1
|
Hassanein HH, WalyEldeen AA, Sayed RMS, Taha AAA, Ibrahim SA, Hassan H. Glypican3 and serglycin as potential biomarkers involved in the pathogenesis of ovarian endometriosis. Tissue Cell 2025; 95:102867. [PMID: 40139079 DOI: 10.1016/j.tice.2025.102867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/15/2025] [Indexed: 03/29/2025]
Abstract
Endometriosis, a non-malignant gynecological disorder characterized by debilitating symptoms, displays several cancer-like characteristics, including metastatic behavior and extracellular matrix (ECM) remodeling. The dynamics of ECM are largely influenced by proteoglycans (PGs), a family of glycosaminoglycan (GAG)-decorated proteins known for their regulatory impact on cellular behavior through ECM modulation. This study aimed to investigate the dysregulated expression of 20 PG genes in ovarian endometrioma (n = 24) in comparison to eutopic endometrial tissue samples (n = 16) from patients diagnosed with ovarian endometriosis, employing quantitative real-time PCR (qPCR) and immunohistochemistry (IHC). qPCR screening identified four upregulated PG genes-glypican 3 (GPC3), decorin (DCN), serglycin (SRGN), and glypican 5 (GPC5)-whereas 16 PG genes were found to be downregulated. In ovarian endometrioma, relative to eutopic endometrial tissue, GPC3 and SRGN expression were further verified to be significantly overexpressed by 18.6-fold (P < 0.05) and 6.7-fold (P < 0.01), respectively, whereas brevican (BCAN) and syndecan 4 (SDC4) were markedly downregulated by approximately 90 % and 86 %, respectively (both P < 0.001). IHC staining further validated the significant overexpression of GPC3 protein in ovarian endometrioma compared to eutopic and control endometrial tissues (P < 0.0001). In-silico analysis using the Enrichr database identified enriched functional pathways associated with the top overexpressed genes, such as hypoxia, glycolysis, and WNT signaling, known to be implicated in endometriosis. These findings suggest that the overexpression of GPC3 and SRGN may contribute to the pathogenesis of ovarian endometrioma, highlighting their potential as biomarkers and therapeutic targets for this disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Hebatallah Hassan
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt.
| |
Collapse
|
2
|
Kinoshita H, Takenouchi K, Tsukamoto N, Ohnuki K, Suzuki T, Nakatsura T. Identification of 68 HLA-A24 and -A2-restricted cytotoxic T lymphocyte-inducing peptides derived from 10 common cancer-specific antigens frequently expressed in various solid cancers. Neoplasia 2025; 61:101135. [PMID: 39938154 PMCID: PMC11869973 DOI: 10.1016/j.neo.2025.101135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025]
Abstract
Targeting cancer antigens expressed in cancer cells is necessary to develop cancer-specific immunotherapy. We have performed immunohistochemical analysis of various solid cancer specimens, adding ROBO1, AFP, TGFBI, EphB4, CLDN1, and LAT1 to the previously studied glypican-3 (GPC3), HSP105α, FOXM1, and SPARC, and found that these 10 common cancer antigens are sufficient to cover most solid cancers. These antigens were frequently expressed in various solid cancers but shown to be rarely ex-pressed, with some exceptions, in non-cancerous normal organs adjacent to the cancer. In this study, we predicted 72 and 73 peptides that bind to HLA-A24 and -A2 in silico from the full-length amino acid sequences of these 10 common cancer antigens and immunized each HLA transgenic mouse with a cocktail of synthesized peptides together with the poly I:CLC three times weekly to analyze the antigen-specific immune response. As a result, 68 peptide sequences (30 and 38, respectively) were identified that had higher cytotoxic T lymphocyte (CTL) induction ability than GPC3 298-306 and GPC3 144-152 used in the clinical trials. Furthermore, experiments with cocktail peptide vaccines using mouse models expressing subcutaneous tumors of each antigen showed promising results in terms of safety and efficacy. These peptides identified in this study, derived from 10 common cancer antigens covering all solid cancers, are expected to be clinically applicable as cocktail peptide vaccines.
Collapse
Affiliation(s)
- Hiroki Kinoshita
- Graduate School of Biological Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| | - Kazumasa Takenouchi
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| | - Nobuo Tsukamoto
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| | - Kazunobu Ohnuki
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| | - Toshihiro Suzuki
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan.
| |
Collapse
|
3
|
Jin X, Liu X, Zhou Z, Ding Y, Wu Y, Qiu J, Shen C. Identification of HLA-A2 restricted epitopes of glypican-3 and induction of CTL responses in HLA-A2 transgenic mice. Cancer Immunol Immunother 2021; 71:1569-1582. [PMID: 34724090 DOI: 10.1007/s00262-021-03096-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with high mortality, but lacks effective treatments. Carcinoembryonic antigen glypican-3 (GPC3) is a tumor-associated antigen overexpressed in HCC but rarely expressed in healthy individuals and thus is one of the most promising therapeutic targets. T cell epitope-based vaccines may bring light to HCC patients, especially to the patients at a late stage. However, few epitopes from GPC3 were identified to date, which limited the application of GPC3-derived epitopes in immunotherapy and T cell function detection. In this study, a total of 25 HLA-A0201 restricted GPC3 epitopes were in silico predicted and selected as candidate epitopes. Then, HLA-A0201+/GPC3+ HCC patients' PBMCs were collected and co-stimulated with the candidate epitope peptides in ex vivo IFN-γ Elispot assay, by which five epitopes were identified as real-world epitopes. Their capacity to elicit specific CD8+ T cells activation and proliferation was further confirmed by in vitro co-cultures of patients' PBMCs with peptide, in vitro co-cultures of healthy donors' PBLs with DCs and peptide, T2 cell binding assay as well as HLA-A2 molecule stability assay. Moreover, the in vivo immunogenicity of the five validated epitopes was confirmed by peptides cocktail/poly(I:C) vaccination in HLA-A0201/DR1 transgenic mice. Robust epitope-specific CD8+ T cell responses and cytotoxicity targeting HepG2 cells were observed as detected by IFN-γ Elispot, intracellular IFN-γ staining and cytolysis assay. This study provided novel GPC3 CTL epitopes for the development of T cell epitope vaccines and evaluation of GPC3 specific T cell responses.
Collapse
Affiliation(s)
- Xiaoxiao Jin
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Xiaotao Liu
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Zining Zhou
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yan Ding
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yandan Wu
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jie Qiu
- Department of Hepatobiliary Oncology, The Second Hospital of Nanjing Affiliated To Southeast University, Nanjing, 210003, Jiangsu, China.
| | - Chuanlai Shen
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China. .,Jiangsu Province Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
4
|
Extracellular miRNAs as Predictive Biomarkers for Glypican-3-Derived Peptide Vaccine Therapy Response in Ovarian Clear Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13030550. [PMID: 33535558 PMCID: PMC7867082 DOI: 10.3390/cancers13030550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Ovarian clear cell carcinoma (OCCC) has been treated with surgery and chemotherapy; however, the prognosis remains poor because of chemoresistance. Therefore, immunotherapies are attracting attention, including the GPC3 peptide vaccine, which improves overall survival. However, the response rate is limited and there are no sufficient predictive biomarkers that can identify responders before treatment. Our purpose was to identify circulating serum miRNAs as predictive biomarkers for response to GPC3 peptide vaccine. Eighty-four patients in a phase II trial of a GPC3 peptide vaccine were enrolled and miRNA sequencing was performed on their serum samples. Candidate miRNAs were selected from a group of 14 patients for whom treatment was responsive and validated in an independent group of 10 patients for whom treatment was responsive. Three markedly upregulated miRNAs, miR-375-3p, miR-193a-5p, and miR-1228-5p, were identified, and the combination of those miRNAs demonstrated high value in the prediction of the response. The origin of these miRNAs was assessed by referring to OCCC tissue miRNA profiles, and they were not identified as cancer tissue-related miRNAs. Functional annotation analysis suggested that they were associated with interferon-related pathways. The miRNAs identified herein have great potential to allow the realization of liquid biopsy for predicting the immunotherapy response and precision medicine.
Collapse
|
5
|
Benard E, Casey NP, Inderberg EM, Wälchli S. SJI 2020 special issue: A catalogue of Ovarian Cancer targets for CAR therapy. Scand J Immunol 2020; 92:e12917. [PMID: 32557659 DOI: 10.1111/sji.12917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
Ovarian Cancer (OC) is currently difficult to cure, mainly due to its late detection and the advanced state of the disease at the time of diagnosis. Therefore, conventional treatments such as debulking surgery and combination chemotherapy are rarely able to control progression of the tumour, and relapses are frequent. Alternative therapies are currently being evaluated, including immunotherapy and advanced T cell-based therapy. In the present review, we will focus on a description of those Chimeric Antigen Receptors (CARs) that have been validated in the laboratory or are being tested in the clinic. Numerous target antigens have been defined due to the identification of OC biomarkers, and many are being used as CAR targets. We provide an exhaustive list of these constructs and their current status. Despite being innovative and efficient, the OC-specific CARs face a barrier to their clinical efficacy: the tumour microenvironment (TME). Indeed, effector cells expressing CARs have been shown to be severely inhibited, rendering the CAR T cells useless once at the tumour site. Herein, we give a thorough description of the highly immunosuppressive OC TME and present recent studies and innovations that have enabled CAR T cells to counteract this negative environment and to destroy tumours.
Collapse
Affiliation(s)
- Emmanuelle Benard
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Nicholas P Casey
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Else Marit Inderberg
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Sébastien Wälchli
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Guo M, Zhang H, Zheng J, Liu Y. Glypican-3: A New Target for Diagnosis and Treatment of Hepatocellular Carcinoma. J Cancer 2020; 11:2008-2021. [PMID: 32127929 PMCID: PMC7052944 DOI: 10.7150/jca.39972] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/04/2020] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the second leading cause of cancer-related deaths worldwide, and hepatocellular carcinoma is the most common type. The pathogenesis of hepatocellular carcinoma is concealed, its progress is rapid, its prognosis is poor, and the mortality rate is high. Therefore, novel molecular targets for hepatocellular carcinoma early diagnosis and development of targeted therapy are critically needed. Glypican-3, a cell-surface glycoproteins in which heparan sulfate glycosaminoglycan chains are covalently linked to a protein core, is overexpressed in HCC tissues but not in the healthy adult liver. Thus, Glypican-3 is becoming a promising candidate for liver cancer diagnosis and immunotherapy. Up to now, Glypican-3 has been a reliable immunohistochemical marker for hepatocellular carcinoma diagnosis, and soluble Glypican-3 in serum has becoming a promising marker for liquid biopsy. Moreover, various immunotherapies targeting Glypican-3 have been developed, including Glypican-3 vaccines, anti- Glypican-3 immunotoxin and chimeric-antigen-receptor modified cells. In this review, we summarize and analyze the structure and physicochemical properties of Glypican-3 molecules, then review their biological functions and applications in clinical diagnosis, and explore the diagnosis and treatment strategies based on Glypican-3.
Collapse
Affiliation(s)
- Meng Guo
- National Key Laboratory of Medical Immunology &Institute of Immunology, Second Military Medical University, Shanghai, China
- Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hailing Zhang
- Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jianming Zheng
- Department of Pathology ,Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yangfang Liu
- Department of Pathology ,Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
7
|
Liu S, Liu W, Zhao D, Zhang Y, Zhao Z, Luo B. The Glypican-4 Gene Polymorphism rs1048369 and Susceptibility to Epstein-Barr Virus-Positive and -Negative Nasopharyngeal Carcinoma in Northern China. Oncol Res Treat 2019; 42:572-579. [PMID: 31522169 DOI: 10.1159/000502753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/14/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Gene polymorphism rs1048369 of glypican-4 (GPC4) gene has been reported to be significantly different between Epstein-Barr virus (EBV)-associated gastric carcinoma (GC) and EBV-negative GC. However, little is known about the polymorphism in nasopharyngeal carcinoma (NPC), which is a malignant tumor with a high prevalence of EBV. OBJECTIVE The distribution of GPC4 polymorphism rs1048369 was investigated in NPC patients, especially in those with EBV infection. The association between the polymorphism of GPC4 and the susceptibility to EBV-positive and EBV-negative NPC was also explored. PATIENTS AND METHODS The GPC4 gene polymorphism rs1048369 was detected in 143 cases of EBV-positive NPC and in 19 cases of EBV-negative NPC using polymerase chain reaction. One hundred and seven peripheral blood samples from healthy individuals were also measured as a control group. RESULTS The difference in genotype CC between EBV-positive NPC patients and healthy individuals was significant (χ2 = 15.273, p < 0.01). No significant difference was observed between EBV-positive and EBV-negative NPC cases. Between EBV-negative NPC cases and healthy individuals, there was no significant difference in GPC4 gene polymorphism in both genotypic and allelic frequencies. CONCLUSIONS The GPC4 gene polymorphism is associated with susceptibility to EBV-positive NPC. The CC genotype of GPC4 may represent a risk factor for NPC in Northern China.
Collapse
Affiliation(s)
- Shuzhen Liu
- Department of Transfusion Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China
| | - Wen Liu
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China
| | - Danrui Zhao
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China
| | - Yan Zhang
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China.,Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Zhenzhen Zhao
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China
| | - Bing Luo
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China,
| |
Collapse
|
8
|
Akazawa Y, Nobuoka D, Takahashi M, Yoshikawa T, Shimomura M, Mizuno S, Fujiwara T, Nakamoto Y, Nakatsura T. Higher human lymphocyte antigen class I expression in early-stage cancer cells leads to high sensitivity for cytotoxic T lymphocytes. Cancer Sci 2019; 110:1842-1852. [PMID: 30973665 PMCID: PMC6549930 DOI: 10.1111/cas.14022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 12/15/2022] Open
Abstract
Human lymphocyte antigen (HLA) class I molecules play a central role in cytotoxic T lymphocytes (CTL)‐based antitumor immunity. However, the expression rate of HLA class I in cancer cells remains a topic of discussion. We compared HLA class I expression levels between cancer cells and surrounding non–tumorous hepatocytes in 20 early‐stage hepatocellular carcinoma (HCC) patients by immunohistochemistry using EMR 8‐5. The expression levels of HLA class I were classified as negative, incomplete positive or complete positive. Similarly, for various types of solid cancers, HLA class I expression was examined. For the HLA class I expression in cancer cells, among 20 HCC patients, 13 were complete positive, 3 were incomplete positive, and 4 were negative. In addition, 15 (75.0%) had higher expression levels of HLA class I in cancer cells compared with that in surrounding non–tumorous hepatocytes. An interferon‐γ (IFN‐γ) enzyme‐linked immunospot (ELISPOT) assay indicated that cancer cells with positive expression of HLA class I had strong sensitivity to antigen‐specific CTL. We suggested that HLA class I expression in cancer cells could be involved in the clinical prognosis of HCC patients. Similarly, 66.7%, 100.0%, 66.7% and 62.5% of patients with early‐stage pancreatic, gallbladder, esophageal and breast cancers, respectively, had higher expression levels of HLA class I in cancer cells than in surrounding normal tissue cells. We suggest that in several early‐stage solid cancers, including HCC, HLA class I expression levels in cancer cells are higher than that in surrounding normal tissue cells, which could result in the anti–tumor effect of CTL‐based cancer immunotherapy.
Collapse
Affiliation(s)
- Yu Akazawa
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan.,Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Daisuke Nobuoka
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Mari Takahashi
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Toshiaki Yoshikawa
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Manami Shimomura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Shoichi Mizuno
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| |
Collapse
|
9
|
Shimizu Y, Suzuki T, Yoshikawa T, Endo I, Nakatsura T. Next-Generation Cancer Immunotherapy Targeting Glypican-3. Front Oncol 2019; 9:248. [PMID: 31024850 PMCID: PMC6469401 DOI: 10.3389/fonc.2019.00248] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022] Open
Abstract
Glypican-3 (GPC3), a 65 kD protein consisting of 580 amino acids, is a heparan sulfate proteoglycan bound to the cell membrane by glycosylphosphatidylinositol. This protein is expressed in the liver and the kidney of healthy fetuses but is hardly expressed in adults, except in the placenta. Contrarily, GPC3 is specifically expressed in hepatocellular carcinoma (HCC), ovarian clear cell carcinoma, melanoma, squamous cell carcinoma of the lung, hepatoblastoma, nephroblastoma (Wilms tumor), yolk sac tumor, and some pediatric cancers. Although the precise function of GPC3 remains unclear, it has been strongly suggested that it is related to the malignant transformation of HCC. We identified GPC3 as a promising target for cancer immunotherapy and have been working on the development of cancer immunotherapeutic agents targeting it through clinical trials. In some trials, it was revealed that the GPC3 peptide vaccines we developed using human leukocyte antigen-A24- and A2-restricted GPC3-derived peptides could induce GPC3-specific cytotoxic T cells in most vaccinated patients and thereby improve their prognosis. To further improve the clinical efficacy of cancer immunotherapy targeting GPC3, we are also developing next-generation therapeutic strategies using T cells engineered to express antigen-specific T-cell receptor or chimeric antigen receptor. In addition, we have successfully monitored the levels of serum full-length GPC3 protein, which is somehow secreted in the blood. The utility of GPC3 as a biomarker for predicting tumor recurrence and treatment efficacy is now being considered. In this review article, we summarize the results of clinical trials carried out by our team and describe the novel agent targeting the cancer-specific shared antigen, GPC3.
Collapse
Affiliation(s)
- Yasuhiro Shimizu
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan.,Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Toshihiro Suzuki
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Toshiaki Yoshikawa
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| |
Collapse
|
10
|
Want MY, Konstorum A, Huang RY, Jain V, Matsueda S, Tsuji T, Lugade A, Odunsi K, Koya R, Battaglia S. Neoantigens retention in patient derived xenograft models mediates autologous T cells activation in ovarian cancer. Oncoimmunology 2019; 8:e1586042. [PMID: 31069153 PMCID: PMC6492964 DOI: 10.1080/2162402x.2019.1586042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/17/2019] [Accepted: 02/15/2019] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OC) has an overall modest number of mutations that facilitate a functional immune infiltrate able to recognize tumor mutated antigens, or neoantigens. Although patient-derived xenografts (PDXs) can partially model the tumor mutational load and mimic response to chemotherapy, no study profiled a neoantigen-driven response in OC PDXs. Here we demonstrate that the genomic status of the primary tumor from an OC patient can be recapitulated in vivo in a PDX model, with the goal of defining autologous T cells activation by neoantigens using in silico, in vitro and in vivo approaches. By profiling the PDX mutanome we discovered three main clusters of mutations defining the expansion, retraction or conservation of tumor clones based on their variant allele frequencies (VAF). RNASeq analyses revealed a strong functional conservation between the primary tumor and PDXs, highlighted by the upregulation of antigen presenting pathways. We tested in vitro a set of 30 neoantigens for recognition by autologous T cells and identified a core of six neoantigens that define a potent T cell activation able to slow tumor growth in vivo. The pattern of recognition of these six neoantigens indicates the pre-existence of anti-tumor immunity in the patient. To evaluate the breadth of T cell activation, we performed single cell sequencing profiling the TCR repertoire upon stimulation with neoantigenic moieties and identified sequence motifs that define an oligoclonal and autologous T cell response. Overall, these results indicate that OC PDXs can be a valid tool to model OC response to immunotherapy.
Collapse
Affiliation(s)
| | - Anna Konstorum
- Center for Quantitative Medicine, UConn Health, Farmington, CT, USA
| | - Ruea-Yea Huang
- Center For Immunotherapy, Comprehensive Cancer Center, Buffalo, NY, USA
| | - Vaibhav Jain
- Center For Immunotherapy, Comprehensive Cancer Center, Buffalo, NY, USA
| | - Satoko Matsueda
- Center For Immunotherapy, Comprehensive Cancer Center, Buffalo, NY, USA
| | - Takemasa Tsuji
- Center For Immunotherapy, Comprehensive Cancer Center, Buffalo, NY, USA
| | - Amit Lugade
- Center For Immunotherapy, Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kunle Odunsi
- Center For Immunotherapy, Comprehensive Cancer Center, Buffalo, NY, USA
| | - Richard Koya
- Center For Immunotherapy, Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sebastiano Battaglia
- Center For Immunotherapy, Comprehensive Cancer Center, Buffalo, NY, USA.,Department of Cancer Genetics and Genomics, Roswell Park, Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
11
|
Liang Z, Lu Z, Zhang Y, Shang D, Li R, Liu L, Zhao Z, Zhang P, Lin Q, Feng C, Zhang Y, Liu P, Tu Z, Liu H. Targeting Membrane Receptors of Ovarian Cancer Cells for Therapy. Curr Cancer Drug Targets 2018; 19:449-467. [PMID: 30306870 DOI: 10.2174/1568009618666181010091246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/31/2018] [Accepted: 09/29/2018] [Indexed: 01/02/2023]
Abstract
Ovarian cancer is a leading cause of death worldwide from gynecological malignancies, mainly because there are few early symptoms and the disease is generally diagnosed at an advanced stage. In addition, despite the effectiveness of cytoreductive surgery for ovarian cancer and the high response rates to chemotherapy, survival has improved little over the last 20 years. The management of patients with ovarian cancer also remains similar despite studies showing striking differences and heterogeneity among different subtypes. It is therefore clear that novel targeted therapeutics are urgently needed to improve clinical outcomes for ovarian cancer. To that end, several membrane receptors associated with pivotal cellular processes and often aberrantly overexpressed in ovarian cancer cells have emerged as potential targets for receptor-mediated therapeutic strategies including specific agents and multifunctional delivery systems based on ligand-receptor binding. This review focuses on the profiles and potentials of such strategies proposed for ovarian cancer treatment and imaging.
Collapse
Affiliation(s)
- Zhiquan Liang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ziwen Lu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yafei Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Dongsheng Shang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ruyan Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lanlan Liu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhicong Zhao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Peishan Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qiong Lin
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chunlai Feng
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yibang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Peng Liu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhigang Tu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
12
|
Correlates of immune and clinical activity of novel cancer vaccines. Semin Immunol 2018; 39:119-136. [PMID: 29709421 DOI: 10.1016/j.smim.2018.04.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/30/2022]
Abstract
Cancer vaccines are solely meant to amplify the pool of type 1 cytokine oriented CD4+ and CD8+ T cells that recognize tumor antigen and ultimately foster control and destruction of a growing tumor. They are not designed to deal with all aspects of immune ignorance, exclusion, suppression and escape that are generally in place in patients with cancer and may prevent the T cells to enter the tumor or to exert their effector function. This simple fact prompted for a reappraisal of the many recent trials in which therapeutic cancer vaccines have been examined as monotherapy. In this review, I focus on trials examining therapeutic cancer vaccines at different stages of existing disease. The analysis of vaccine-induced immune responses and clinical activity of therapeutic cancer vaccines revealed four levels of evidence for vaccine efficacy. The lowest levels, reflect the many trials in which the strength of the tumor-reactive T cell response of vaccinated patients is associated with better clinical outcome or change in tumor marker. The highest levels indicate occasional regressions of tumors and metastases after vaccination or reflect a stronger clinical impact of vaccine in a randomized trial. A whole series of trials in which vaccine-induced tumor immunity correlates with the clinical impact of cancer vaccines in premalignant diseases, settings of low tumor burden or tumor regressions in patients with cancer, form an attest to the fact that cancer vaccines work. While the current number of true clinical responders in each cancer trial is too low for firm conclusions on immune correlates of clinical reactivity in cancer, extrapolation of the results from vaccinated patients with pre-cancers suggest a requirement of broad type 1 T cell reactivity.
Collapse
|
13
|
Shimizu Y, Suzuki T, Yoshikawa T, Tsuchiya N, Sawada Y, Endo I, Nakatsura T. Cancer immunotherapy-targeted glypican-3 or neoantigens. Cancer Sci 2018; 109:531-541. [PMID: 29285841 PMCID: PMC5834776 DOI: 10.1111/cas.13485] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/22/2017] [Accepted: 12/25/2017] [Indexed: 12/17/2022] Open
Abstract
Immune checkpoint inhibitors have ushered in a new era in cancer therapy, although other therapies or combinations thereof are still needed for many patients for whom these drugs are ineffective. In this light, we have identified glypican‐3 an HLA‐24, HLA‐A2 restriction peptide with extreme cancer specificity. In this paper, we summarize results from a number of related clinical trials showing that glypican‐3 peptide vaccines induce specific CTLs in most patients (UMIN Clinical Trials Registry: UMIN000001395, UMIN000005093, UMIN000002614, UMN000003696, and UMIN000006357). We also describe the current state of personalized cancer immunotherapy based on neoantigens, and assess, based on our own research and experience, the potential of such therapy to elicit cancer regression. Finally, we discuss the future direction of cancer immunotherapy.
Collapse
Affiliation(s)
- Yasuhiro Shimizu
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan.,Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Toshihiro Suzuki
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Toshiaki Yoshikawa
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Nobuhiro Tsuchiya
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan.,Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yu Sawada
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan.,Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| |
Collapse
|
14
|
Nikitovic D, Berdiaki A, Spyridaki I, Krasanakis T, Tsatsakis A, Tzanakakis GN. Proteoglycans-Biomarkers and Targets in Cancer Therapy. Front Endocrinol (Lausanne) 2018; 9:69. [PMID: 29559954 PMCID: PMC5845539 DOI: 10.3389/fendo.2018.00069] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/16/2018] [Indexed: 12/18/2022] Open
Abstract
Proteoglycans (PGs), important constituents of the extracellular matrix, have been associated with cancer pathogenesis. Their unique structure consisting of a protein core and glycosaminoglycan chains endowed with fine modifications constitutes these molecules as capable cellular effectors important for homeostasis and contributing to disease progression. Indeed, differential expression of PGs and their interacting proteins has been characterized as specific for disease evolvement in various cancer types. Importantly, PGs to a large extent regulate the bioavailability of hormones, growth factors, and cytokines as well as the activation of their respective receptors which regulate phenotypic diversibility, gene expression and rates of recurrence in specific tumor types. Defining and targeting these effectors on an individual patient basis offers ground for the development of newer therapeutic approaches which may act as either supportive or a substitute treatment to the standard therapy protocols. This review discusses the roles of PGs in cancer progression, developing technologies utilized for the defining of the PG "signature" in disease, and how this may facilitate the generation of tailor-made cancer strategies.
Collapse
Affiliation(s)
- Dragana Nikitovic
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, Greece
| | - Aikaterini Berdiaki
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, Greece
| | - Ioanna Spyridaki
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, Greece
| | - Theodoros Krasanakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Heraklion, Greece
| | - George N Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, Greece
| |
Collapse
|
15
|
Ricard-Blum S, Vallet SD. Fragments generated upon extracellular matrix remodeling: Biological regulators and potential drugs. Matrix Biol 2017; 75-76:170-189. [PMID: 29133183 DOI: 10.1016/j.matbio.2017.11.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022]
Abstract
The remodeling of the extracellular matrix (ECM) by several protease families releases a number of bioactive fragments, which regulate numerous biological processes such as autophagy, angiogenesis, adipogenesis, fibrosis, tumor growth, metastasis and wound healing. We review here the proteases which generate bioactive ECM fragments, their ECM substrates, the major bioactive ECM fragments, together with their biological properties and their receptors. The translation of ECM fragments into drugs is challenging and would take advantage of an integrative approach to optimize the design of pre-clinical and clinical studies. This could be done by building the contextualized interaction network of the ECM fragment repertoire including their parent proteins, remodeling proteinases, and their receptors, and by using mathematical disease models.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, F-69622 Villeurbanne cedex, France.
| | - Sylvain D Vallet
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, F-69622 Villeurbanne cedex, France.
| |
Collapse
|
16
|
Suzuki S, Sakata J, Utsumi F, Sekiya R, Kajiyama H, Shibata K, Kikkawa F, Nakatsura T. Efficacy of glypican-3-derived peptide vaccine therapy on the survival of patients with refractory ovarian clear cell carcinoma. Oncoimmunology 2016; 5:e1238542. [PMID: 27999758 PMCID: PMC5139642 DOI: 10.1080/2162402x.2016.1238542] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/13/2016] [Accepted: 09/13/2016] [Indexed: 12/23/2022] Open
Abstract
Compared with other epithelial ovarian carcinoma subtypes, ovarian clear cell carcinoma (OCCC) has been recognized to show chemoresistance. Therefore, new treatment modalities are required for patients with OCCC that is refractory to chemotherapy. The carcinoembryonic antigen glypican-3 (GPC3) is expressed by approximately half of OCCC and is a promising immunotherapeutic target. The purpose of this study was to evaluate the effect of GPC3 peptide vaccine against refractory OCCC patients. We conducted a phase II trial with a GPC3-derived peptide vaccine in OCCC patients. Immunological responses were analyzed by ex vivo IFNγ ELISPOT assay. We also evaluated control subjects, who received best supportive care without vaccinations during the same period. Thirty-two patients with refractory OCCC were enrolled between July 2010 and September 2015, and underwent GPC3 peptide vaccination. Fifteen patients were vaccinated less than six times because their general condition progressively deteriorated, and 17 patients were vaccinated at least six times. Three patients showed a partial response as the best overall response. The GPC3 peptide vaccine induced a GPC3-specific CTL response in 15 out of 24 patients who had PBMCs collected three times or more. The prognosis of palliative care patients without GPC3 peptide vaccinations was significantly poorer than that of those with GPC3 peptide vaccinations (post cancer-treatment survival: p = 0.002). Although the disease control rate was not high, our results suggest that GPC3 peptide vaccinations may hold a significant impact to prolong survival of patients with refractory OCCC, allowing them to maintain quality of life with no serious toxicities.
Collapse
Affiliation(s)
- Shiro Suzuki
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine , Showa-ku, Nagoya, Japan
| | - Jun Sakata
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine , Showa-ku, Nagoya, Japan
| | - Fumi Utsumi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine , Showa-ku, Nagoya, Japan
| | - Ryuichiro Sekiya
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine , Showa-ku, Nagoya, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine , Showa-ku, Nagoya, Japan
| | - Kiyosumi Shibata
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine , Showa-ku, Nagoya, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine , Showa-ku, Nagoya, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center , Kashiwa, Chiba, Japan
| |
Collapse
|
17
|
Zhao D, Liu S, Sun L, Zhao Z, Liu S, Kuang X, Shu J, Luo B. Glypican-4 gene polymorphism (rs1048369) and susceptibility to Epstein-Barr virus-associated and -negative gastric carcinoma. Virus Res 2016; 220:52-6. [DOI: 10.1016/j.virusres.2016.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/03/2016] [Accepted: 04/04/2016] [Indexed: 12/14/2022]
|
18
|
Fujinami N, Yoshikawa T, Sawada Y, Shimomura M, Iwama T, Sugai S, Kitano S, Uemura Y, Nakatsura T. Enhancement of antitumor effect by peptide vaccine therapy in combination with anti-CD4 antibody: Study in a murine model. Biochem Biophys Rep 2016; 5:482-491. [PMID: 28955856 PMCID: PMC5600353 DOI: 10.1016/j.bbrep.2016.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 01/30/2023] Open
Abstract
Purpose The clinical efficacy of cancer peptide vaccine therapy is insufficient. To enhance the anti-tumor effect of peptide vaccine therapy, we combined this therapy with an anti-CD4 mAb (GK1.5), which is known to deplete CD4+ cells, including regulatory T cells (Tregs). Methods To determine the treatment schedule, the number of lymphocyte subsets in the peripheral blood of mice was traced by flow cytometry after administration of anti-CD4 mAb. The ovalbumin (OVA)257–264 peptide vaccine was injected intradermally and anti-CD4 mAb was administered intraperitoneally into C57BL/6 mice at different schedules. We evaluated the enhancement of OVA peptide-specific cytotoxic T lymphocyte (CTL) induction in the combination therapy using the ELISPOT assay, CD107a assay, and cytokine assay. We then examined the in vivo metastasis inhibitory effect by OVA peptide vaccine therapy in combination with anti-CD4 mAb against OVA-expressing thymoma (EG7) in a murine liver metastatic model. Results We showed that peptide-specific CTL induction was enhanced by the peptide vaccine in combination with anti-CD4 mAb and that the optimized treatment schedule had the strongest induction effect of peptide-specific CTLs using an IFN-γ ELISPOT assay. We also confirmed that the CD107a+ cells secreted perforin and granzyme B and the amount of IL-2 and TNF produced by these CTLs increased when the peptide vaccine was combined with anti-CD4 mAb. Furthermore, metastasis was inhibited by peptide vaccines in combination with anti-CD4 mAb compared to peptide vaccine alone in a murine liver metastatic model. Conclusion The use of anti-CD4 mAb in combination with the OVA peptide vaccine therapy increased the number of peptide-specific CTLs and showed a higher therapeutic effect against OVA-expressing tumors. The combination with anti-CD4 mAb may provide a new cancer vaccine strategy. Peptide-specific CTL induction and function were enhanced by depletion of CD4+ cells. Anti-tumor effect by the peptide vaccine was enhanced by the depletion of CD4+ cells. Metastasis was inhibited by vaccine with depletion of CD4+ cells in a murine model. Combination with the depletion of CD4+ cells could be a new cancer vaccine strategy.
Collapse
Key Words
- 7-AAD, 7-amino-actinomycin D
- Anti-CD4 antibody
- CTL, cytotoxic T lymphocyte
- Cancer
- DC, dendritic cell
- ELISPOT assay, enzyme-linked immunospot assay
- FITC, fluorescein isothiocyanate
- FOXP3, forkhead box P3
- GPC3, glypican-3
- HCC, hepatocellular carcinoma
- IFN-γ, interferon-γ
- IL-2, interleukine-2
- Immunotherapy
- MHC, major histocompatibility complex
- Murine liver metastatic model
- OVA, ovalbumin
- PD-1, programmed death-1
- PE, phycoerythrin
- Peptide vaccine
- QOL, quality of life
- TGF-β, transforming growth factor-βl
- TNF, tumor necrosis factor
- Treg, regulatory T cell
- mAb, monoclonal antibody
Collapse
Affiliation(s)
- Norihiro Fujinami
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center National Cancer Center, Kashiwa, Chiba, Japan.,Research Institute for Biomedical Sciences, Tokyo University of Science, Japan
| | - Toshiaki Yoshikawa
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center National Cancer Center, Kashiwa, Chiba, Japan
| | - Yu Sawada
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center National Cancer Center, Kashiwa, Chiba, Japan.,Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Manami Shimomura
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center National Cancer Center, Kashiwa, Chiba, Japan
| | - Tatsuaki Iwama
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center National Cancer Center, Kashiwa, Chiba, Japan
| | - Shiori Sugai
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center National Cancer Center, Kashiwa, Chiba, Japan.,Research Institute for Biomedical Sciences, Tokyo University of Science, Japan
| | - Shigehisa Kitano
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center National Cancer Center, Kashiwa, Chiba, Japan.,Department of Experimental Therapeutics, National Cancer Center Hospital, Tsukiji, Tokyo, Japan
| | - Yasushi Uemura
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center National Cancer Center, Kashiwa, Chiba, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center National Cancer Center, Kashiwa, Chiba, Japan.,Research Institute for Biomedical Sciences, Tokyo University of Science, Japan
| |
Collapse
|
19
|
Sawada Y, Yoshikawa T, Ofuji K, Yoshimura M, Tsuchiya N, Takahashi M, Nobuoka D, Gotohda N, Takahashi S, Kato Y, Konishi M, Kinoshita T, Ikeda M, Nakachi K, Yamazaki N, Mizuno S, Takayama T, Yamao K, Uesaka K, Furuse J, Endo I, Nakatsura T. Phase II study of the GPC3-derived peptide vaccine as an adjuvant therapy for hepatocellular carcinoma patients. Oncoimmunology 2016; 5:e1129483. [PMID: 27467945 PMCID: PMC4910752 DOI: 10.1080/2162402x.2015.1129483] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 11/30/2015] [Accepted: 11/30/2015] [Indexed: 12/14/2022] Open
Abstract
The recurrence rates of Hepatocellular carcinoma (HCC) are high, necessitating novel and effective adjuvant therapies. Therefore, we conducted a phase II study of glypican-3 (GPC3) peptide vaccine as an adjuvant therapy for HCC patients. Forty-one patients with initial HCC who had undergone surgery or radiofrequency ablation (RFA) were analyzed in this phase II, open-label, single-arm trial. Ten vaccinations were performed for 1 y after curative treatment. We also investigated case-control subjects, where selected patients treated surgically during the same period were analyzed. The expression of GPC3 in the available primary tumors was determined by immunohistochemical analysis. Six patients received RFA therapy while 35 received surgery. The recurrence rate tended to be lower in the 35 patients treated with surgery plus vaccination compared to 33 patients who underwent surgery alone (28.6% vs. 54.3% and 39.4% vs. 54.5% at 1 and 2 y, respectively; p = 0.346, 0.983). Twenty-five patients treated with surgery and vaccination had GPC3-positive tumors; the recurrence rate in this group was significantly lower compared to that in 21 GPC3-positive patients who received surgery only (24% vs. 48% and 52.4% vs. 61.9% at 1 and 2 y, respectively; p = 0.047, 0.387). The GPC3 peptide vaccine improved the 1-y recurrence rate in patients with GPC3-positive tumors. This study demonstrated that GPC3 expression by the primary tumor may be used as a biomarker in a putative larger randomized clinical trial to determine the efficacy of the GPC3-derived peptide vaccine.
Collapse
Affiliation(s)
- Yu Sawada
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan; Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Toshiaki Yoshikawa
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center , Kashiwa, Chiba, Japan
| | - Kazuya Ofuji
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center , Kashiwa, Chiba, Japan
| | - Mayuko Yoshimura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center , Kashiwa, Chiba, Japan
| | - Nobuhiro Tsuchiya
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan; Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Mari Takahashi
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center , Kashiwa, Chiba, Japan
| | - Daisuke Nobuoka
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan; Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Kita-ku, Okayama, Japan
| | - Naoto Gotohda
- Division of Surgery, National Cancer Center, Hospital East , Kashiwa, Chiba, Japan
| | - Shinichiro Takahashi
- Division of Surgery, National Cancer Center, Hospital East , Kashiwa, Chiba, Japan
| | - Yuichiro Kato
- Division of Surgery, National Cancer Center, Hospital East , Kashiwa, Chiba, Japan
| | - Masaru Konishi
- Division of Surgery, National Cancer Center, Hospital East , Kashiwa, Chiba, Japan
| | | | - Masafumi Ikeda
- Division of Hepatobiliary & Pancreatic Medical Oncology, National Cancer Center Hospital East , Kashiwa, Chiba, Japan
| | - Kohei Nakachi
- Division of Hepatobiliary & Pancreatic Medical Oncology, National Cancer Center Hospital East , Kashiwa, Chiba, Japan
| | - Naoya Yamazaki
- Department of Dermatology, National Cancer Center Hospital , Chuo-ku, Tokyo, Japan
| | - Shoichi Mizuno
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center , Kashiwa, Chiba, Japan
| | - Tadatoshi Takayama
- Department of Digestive Surgery, Nihon University School of Medicine , Itabashi-ku, Tokyo, Japan
| | - Kenji Yamao
- Department of Gastroenterology, Aichi Cancer Center Hospital , Chikusa-ku, Nagoya, Japan
| | - Katsuhiko Uesaka
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center Hospital , Sunto- Nagaizumi, Shizuoka, Japan
| | - Junji Furuse
- Department of Medical Oncology, Kyorin University School of Medicine , Mitaka-shi, Tokyo, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine , Kanazawa-ku, Yokohama, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center , Kashiwa, Chiba, Japan
| |
Collapse
|
20
|
Affiliation(s)
- Tetsuya NAKATSURA
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center
| |
Collapse
|
21
|
Drerup JM, Liu Y, Padron AS, Murthy K, Hurez V, Zhang B, Curiel TJ. Immunotherapy for ovarian cancer. Curr Treat Options Oncol 2015; 16:317. [PMID: 25648541 DOI: 10.1007/s11864-014-0317-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OPINION STATEMENT All work referenced herein relates to treatment of epithelial ovarian carcinomas, as their treatment differs from ovarian germ cell cancers and other rare ovarian cancers, the treatments of which are addressed elsewhere. Fallopian tube cancers and primary peritoneal adenocarcinomatosis are also generally treated as epithelial ovarian cancers. The standard of care initial treatment of advanced stage epithelial ovarian cancer is optimal debulking surgery as feasible plus chemotherapy with a platinum plus a taxane agent. If this front-line approach fails, as it too often the case, several FDA-approved agents are available for salvage therapy. However, because no second-line therapy for advanced-stage epithelial ovarian cancer is typically curative, we prefer referral to clinical trials as logistically feasible, even if it means referring patients outside our system. Immune therapy has a sound theoretical basis for treating carcinomas generally, and for treating ovarian cancer in particular. Advances in understanding the immunopathogenic basis of ovarian cancer, and the immunopathologic basis for prior failures of immunotherapy for it and other carcinomas promises to afford novel treatment approaches with potential for significant efficacy, and reduced toxicities compared with cytotoxic agents. Thus, referral to early phase immunotherapy trials for ovarian cancer patients that fail conventional treatment merits consideration.
Collapse
Affiliation(s)
- Justin M Drerup
- Department of Cellular and Structural Biology, School of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Pol J, Bloy N, Buqué A, Eggermont A, Cremer I, Sautès-Fridman C, Galon J, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Peptide-based anticancer vaccines. Oncoimmunology 2015; 4:e974411. [PMID: 26137405 PMCID: PMC4485775 DOI: 10.4161/2162402x.2014.974411] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023] Open
Abstract
Malignant cells express antigens that can be harnessed to elicit anticancer immune responses. One approach to achieve such goal consists in the administration of tumor-associated antigens (TAAs) or peptides thereof as recombinant proteins in the presence of adequate adjuvants. Throughout the past decade, peptide vaccines have been shown to mediate antineoplastic effects in various murine tumor models, especially when administered in the context of potent immunostimulatory regimens. In spite of multiple limitations, first of all the fact that anticancer vaccines are often employed as therapeutic (rather than prophylactic) agents, this immunotherapeutic paradigm has been intensively investigated in clinical scenarios, with promising results. Currently, both experimentalists and clinicians are focusing their efforts on the identification of so-called tumor rejection antigens, i.e., TAAs that can elicit an immune response leading to disease eradication, as well as to combinatorial immunostimulatory interventions with superior adjuvant activity in patients. Here, we summarize the latest advances in the development of peptide vaccines for cancer therapy.
Collapse
Key Words
- APC, antigen-presenting cell
- CMP, carbohydrate-mimetic peptide
- EGFR, epidermal growth factor receptor
- FDA, Food and Drug Administration
- GM-CSF, granulocyte macrophage colony stimulating factor
- HPV, human papillomavirus
- IDH1, isocitrate dehydrogenase 1 (NADP+), soluble
- IDO1, indoleamine 2, 3-dioxygenase 1
- IFNα, interferon α
- IL-2, interleukin-2
- MUC1, mucin 1
- NSCLC, non-small cell lung carcinoma
- PADRE, pan-DR binding peptide epitope
- PPV, personalized peptide vaccination
- SLP, synthetic long peptide
- TAA, tumor-associated antigen
- TERT, telomerase reverse transcriptase
- TLR, Toll-like receptor
- TRA, tumor rejection antigen
- WT1
- carbohydrate-mimetic peptides
- immune checkpoint blockers
- immunostimulatory cytokines
- survivin
- synthetic long peptides
Collapse
Affiliation(s)
- Jonathan Pol
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
| | - Norma Bloy
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- Université Paris-Sud/Paris XI
| | - Aitziber Buqué
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
| | | | - Isabelle Cremer
- INSERM, U1138; Paris, France
- Equipe 13; Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Catherine Sautès-Fridman
- INSERM, U1138; Paris, France
- Equipe 13; Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Jérôme Galon
- INSERM, U1138; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Laboratory of Integrative Cancer Immunology, Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- INSERM; U970; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM; U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
23
|
Study on the mesothelin-specific cytotoxicity against epithelial ovarian cancer with full-length mesothelin cDNA-transduced dendritic cells. Med Oncol 2015; 32:116. [DOI: 10.1007/s12032-015-0561-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 12/31/2022]
|
24
|
Glypican 3 overexpression in primary and metastatic Wilms tumors. Virchows Arch 2014; 466:67-76. [PMID: 25366870 DOI: 10.1007/s00428-014-1669-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 08/06/2014] [Accepted: 10/06/2014] [Indexed: 10/24/2022]
Abstract
Glypican 3 (GPC3), a heparan sulfate proteoglycan, plays a role in cell growth and differentiation. Mutations of the GPC3 gene are responsible for Simpson-Golabi-Behmel syndrome, which is characterized by anomalies of postnatal overgrowth and an increased risk of developing pediatric malignancies, mostly Wilms tumor and liver cancer. In order to understand the possible role of GPC3 in renal development and Wilms tumor formation, we analyzed messenger RNA (mRNA) and protein levels of GPC3 in sporadic Wilms tumors and compared it to normal kidneys and other common renal epithelial tumors. By using Affymetrix HGU133 oligonucleotide gene expression microarray data from 191 renal tumors and 12 normal kidneys, we found significant overexpression of GPC3 in Wilms tumors (p < 0.01), with 3.5-fold higher expression in comparison to normal kidneys and 6.5-fold higher than any type of renal tumors. The GPC3 gene product in Wilms tumor was further evaluated by immunohistochemistry and quantified by an automated image analysis. Cytoplasmic and membranous GPC3 immunoreactivity was present in 77 % of primary Wilms tumors (23/30), 93 % of metastatic Wilms tumors (13/14), 50 % of metanephric adenomas (4/8), 33 % of congenital mesoblastic nephromas (2/6), 100 % of nephrogenic rests (11/11), and 100 % of fetal kidneys (5/5). GPC3 staining was predominantly identified in blastemal and epithelial components of Wilms tumors, similar to that of fetal non-neoplastic kidney. All adult renal tumors (n = 60) and normal kidneys (n = 15) were GPC3 negative. These findings suggest the utility of GPC3 in differential diagnosis and follow-up of Wilms tumors. Our data also indicate that GPC3 is an oncofetal protein with a potential therapeutic value.
Collapse
|
25
|
Mariya T, Hirohashi Y, Torigoe T, Asano T, Kuroda T, Yasuda K, Mizuuchi M, Sonoda T, Saito T, Sato N. Prognostic impact of human leukocyte antigen class I expression and association of platinum resistance with immunologic profiles in epithelial ovarian cancer. Cancer Immunol Res 2014; 2:1220-9. [PMID: 25324403 DOI: 10.1158/2326-6066.cir-14-0101] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epithelial ovarian cancer (EOC) is one of the most deadly carcinomas in females. Immune systems can recognize EOCs; however, a defect of human leukocyte antigen (HLA) class I expression is known to be a major mechanism for escape from immune systems, resulting in poor prognosis. The purpose of this study is to identify novel correlations between immunologic responses and other clinical factors. We investigated the expression of immunologic components in 122 cases of EOCs for which surgical operations were performed between 2001 and 2011. We immunohistochemically stained EOC specimens using an anti-pan HLA class I monoclonal antibody (EMR8-5) and anti-CD3, -CD4, and -CD8 antibodies, and we analyzed correlations between immunologic parameters and clinical factors. In multivariate analysis that used the Cox proportional hazards model, independent prognostic factors for overall survival in advanced EOCs included low expression level of HLA class I [risk ratio (RR), 1.97; 95% confidence interval (CI), 1.01-3.83; P = 0.046] and loss of intraepithelial cytotoxic T lymphocyte (CTL) infiltration (RR, 2.11; 95% CI, 1.06-4.20; P = 0.033). Interestingly, almost all platinum-resistant cases showed a significantly low rate of intraepithelial CTL infiltration in the χ(2) test (positive vs. negative: 9.0% vs. 97.7%; P < 0.001). Results from a logistic regression model revealed that low CTL infiltration rate was an independent factor of platinum resistance in multivariate analysis (OR, 3.77; 95% CI, 1.08-13.12; P = 0.037). Platinum-resistant EOCs show poor immunologic responses. The immune escape system of EOCs may be one of the mechanisms of platinum resistance.
Collapse
Affiliation(s)
- Tasuku Mariya
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan. Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Takuya Asano
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan. Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takafumi Kuroda
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan. Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kazuyo Yasuda
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahito Mizuuchi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan. Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomoko Sonoda
- Department of Public Health, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tsuyoshi Saito
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
26
|
Luo C, Shibata K, Suzuki S, Kajiyama H, Senga T, Koya Y, Daimon M, Yamashita M, Kikkawa F. GPC3 expression in mouse ovarian cancer induces GPC3‑specific T cell-mediated immune response through M1 macrophages and suppresses tumor growth. Oncol Rep 2014; 32:913-21. [PMID: 24992906 PMCID: PMC4121400 DOI: 10.3892/or.2014.3300] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 05/27/2014] [Indexed: 12/16/2022] Open
Abstract
Glypican-3 (GPC3) is specifically expressed in ovarian clear cell carcinoma (OCCC), hepatocellular carcinoma (HCC), and melanoma and lung cancer. GPC3 is being explored as a potential candidate for OCCC and HCC immunotherapy. As a tumor-associated antigen, induction of immune response of GPC3 in ovarian cancer remains elusive. We established a GPC3 transgenic mouse ovarian cancer cell line, OV2944-HM-1 (HM-1), and used the intraperitoneal ovarian cancer mouse model to investigate immune response in GPC3-expressing tumor. We found that GPC3 expression in the tumor increased F4/80+CD86+ macrophage (M1) proportion and caused GPC3-specific CD8+ T cell immune responses, and prolonged mouse survival. Our results demonstrated that GPC3 expression induced T cell-mediated immune response in this mouse ovarian cancer model and also provided supportive evidence that GPC3 is an ideal target for ovarian cancer immunotherapy.
Collapse
Affiliation(s)
- Chenhong Luo
- Bio-Databases Institute of Reproductive and Developmental Medicine, Nagoya 458-0818, Japan
| | - Kiyosumi Shibata
- Department of Obstetrics and Gynecology, Nagoya University School of Medicine, Nagoya 466‑8550, Japan
| | - Shiro Suzuki
- Department of Obstetrics and Gynecology, Nagoya University School of Medicine, Nagoya 466‑8550, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University School of Medicine, Nagoya 466‑8550, Japan
| | - Takeshi Senga
- Department of Cancer Biology, Nagoya University School of Medicine, Nagoya 466‑8550, Japan
| | - Yoshihiro Koya
- Bio-Databases Institute of Reproductive and Developmental Medicine, Nagoya 458-0818, Japan
| | - Mina Daimon
- Bell Research Center for Reproductive Health and Cancer, Nagoya 458-0818, Japan
| | - Mamoru Yamashita
- Bell Research Center for Reproductive Health and Cancer, Nagoya 458-0818, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University School of Medicine, Nagoya 466‑8550, Japan
| |
Collapse
|
27
|
Ofuji K, Saito K, Yoshikawa T, Nakatsura T. Critical analysis of the potential of targeting GPC3 in hepatocellular carcinoma. J Hepatocell Carcinoma 2014; 1:35-42. [PMID: 27508174 PMCID: PMC4918265 DOI: 10.2147/jhc.s48517] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide. The treatment options for patients with advanced HCC are limited, and novel treatment strategies are required urgently. Glypican-3 (GPC3), a member of the glypican family of heparan sulfate proteoglycans, is overexpressed in 72%−81% of HCC cases, and is correlated with a poor prognosis. GPC3 regulates both stimulatory and inhibitory signals, and plays a key role in regulating cancer cell growth. GPC3 is released into the serum, and so might be a useful diagnostic marker for HCC. GPC3 is also used as an immunotherapeutic target in HCC. A Phase I study of a humanized anti-GPC3 monoclonal antibody, GC33, revealed a good safety profile and potential antitumor activity, and a Phase II trial is currently ongoing. In addition, the authors’ investigator-initiated Phase I study of a GPC3-derived peptide vaccine showed good safety and tolerability, and demonstrated that the GPC3 peptide-specific cytotoxic T-lymphocyte frequency in peripheral blood correlated with overall survival in HCC patients. A sponsor-initiated Phase I clinical trial of a three-peptide cocktail vaccine, which includes a GPC3-derived peptide, is also underway. GPC3 is currently recognized as a promising therapeutic target and diagnostic marker for HCC. This review introduces the recent progress in GPC3 research, from biology to clinical impact.
Collapse
Affiliation(s)
- Kazuya Ofuji
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Keigo Saito
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Toshiaki Yoshikawa
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| |
Collapse
|