1
|
Lin Z, Qi D, Zhang Y. Effects of the LINC00641/miR-323a-3p/EIF4G2 axis on behaviors and brain monoamine neurotransmitters in chronic unpredictable mild stress mice. Cell Biol Toxicol 2025; 41:76. [PMID: 40293545 PMCID: PMC12037654 DOI: 10.1007/s10565-025-10015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/25/2025] [Indexed: 04/30/2025]
Abstract
OBJECTIVE This paper aimed to probe the role of the LINC00641/miR-323a-3p/EIF4G2 axis in regulating behavioral and brain monoamine neurotransmitter levels in a mouse model of depression induced by chronic unpredictable mild stress (CUMS). METHODS A CUMS-induced depression model was established in mice. A series of behavioral tests, comprising the sucrose preference, tail suspension, as well as forced swimming tests, were conducted. Levels of LINC00641, miR-323a-3p, and EIF4G2 in hippocampal tissues were measured. Biochemical indices, including 5-HT, NE, and DA, were analyzed. Hippocampal neuron structure and apoptosis were evaluated. The targeting relationship among LINC00641, miR-323a-3p, and EIF4G2 was validated experimentally. RESULTS CUMS mice exhibited reduced sucrose preference, prolonged immobilization time in behavioral tests, decreased 5-HT, NE, and DA levels, and increased hippocampal neuron apoptosis. Overexpression of LINC00641 or knockdown of miR-323a-3p significantly alleviated depression-like behaviors and restored monoamine neurotransmitter levels. LINC00641 regulated EIF4G2 expression by targeting miR-323a-3p, while miR-323a-3p and EIF4G2 also modulated depression through LINC00641. CONCLUSION Upregulation of LINC00641 improves depression-like behaviors and enhances monoamine neurotransmission in CUMS mice via the miR-323a-3p/EIF4G2 axis, underscoring its potent as a therapeutic target for depression.
Collapse
Affiliation(s)
- Ziqiao Lin
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Beijing, 100050, China.
| | - Dong Qi
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Beijing, 100050, China
| | - Yongbo Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Beijing, 100050, China
| |
Collapse
|
2
|
You Q, Yu J, Pan R, Feng J, Guo H, Liu B. Decoding the regulatory roles of circular RNAs in cardiac fibrosis. Noncoding RNA Res 2025; 11:115-130. [PMID: 39759175 PMCID: PMC11697406 DOI: 10.1016/j.ncrna.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/04/2024] [Accepted: 11/28/2024] [Indexed: 01/07/2025] Open
Abstract
Cardiovascular diseases (CVDs) are the primary cause of death globally. The evolution of nearly all types of CVDs is characterized by a common theme: the emergence of cardiac fibrosis. The precise mechanisms that trigger cardiac fibrosis are still not completely understood. In recent years, a type of non-coding regulatory RNA molecule known as circular RNAs (circRNAs) has been reported. These molecules are produced during back splicing and possess significant biological capabilities, such as regulating microRNA activity, serving as protein scaffolds and recruiters, competing with mRNA, forming circR-loop structures to modulate transcription, and translating polypeptides. Furthermore, circRNAs exhibit a substantial abundance, notable stability, and specificity of tissues, cells, and time, endowing them with the potential as biomarkers, therapeutic targets, and therapeutic agents. CircRNAs have garnered growing interest in the field of CVDs. Recent investigations into the involvement of circRNAs in cardiac fibrosis have yielded encouraging findings. This study aims to provide a concise overview of the existing knowledge about the regulatory roles of circRNAs in cardiac fibrosis.
Collapse
Affiliation(s)
| | | | - Runfang Pan
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiaming Feng
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haidong Guo
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Baonian Liu
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
3
|
Fan Y, Pavani KC, Pascottini OB, Broeckx BJG, Smits K, Van Soom A, Peelman L. Tracing the dynamic changes in the lncRNA mediated competing endogenous RNA network during bovine preimplantation embryo development. J Dairy Sci 2025:S0022-0302(25)00152-3. [PMID: 40139367 DOI: 10.3168/jds.2024-25919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/13/2025] [Indexed: 03/29/2025]
Abstract
Long non-coding RNAs (lncRNAs) can regulate gene expression by "sponging" microRNAs (miRNAs), reducing their inhibitory effects on mRNAs. However, this mechanism has been minimally investigated in preimplantation embryo development. In this study, we revisited existing RNA-seq and small RNA-seq data to investigate the role of lncRNAs in in vitro produced bovine preimplantation embryos. Our findings revealed that while lncRNAs exhibit expression patterns similar to mRNAs, maternal lncRNAs degrade earlier than mRNAs during embryonic genome activation (EGA). Weighted gene co-expression network analysis identified 27 modules of mRNA and lncRNA, with enrichment analysis showing a significant negative correlation between the Polycomb repressive complex pathway and blastocyst formation (R2 = -0.98, P-adj = 2e-12). Additionally, bioinformatics analysis was used to predict and construct lncRNA-miRNA-mRNA networks, highlighting that lncRNAs bind more to miRNAs compared with mRNAs (P < 0.001). Moreover, lncRNA-induced lncRNA-miRNA-mRNA axes participated in mRNA degradation and biogenesis around the EGA stage. These interactions became stronger after EGA, especially after the 16-cell stage. Overall, our study provides new insights into lncRNA-mediated regulatory networks during bovine preimplantation development.
Collapse
Affiliation(s)
- Yuan Fan
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Krishna Chaitanya Pavani
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Osvaldo Bogado Pascottini
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Bart J G Broeckx
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Katrien Smits
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Luc Peelman
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium.
| |
Collapse
|
4
|
Wang J, Guan Z, Li W, Gong Y, Wang H, Zhou T, Liu J. The role of H3K27 acetylation in oxygen-glucose deprivation-induced spinal cord injury and potential for neuroprotective therapies. Brain Res Bull 2025; 220:111152. [PMID: 39643249 DOI: 10.1016/j.brainresbull.2024.111152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVE Spinal cord injury (SCI) is a debilitating condition that often results in paralysis and lifelong medical challenges. Research has shown that epigenetic modifications, particularly histone acetylation, play a role in neuroprotection following hypoxic-ischemic events in SCI. The objective of this study was to explore the effects of histone H3K27 acetylation, along with its underlying mechanisms, on the tolerance to hypoxia and ischemia in SCI. METHODS This study employed an organotypic spinal cord slice culture model subjected to oxygen-glucose deprivation (OGD). We assessed cell apoptosis and changes in cellular type patterns under these conditions. Following hypoxia and ischemia, we analyzed the expression and distribution of H3K27ac across various nerve cell types. To identify key downstream genes, we integrated ChIP-seq and RNA-seq analyses, investigating molecular mechanisms driving the response to OGD in this model. RESULTS OGD stimulation increased cell apoptosis and induced time-dependent changes in the expression patterns of neurons, astrocytes, microglia, and oligodendrocytes in organotypic spinal cord slices, accompanied by a significant reduction in H3K27ac levels. Integrated ChIP-seq and RNA-seq analyses revealed that H3K27ac downregulation under hypoxic and ischemic conditions contributes to spinal cord damage by promoting neuroinflammation and disrupting gene regulation. Furthermore, we identified key downstream targets, including Apoc1, Spp1, Aff1, Brd4, KCNN3, and Rgma, which may represent promising therapeutic targets for SCI. CONCLUSION Our data underscore the pivotal role of H3K27ac in the organotypic spinal cord slice culture model following OGD exposure, offering promising avenues for neuroprotective therapies via epigenetic-immune regulation.
Collapse
Affiliation(s)
- Jing Wang
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Zheng Guan
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Weina Li
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Yu Gong
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Heying Wang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Ting Zhou
- Department of Laboratory Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Jingjie Liu
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
5
|
Lucchini S, Constantinou M, Marino S. Unravelling the mosaic: Epigenetic diversity in glioblastoma. Mol Oncol 2024; 18:2871-2889. [PMID: 39148319 PMCID: PMC11619803 DOI: 10.1002/1878-0261.13706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024] Open
Abstract
Glioblastoma is the most common primary malignant brain tumour. Despite decades of intensive research in the disease, its prognosis remains poor, with an average survival of only 14 months after diagnosis. The remarkable level of intra- and interpatient heterogeneity is certainly contributing to the lack of progress in tackling this tumour. Epigenetic dysregulation plays an important role in glioblastoma biology and significantly contributes to intratumour heterogeneity. However, it is becoming increasingly clear that it also contributes to intertumour heterogeneity, which historically had mainly been linked to diverse genetic events occurring in different patients. In this review, we explore how DNA methylation, chromatin remodelling, microRNA (miRNA) dysregulation, and long noncoding RNA (lncRNA) alterations contribute to intertumour heterogeneity in glioblastoma, including its implications for advanced tumour stratification, which is the essential first step for developing more effective patient-specific therapeutic approaches.
Collapse
Affiliation(s)
- Sara Lucchini
- Brain Tumour Research Centre, Blizard Institute, Faculty of Medicine and DentistryQueen Mary University of LondonUK
| | - Myrianni Constantinou
- Brain Tumour Research Centre, Blizard Institute, Faculty of Medicine and DentistryQueen Mary University of LondonUK
| | - Silvia Marino
- Brain Tumour Research Centre, Blizard Institute, Faculty of Medicine and DentistryQueen Mary University of LondonUK
- Barts Brain Tumour Centre, Faculty of Medicine and DentistryQueen Mary University of LondonUK
- Barts Health NHS TrustLondonUK
| |
Collapse
|
6
|
Zhao Z, Yang Y, Iqbal A, Wu Q, Zhou L. Biological Insights and Recent Advances in Plant Long Non-Coding RNA. Int J Mol Sci 2024; 25:11964. [PMID: 39596034 PMCID: PMC11593582 DOI: 10.3390/ijms252211964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Long non-coding RNA (lncRNA) refers to an RNA molecule longer than 200 nucleotides (nt) that plays a significant role in regulating essential molecular and biological processes. It is commonly found in animals, plants, and viruses, and is characterized by features such as epigenetic markers, developmental stage-specific expression, and tissue-specific expression. Research has shown that lncRNA participates in anatomical processes like plant progression, while also playing a crucial role in plant disease resistance and adaptation mechanisms. In this review, we provide a concise overview of the formation mechanism, structural characteristics, and databases related to lncRNA in recent years. We primarily discuss the biological roles of lncRNA in plant progression as well as its involvement in response to biotic and abiotic stresses. Additionally, we examine the current challenges associated with lncRNA and explore its potential application in crop production and breeding. Studying plant lncRNAs is highly significant for multiple reasons: It reveals the regulatory mechanisms of plant growth and development, promotes agricultural production and food security, and drives research in plant genomics and epigenetics. Additionally, it facilitates ecological protection and biodiversity conservation.
Collapse
Affiliation(s)
- Zhihao Zhao
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Z.); (Y.Y.); (Q.W.)
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China;
- Industrial Development Department, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yaodong Yang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Z.); (Y.Y.); (Q.W.)
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China;
| | - Amjad Iqbal
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China;
- Department of Food Science & Technology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Qiufei Wu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Z.); (Y.Y.); (Q.W.)
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China;
| | - Lixia Zhou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Z.); (Y.Y.); (Q.W.)
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China;
| |
Collapse
|
7
|
Zhu L, Guo M, Li K, Guo C, He K. The Association and Prognostic Implications of Long Non-Coding RNAs in Major Psychiatric Disorders, Alzheimer's Diseases and Parkinson's Diseases: A Systematic Review. Int J Mol Sci 2024; 25:10995. [PMID: 39456775 PMCID: PMC11507000 DOI: 10.3390/ijms252010995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The prevalence of psychiatric disorders and neurodegenerative diseases is steadily increasing, placing a significant burden on both society and individuals. Given the intricate and multifaceted nature of these diseases, the precise underlying mechanisms remain elusive. Consequently, there is an increasing imperative to investigate the mechanisms, identify specific target sites for effective treatment, and provide for accurate diagnosis of patients with these diseases. Numerous studies have revealed significant alterations in the expression of long non-coding RNAs (lncRNAs) in psychiatric disorders and neurodegenerative diseases, suggesting their potential to increase the probability of these diseases. Moreover, these findings propose that lncRNAs could be used as highly valuable biomarkers in diagnosing and treating these diseases, thereby offering novel insights for future clinical interventions. The review presents a comprehensive summary of the origin, biological functions, and action mechanisms of lncRNAs, while exploring their implications in the pathogenesis of psychiatric disorders and neurodegenerative diseases and their potential utility as biomarkers.
Collapse
Affiliation(s)
- Lin Zhu
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao 028000, China; (L.Z.); (K.L.); (C.G.)
| | - Meng Guo
- Finance Office, Inner Mongolia Minzu University, Tongliao 028000, China;
| | - Ke Li
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao 028000, China; (L.Z.); (K.L.); (C.G.)
| | - Chuang Guo
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao 028000, China; (L.Z.); (K.L.); (C.G.)
| | - Kuanjun He
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao 028000, China; (L.Z.); (K.L.); (C.G.)
| |
Collapse
|
8
|
Mathias C, Rodrigues AC, Baal SCS, de Azevedo ALK, Kozak VN, Alves LF, de Oliveira JC, Guil S, Gradia DF. The landscape of lncRNAs in cell granules: Insights into their significance in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1870. [PMID: 39268566 DOI: 10.1002/wrna.1870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
Cellular compartmentalization, achieved through membrane-based compartments, is a fundamental aspect of cell biology that contributes to the evolutionary success of cells. While organelles have traditionally been the focus of research, membrane-less organelles (MLOs) are emerging as critical players, exhibiting distinct morphological features and unique molecular compositions. Recent research highlights the pivotal role of long noncoding RNAs (lncRNAs) in MLOs and their involvement in various cellular processes across different organisms. In the context of cancer, dysregulation of MLO formation, influenced by altered lncRNA expression, impacts chromatin organization, oncogenic transcription, signaling pathways, and telomere lengthening. This review synthesizes the current understanding of lncRNA composition within MLOs, delineating their functions and exploring how their dysregulation contributes to human cancers. Environmental challenges in tumorigenesis, such as nutrient deprivation and hypoxia, induce stress granules, promoting cancer cell survival and progression. Advancements in biochemical techniques, particularly single RNA imaging methods, offer valuable tools for studying RNA functions within live cells. However, detecting low-abundance lncRNAs remains challenging due to their limited expression levels. The correlation between lncRNA expression and pathological conditions, particularly cancer, should be explored, emphasizing the importance of single-cell studies for precise biomarker identification and the development of personalized therapeutic strategies. This article is categorized under: RNA Export and Localization > RNA Localization RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Carolina Mathias
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | - Ana Carolina Rodrigues
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | - Suelen Cristina Soares Baal
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | | | - Vanessa Nascimento Kozak
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | | | | | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
| | - Daniela Fiori Gradia
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| |
Collapse
|
9
|
Rajabi D, Khanmohammadi S, Rezaei N. The role of long noncoding RNAs in amyotrophic lateral sclerosis. Rev Neurosci 2024; 35:533-547. [PMID: 38452377 DOI: 10.1515/revneuro-2023-0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/18/2024] [Indexed: 03/09/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease with a poor prognosis leading to death. The diagnosis and treatment of ALS are inherently challenging due to its complex pathomechanism. Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides involved in different cellular processes, incisively gene expression. In recent years, more studies have been conducted on lncRNA classes and interference in different disease pathologies, showing their promising contribution to diagnosing and treating neurodegenerative diseases. In this review, we discussed the role of lncRNAs like NEAT1 and C9orf72-as in ALS pathogenesis mechanisms caused by mutations in different genes, including TAR DNA-binding protein-43 (TDP-43), fused in sarcoma (FUS), superoxide dismutase type 1 (SOD1). NEAT1 is a well-established lncRNA in ALS pathogenesis; hence, we elaborate on its involvement in forming paraspeckles, stress response, inflammatory response, and apoptosis. Furthermore, antisense lncRNAs (as-lncRNAs), a key group of transcripts from the opposite strand of genes, including ZEB1-AS1 and ATXN2-AS, are discussed as newly identified components in the pathology of ALS. Ultimately, we review the current standing of using lncRNAs as biomarkers and therapeutic agents and the future vision of further studies on lncRNA applications.
Collapse
Affiliation(s)
- Darya Rajabi
- School of Medicine, Tehran University of Medical Sciences, Felestin St., Keshavarz Blvd., Tehran, 1416634793, Iran
| | - Shaghayegh Khanmohammadi
- School of Medicine, Tehran University of Medical Sciences, Felestin St., Keshavarz Blvd., Tehran, 1416634793, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, No 63, Gharib Ave, Keshavarz Blv, Tehran, 1419733151, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center, No 63, Gharib Ave, Keshavarz Blv, Tehran, 1419733151, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, No 63, Gharib Ave, Keshavarz Blv, Tehran, 1419733151, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center, No 63, Gharib Ave, Keshavarz Blv, Tehran, 1419733151, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Felestin St., Keshavarz Blvd., Tehran, 1416634793, Iran
| |
Collapse
|
10
|
Guo JK, Blanco MR, Walkup WG, Bonesteele G, Urbinati CR, Banerjee AK, Chow A, Ettlin O, Strehle M, Peyda P, Amaya E, Trinh V, Guttman M. Denaturing purifications demonstrate that PRC2 and other widely reported chromatin proteins do not appear to bind directly to RNA in vivo. Mol Cell 2024; 84:1271-1289.e12. [PMID: 38387462 PMCID: PMC10997485 DOI: 10.1016/j.molcel.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/01/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
Polycomb repressive complex 2 (PRC2) is reported to bind to many RNAs and has become a central player in reports of how long non-coding RNAs (lncRNAs) regulate gene expression. Yet, there is a growing discrepancy between the biochemical evidence supporting specific lncRNA-PRC2 interactions and functional evidence demonstrating that PRC2 is often dispensable for lncRNA function. Here, we revisit the evidence supporting RNA binding by PRC2 and show that many reported interactions may not occur in vivo. Using denaturing purification of in vivo crosslinked RNA-protein complexes in human and mouse cell lines, we observe a loss of detectable RNA binding to PRC2 and chromatin-associated proteins previously reported to bind RNA (CTCF, YY1, and others), despite accurately mapping bona fide RNA-binding sites across others (SPEN, TET2, and others). Taken together, these results argue for a critical re-evaluation of the broad role of RNA binding to orchestrate various chromatin regulatory mechanisms.
Collapse
Affiliation(s)
- Jimmy K Guo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Mario R Blanco
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Ward G Walkup
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Grant Bonesteele
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Carl R Urbinati
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Biology, Loyola Marymount University, Los Angeles, CA 90045, USA
| | - Abhik K Banerjee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Amy Chow
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Olivia Ettlin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mackenzie Strehle
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Parham Peyda
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Enrique Amaya
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Vickie Trinh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
11
|
Magar ND, Shah P, Barbadikar KM, Bosamia TC, Madhav MS, Mangrauthia SK, Pandey MK, Sharma S, Shanker AK, Neeraja CN, Sundaram RM. Long non-coding RNA-mediated epigenetic response for abiotic stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108165. [PMID: 38064899 DOI: 10.1016/j.plaphy.2023.108165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 02/15/2024]
Abstract
Plants perceive environmental fluctuations as stress and confront several stresses throughout their life cycle individually or in combination. Plants have evolved their sensing and signaling mechanisms to perceive and respond to a variety of stresses. Epigenetic regulation plays a critical role in the regulation of genes, spatiotemporal expression of genes under stress conditions and imparts a stress memory to encounter future stress responses. It is quintessential to integrate our understanding of genetics and epigenetics to maintain plant fitness, achieve desired genetic gains with no trade-offs, and durable long-term stress tolerance. The long non-coding RNA >200 nts having no coding potential (or very low) play several roles in epigenetic memory, contributing to the regulation of gene expression and the maintenance of cellular identity which include chromatin remodeling, imprinting (dosage compensation), stable silencing, facilitating nuclear organization, regulation of enhancer-promoter interactions, response to environmental signals and epigenetic switching. The lncRNAs are involved in a myriad of stress responses by activation or repression of target genes and hence are potential candidates for deploying in climate-resilient breeding programs. This review puts forward the significant roles of long non-coding RNA as an epigenetic response during abiotic stresses in plants and the prospects of deploying lncRNAs for designing climate-resilient plants.
Collapse
Affiliation(s)
- Nakul D Magar
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India; Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250004, India
| | - Priya Shah
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, 502324, India
| | - Kalyani M Barbadikar
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India.
| | - Tejas C Bosamia
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute, Gujarat, 364002, India
| | - M Sheshu Madhav
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | | | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, 502324, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250004, India
| | - Arun K Shanker
- Plant Physiology, ICAR-Central Research Institute for Dryland Agriculture, Hyderabad, 500059, India
| | - C N Neeraja
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - R M Sundaram
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| |
Collapse
|
12
|
Yeqing C, Jun L, Weinan W, Chunguo F, Guozhen Y, Jingjing S, Jinyi L, Changquan W. Rose long noncoding RNA lncWD83 promotes flowering by modulating ubiquitination of the floral repressor RcMYC2L. PLANT PHYSIOLOGY 2023; 193:2573-2591. [PMID: 37723122 PMCID: PMC10663112 DOI: 10.1093/plphys/kiad502] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023]
Abstract
Long noncoding RNAs (lncRNAs) play important roles in various signaling pathways in vascular plants. However, the crosstalk between lncRNAs and E3 ubiquitin ligases has been barely reported. In this study, we demonstrate that the lncRNA lncWD83 from rose (Rosa chinensis) 'Old blush' activates flowering by modulating the ubiquitination of the floral repressor MYC2 LIKE (RcMYC2L). Flowering was substantially delayed in rose by virus-induced gene silencing of lncWD83. In an in vitro pull-down assay, lncWD83 associated with PLANT U-BOX PROTEIN 11 (PUB11), a U-box-containing E3 ubiquitin ligase. Seedlings with knocked down RcPUB11 transcripts phenocopied the later-flowering phenotype of lncWD83-silenced seedlings. RcMYC2L physically interacted with RcPUB11 and was ubiquitinated in an RcPUB11-dependent manner in vitro. Accordingly, silencing RcMYC2L fully reversed the later-flowering phenotype resulting from RcPUB11 knockdown. Furthermore, RcMYC2L bound to G-box-related motifs in the FLOWERING LOCUS T (RcFT) promoter and repressed its transcription. However, RcPUB11 alleviated this repression of RcFT expression via proteasomal degradation of RcMYC2L, and lncWD83 enhanced this degradation by associating with RcPUB11. Therefore, lncWD83 promotes flowering by modulating the ubiquitination of the floral repressor RcMYC2L in rose plants. These findings reveal a distinct regulatory mechanism for an lncRNA in facilitating ubiquitin-mediated proteolysis to regulate rose flowering.
Collapse
Affiliation(s)
- Chen Yeqing
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Jun
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wang Weinan
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fan Chunguo
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan Guozhen
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sun Jingjing
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Liu Jinyi
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wang Changquan
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
13
|
Eldash S, Sanad EF, Nada D, Hamdy NM. The Intergenic Type LncRNA (LINC RNA) Faces in Cancer with In Silico Scope and a Directed Lens to LINC00511: A Step toward ncRNA Precision. Noncoding RNA 2023; 9:58. [PMID: 37888204 PMCID: PMC10610215 DOI: 10.3390/ncrna9050058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/09/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Long intergenic non-coding RNA, is one type of lncRNA, exerting various cellular activities, as does ncRNA, including the regulation of gene expression and chromatin remodeling. The abnormal expression of lincRNAs can induce or suppress carcinogenesis. MAIN BODY LincRNAs can regulate cancer progression through different mechanisms and are considered as potential drug targets. Genetic variations such as single nucleotide polymorphisms (SNPs) in lincRNAs may affect gene expression and messenger ribonucleic acid (mRNA) stability. SNPs in lincRNAs have been found to be associated with different types of cancer, as well. Specifically, LINC00511 has been known to promote the progression of multiple malignancies such as breast cancer, colorectal cancer, lung cancer, hepatocellular carcinoma, and others, making it a promising cancer prognostic molecular marker. CONCLUSION LincRNAs have been proved to be associated with different cancer types through various pathways. Herein, we performed a comprehensive literature and in silico databases search listing lncRNAs, lincRNAs including LINC00511, lncRNAs' SNPs, as well as LINC00511 SNPs in different cancer types, focusing on their role in various cancer types and mechanism(s) of action.
Collapse
Affiliation(s)
- Shorouk Eldash
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt (BUE), El Sherouk, Cairo 11837, Egypt; (S.E.)
| | - Eman F. Sanad
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Dina Nada
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt (BUE), El Sherouk, Cairo 11837, Egypt; (S.E.)
| | - Nadia M. Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| |
Collapse
|
14
|
Wang X, Fan H, Wang B, Yuan F. Research progress on the roles of lncRNAs in plant development and stress responses. FRONTIERS IN PLANT SCIENCE 2023; 14:1138901. [PMID: 36959944 PMCID: PMC10028117 DOI: 10.3389/fpls.2023.1138901] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Long non-coding RNAs (lncRNAs) are RNAs of more than 200 nucleotides in length that are not (or very rarely) translated into proteins. In eukaryotes, lncRNAs regulate gene expression at the transcriptional, post-transcriptional, and epigenetic levels. lncRNAs are categorized according to their genomic position and molecular mechanism. This review summarized the characteristics and mechanisms of plant lncRNAs involved in vegetative growth, reproduction, and stress responses. Our discussion and model provide a theoretical basis for further studies of lncRNAs in plant breeding.
Collapse
Affiliation(s)
| | | | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, China
| |
Collapse
|
15
|
Xie H, Guo Y, Xu Z, Wang Q, Wang T, Gu Y, Li D, Liu Y, Ma W, Liu P, Zhao Q, Lü J, Liu J, Yu Z. Dual Function of CCAT2 in Regulating Luminal Subtype of Breast Cancer Depending on the Subcellular Distribution. Cancers (Basel) 2023; 15:cancers15020538. [PMID: 36672487 PMCID: PMC9856762 DOI: 10.3390/cancers15020538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Breast cancer is the most common cancer in women around the world. Emerging evidence has indicated the important roles that non-coding RNAs play in regulating tumor development and progression in breast cancer. Herein, we found a dual function of long non-coding RNA (LncRNA) CCAT2 in the luminal subtype of breast cancer, depending on its subcellular distribution. CCAT2 showed an overall downregulation in the tumor tissues from luminal breast cancer patients. Transient overexpression of CCAT2 in the luminal subtype of breast cancer cell MCF-7 or T47D significantly suppressed cell proliferation in vitro and inhibited tumor growth in vivo. Gene expression analysis of cancer stem cell markers including OCT4, NANOG, h-TERT, SOX2 and KLF4; flow cytometry analysis of breast cancer stem cell population, and mammosphere formation assay demonstrated inhibition of cancer cell stemness with transient transfection of CCAT2 in which exogenous CCAT2 mainly distributed in the cytoplasm and regulated miR-221-p27 signaling via RNA sequence interaction. However, overexpression of CCAT2 in MCF-7 cells through pMX retroviral nuclear expression vector accumulated CCAT2 in the nucleus, leading to upregulation of OCT4-PG1, a pseudogene of stem gene OCT4, thereby promoting the cancer cell stemness. In conclusion, the current study, for the first time, revealed a dual function of lncRNA CCAT2 as a tumor suppressor or oncogene depending upon its subcellular distribution. It also demonstrated the regulatory mechanism of cytoplasmic CCAT2 in suppressing tumorigenesis in the luminal subtype of breast cancer.
Collapse
Affiliation(s)
- Heying Xie
- Shanghai East Hospital, Jinzhou Medical University, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yuefan Guo
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhen Xu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qiong Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Tao Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yi Gu
- Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Danni Li
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yu Liu
- Shanghai East Hospital, Jinzhou Medical University, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Wenjing Ma
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Pengfei Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qian Zhao
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jinhui Lü
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Junjun Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zuoren Yu
- Shanghai East Hospital, Jinzhou Medical University, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
16
|
Xu X, Liang Y, Gareev I, Liang Y, Liu R, Wang N, Yang G. LncRNA as potential biomarker and therapeutic target in glioma. Mol Biol Rep 2023; 50:841-851. [PMID: 36331751 DOI: 10.1007/s11033-022-08056-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 03/22/2022] [Indexed: 11/06/2022]
Abstract
Glioma is the most frequent type of malignant tumor in the central nervous system, accounting for about 80% of primary malignant brain tumors, usually with a poor prognosis. A number of studies have been conducted on the molecular abnormalities in glioma to further understand its pathogenesis, and it has been found that lncRNAs (long non-coding RNA) play a key role in angiogenesis, tumor growth, infiltration and metastasis of glioma. Since specific lncRNAs have an aberrant expression in brain tissue, cerebrospinal fluid as well as peripheral circulation of glioma patients, they are considered to be potential biomarkers. This review focuses on the biological characteristics of lncRNA and its value as a biomarker for glioma diagnosis and prognosis. Moreover, in view of the role of lncRNAs in glioma proliferation and chemoradiotherapy resistance, we discussed the feasibility for lncRNAs as therapeutic targets. Finally, the persisting deficiencies and future prospects of using lncRNAs as clinical biomarkers and therapeutic targets were concluded.
Collapse
Affiliation(s)
- Xun Xu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, 150001, Heilongjiang, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Yuan Liang
- Department of Neurosurgery, Xuzhou Third People's Hospital, Xuzhou, China
| | - Ilgiz Gareev
- Bashkir State Medical University, Ufa, Russia, 450008
| | - Yanchao Liang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, 150001, Heilongjiang, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Rui Liu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, 150001, Heilongjiang, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Ning Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, 150001, Heilongjiang, China.
- Institute of Brain Science, Harbin Medical University, Harbin, China.
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, 150001, Heilongjiang, China.
- Institute of Brain Science, Harbin Medical University, Harbin, China.
| |
Collapse
|
17
|
Cheng Z, Qin W, Li S, Shao S, Liu B. Emerging roles of circular RNAs in cancer therapy-induced cardiotoxicity. Front Cardiovasc Med 2023; 10:1152436. [PMID: 37020518 PMCID: PMC10067915 DOI: 10.3389/fcvm.2023.1152436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Cancer therapy-induced cardiotoxicity (CTIC) is an important cause of death in cancer survivors which often results in the withdrawal or discontinuation of drugs. The underlying mechanisms of CTIC remain unclear. Circular RNAs (circRNAs) are a class of non-coding regulatory RNA molecules which have emerged in recent years. They are generated by back splicing and have powerful biological functions, including transcription and splicing, isolating or building macromolecular scaffolds to interfere with microRNA activity and signaling pathways, and acting as templates for translation. Moreover, circRNAs demonstrate high abundance and significant stability. CircRNAs can be used as novel biomarkers because they often function in a cell-type and tissue-specific manner. CircRNAs have attracted increasing attention in cardiovascular disease research, and recent studies exploring the role of circRNAs in CTIC have had promising results. This review will summarize the current understanding of circRNAs' biogenesis, regulation and function. Their clinical potential as biomarkers, therapeutic agents and drug targets will also be explored.
Collapse
Affiliation(s)
- Ziji Cheng
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wanting Qin
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaoling Li
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuijin Shao
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baonian Liu
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Correspondence: Baonian Liu
| |
Collapse
|
18
|
Evolving understandings for the roles of non-coding RNAs in autoimmunity and autoimmune disease. J Autoimmun 2022:102948. [DOI: 10.1016/j.jaut.2022.102948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
|
19
|
Ding X, Yu L, Chen L, Li Y, Zhang J, Sheng H, Ren Z, Li Y, Yu X, Jin S, Cao J. Recent Progress and Future Prospect of CRISPR/Cas-Derived Transcription Activation (CRISPRa) System in Plants. Cells 2022; 11:3045. [PMID: 36231007 PMCID: PMC9564188 DOI: 10.3390/cells11193045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/17/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Abstract
Genome editing technology has become one of the hottest research areas in recent years. Among diverse genome editing tools, the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated proteins system (CRISPR/Cas system) has exhibited the obvious advantages of specificity, simplicity, and flexibility over any previous genome editing system. In addition, the emergence of Cas9 mutants, such as dCas9 (dead Cas9), which lost its endonuclease activity but maintains DNA recognition activity with the guide RNA, provides powerful genetic manipulation tools. In particular, combining the dCas9 protein and transcriptional activator to achieve specific regulation of gene expression has made important contributions to biotechnology in medical research as well as agriculture. CRISPR/dCas9 activation (CRISPRa) can increase the transcription of endogenous genes. Overexpression of foreign genes by traditional transgenic technology in plant cells is the routine method to verify gene function by elevating genes transcription. One of the main limitations of the overexpression is the vector capacity constraint that makes it difficult to express multiple genes using the typical Ti plasmid vectors from Agrobacterium. The CRISPRa system can overcome these limitations of the traditional gene overexpression method and achieve multiple gene activation by simply designating several guide RNAs in one vector. This review summarizes the latest progress based on the development of CRISPRa systems, including SunTag, dCas9-VPR, dCas9-TV, scRNA, SAM, and CRISPR-Act and their applications in plants. Furthermore, limitations, challenges of current CRISPRa systems and future prospective applications are also discussed.
Collapse
Affiliation(s)
- Xiao Ding
- Institute of Cotton, Shanxi Agricultural University, Yuncheng 044000, China
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Yu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Luo Chen
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yujie Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinlun Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanyan Sheng
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhengwei Ren
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunlong Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohan Yu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinglin Cao
- Tobacco Research Institute of Hubei Province, Wuhan 430030, China
| |
Collapse
|
20
|
Yin X, Gao J, Liu Z, Han M, Ji X, Wang Z, Li Y, He D, Zhang F, Liu Q, Xin T. Mechanisms of long non-coding RNAs in biological phenotypes and ferroptosis of glioma. Front Oncol 2022; 12:941327. [PMID: 35912271 PMCID: PMC9330388 DOI: 10.3389/fonc.2022.941327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/24/2022] [Indexed: 12/15/2022] Open
Abstract
Glioma, one of the most common malignant tumors in the nervous system, is characterized by limited treatment, high mortality and poor prognosis. Numerous studies have shown that lncRNAs play an important role in the onset and progression of glioma by acting on various classical signaling pathways of tumors through signaling, trapping, guiding, scaffolding and other functions. LncRNAs contribute to the malignant progression of glioma via proliferation, apoptosis, epithelial-mesenchymal transformation, chemotherapy resistance, ferroptosis and other biological traits. In this paper, relevant lncRNA signaling pathways involved in glioma progression were systematically evaluated, with emphasis placed on the specific molecular mechanism of lncRNAs in the process of ferroptosis, in order to provide a theoretical basis for the application of lncRNAs in the anticancer treatment of glioma.
Collapse
Affiliation(s)
- Xianyong Yin
- Department of Neurosurgery, Shandong Medicine and Health Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jiajia Gao
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zihao Liu
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Min Han
- Department of Neurosurgery, Shandong Medicine and Health Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xiaoshuai Ji
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhihai Wang
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuming Li
- Department of Neurosurgery, Shandong Medicine and Health Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Dong He
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fenglin Zhang
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qian Liu
- Department of Histology and Embryology, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Tao Xin, ; Qian Liu,
| | - Tao Xin
- Department of Neurosurgery, Shandong Medicine and Health Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Neurosurgery, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Tao Xin, ; Qian Liu,
| |
Collapse
|
21
|
Abstract
X chromosome inactivation (XCI) is the process of silencing one of the X chromosomes in cells of the female mammal which ensures dosage compensation between the sexes. Although theoretically random in somatic tissues, the choice of which X chromosome is chosen to be inactivated can be biased in mice by genetic element(s) associated with the so-called X-controlling element (Xce). Although the Xce was first described and genetically localized nearly 40 y ago, its mode of action remains elusive. In the approach presented here, we identify a single long noncoding RNA (lncRNA) within the Xce locus, Lppnx, which may be the driving factor in the choice of which X chromosome will be inactivated in the developing female mouse embryo. Comparing weak and strong Xce alleles we show that Lppnx modulates the expression of Xist lncRNA, one of the key factors in XCI, by controlling the occupancy of pluripotency factors at Intron1 of Xist. This effect is counteracted by enhanced binding of Rex1 in DxPas34, another key element in XCI regulating the activity of Tsix lncRNA, the main antagonist of Xist, in the strong but not in the weak Xce allele. These results suggest that the different susceptibility for XCI observed in weak and strong Xce alleles results from differential transcription factor binding of Xist Intron 1 and DxPas34, and that Lppnx represents a decisive factor in explaining the action of the Xce.
Collapse
|
22
|
Varghese SS, Dhawan S. Polycomb Repressive Complexes: Shaping Pancreatic Beta-Cell Destiny in Development and Metabolic Disease. Front Cell Dev Biol 2022; 10:868592. [PMID: 35602600 PMCID: PMC9116887 DOI: 10.3389/fcell.2022.868592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic beta-cells secrete the hormone insulin, which is essential for the regulation of systemic glucose homeostasis. Insufficiency of insulin due to loss of functional beta-cells results in diabetes. Epigenetic mechanisms orchestrate the stage-specific transcriptional programs that guide the differentiation, functional maturation, growth, and adaptation of beta-cells in response to growth and metabolic signals throughout life. Primary among these mechanisms is regulation by the Polycomb Repressive Complexes (PRC) that direct gene-expression via histone modifications. PRC dependent histone modifications are pliable and provide a degree of epigenetic plasticity to cellular processes. Their modulation dictates the spatio-temporal control of gene-expression patterns underlying beta-cell homeostasis. Emerging evidence shows that dysregulation of PRC-dependent epigenetic control is also a hallmark of beta-cell failure in diabetes. This minireview focuses on the multifaceted contributions of PRC modules in the specification and maintenance of terminally differentiated beta-cell phenotype, as well as beta-cell growth and adaptation. We discuss the interaction of PRC regulation with different signaling pathways and mechanisms that control functional beta-cell mass. We also highlight recent advances in our understanding of the epigenetic regulation of beta-cell homeostasis through the lens of beta-cell pathologies, namely diabetes and insulinomas, and the translational relevance of these findings. Using high-resolution epigenetic profiling and epigenetic engineering, future work is likely to elucidate the PRC regulome in beta-cell adaptation versus failure in response to metabolic challenges and identify opportunities for therapeutic interventions.
Collapse
|
23
|
Mei X, Chen SY. Circular RNAs in cardiovascular diseases. Pharmacol Ther 2022; 232:107991. [PMID: 34592203 PMCID: PMC8930437 DOI: 10.1016/j.pharmthera.2021.107991] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/08/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
In eukaryotes, precursor mRNAs (pre-mRNAs) produce a unique class of biologically active molecules namely circular RNAs (circRNAs) with a covalently closed-loop structure via back-splicing. Because of this unconventional circular form, circRNAs exhibit much higher stability than linear RNAs due to the resistance to exonuclease degradation and thereby play exclusive cellular regulatory roles. Recent studies have shown that circRNAs are widely expressed in eukaryotes and display tissue- and disease-specific expression patterns, including in the cardiovascular system. Although numerous circRNAs are discovered by in silico methods, a limited number of circRNAs have been studied. This review intends to summarize the current understanding of the characteristics, biogenesis, and functions of circRNAs and delineate the practical approaches for circRNAs investigation. Moreover, we discuss the emerging roles of circRNAs in cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaohan Mei
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO, United States of America
| | - Shi-You Chen
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO, United States of America; Department of Medical Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, MO, United States of America.
| |
Collapse
|
24
|
Fontanini M, Cabiati M, Giacomarra M, Federico G, Del Ry S. Long non-Coding RNAs and Obesity: New Potential Pathogenic Biomarkers. Curr Pharm Des 2022; 28:1592-1605. [DOI: 10.2174/1381612828666220211153304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/17/2022] [Indexed: 11/22/2022]
Abstract
Background:
A portion of the human genome is characterized by long non-coding RNAs (lncRNAs), a class of non-coding RNA longer than 200 nucleotides. Recently, the development of new biomolecular methods, made it possible to delineate the involvement of lncRNAs in the regulation of different biological processes, both physiological and pathological, by acting within the cell with different regulatory mechanisms based on their specific target. To date, obesity is one of the most important health problems spread all over the world, including the child population: the search for new potential early biomarkers could open the doors to novel therapeutic strategies useful to fight the disease early in life and to reduce the risk of obesity-related co-morbidities.
Objective:
This review highlights the lncRNAs involved in obesity, in adipogenesis, and lipid metabolism, particularly in lipogenesis.
Conclusion:
LncRNAs involved in adipogenesis and lipogenesis, being at the cross-road of obesity, should be deeply analysed in this contest, allowing to understand possible causative actions in starting obesity and whether they might be helpful to treat obesity.
Collapse
Affiliation(s)
- Martina Fontanini
- CNR Institute of Clinical Physiology, Biochemistry and Molecular Biology laboratory, Via G. Moruzzi 1, 56124 Pisa Italy
| | - Manuela Cabiati
- CNR Institute of Clinical Physiology, Biochemistry and Molecular Biology laboratory, Via G. Moruzzi 1, 56124 Pisa Italy
| | - Manuel Giacomarra
- CNR Institute of Clinical Physiology, Biochemistry and Molecular Biology laboratory, Via G. Moruzzi 1, 56124 Pisa Italy
| | - Giovanni Federico
- Unit of Pediatric Endocrinology and Diabetes, Dep. Clinical and Experimental Medicine, University of Pisa, Via Roma n. 67 56126 Pisa, Italy
| | - Silvia Del Ry
- CNR Institute of Clinical Physiology, Biochemistry and Molecular Biology laboratory, Via G. Moruzzi 1, 56124 Pisa Italy
| |
Collapse
|
25
|
Correia CCM, Rodrigues LF, de Avila Pelozin BR, Oliveira EM, Fernandes T. Long Non-Coding RNAs in Cardiovascular Diseases: Potential Function as Biomarkers and Therapeutic Targets of Exercise Training. Noncoding RNA 2021; 7:65. [PMID: 34698215 PMCID: PMC8544698 DOI: 10.3390/ncrna7040065] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
Despite advances in treatments and therapies, cardiovascular diseases (CVDs) remain one of the leading causes of death worldwide. The discovery that most of the human genome, although transcribed, does not encode proteins was crucial for focusing on the potential of long non-coding RNAs (lncRNAs) as essential regulators of cell function at the epigenetic, transcriptional, and post-transcriptional levels. This class of non-coding RNAs is related to the pathophysiology of the cardiovascular system. The different expression profiles of lncRNAs, in different contexts of CVDs, change a great potential in their use as a biomarker and targets of therapeutic intervention. Furthermore, regular physical exercise plays a protective role against CVDs; on the other hand, little is known about its underlying molecular mechanisms. In this review, we look at the accumulated knowledge on lncRNAs and their functions in the cardiovascular system, focusing on the cardiovascular pathology of arterial hypertension, coronary heart disease, acute myocardial infarction, and heart failure. We discuss the potential of these molecules as biomarkers for clinical use, their limitations, and how the manipulation of the expression profile of these transcripts through physical exercise can begin to be suggested as a strategy for the treatment of CVDs.
Collapse
Affiliation(s)
- Camila Caldas Martins Correia
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-030, Brazil;
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (L.F.R.); (B.R.d.A.P.); (E.M.O.)
| | - Luis Felipe Rodrigues
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (L.F.R.); (B.R.d.A.P.); (E.M.O.)
| | - Bruno Rocha de Avila Pelozin
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (L.F.R.); (B.R.d.A.P.); (E.M.O.)
| | - Edilamar Menezes Oliveira
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (L.F.R.); (B.R.d.A.P.); (E.M.O.)
| | - Tiago Fernandes
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (L.F.R.); (B.R.d.A.P.); (E.M.O.)
| |
Collapse
|
26
|
Novikova EL, Kulakova MA. There and Back Again: Hox Clusters Use Both DNA Strands. J Dev Biol 2021; 9:28. [PMID: 34287306 PMCID: PMC8293171 DOI: 10.3390/jdb9030028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
Bilaterian animals operate the clusters of Hox genes through a rich repertoire of diverse mechanisms. In this review, we will summarize and analyze the accumulated data concerning long non-coding RNAs (lncRNAs) that are transcribed from sense (coding) DNA strands of Hox clusters. It was shown that antisense regulatory RNAs control the work of Hox genes in cis and trans, participate in the establishment and maintenance of the epigenetic code of Hox loci, and can even serve as a source of regulatory peptides that switch cellular energetic metabolism. Moreover, these molecules can be considered as a force that consolidates the cluster into a single whole. We will discuss the examples of antisense transcription of Hox genes in well-studied systems (cell cultures, morphogenesis of vertebrates) and bear upon some interesting examples of antisense Hox RNAs in non-model Protostomia.
Collapse
Affiliation(s)
- Elena L. Novikova
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7–9, 199034 Saint Petersburg, Russia;
- Laboratory of Evolutionary Morphology, Zoological Institute RAS, Universitetskaya nab. 1, 199034 Saint Petersburg, Russia
| | - Milana A. Kulakova
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7–9, 199034 Saint Petersburg, Russia;
- Laboratory of Evolutionary Morphology, Zoological Institute RAS, Universitetskaya nab. 1, 199034 Saint Petersburg, Russia
| |
Collapse
|
27
|
Mutual Correlation between Non-Coding RNA and S-Adenosylmethionine in Human Cancer: Roles and Therapeutic Opportunities. Cancers (Basel) 2021; 13:cancers13133264. [PMID: 34209866 PMCID: PMC8268931 DOI: 10.3390/cancers13133264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Non-coding RNAs and S-adenosylmethionine, the methyl donor required in all epigenetic methylation reactions, have emerged in recent years as crucial players in the modulation of gene expression in different types of human cancers. This review summarizes the most recent findings on reciprocal regulation between AdoMet and non-coding RNAs. AdoMet was found to exert anticancer activity through epigenetic regulation of non-coding RNAs, including microRNAs, long non-coding RNAs and circular RNAs. On the other hand, several microRNAs and long non-coding RNAs have been reported to display regulatory effects on the expression of genes involved in AdoMet synthesis and metabolism. Increasing knowledge on the relationship between AdoMet and non-coding RNAs will provide insights for further development of diagnostic and therapeutic strategies for cancer treatments. Abstract Epigenetics includes modifications in DNA methylation, histone and chromatin structure, and expression of non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Knowledge of the relationships between S-adenosylmethionine (AdoMet or SAM), the universal methyl donor for all epigenetic methylation reactions and miRNAs or lncRNAs in human cancer may provide helpful insights for the development of new end more effective anticancer therapeutic approaches. In recent literature, a complex network of mutual interconnections between AdoMet and miRNAs or lncRNAs has been reported and discussed. Indeed, ncRNAs expression may be regulated by epigenetic mechanisms such as DNA and RNA methylation and histone modifications. On the other hand, miRNAs or lncRNAs may influence the epigenetic apparatus by modulating the expression of its enzymatic components at the post-transcriptional level. Understanding epigenetic mechanisms, such as dysregulation of miRNAs/lncRNAs and DNA methylation, has become of central importance in modern research. This review summarizes the recent findings on the mechanisms by which AdoMet and miRNA/lncRNA exert their bioactivity, providing new insights to develop innovative and more efficient anticancer strategies based on the interactions between these epigenetic modulators.
Collapse
|
28
|
Liu J, Liu S, Han L, Sheng Y, Zhang Y, Kim IM, Wan J, Yang L. LncRNA HBL1 is required for genome-wide PRC2 occupancy and function in cardiogenesis from human pluripotent stem cells. Development 2021; 148:268341. [PMID: 34027990 PMCID: PMC8276986 DOI: 10.1242/dev.199628] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
Polycomb repressive complex 2 (PRC2) deposits H3K27me3 on chromatin to silence transcription. PRC2 broadly interacts with RNAs. Currently, the role of the RNA-PRC2 interaction in human cardiogenesis remains elusive. Here, we found that human-specific heart brake lncRNA 1 (HBL1) interacted with two PRC2 subunits, JARID2 and EED, in human pluripotent stem cells (hPSCs). Loss of JARID2, EED or HBL1 significantly enhanced cardiac differentiation from hPSCs. HBL1 depletion disrupted genome-wide PRC2 occupancy and H3K27me3 chromatin modification on essential cardiogenic genes, and broadly enhanced cardiogenic gene transcription in undifferentiated hPSCs and later-on differentiation. In addition, ChIP-seq revealed reduced EED occupancy on 62 overlapped cardiogenic genes in HBL1−/− and JARID2−/− hPSCs, indicating that the epigenetic state of cardiogenic genes was determined by HBL1 and JARID2 at pluripotency stage. Furthermore, after cardiac development occurs, the cytosolic and nuclear fractions of HBL1 could crosstalk via a conserved ‘microRNA-1-JARID2’ axis to modulate cardiogenic gene transcription. Overall, our findings delineate the indispensable role of HBL1 in guiding PRC2 function during early human cardiogenesis, and expand the mechanistic scope of lncRNA(s) that cytosolic and nuclear portions of HBL1 could coordinate to orchestrate human cardiogenesis. Summary: This study reveals the indispensable role of the lncRNA HBL1 in guiding PRC2 function during early human cardiogenesis, and uncovers the crosstalk of the cytosolic and nuclear regions of HBL1 to orchestrate human cardiac development.
Collapse
Affiliation(s)
- Juli Liu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lei Han
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yi Sheng
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yucheng Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Il-Man Kim
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lei Yang
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
29
|
Sabit H, Abdel-Ghany S, Tombuloglu H, Cevik E, Alqosaibi A, Almulhim F, Al-Muhanaa A. New insights on CRISPR/Cas9-based therapy for breast Cancer. Genes Environ 2021; 43:15. [PMID: 33926574 PMCID: PMC8082964 DOI: 10.1186/s41021-021-00188-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022] Open
Abstract
CRISPR/Cas9 has revolutionized genome-editing techniques in various biological fields including human cancer research. Cancer is a multi-step process that encompasses the accumulation of mutations that result in the hallmark of the malignant state. The goal of cancer research is to identify these mutations and correlate them with the underlying tumorigenic process. Using CRISPR/Cas9 tool, specific mutations responsible for cancer initiation and/or progression could be corrected at least in animal models as a first step towards translational applications. In the present article, we review various novel strategies that employed CRISPR/Cas9 to treat breast cancer in both in vitro and in vivo systems.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Genetics, Institute for Medical Research and Consultations, Imam Abdulrahman Bin Faisal University, P. O. Box: 1982, Dammam, 31441, Saudi Arabia.
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Huseyin Tombuloglu
- Department of Genetics, Institute for Medical Research and Consultations, Imam Abdulrahman Bin Faisal University, P. O. Box: 1982, Dammam, 31441, Saudi Arabia
| | - Emre Cevik
- Department of Genetics, Institute for Medical Research and Consultations, Imam Abdulrahman Bin Faisal University, P. O. Box: 1982, Dammam, 31441, Saudi Arabia
| | - Amany Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P. O. 4 Box, Dammam, 1982, Saudi Arabia
| | - Fatma Almulhim
- Breast Imaging Division, KFHU, Imam Abdulrahman Bin Faisal University, P. O. 4 Box, Dammam, 1982, Saudi Arabia
| | - Afnan Al-Muhanaa
- Breast Imaging Division, KFHU, Imam Abdulrahman Bin Faisal University, P. O. 4 Box, Dammam, 1982, Saudi Arabia
| |
Collapse
|
30
|
Jantrapirom S, Koonrungsesomboon N, Yoshida H, M Candeias M, Pruksakorn D, Lo Piccolo L. Long noncoding RNA-dependent methylation of nonhistone proteins. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1661. [PMID: 33913612 DOI: 10.1002/wrna.1661] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/18/2021] [Accepted: 04/04/2021] [Indexed: 12/15/2022]
Abstract
In the last decade, an intriguing new paradigm of regulation has emerged in which some transcripts longer than 200 nucleotides and no coding potential, long noncoding RNA (lncRNAs), exhibit the capability to control posttranslational modifications of nonhistone proteins in both invertebrates and vertebrates. The extent of such a regulation is still largely unknown. We performed a systematic review to identify and evaluate the potential impact of lncRNA-dependent methylation of nonhistone proteins. Collectively, these lncRNAs primarily act as scaffolds upon which methyltransferases (MTases) and targets are brought in proximity. In this manner, the N-MTase activity of EZH2, protein arginine-MTase 1/4/5, and SMYD2 is exploited to modulate the stability or the compartmentalization of several nonhistone proteins with roles in cell signaling, gene expression, and RNA processing. Moreover, these lncRNAs can indirectly affect the methylation of nonhistone proteins by transcriptional or posttranscriptional regulation of MTases. Strikingly, the lncRNAs/MTases/nonhistone proteins networking seem to be relevant to carcinogenesis and neurological disorders. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Drosophila Center for Human Diseases and Drug Discovery (DHD), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nut Koonrungsesomboon
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Musculoskeletal Science and Translational Research Center (MSTR), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | - Marco M Candeias
- MaRCU-Molecular and RNA Cancer Unit, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Human Genetics, National Health Institute Dr Ricardo Jorge, Lisbon, Portugal
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research Center (MSTR), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Omics Center for Health Science, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | |
Collapse
|
31
|
Abo-Al-Ela HG. The emerging regulatory roles of noncoding RNAs in immune function of fish: MicroRNAs versus long noncoding RNAs. Mol Genet Genomics 2021; 296:765-781. [PMID: 33904988 DOI: 10.1007/s00438-021-01786-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
The genome could be considered as raw data expressed in proteins and various types of noncoding RNAs (ncRNAs). However, a large portion of the genome is dedicated to ncRNAs, which in turn represent a considerable amount of the transcriptome. ncRNAs are modulated on levels of type and amount whenever any physiological process occurs or as a response to external modulators. ncRNAs, typically forming complexes with other partners, are key molecules that influence diverse cellular processes. Based on the knowledge of mammalian biology, ncRNAs are known to regulate and control diverse trafficking pathways and cellular activities. Long noncoding RNAs (lncRNAs) notably have diverse and more regulatory roles than microRNAs. Expanding these studies on fish has derived the same conclusion with relevance to other species, including invertebrates, explored the potentials to harness such types of RNA to further understand the biology of such organisms, and opened gates for applying recent technologies, such as RNA interference and delivering micromolecules as microRNAs to living cells and possibly to target organs. These technologies should improve aquaculture productivity and fish health, as well as help understand fish biology.
Collapse
Affiliation(s)
- Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, 43518, Suez, Egypt.
| |
Collapse
|
32
|
Fernandes N, Buchan JR. RNAs as Regulators of Cellular Matchmaking. Front Mol Biosci 2021; 8:634146. [PMID: 33898516 PMCID: PMC8062979 DOI: 10.3389/fmolb.2021.634146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/22/2021] [Indexed: 12/30/2022] Open
Abstract
RNA molecules are increasingly being identified as facilitating or impeding the interaction of proteins and nucleic acids, serving as so-called scaffolds or decoys. Long non-coding RNAs have been commonly implicated in such roles, particularly in the regulation of nuclear processes including chromosome topology, regulation of chromatin state and gene transcription, and assembly of nuclear biomolecular condensates such as paraspeckles. Recently, an increased awareness of cytoplasmic RNA scaffolds and decoys has begun to emerge, including the identification of non-coding regions of mRNAs that can also function in a scaffold-like manner to regulate interactions of nascently translated proteins. Collectively, cytoplasmic RNA scaffolds and decoys are now implicated in processes such as mRNA translation, decay, protein localization, protein degradation and assembly of cytoplasmic biomolecular condensates such as P-bodies. Here, we review examples of RNA scaffolds and decoys in both the nucleus and cytoplasm, illustrating common themes, the suitability of RNA to such roles, and future challenges in identifying and better understanding RNA scaffolding and decoy functions.
Collapse
Affiliation(s)
| | - J. Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
33
|
Abzhanova A, Hirschi A, Reiter NJ. An exon-biased biophysical approach and NMR spectroscopy define the secondary structure of a conserved helical element within the HOTAIR long non-coding RNA. J Struct Biol 2021; 213:107728. [PMID: 33753203 DOI: 10.1016/j.jsb.2021.107728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/16/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022]
Abstract
HOTAIR is a large, multi-exon spliced non-coding RNA proposed to function as a molecular scaffold and competes with chromatin to bind to histone modification enzymes. Previous sequence analysis and biochemical experiments identified potential conserved regions and characterized the full length HOTAIR secondary structure. Here, we examine the thermodynamic folding properties and structural propensity of the individual exonic regions of HOTAIR using an array of biophysical methods and NMR spectroscopy. We demonstrate that different exons of HOTAIR contain variable degrees of heterogeneity, and identify one exonic region, exon 4, that adopts a stable and compact fold under low magnesium concentrations. Close agreement of NMR spectroscopy and chemical probing unambiguously confirm conserved base pair interactions within the structural element, termed helix 10 of exon 4, located within domain I of human HOTAIR. This combined exon-biased and integrated biophysical approach introduces a new strategy to examine conformational heterogeneity in lncRNAs and emphasizes NMR as a key method to validate base pair interactions and corroborate large RNA secondary structures.
Collapse
Affiliation(s)
- Ainur Abzhanova
- Department of Chemistry, Marquette University, Milwaukee 53233, WI, United States
| | - Alexander Hirschi
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville 37205-0146, TN, United States
| | - Nicholas J Reiter
- Department of Chemistry, Marquette University, Milwaukee 53233, WI, United States.
| |
Collapse
|
34
|
Tang Y, Qu Z, Lei J, He R, Adelson DL, Zhu Y, Yang Z, Wang D. The long noncoding RNA FRILAIR regulates strawberry fruit ripening by functioning as a noncanonical target mimic. PLoS Genet 2021; 17:e1009461. [PMID: 33739974 PMCID: PMC8011760 DOI: 10.1371/journal.pgen.1009461] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/31/2021] [Accepted: 03/03/2021] [Indexed: 11/19/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are emerging as important regulators in plant development, but few of them have been functionally characterized in fruit ripening. Here, we have identified 25,613 lncRNAs from strawberry ripening fruits based on RNA-seq data from poly(A)-depleted libraries and rRNA-depleted libraries, most of which exhibited distinct temporal expression patterns. A novel lncRNA, FRILAIR harbours the miR397 binding site that is highly conserved in diverse strawberry species. FRILAIR overexpression promoted fruit maturation in the Falandi strawberry, which was consistent with the finding from knocking down miR397, which can guide the mRNA cleavage of both FRILAIR and LAC11a (encoding a putative laccase-11-like protein). Moreover, LAC11a mRNA levels were increased in both FRILAIR overexpressing and miR397 knockdown fruits, and accelerated fruit maturation was also found in LAC11a overexpressing fruits. Overall, our study demonstrates that FRILAIR can act as a noncanonical target mimic of miR397 to modulate the expression of LAC11a in the strawberry fruit ripening process.
Collapse
Affiliation(s)
- Yajun Tang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhipeng Qu
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Jiajun Lei
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Reqing He
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, China
| | - David L. Adelson
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Youlin Zhu
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, China
| | - Zhenbiao Yang
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dong Wang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, China
| |
Collapse
|
35
|
Katsushima K, Jallo G, Eberhart CG, Perera RJ. Long non-coding RNAs in brain tumors. NAR Cancer 2021; 3:zcaa041. [PMID: 34316694 PMCID: PMC8210177 DOI: 10.1093/narcan/zcaa041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/09/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been found to be central players in the epigenetic, transcriptional and post-transcriptional regulation of gene expression. There is an accumulation of evidence on newly discovered lncRNAs, their molecular interactions and their roles in the development and progression of human brain tumors. LncRNAs can have either tumor suppressive or oncogenic functions in different brain cancers, making them attractive therapeutic targets and biomarkers for personalized therapy and precision diagnostics. Here, we summarize the current state of knowledge of the lncRNAs that have been implicated in brain cancer pathogenesis, particularly in gliomas and medulloblastomas. We discuss their epigenetic regulation as well as the prospects of using lncRNAs as diagnostic biomarkers and therapeutic targets in patients with brain tumors.
Collapse
Affiliation(s)
- Keisuke Katsushima
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans St., Baltimore, MD 21231, USA
| | - George Jallo
- Johns Hopkins All Children's Hospital, 600 5th St. South, St Petersburg, FL 33701, USA
| | - Charles G Eberhart
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans St., Baltimore, MD 21231, USA
| | - Ranjan J Perera
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans St., Baltimore, MD 21231, USA
| |
Collapse
|
36
|
Gao N, Li Y, Li J, Gao Z, Yang Z, Li Y, Liu H, Fan T. Long Non-Coding RNAs: The Regulatory Mechanisms, Research Strategies, and Future Directions in Cancers. Front Oncol 2020; 10:598817. [PMID: 33392092 PMCID: PMC7775490 DOI: 10.3389/fonc.2020.598817] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
The development and application of whole genome sequencing technology has greatly broadened our horizons on the capabilities of long non-coding RNAs (lncRNAs). LncRNAs are more than 200 nucleotides in length and lack protein-coding potential. Increasing evidence indicates that lncRNAs exert an irreplaceable role in tumor initiation, progression, as well as metastasis, and are novel molecular biomarkers for diagnosis and prognosis of cancer patients. Furthermore, lncRNAs and the pathways they influence might represent promising therapeutic targets for a number of tumors. Here, we discuss the recent advances in understanding of the specific regulatory mechanisms of lncRNAs. We focused on the signal, decoy, guide, and scaffold functions of lncRNAs at the epigenetic, transcription, and post-transcription levels in cancer cells. Additionally, we summarize the research strategies used to investigate the roles of lncRNAs in tumors, including lncRNAs screening, lncRNAs characteristic analyses, functional studies, and molecular mechanisms of lncRNAs. This review will provide a short but comprehensive description of the lncRNA functions in tumor development and progression, thus accelerating the clinical implementation of lncRNAs as tumor biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Na Gao
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Yueheng Li
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Jing Li
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Zhengfan Gao
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Zhenzhen Yang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
- Translational Medicine Research Center, People’s Hospital of Zhengzhou, Zhengzhou, China
| | - Yong Li
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
- Faculty of Medicine, St George and Sutherland Clinical School, St George Hospital, The University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Hongtao Liu
- Laboratory for Cell Biology, College of Life Sciences of Zhengzhou University, Zhengzhou, China
| | - Tianli Fan
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
37
|
Zhuang C, Liu Y, Fu S, Yuan C, Luo J, Huang X, Yang W, Xie W, Zhuang C. Silencing of lncRNA MIR497HG via CRISPR/Cas13d Induces Bladder Cancer Progression Through Promoting the Crosstalk Between Hippo/Yap and TGF-β/Smad Signaling. Front Mol Biosci 2020; 7:616768. [PMID: 33363213 PMCID: PMC7755977 DOI: 10.3389/fmolb.2020.616768] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/05/2020] [Indexed: 12/17/2022] Open
Abstract
A subset of long non-coding RNAs (lncRNAs), categorized as miRNA-host gene lncRNAs (lnc-miRHGs), is processed to produce miRNAs and involved in cancer progression. This work aimed to investigate the influences and the molecular mechanisms of lnc-miRHGs MIR497HG in bladder cancer (BCa). The miR-497 and miR-195 were derived from MIR497HG. We identified that lnc-miRHG MIR497HG and two harbored miRNAs, miR-497 and miR-195, were downregulated in BCa by analyzing The Cancer Genome Atlas and our dataset. Silencing of MIR497HG by CRISPR/Cas13d in BCa cell line 5637 promoted cell growth, migration, and invasion in vitro. Conversely, overexpression of MIR497HG suppressed cell progression in BCa cell line T24. MiR-497/miR-195 mimics rescued significantly the oncogenic roles of knockdown of MIR497HG by CRISPR/Cas13d in BCa. Mechanistically, miR-497 and miR-195 co-ordinately suppressed multiple key components in Hippo/Yap and transforming growth factor β signaling and particularly attenuated the interaction between Yap and Smad3. In addition, E2F4 was proven to be critical for silencing MIR497HG transcription in BCa cells. In short, we propose for the first time to reveal the function and mechanisms of MIR497HG in BCa. Blocking the pathological process may be a potential strategy for the treatment of BCa.
Collapse
Affiliation(s)
- Changshui Zhuang
- Department of Urology, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, China
| | - Ying Liu
- Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Shengqiang Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chaobo Yuan
- Emergency Department, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, China
| | - Jingwen Luo
- Department of Thoracic Surgery, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, China
| | - Xueting Huang
- Shenzhen Yantian District People's Hospital, Shenzhen, China
| | - Weifeng Yang
- Department of Urology, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, China
| | - Wuwei Xie
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chengle Zhuang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
38
|
Greco S, Madè A, Gaetano C, Devaux Y, Emanueli C, Martelli F. Noncoding RNAs implication in cardiovascular diseases in the COVID-19 era. J Transl Med 2020; 18:408. [PMID: 33129318 PMCID: PMC7602761 DOI: 10.1186/s12967-020-02582-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/24/2020] [Indexed: 12/21/2022] Open
Abstract
COronaVIrus Disease 19 (COVID-19) is caused by the infection of the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2). Although the main clinical manifestations of COVID-19 are respiratory, many patients also display acute myocardial injury and chronic damage to the cardiovascular system. Understanding both direct and indirect damage caused to the heart and the vascular system by SARS-CoV-2 infection is necessary to identify optimal clinical care strategies. The homeostasis of the cardiovascular system requires a tight regulation of the gene expression, which is controlled by multiple types of RNA molecules, including RNA encoding proteins (messenger RNAs) (mRNAs) and those lacking protein-coding potential, the noncoding-RNAs. In the last few years, dysregulation of noncoding-RNAs has emerged as a crucial component in the pathophysiology of virtually all cardiovascular diseases. Here we will discuss the potential role of noncoding RNAs in COVID-19 disease mechanisms and their possible use as biomarkers of clinical use.
Collapse
Affiliation(s)
- S Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097, Milan, Italy
| | - A Madè
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097, Milan, Italy
| | - C Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - Y Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg
| | - C Emanueli
- Imperial College London, National Heart and Lung Institute, Hammersmith Campus, London, W12 0NN, UK
| | - F Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097, Milan, Italy.
| |
Collapse
|
39
|
Zhou L, Liu R, Liang X, Zhang S, Bi W, Yang M, He Y, Jin J, Li S, Yang X, Fu J, Zhang P. lncRNA RP11-624L4.1 Is Associated with Unfavorable Prognosis and Promotes Proliferation via the CDK4/6-Cyclin D1-Rb-E2F1 Pathway in NPC. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:1025-1039. [PMID: 33078086 PMCID: PMC7558227 DOI: 10.1016/j.omtn.2020.10.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumors in southern China and southeast Asia. Emerging evidence revealed that long noncoding RNAs (lncRNAs) might play important roles in the development and progression of many cancers, including NPC. The functions and mechanisms of the vast majority of lncRNAs involved in NPC remain unknown. In this study, a novel lncRNA RP11-624L4.1 was identified in NPC tissues using next-generation sequencing. In situ hybridization (ISH) was used to analyze the correlation between RP11-624L4.1 expression and the clinicopathological features or prognosis in NPC patients. RNA-Protein Interaction Prediction (RPISeq) predictions and RNA-binding protein immunoprecipitation (RIP) assays were used to identify RP11-624L4.1's interactions with cyclin-dependent kinase 4 (CDK4). As a result, we found that RP11-624L4.1 is hyper-expressed in NPC tissues, which was associated with unfavorable prognosis and clinicopathological features in NPC. By knocking down and overexpressing RP11-624L4.1, we also found that it promotes the proliferation ability of NPC in vitro and in vivo through the CDK4/6-Cyclin D1-Rb-E2F1 pathway. Overexpression of CDK4 in knocking down RP11-624L4.1 cells can partially rescue NPC promotion, indicating its role in the RP11-624L4.1-CDK4/6-Cyclin D1-Rb-E2F1 pathway. Taken together, RP11-624L4.1 is required for NPC unfavorable prognosis and proliferation through the CDK4/6-Cyclin D1-Rb-E2F1 pathway, which may be a novel therapeutic target and prognostic in patients with NPC.
Collapse
Affiliation(s)
- Liuying Zhou
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ruijie Liu
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xujun Liang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Sai Zhang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wu Bi
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Mei Yang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yi He
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jin Jin
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Shisheng Li
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Xinming Yang
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Corresponding author: Junjiang Fu, Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.
| | - Pengfei Zhang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Corresponding author: Pengfei Zhang, NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China.
| |
Collapse
|
40
|
Ahn YH, Kim JS. Long Non-Coding RNAs as Regulators of Interactions between Cancer-Associated Fibroblasts and Cancer Cells in the Tumor Microenvironment. Int J Mol Sci 2020; 21:E7484. [PMID: 33050576 PMCID: PMC7589653 DOI: 10.3390/ijms21207484] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate diverse physiological and pathological processes via post-transcriptional, post-translational, and epigenetic mechanisms. They are also involved in tumor initiation, progression, and metastasis by functioning as key players in the tumor microenvironment. Cancer-associated fibroblasts (CAFs) promote tumor initiation, progression, metastasis, drug resistance, and immunosuppression, which can be modulated by lncRNAs. LncRNAs regulate the intrinsic properties of CAFs or cancer cells intracellularly or function extracellularly through exosomal secretion. In-depth studies on the mechanisms of lncRNA functions will enable their clinical use as diagnosis/prognosis markers and therapeutic targets in cancer treatment.
Collapse
Affiliation(s)
- Young-Ho Ahn
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul 07804, Korea;
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Jeong Seon Kim
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul 07804, Korea;
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| |
Collapse
|
41
|
Zhan H, Li A, Cai Z, Huang W, Liu Y. Improving transgene expression and CRISPR-Cas9 efficiency with molecular engineering-based molecules. Clin Transl Med 2020; 10:e194. [PMID: 33135339 PMCID: PMC7533053 DOI: 10.1002/ctm2.194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/08/2020] [Accepted: 09/18/2020] [Indexed: 01/04/2023] Open
Abstract
As a novel and robust gene‐editing tool, the Clustered Regularly Interspaced Short Palindromic Repeats CRISPR‐associated protein 9 (CRISPR‐Cas9) system has revolutionized gene therapy. Plasmid vector delivery is the most commonly used method for integrating the CRISPR‐Cas9 system into cells. However, such foreign cytosolic DNAs trigger an innate immune response (IIR) within cells, which can hinder gene editing by inhibiting transgene expression. Although some small molecules have been shown to avoid the action of IIR on plasmids, they only work on a single target and may also affect cell viability. A genetic approach that works at a comprehensive level for manipulating IIR is still lacking. Here, we designed and constructed several artificial nucleic acid molecules (ANAMs), which are combinations of aptamers binding to two key players of IIR (β‐catenin and NF‐κB). ANAMs strongly inhibited the IIR in cells, thus improving transgene expression. We also used ANAMs to improve the gene‐editing efficiency of the CRISPR‐Cas9 system and its derivatives, thus enhancing the apoptosis of cancer cells induced by CRISPR‐Cas9. ANAMs can be valuable tools for improving transgene expression and gene editing in mammalian cells.
Collapse
Affiliation(s)
- Hengji Zhan
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China
| | - Aolin Li
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China
| | - Zhiming Cai
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China
| | - Weiren Huang
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China
| | - Yuchen Liu
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
42
|
Dastmalchi N, Safaralizadeh R, Nargesi MM. LncRNAs: Potential Novel Prognostic and Diagnostic Biomarkers in Colorectal Cancer. Curr Med Chem 2020; 27:5067-5077. [PMID: 30827228 DOI: 10.2174/0929867326666190227230024] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/31/2019] [Accepted: 02/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs), a type of regulatory RNAs, play a key role in numerous cellular pathways. Ectopic expression of this group of non-coding RNAs has been specified to be involved in numerous diseases. Moreover, the role of lncRNAs in the initiation and development of cancers including colorectal cancer (CRC) has been acknowledged. OBJECTIVE In the present review, the role of lncRNAs as prognostic and diagnostic biomarkers in CRC as well as the molecular mechanisms of their contribution to development of CRC has been addressed. RESULTS The presented studies have indicated the ectopic expression of various lncRNAs in CRC. Some lncRNAs which were considered as tumor suppressors were downregulated in the colorectal cancerous tissues compared with healthy controls; however, some with oncogenic effects were upregulated. LncRNAs contribute to tumor development via various molecular mechanisms such as epigenetically controlling the expression of target genes, interacting with miRNAs as their sponge, etc. Conclusion: LncRNAs that have been recognized as prognostic biomarkers may pave the way for clinical management to offer adjuvant treatments for patients with CRC.
Collapse
Affiliation(s)
- Narges Dastmalchi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mirsaed Miri Nargesi
- Molecular Virology Section, Department of Virology and Immunology, LabPLUS, Auckland District Health Board (ADHB), Auckland, New Zealand
| |
Collapse
|
43
|
Akshaya RL, Rohini M, Selvamurugan N. Regulation of Breast Cancer Progression by Noncoding RNAs. Curr Cancer Drug Targets 2020; 20:757-767. [PMID: 32652909 DOI: 10.2174/1568009620666200712144103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Breast cancer (BC) is the cardinal cause of cancer-related deaths among women across the globe. Our understanding of the molecular mechanisms underlying BC invasion and metastasis remains insufficient. Recent studies provide compelling evidence on the prospective contribution of noncoding RNAs (ncRNAs) and the association of different interactive mechanisms between these ncRNAs with breast carcinogenesis. MicroRNAs (small ncRNAs) and lncRNAs (long ncRNAs) have been explored extensively as classes of ncRNAs in the pathogenesis of several malignancies, including BC. OBJECTIVE In this review, we aim to provide a better understanding of the involvement of miRNAs and lncRNAs and their underlying mechanisms in BC development and progression that may assist the development of monitoring biomarkers and therapeutic strategies to effectively combat BC. CONCLUSION These ncRNAs play critical roles in cell growth, cell cycle regulation, epithelialmesenchymal transition (EMT), invasion, migration, and apoptosis among others, and were observed to be highly dysregulated in several cancers. The miRNAs and lncRNAs were observed to interact with each other through several mechanisms that governed the expression of their respective targets and could act either as tumor suppressors or as oncogenes, playing a crucial part in breast carcinogenesis.
Collapse
Affiliation(s)
- Ravishkumar L Akshaya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Muthukumar Rohini
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
44
|
An Overview of Non-coding RNAs and Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:3-45. [PMID: 32285403 DOI: 10.1007/978-981-15-1671-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease management and timely diagnosis remain a major dilemma. Delineating molecular mechanisms of cardiovascular diseases is opening horizon in the field of molecular medicines and in the development of early diagnostic markers. Non-coding RNAs are the highly functional and vibrant nucleic acids and are known to be involved in the regulation of endothelial cells, vascular and smooth muscles cells, cardiac metabolism, ischemia, inflammation and many processes in cardiovascular system. This chapter is comprehensively focusing on the overview of the non-coding RNAs including their discovery, generation, classification and functional regulation. In addition, overview regarding different non-coding RNAs as long non-coding, siRNAs and miRNAs involvement in the cardiovascular diseases is also addressed. Detailed functional analysis of this vast group of highly regulatory molecules will be promising for shaping future drug discoveries.
Collapse
|
45
|
Li M, Cao A, Wang R, Li Z, Li S, Wang J. Genome-wide identification and integrated analysis of lncRNAs in rice backcross introgression lines (BC 2F 12). BMC PLANT BIOLOGY 2020; 20:300. [PMID: 32600330 PMCID: PMC7325253 DOI: 10.1186/s12870-020-02508-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/22/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND Distant hybridization is an important way to create interspecific genetic variation and breed new varieties in rice. A lot of backcross introgression lines (BILs) had been constructed for the scientific issues in rice. However, studies on the critical regulatory factor lncRNA in cultivated rice, wild rice and their BIL progenies were poorly reported. RESULTS Here, high-throughput RNA sequencing technology was used to explore the functional characteristics and differences of lncRNAs in O. sativa, O. longistaminata and their three BC2F12 progenies. A total of 1254 lncRNAs were screened out, and the number of differentially expressed lncRNAs between progenies and O. sativa were significantly less than that between progenies and O. longistaminata. Some lncRNAs regulated more than one mRNA, and 89.5% of lncRNAs regulated the expression of target genes through cis-acting. A total of 78 lncRNAs and 271 mRNAs were targeted by 280 miRNAs, and 22 lncRNAs were predicted to be the precursor of 20 microRNAs. Some miRNAs were found to target their own potential precursor lncRNAs. Over 50% of lncRNAs showed parental expression level dominance (ELD) in all three progenies, and most lncRNAs showed ELD-O. sativa rather than ELD-O. longistaminata. Further analysis showed that lncRNAs might regulate the expression of plant hormone-related genes and the adaptability of O. sativa, O. longistaminata and their progenies. CONCLUSIONS Taken together, the above results provided valuable clues for elucidating the functional features and expression differences of lncRNAs between O. sativa, O. longistaminata and their BIL progenies, and expanded our understanding about the biological functions of lncRNAs in rice.
Collapse
Affiliation(s)
- Mengdi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Aqin Cao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Ruihua Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Zeyu Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| |
Collapse
|
46
|
Babapoor-Farrokhran S, Gill D, Rasekhi RT. The role of long noncoding RNAs in atrial fibrillation. Heart Rhythm 2020; 17:1043-1049. [DOI: 10.1016/j.hrthm.2020.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/14/2020] [Indexed: 12/18/2022]
|
47
|
Wells AC, Pobezinskaya EL, Pobezinsky LA. Non-coding RNAs in CD8 T cell biology. Mol Immunol 2020; 120:67-73. [PMID: 32085976 PMCID: PMC7093237 DOI: 10.1016/j.molimm.2020.01.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/17/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
CD8 T cells are among the most vigorous soldiers of the immune system that fight viral infections and cancer. CD8 T cell development, maintenance, activation and differentiation are under the tight control of multiple transcriptional and post-transcriptional networks. Over the last two decades it has become clear that non-coding RNAs (ncRNAs), which consist of microRNAs (miRNAs) and long ncRNAs (lncRNAs), have emerged as global biological regulators. While our understanding of the function of specific miRNAs has increased since the discovery of RNA interference, it is still very limited, and the field of lncRNAs is just starting to blossom. Here we will summarize our knowledge on the role of ncRNAs in CD8 T cell biology, including differentiation into memory and exhausted cells.
Collapse
Affiliation(s)
- Alexandria C Wells
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, United States.
| | - Elena L Pobezinskaya
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, United States.
| | - Leonid A Pobezinsky
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, United States.
| |
Collapse
|
48
|
Jin J, Xie S, Sun Q, Huang Z, Chen K, Guo D, Rao X, Deng Y, Liu Y, Li S, Cui W, Maibam VC, Wang J, Zhuo W, Zhou T. Upregulation of BCAM and its sense lncRNA BAN are associated with gastric cancer metastasis and poor prognosis. Mol Oncol 2020; 14:829-845. [PMID: 31951095 PMCID: PMC7138403 DOI: 10.1002/1878-0261.12638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/03/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022] Open
Abstract
Patients with metastatic gastric cancer (GC) have a poor prognosis; however, the molecular mechanism of GC metastasis remains unclear. Here, we employed bioinformatics to systematically screen the metastasis-associated genes and found that the levels of basal cell adhesion molecule (BCAM) were significantly increased in GC tissues from patients with metastasis, as compared to those without metastasis. The upregulation of BCAM was also significantly associated with a shorter survival time. Depletion of BCAM inhibited GC cell migration and invasion. Knockout (KO) of BCAM by the CRISPR/Cas9 system reduced the invasion and metastasis of GC cells. To explore the mechanism of BCAM upregulation, we identified a previously uncharacterized BCAM sense lncRNA that spanned from exon 6 to intron 6 of BCAM, and named it as BCAM-associated long noncoding RNA (BAN). Knockdown of BAN inhibited BCAM expression at both mRNA and protein levels. Knockdown of BAN suppressed GC cell migration and invasion, which was effectively rescued by ectopic expression of BCAM. Further clinical data showed that BAN upregulation was associated with GC metastasis and poor prognosis. Importantly, BAN expression was also significantly associated with that of BCAM in GC tissues. Taken together, these results indicate that increased expression of BCAM and its sense lncRNA BAN promote GC cell invasion and metastasis, and are associated with poor prognosis of GC patients.
Collapse
Affiliation(s)
- Juan Jin
- Department of Cell Biology and Department of Gastroenterology of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Shanshan Xie
- Department of Cell Biology and Department of Gastroenterology of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- The Children’s HospitalZhejiang University School of MedicineHangzhouChina
| | - Qiang Sun
- Department of Cell Biology and Department of Gastroenterology of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhenxia Huang
- Department of Cell Biology and Department of Gastroenterology of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- The First People’s Hospital of Xiaoshan DistrictHangzhouChina
| | - Kanghua Chen
- Department of Cell Biology and Department of Gastroenterology of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Dongyang Guo
- Department of Cell Biology and Department of Gastroenterology of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Xianping Rao
- Department of Cell Biology and Department of Gastroenterology of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Yujie Deng
- Department of Cell Biology and Department of Gastroenterology of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Yiman Liu
- Department of Cell Biology and Department of Gastroenterology of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Shuang Li
- Department of Cell Biology and Department of Gastroenterology of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Wenyu Cui
- Department of Cell Biology and Department of Gastroenterology of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Valentina Chanu Maibam
- Department of Cell Biology and Department of Gastroenterology of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Junni Wang
- Department of Cell Biology and Department of Gastroenterology of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Kidney Disease Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Wei Zhuo
- Department of Cell Biology and Department of Gastroenterology of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Institute of GastroenterologyZhejiang UniversityHangzhouChina
| | - Tianhua Zhou
- Department of Cell Biology and Department of Gastroenterology of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Institute of GastroenterologyZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
- Department of Molecular GeneticsUniversity of TorontoONCanada
| |
Collapse
|
49
|
Sahlu BW, Zhao S, Wang X, Umer S, Zou H, Huang J, Zhu H. Long noncoding RNAs: new insights in modulating mammalian spermatogenesis. J Anim Sci Biotechnol 2020; 11:16. [PMID: 32128162 PMCID: PMC7047388 DOI: 10.1186/s40104-019-0424-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022] Open
Abstract
Spermatogenesis is a complex differentiating developmental process in which undifferentiated spermatogonial germ cells differentiate into spermatocytes, spermatids, and finally, to mature spermatozoa. This multistage developmental process of spermatogenesis involves the expression of many male germ cell-specific long noncoding RNAs (lncRNAs) and highly regulated and specific gene expression. LncRNAs are a recently discovered large class of noncoding cellular transcripts that are still relatively unexplored. Only a few of them have post-meiotic; however, lncRNAs are involved in many cellular biological processes. The expression of lncRNAs is biologically relevant in the highly dynamic and complex program of spermatogenesis and has become a research focus in recent genome studies. This review considers the important roles and novel regulatory functions whereby lncRNAs modulate mammalian spermatogenesis.
Collapse
Affiliation(s)
- Bahlibi Weldegebriall Sahlu
- 1Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People's Republic of China.,Tigray Agricultural Research Institute, Mekelle Agricultural Research Center, Mekelle, Ethiopia
| | - Shanjiang Zhao
- 1Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People's Republic of China
| | - Xiuge Wang
- 3Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250131 People's Republic of China
| | - Saqib Umer
- 1Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People's Republic of China
| | - Huiying Zou
- 1Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People's Republic of China
| | - Jinming Huang
- 3Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250131 People's Republic of China
| | - Huabin Zhu
- 1Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People's Republic of China
| |
Collapse
|
50
|
Hiam D, Simar D, Laker R, Altıntaş A, Gibson-Helm M, Fletcher E, Moreno-Asso A, Trewin AJ, Barres R, Stepto NK. Epigenetic Reprogramming of Immune Cells in Women With PCOS Impact Genes Controlling Reproductive Function. J Clin Endocrinol Metab 2019; 104:6155-6170. [PMID: 31390009 DOI: 10.1210/jc.2019-01015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/01/2019] [Indexed: 12/31/2022]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS) is a chronic disease affecting reproductive function and whole-body metabolism. Although the etiology is unclear, emerging evidence indicates that the epigenetics may be a contributing factor. OBJECTIVE To determine the role of global and genome-wide epigenetic modifications in specific immune cells in PCOS compared with controls and whether these could be related to clinical features of PCOS. DESIGN Cross-sectional study. PARTICIPANTS Women with (n = 17) or without PCOS (n = 17). SETTING Recruited from the general community. MAIN OUTCOME MEASURES Isolated peripheral blood mononuclear cells were analyzed using multicolor flow cytometry methods to determine global DNA methylation levels in a cell-specific fashion. Transcriptomic and genome-wide DNA methylation analyses were performed on T helper cells using RNA sequencing and reduced representation bisulfite sequencing. RESULTS Women with PCOS had lower global DNA methylation in monocytes (P = 0.006) and in T helper (P = 0.004), T cytotoxic (P = 0.004), and B cells (P = 0.03). Specific genome-wide DNA methylation analysis of T helper cells from women with PCOS identified 5581 differentially methylated CpG sites. Functional gene ontology enrichment analysis showed that genes located at the proximity of differentially methylated CpG sites belong to pathways related to reproductive function and immune cell function. However, these genes were not altered at the transcriptomic level. CONCLUSIONS It was shown that PCOS is associated with global and gene-specific DNA methylation remodeling in a cell type-specific manner. Further investigation is warranted to determine whether epigenetic reprogramming of immune cells is important in determining the different phenotypes of PCOS.
Collapse
Affiliation(s)
- Danielle Hiam
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - David Simar
- Mechanisms of Disease and Translational Research, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Rhianna Laker
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Ali Altıntaş
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Melanie Gibson-Helm
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Elly Fletcher
- Baker Heart and Disease Institute, Melbourne, Victoria, Australia
| | - Alba Moreno-Asso
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Adam J Trewin
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Romain Barres
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Nigel K Stepto
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Medicine-Western Health, School of Medicine, Faculty of Medicine, Dentistry, and Health Science, Melbourne, Australia
| |
Collapse
|