glutathione oxidation. Redox misbalance does not significantly affect mitochondrion morphology or the activity of respiratory complex IV but markedly increases cell sensitivity to even mild glutathione depletion, resulting in loss of cell viability. Thus, ATP7A activity protects mitochondria from excessive copper entry, which is deleterious to redox buffers. Mitochondrial redox misbalance could significantly contribute to pathologies associated with ATP7A inactivation in tissues with paradoxical accumulation of copper (i.e. renal epithelia).
Collapse
Affiliation(s)
| | | | - Megan Duffy
- the Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239
| | - Emily Robinson
- the Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239
| | - Arianrhod Conrad-Antoville
- the Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239
| | | | - Tony Capps
- the Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239
| | | | - Michael Wolfgang
- Cell Biology Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Michael P Murphy
- the Medical Research Council Mitochondrial Biology Unit, Cambridge CB2 0XY, United Kingdom, and
| | - Ling Yi
- the Section on Translational Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Stephen G Kaler
- the Section on Translational Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | | - Martina Ralle
- the Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239,
| |
Collapse
|
39
|
Syed R, Shibata NM, Kharbanda KK, Su RJ, Olson K, Yokoyama A, Rutledge JC, Chmiel KJ, Kim K, Halsted CH, Medici V. Effects of Nonpurified and Choline Supplemented or Nonsupplemented Purified Diets on Hepatic Steatosis and Methionine Metabolism in C3H Mice. Metab Syndr Relat Disord 2016; 14:202-9. [PMID: 26881897 DOI: 10.1089/met.2015.0147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Previous studies indicated that nonpurified and purified commercially available control murine diets have different metabolic effects with potential consequences on hepatic methionine metabolism and liver histology. METHODS We compared the metabolic and histological effects of commercial nonpurified (13% calories from fat; 57% calories from carbohydrates with 38 grams/kg of sucrose) and purified control diets (12% calories from fat; 69% calories from carbohydrates with ∼500 grams/kg of sucrose) with or without choline supplementation administered to C3H mice with normal lipid and methionine metabolism. Diets were started 2 weeks before mating, continued through pregnancy and lactation, and continued in offspring until 24 weeks of age when we collected plasma and liver tissue to study methionine and lipid metabolism. RESULTS Compared to mice fed nonpurified diets, the liver/body weight ratio was significantly higher in mice fed either purified diet, which was associated with hepatic steatosis and inflammation. Plasma alanine aminotransferase levels were higher in mice receiving the purified diets. The hepatic S-adenosylmethionine (SAM)/S-adenosylhomocysteine (SAH) ratio was higher in female mice fed purified compared to nonpurified diet (4.6 ± 2 vs. 2.8 ± 1.9; P < 0.05). Choline supplementation was associated with improvement of some parameters of lipid and methionine metabolism in mice fed purified diets. CONCLUSIONS Standard nonpurified and purified diets have significantly different effects on development of steatosis in control mice. These findings can help in development of animal models of fatty liver and in choosing appropriate laboratory control diets for control animals.
Collapse
Affiliation(s)
- Raisa Syed
- 1 Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California , Davis, Sacramento, California
| | - Noreene M Shibata
- 1 Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California , Davis, Sacramento, California
| | - Kusum K Kharbanda
- 2 Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System , Omaha, Nebraska
| | - Ruijun J Su
- 3 Department of Pathology and Laboratory Medicine, University of California , Davis, Sacramento, California
| | - Kristin Olson
- 3 Department of Pathology and Laboratory Medicine, University of California , Davis, Sacramento, California
| | - Amy Yokoyama
- 4 Division of Cardiovascular Medicine, Department of Internal Medicine, University of California , Davis, Davis, California
| | - John C Rutledge
- 4 Division of Cardiovascular Medicine, Department of Internal Medicine, University of California , Davis, Davis, California
| | - Kenneth J Chmiel
- 1 Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California , Davis, Sacramento, California
| | - Kyoungmi Kim
- 5 Division of Biostatistics, Department of Public Health Sciences, University of California , Davis, Davis, California
| | - Charles H Halsted
- 1 Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California , Davis, Sacramento, California
| | - Valentina Medici
- 1 Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California , Davis, Sacramento, California
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW The review highlights recent advances in our understanding of the interactions between genetic polymorphisms in genes that metabolize choline and the dietary requirements of choline and how these interactions relate to human health and disease. RECENT FINDINGS The importance of choline as an essential nutrient has been well established, but our appreciation of the interaction between our underlying genetic architecture and dietary choline requirements is only beginning. It has been shown in both human and animal studies that choline deficiencies contribute to diseases such as nonalcoholic fatty liver disease and various neurodegenerative diseases. An adequate supply of dietary choline is important for optimum development, highlighted by the increased maternal requirements during fetal development and in breast-fed infants. We discuss recent studies investigating variants in PEMT and MTHFR1 that are associated with a variety of birth defects. In addition to genetic interactions, we discuss several recent studies that uncover changes in fetal global methylation patterns in response to maternal dietary choline intake that result in changes in gene expression in the offspring. In contrast to the developmental role of adequate choline, there is now an appreciation of the role choline has in cardiovascular disease through the gut microbiota-mediated metabolite trimethylamine N-oxide. This pathway highlights some of our understanding of how the microbiome affects nutrient processing and bioavailability. Finally, to better characterize the genetic architecture regulating choline requirements, we discuss recent results focused on identifying polymorphisms that regulate choline and its derivative products. SUMMARY Here we discuss recent studies that have advanced our understanding of how specific alleles in key choline metabolism genes are related to dietary choline requirements and human disease.
Collapse
Affiliation(s)
- Tangi Smallwood
- Department of Genetics, University of North Carolina Chapel Hill, North Carolina 27599
| | - Hooman Allayee
- Department of Preventive Medicine and Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Brian J. Bennett
- Department of Genetics, University of North Carolina Chapel Hill, North Carolina 27599
- Nutrition Research Institute, University of North Carolina Kannapolis, North Carolina 28081
- Department of Nutrition, University of North Carolina Chapel Hill, North Carolina 27599
- Corresponding author: Brian J. Bennett, 500 Laureate Way, Suite 2303, Kannapolis NC 28081, Phone: 704-250-5044, Fax: 704-250-5000,
| |
Collapse
|
41
|
Lee HS. Impact of Maternal Diet on the Epigenome during In Utero Life and the Developmental Programming of Diseases in Childhood and Adulthood. Nutrients 2015; 7:9492-507. [PMID: 26593940 PMCID: PMC4663595 DOI: 10.3390/nu7115467] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/18/2015] [Accepted: 10/26/2015] [Indexed: 02/06/2023] Open
Abstract
Exposure to environmental factors in early life can influence developmental processes and long-term health in humans. Early life nutrition and maternal diet are well-known examples of conditions shown to influence the risk of developing metabolic diseases, including type 2 diabetes mellitus and cardiovascular diseases, in adulthood. It is increasingly accepted that environmental compounds, including nutrients, can produce changes in the genome activity that, in spite of not altering the DNA sequence, can produce important, stable and, in some instances, transgenerational alterations in the phenotype. Epigenetics refers to changes in gene function that cannot be explained by changes in the DNA sequence, with DNA methylation patterns/histone modifications that can make important contributions to epigenetic memory. The epigenome can be considered as an interface between the genome and the environment that is central to the generation of phenotypes and their stability throughout the life course. To better understand the role of maternal health and nutrition in the initiation and progression of diseases in childhood and adulthood, it is necessary to identify the physiological and/or pathological roles of specific nutrients on the epigenome and how dietary interventions in utero and early life could modulate disease risk through epigenomic alteration.
Collapse
Affiliation(s)
- Ho-Sun Lee
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert-Thomas, 69372 Cedex 08, France.
| |
Collapse
|
42
|
Stättermayer AF, Traussnigg S, Dienes HP, Aigner E, Stauber R, Lackner K, Hofer H, Stift J, Wrba F, Stadlmayr A, Datz C, Strasser M, Maieron A, Trauner M, Ferenci P. Hepatic steatosis in Wilson disease--Role of copper and PNPLA3 mutations. J Hepatol 2015; 63:156-163. [PMID: 25678388 DOI: 10.1016/j.jhep.2015.01.034] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/18/2015] [Accepted: 01/21/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The earliest characteristic alterations of the liver pathology in Wilson disease (WD) include steatosis, which is sometimes indistinguishable from non-alcoholic fatty liver disease (NAFLD). Steatosis in WD may reflect copper-induced mitochondrial dysfunction. A genetic polymorphism in rs738409, in the patatin-like phospholipase domain-containing 3 gene (PNPLA3), is strongly associated with appearance of in NAFLD. This study evaluated the role of PNPLA3 and hepatic copper content for development of steatosis in patients with WD. METHODS Liver biopsies obtained at diagnosis and the PNPLA3 genotype were analyzed in 98 Caucasian patients with WD (male: 52 [53.1%]; mean age: 27.6 years [CI 95%: 24.8-30.4, range: 5.8-61.5]). Steatosis was graded as percentage of lipid containing hepatocytes by an expert hepatopathologist unaware of the results of genetic testing. RESULTS Moderate/severe steatosis (>33% of hepatocytes) was observed in 28 patients (pediatric: n=13/26 [50.0%], adult: n=15/72 [20.8%]; p=0.01). Forty-six patients (46.9%; pediatric: n=7, adult: n=39; p=0.022) had cirrhosis. Multivariate logistic regression identified PNPLA3 G allele (OR: 2.469, CI 95%: 1.203-5.068; p=0.014) and pediatric age (OR: 4.348; 1.577-11.905; p=0.004) as independent variables associated with moderate/severe steatosis. In contrast, hepatic copper content did not impact on moderate/severe steatosis (OR: 1.000, CI 95%: 1.000-1.001; p=0.297). CONCLUSIONS Steatosis is common in WD and the PNPLA3 G allele contributes to its pathogenesis. The role of hepatic copper concentration and ATP7B mutations in steatosis development deserve further investigations.
Collapse
Affiliation(s)
- Albert Friedrich Stättermayer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Stefan Traussnigg
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Hans-Peter Dienes
- Institute for Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Elmar Aigner
- Department of Internal Medicine I, Paracelsus Private Medical University, Salzburg, Austria
| | - Rudolf Stauber
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Karoline Lackner
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Harald Hofer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Judith Stift
- Institute for Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Friedrich Wrba
- Institute for Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | | | - Christian Datz
- Department of Internal Medicine, KH Oberndorf, Oberndorf, Austria
| | - Michael Strasser
- Department of Internal Medicine I, Paracelsus Private Medical University, Salzburg, Austria
| | - Andreas Maieron
- Department of Internal Medicine IV, KH der Elisabethinen, Linz, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Peter Ferenci
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
43
|
|
44
|
Chango A, Pogribny IP. Considering maternal dietary modulators for epigenetic regulation and programming of the fetal epigenome. Nutrients 2015; 7:2748-70. [PMID: 25875118 PMCID: PMC4425171 DOI: 10.3390/nu7042748] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/16/2015] [Accepted: 03/19/2015] [Indexed: 12/21/2022] Open
Abstract
Fetal life is characterized by a tremendous plasticity and ability to respond to various environmental and lifestyle factors, including maternal nutrition. Identification of the role of dietary factors that can modulate and reshape the cellular epigenome during development, including methyl group donors (e.g., folate, choline) and bioactive compounds (e.g., polyphenols) is of great importance; however, there is insufficient knowledge of a particular effect of each type of modulator and/or their combination on fetal life. To enhance the quality and safety of food products for proper fetal health and disease prevention in later life, a better understanding of the underlying mechanisms of dietary epigenetic modulators during the critical prenatal period is necessary. This review focuses on the influence of maternal dietary components on DNA methylation, histone modification, and microRNAs, and summarizes current knowledge of the effect and importance of dietary components on epigenetic mechanisms that control the proper expression of genetic information. Evidence reveals that some components in the maternal diet can directly or indirectly affect epigenetic mechanisms. Understanding the underlying mechanisms of how early-life nutritional environment affects the epigenome during development is of great importance for the successful prevention of adult chronic diseases through optimal maternal nutrition.
Collapse
Affiliation(s)
- Abalo Chango
- Polytechnic Institute LaSalle Beauvais, Department of Nutrition and Health Sciences, EGEAL UP:2012.10.101, F-60026 Beauvais Cedex, France.
| | - Igor P Pogribny
- Division of Biochemical Toxicology, Food and Drug Administration National Center for Toxicological Research, Jefferson, AR 72079, USA.
| |
Collapse
|
45
|
O'Neill RJ, Vrana PB, Rosenfeld CS. Maternal methyl supplemented diets and effects on offspring health. Front Genet 2014; 5:289. [PMID: 25206362 PMCID: PMC4143751 DOI: 10.3389/fgene.2014.00289] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/05/2014] [Indexed: 12/21/2022] Open
Abstract
Women seeking to become pregnant and pregnant women are currently advised to consume high amounts of folic acid and other methyl donors to prevent neural tube defects in their offspring. These diets can alter methylation patterns of several biomolecules, including nucleic acids, and histone proteins. Limited animal model data suggests that developmental exposure to these maternal methyl supplemented (MS) diets leads to beneficial epimutations. However, other rodent and humans studies have yielded opposing findings with such diets leading to promiscuous epimutations that are likely associated with negative health outcomes. Conflict exists to whether these maternal diets are preventative or exacerbate the risk for Autism Spectrum Disorders (ASD) in children. This review will discuss the findings to date on the potential beneficial and aversive effects of maternal MS diets. We will also consider how other factors might influence the effects of MS diets. Current data suggest that there is cause for concern as maternal MS diets may lead to epimutations that underpin various diseases, including neurobehavioral disorders. Further studies are needed to explore the comprehensive effects maternal MS diets have on the offspring epigenome and subsequent overall health.
Collapse
Affiliation(s)
- Rachel J O'Neill
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA ; Institute for Systems Genomics, University of Connecticut Storrs, CT, USA
| | - Paul B Vrana
- Peromyscus Genetic Stock Center, University of South Carolina Columbia, SC, USA ; Department of Biological Sciences, University of South Carolina Columbia, SC, USA
| | - Cheryl S Rosenfeld
- Department of Biomedical Sciences, Bond Life Sciences Center, University of Missouri Columbia, MO, USA ; Bond Life Sciences Center, University of Missouri Columbia, MO, USA ; Genetics Area Program Faculty Member, Bond Life Sciences Center, University of Missouri Columbia, MO, USA
| |
Collapse
|
46
|
Le A, Shibata NM, French SW, Kim K, Kharbanda KK, Islam MS, LaSalle JM, Halsted CH, Keen CL, Medici V. Characterization of timed changes in hepatic copper concentrations, methionine metabolism, gene expression, and global DNA methylation in the Jackson toxic milk mouse model of Wilson disease. Int J Mol Sci 2014; 15:8004-8023. [PMID: 24810691 PMCID: PMC4057715 DOI: 10.3390/ijms15058004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Wilson disease (WD) is characterized by hepatic copper accumulation with progressive liver damage to cirrhosis. This study aimed to characterize the toxic milk mouse from The Jackson Laboratory (Bar Harbor, ME, USA) (tx-j) mouse model of WD according to changes over time in hepatic copper concentrations, methionine metabolism, global DNA methylation, and gene expression from gestational day 17 (fetal) to adulthood (28 weeks). METHODS Included liver histology and relevant biochemical analyses including hepatic copper quantification, S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) liver levels, qPCR for transcript levels of genes relevant to methionine metabolism and liver damage, and DNA dot blot for global DNA methylation. RESULTS Hepatic copper was lower in tx-j fetuses but higher in weanling (three weeks) and adult tx-j mice compared to controls. S-adenosylhomocysteinase transcript levels were significantly lower at all time points, except at three weeks, correlating negatively with copper levels and with consequent changes in the SAM:SAH methylation ratio and global DNA methylation. CONCLUSION Compared to controls, methionine metabolism including S-adenosylhomocysteinase gene expression is persistently different in the tx-j mice with consequent alterations in global DNA methylation in more advanced stages of liver disease. The inhibitory effect of copper accumulation on S-adenosylhomocysteinase expression is associated with progressively abnormal methionine metabolism and decreased methylation capacity and DNA global methylation.
Collapse
Affiliation(s)
- Anh Le
- Department of Nutrition, University of California Davis, 3135 Meyer Hall, One Shields Avenue, Davis, CA 95616, USA.
| | - Noreene M Shibata
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA 95817, USA.
| | - Samuel W French
- Department of Pathology, UCLA/Harbor Medical Center, 1000 West Carson Street, Torrance, CA 90502, USA.
| | - Kyoungmi Kim
- Department of Public Health Sciences, Division of Biostatistics, University of California Davis, One Shields Avenue, Med-Sci 1C, Davis, CA 95616, USA.
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, VA Medical Center R-151, 4101 Woolworth Avenue, Omaha, NE 68105, USA.
| | - Mohammad S Islam
- Department of Medical Microbiology and Immunology, University of California Davis, One Shields Avenue, Tupper Hall, Davis, CA 95616, USA.
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology Genome Center, and MIND Institute, University of California Davis, One Shields Avenue, Tupper Hall, Davis, CA 95616, USA.
| | - Charles H Halsted
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA 95817, USA.
| | - Carl L Keen
- Department of Nutrition, University of California Davis, 3135 Meyer Hall, One Shields Avenue, Davis, CA 95616, USA.
| | - Valentina Medici
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA 95817, USA.
| |
Collapse
|
47
|
Lutsenko S. Modifying factors and phenotypic diversity in Wilson's disease. Ann N Y Acad Sci 2014; 1315:56-63. [PMID: 24702697 DOI: 10.1111/nyas.12420] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Wilson's disease (WD) is a human disorder of copper homeostasis caused by mutations in the copper-transporting ATPase ATP7B. WD is characterized by copper accumulation, predominantly in the liver and brain, hepatic pathology, and wide differences between patients in the age of onset and the spectrum of symptoms. Several factors contribute to the phenotypic variability of WD. The WD-causing mutations produce a wide range of changes in stability, activity, intracellular localization, and trafficking of ATP7B; the nonpathogenic genetic polymorphisms may contribute to the phenotype. In Atp7b(-/-) mice, a mouse model of WD, an abnormal intracellular distribution of copper in the liver triggers distinct changes in the transcriptome; these mRNA profiles might be used to more specifically define disease progression. The major effect of accumulating copper on lipid metabolism and especially cholesterol homeostasis in mice and humans suggests the importance of fat and cholesterol metabolism as modifying factors in WD.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|