1
|
Wang Q, Chen X, Wang YF. Sec61β, a subunit of the Sec61 complex at the endoplasmic reticulum, coordinates with Ocnus in regulating Drosophila spermatogenesis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 180:104310. [PMID: 40194670 DOI: 10.1016/j.ibmb.2025.104310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
sec61β encodes a subunit of the Sec61 translocon which is a highly conserved heterotrimer responsible for translocating the nascent polypeptides into the lumen of the endoplasmic reticulum (ER) or onto the ER membrane. In this study, we show that knockdown of sec61β in the early germline leads to male sterility in Drosophila melanogaster. These males exhibit testes that are dramatically reduced in size and devoid of germ cells. However, the somatic cells with hub markers extend abnormally beyond the stem cell niche region. Stat92E-positive cells are also expanded into the posterior region of the small testes and primarily in the nuclei. Through tracking the developmental processes of germ cells, we find that the loss of germ cells occurs during the 3rd instar larval stage. Additionally, studies in Drosophila S2 cells reveal that Sec61β can directly interact with Ocnus (Ocn), likely at the nuclear membrane. Genetically, we show that overexpression of ocn partially restores fertility in sec61β knockdown males, while overexpression of sec61β fails to compensate for the defects in male fertility induced by ocn knockdown. These findings suggest that Sec61β might play a critical role in testis development and spermatogenesis, potentially coordinating with Ocn and involving in the JAK/STAT pathway.
Collapse
Affiliation(s)
- Qian Wang
- School of Life Sciences, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, China
| | - Xin Chen
- School of Life Sciences, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, China
| | - Yu-Feng Wang
- School of Life Sciences, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
2
|
Mukherjee A, Anoop C, Nongthomba U. What a tangled web we weave: crosstalk between JAK-STAT and other signalling pathways during development in Drosophila. FEBS J 2025. [PMID: 39821459 DOI: 10.1111/febs.17391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/26/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025]
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) signalling pathway is a key player in animal development and physiology. Although it functions in a variety of processes, the net output of JAK-STAT signalling depends on its spatiotemporal activation, as well as extensive crosstalk with other signalling pathways. Drosophila, with its relatively simple signal transduction pathways and plethora of genetic analysis tools, is an ideal system for dissecting JAK-STAT signalling interactions. In this review, we explore studies in Drosophila revealing that JAK-STAT signalling lies at the nexus of a complex network of interlinked pathways, including epidermal growth factor receptor (EGFR), c-Jun N-terminal kinase (JNK), Notch, Insulin, Hippo, bone morphogenetic protein (BMP), Hedgehog (Hh) and Wingless (Wg). These pathways can synergise with or antagonise one another to produce a variety of outcomes. Given the conserved nature of signal transduction pathways, we conclude with our perspective on the implication of JAK-STAT signalling dysregulation in human diseases, and how studies in Drosophila have the potential to inform and influence clinical research.
Collapse
Affiliation(s)
- Amartya Mukherjee
- Department of Developmental Biology and Genetics, Indian Institute of Science (IISc), Bangalore, India
| | - Chaithra Anoop
- Department of Biological Science, Indian Institute of Science Education and Research (IISER), Mohali, India
| | - Upendra Nongthomba
- Department of Developmental Biology and Genetics, Indian Institute of Science (IISc), Bangalore, India
| |
Collapse
|
3
|
Li P, Huang D. Targeting the JAK-STAT pathway in colorectal cancer: mechanisms, clinical implications, and therapeutic potential. Front Cell Dev Biol 2024; 12:1507621. [PMID: 39659524 PMCID: PMC11628519 DOI: 10.3389/fcell.2024.1507621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the most prevalent and fatal malignancies worldwide, consistently ranking among the top three in terms of incidence and mortality. Despite notable advancements in early detection and therapeutic interventions, survival outcomes for advanced-stage CRC are still dismal, largely due to issues such as drug resistance and metastasis. Recent research has increasingly implicated the JAK-STAT signaling pathway as a pivotal contributor to CRC pathogenesis. This evolutionarily conserved pathway plays a key role in transmitting extracellular signals to the nucleus, thereby modulating gene expression involved in numerous fundamental biological processes. In CRC, dysregulation of the JAK-STAT pathway is frequently observed and is strongly associated with tumor progression, including processes such as cellular proliferation, apoptosis, metastasis, immune evasion, and the sustenance of cancer stem cells. Given its integral role in CRC advancement, the JAK-STAT pathway has gained recognition as a viable therapeutic target. Extensive evidence from preclinical and clinical models supports the efficacy and safety of targeting components of the JAK-STAT pathway, presenting new therapeutic possibilities for patients with CRC, particularly in addressing drug resistance and enhancing treatment outcomes. This review offers a detailed exploration of the JAK-STAT pathway, focusing on its regulatory mechanisms in CRC-related malignancies. Moreover, it examines the association between JAK-STAT protein expression, clinical features, prognosis, and its therapeutic potential in CRC management.
Collapse
Affiliation(s)
- Penghui Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Kong R, Zhao H, Li J, Ma Y, Li N, Shi L, Li Z. A regulatory loop of JAK/STAT signalling and its downstream targets represses cell fate conversion and maintains male germline stem cell niche homeostasis. Cell Prolif 2024; 57:e13648. [PMID: 38987866 PMCID: PMC11471429 DOI: 10.1111/cpr.13648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 07/12/2024] Open
Abstract
A specialised microenvironment, termed niche, provides extrinsic signals for the maintenance of residential stem cells. However, how residential stem cells maintain niche homeostasis and whether stromal niche cells could convert their fate into stem cells to replenish lost stem cells upon systemic stem cell loss remain largely unknown. Here, through systemic identification of JAK/STAT downstream targets in adult Drosophila testis, we show that Escargot (Esg), a member of the Snail family of transcriptional factors, is a putative JAK/STAT downstream target. esg is intrinsically required in cyst stem cells (CySCs) but not in germline stem cells (GSCs). esg depletion in CySCs results in CySC loss due to differentiation and non-cell autonomous GSC loss. Interestingly, hub cells are gradually lost by delaminating from the hub and converting into CySCs in esg-defective testes. Mechanistically, esg directly represses the expression of socs36E, the well-known downstream target and negative regulator of JAK/STAT signalling. Finally, further depletion of socs36E completely rescues the defects observed in esg-defective testes. Collectively, JAK/STAT target Esg suppresses SOCS36E to maintain CySC fate and repress niche cell conversion. Thus, our work uncovers a regulatory loop between JAK/STAT signalling and its downstream targets in controlling testicular niche homeostasis under physiological conditions.
Collapse
Affiliation(s)
- Ruiyan Kong
- Laboratory of Stem Cell Biology, College of Life SciencesCapital Normal UniversityBeijingChina
| | - Hang Zhao
- Laboratory of Stem Cell Biology, College of Life SciencesCapital Normal UniversityBeijingChina
| | - Juan Li
- Laboratory of Stem Cell Biology, College of Life SciencesCapital Normal UniversityBeijingChina
| | - Yankun Ma
- Laboratory of Stem Cell Biology, College of Life SciencesCapital Normal UniversityBeijingChina
| | - Ningfang Li
- Laboratory of Stem Cell Biology, College of Life SciencesCapital Normal UniversityBeijingChina
| | - Lin Shi
- Laboratory of Stem Cell Biology, College of Life SciencesCapital Normal UniversityBeijingChina
| | - Zhouhua Li
- Laboratory of Stem Cell Biology, College of Life SciencesCapital Normal UniversityBeijingChina
| |
Collapse
|
5
|
Vonolfen MC, Meyer Zu Altenschildesche FL, Nam HJ, Brodesser S, Gyenis A, Buellesbach J, Lam G, Thummel CS, Storelli G. Drosophila HNF4 acts in distinct tissues to direct a switch between lipid storage and export in the gut. Cell Rep 2024; 43:114693. [PMID: 39235946 DOI: 10.1016/j.celrep.2024.114693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/15/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Nutrient digestion, absorption, and export must be coordinated in the gut to meet the nutritional needs of the organism. We used the Drosophila intestine to characterize the mechanisms that coordinate the fate of dietary lipids. We identified enterocytes specialized in absorbing and exporting lipids to peripheral organs. Distinct hepatocyte-like cells, called oenocytes, communicate with these enterocytes to adjust intestinal lipid storage and export. A single transcription factor, Drosophila hepatocyte nuclear factor 4 (dHNF4), supports this gut-liver axis. In enterocytes, dHNF4 maximizes dietary lipid export by preventing their sequestration in cytoplasmic lipid droplets. In oenocytes, dHNF4 promotes the expression of the insulin antagonist ImpL2 to activate Foxo and suppress lipid retention in enterocytes. Disruption of this switch between lipid storage and export is associated with intestinal inflammation, suggesting a lipidic origin for inflammatory bowel diseases. These studies establish dHNF4 as a central regulator of intestinal metabolism and inter-organ lipid trafficking.
Collapse
Affiliation(s)
- Maximilian C Vonolfen
- University of Cologne, Faculty of Mathematics and Natural Sciences, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Fenja L Meyer Zu Altenschildesche
- University of Cologne, Faculty of Mathematics and Natural Sciences, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Hyuck-Jin Nam
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA
| | - Susanne Brodesser
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Akos Gyenis
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Jan Buellesbach
- Institute for Evolution & Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany
| | - Geanette Lam
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA
| | - Carl S Thummel
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA
| | - Gilles Storelli
- University of Cologne, Faculty of Mathematics and Natural Sciences, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| |
Collapse
|
6
|
He L, Sun F, Wu Y, Li Z, Fu Y, Huang Q, Li J, Wang Z, Cai J, Feng C, Deng X, Gu H, He X, Yu J, Sun F. L(1)10Bb serves as a conservative determinant for soma-germline communications via cellular non-autonomous effects within the testicular stem cell niche. Mol Cell Endocrinol 2024; 591:112278. [PMID: 38795826 DOI: 10.1016/j.mce.2024.112278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/21/2024] [Accepted: 05/07/2024] [Indexed: 05/28/2024]
Abstract
The testicular stem cell niche is the central regulator of spermatogenesis in Drosophila melanogaster. However, the underlying regulatory mechanisms are unclear. This study demonstrated the crucial role of lethal (1) 10Bb [l(1)10Bb] in regulating the testicular stem cell niche. Dysfunction of l(1)10Bb in early-stage cyst cells led to male fertility disorders and compromised cyst stem cell maintenance. Moreover, the dysfunction of l(1)10Bb in early-stage cyst cells exerted non-autonomous effects on germline stem cell differentiation, independently of hub signals. Notably, our study highlights the rescue of testicular defects through ectopic expression of L(1)10Bb and the human homologous protein BUD31 homolog (BUD31). In addition, l(1)10Bb dysfunction in early-stage cyst cells downregulated the expression of spliceosome subunits in the Sm and the precursor RNA processing complexes. Collectively, our findings established l(1)10Bb as a pivotal factor in the modulation of Drosophila soma-germline communications within the testicular stem cell niche.
Collapse
Affiliation(s)
- Lei He
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Feiteng Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Yunhao Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Zhiran Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Yangbo Fu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Qiuru Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Jiaxin Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Zihan Wang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Jiaying Cai
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Chenrui Feng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Xiaonan Deng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Han Gu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Xuxin He
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Jun Yu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
7
|
Zhao Y, Johansson E, Duan J, Han Z, Alenius M. Fat- and sugar-induced signals regulate sweet and fat taste perception in Drosophila. Cell Rep 2023; 42:113387. [PMID: 37934669 PMCID: PMC11212107 DOI: 10.1016/j.celrep.2023.113387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/29/2023] [Accepted: 10/22/2023] [Indexed: 11/09/2023] Open
Abstract
In this study, we investigate the interplay between taste perception and macronutrients. While sugar's and protein's self-regulation of taste perception is known, the role of fat remains unclear. We reveal that in Drosophila, fat overconsumption reduces fatty acid taste in favor of sweet perception. Conversely, sugar intake increases fatty acid perception and suppresses sweet taste. Genetic investigations show that the sugar signal, gut-secreted Hedgehog, suppresses sugar taste and enhances fatty acid perception. Fat overconsumption induces unpaired 2 (Upd2) secretion from adipose tissue to the hemolymph. We reveal taste neurons take up Upd2, which triggers Domeless suppression of fatty acid perception. We further show that the downstream JAK/STAT signaling enhances sweet perception and, via Socs36E, fine-tunes Domeless activity and the fatty acid taste perception. Together, our results show that sugar regulates Hedgehog signaling and fat induces Upd2 signaling to balance nutrient intake and to regulate sweet and fat taste perception.
Collapse
Affiliation(s)
- Yunpo Zhao
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | - Jianli Duan
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Zhe Han
- Center for Precision Disease Modeling, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mattias Alenius
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
| |
Collapse
|
8
|
Gera J, Budakoti P, Suhag M, Mandal L, Mandal S. Physiological ROS controls Upd3-dependent modeling of ECM to support cardiac function in Drosophila. SCIENCE ADVANCES 2022; 8:eabj4991. [PMID: 35179958 PMCID: PMC8856619 DOI: 10.1126/sciadv.abj4991] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Despite their highly reactive nature, reactive oxygen species (ROS) at the physiological level serve as signaling molecules regulating diverse biological processes. While ROS usually act autonomously, they also function as local paracrine signals by diffusing out of the cells producing them. Using in vivo molecular genetic analyses in Drosophila, we provide evidence for ROS-dependent paracrine signaling that does not entail ROS release. We show that elevated levels of physiological ROS within the pericardial cells activate a signaling cascade transduced by Ask1, c-Jun N-terminal kinase, and p38 to regulate the expression of the cytokine Unpaired 3 (Upd3). Upd3 released by the pericardial cells controls fat body-specific expression of the extracellular matrix (ECM) protein Pericardin, essential for cardiac function and healthy life span. Therefore, our work reveals an unexpected inter-organ communication circuitry wherein high physiological levels of ROS regulate cytokine-dependent modulation of cardiac ECM with implications in normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Jayati Gera
- Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Prerna Budakoti
- Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Meghna Suhag
- Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Lolitika Mandal
- Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Sudip Mandal
- Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
- Corresponding author.
| |
Collapse
|
9
|
Oedekoven CA, Belmonte M, Bode D, Hamey FK, Shepherd MS, Che JLC, Boyd G, McDonald C, Belluschi S, Diamanti E, Bastos HP, Bridge KS, Göttgens B, Laurenti E, Kent DG. Hematopoietic stem cells retain functional potential and molecular identity in hibernation cultures. Stem Cell Reports 2021; 16:1614-1628. [PMID: 33961793 PMCID: PMC8190576 DOI: 10.1016/j.stemcr.2021.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
Advances in the isolation and gene expression profiling of single hematopoietic stem cells (HSCs) have permitted in-depth resolution of their molecular program. However, long-term HSCs can only be isolated to near purity from adult mouse bone marrow, thereby precluding studies of their molecular program in different physiological states. Here, we describe a powerful 7-day HSC hibernation culture system that maintains HSCs as single cells in the absence of a physical niche. Single hibernating HSCs retain full functional potential compared with freshly isolated HSCs with respect to colony-forming capacity and transplantation into primary and secondary recipients. Comparison of hibernating HSC molecular profiles to their freshly isolated counterparts showed a striking degree of molecular similarity, further resolving the core molecular machinery of HSC self-renewal while also identifying key factors that are potentially dispensable for HSC function, including members of the AP1 complex (Jun, Fos, and Ncor2), Sult1a1 and Cish. Finally, we provide evidence that hibernating mouse HSCs can be transduced without compromising their self-renewal activity and demonstrate the applicability of hibernation cultures to human HSCs.
Collapse
Affiliation(s)
- Caroline A Oedekoven
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Miriam Belmonte
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Daniel Bode
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Fiona K Hamey
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Mairi S Shepherd
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - James Lok Chi Che
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Grace Boyd
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK
| | - Craig McDonald
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Serena Belluschi
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Evangelia Diamanti
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Hugo P Bastos
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Katherine S Bridge
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK
| | - Berthold Göttgens
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Elisa Laurenti
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - David G Kent
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK; York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
10
|
Kubick N, Klimovich P, Flournoy PH, Bieńkowska I, Łazarczyk M, Sacharczuk M, Bhaumik S, Mickael ME, Basu R. Interleukins and Interleukin Receptors Evolutionary History and Origin in Relation to CD4+ T Cell Evolution. Genes (Basel) 2021; 12:genes12060813. [PMID: 34073576 PMCID: PMC8226699 DOI: 10.3390/genes12060813] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the evolution of interleukins and interleukin receptors is essential to control the function of CD4+ T cells in various pathologies. Numerous aspects of CD4+ T cells’ presence are controlled by interleukins including differentiation, proliferation, and plasticity. CD4+ T cells have emerged during the divergence of jawed vertebrates. However, little is known about the evolution of interleukins and their origin. We traced the evolution of interleukins and their receptors from Placozoa to primates. We performed phylogenetic analysis, ancestral reconstruction, HH search, and positive selection analysis. Our results indicated that various interleukins’ emergence predated CD4+ T cells divergence. IL14 was the most ancient interleukin with homologs in fungi. Invertebrates also expressed various interleukins such as IL41 and IL16. Several interleukin receptors also appeared before CD4+ T cells divergence. Interestingly IL17RA and IL17RD, which are known to play a fundamental role in Th17 CD4+ T cells first appeared in mollusks. Furthermore, our investigations showed that there is not any single gene family that could be the parent group of interleukins. We postulate that several groups have diverged from older existing cytokines such as IL4 from TGFβ, IL10 from IFN, and IL28 from BCAM. Interleukin receptors were less divergent than interleukins. We found that IL1R, IL7R might have diverged from a common invertebrate protein that contained TIR domains, conversely, IL2R, IL4R and IL6R might have emerged from a common invertebrate ancestor that possessed a fibronectin domain. IL8R seems to be a GPCR that belongs to the rhodopsin-like family and it has diverged from the Somatostatin group. Interestingly, several interleukins that are known to perform a critical function for CD4+ T cells such as IL6, IL17, and IL1B have gained new functions and evolved under positive selection. Overall evolution of interleukin receptors was not under significant positive selection. Interestingly, eight interleukin families appeared in lampreys, however, only two of them (IL17B, IL17E) evolved under positive selection. This observation indicates that although lampreys have a unique adaptive immune system that lacks CD4+ T cells, they could be utilizing interleukins in homologous mode to that of the vertebrates’ immune system. Overall our study highlights the evolutionary heterogeneity within the interleukins and their receptor superfamilies and thus does not support the theory that interleukins evolved solely in jawed vertebrates to support T cell function. Conversely, some of the members are likely to play conserved functions in the innate immune system.
Collapse
Affiliation(s)
- Norwin Kubick
- Institute of Biochemistry, Molecular Cell Biology, University Clinic Hamburg-Eppendorf, 0251 Hamburg, Germany;
| | - Pavel Klimovich
- PM Research Center, 20 Kaggeholm, Ekerö, 178 54 Stockholm, Sweden; (P.K.); (P.H.F.)
| | | | - Irmina Bieńkowska
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (I.B.); (M.Ł.); (M.S.)
| | - Marzena Łazarczyk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (I.B.); (M.Ł.); (M.S.)
| | - Mariusz Sacharczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (I.B.); (M.Ł.); (M.S.)
| | - Suniti Bhaumik
- Bevill Biomedical Sciences Research Building, The University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA;
| | - Michel-Edwar Mickael
- PM Research Center, 20 Kaggeholm, Ekerö, 178 54 Stockholm, Sweden; (P.K.); (P.H.F.)
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (I.B.); (M.Ł.); (M.S.)
- Correspondence: (M.-E.M.); (R.B.)
| | - Rajatava Basu
- Bevill Biomedical Sciences Research Building, The University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA;
- Correspondence: (M.-E.M.); (R.B.)
| |
Collapse
|
11
|
Zheng Q, Chen X, Qiao C, Wang M, Chen W, Luan X, Yan Y, Shen C, Fang J, Hu X, Zheng B, Wu Y, Yu J. Somatic CG6015 mediates cyst stem cell maintenance and germline stem cell differentiation via EGFR signaling in Drosophila testes. Cell Death Discov 2021; 7:68. [PMID: 33824283 PMCID: PMC8024382 DOI: 10.1038/s41420-021-00452-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/21/2021] [Accepted: 03/18/2021] [Indexed: 11/09/2022] Open
Abstract
Stem cell niche is regulated by intrinsic and extrinsic factors. In the Drosophila testis, cyst stem cells (CySCs) support the differentiation of germline stem cells (GSCs). However, the underlying mechanisms remain unclear. In this study, we found that somatic CG6015 is required for CySC maintenance and GSC differentiation in a Drosophila model. Knockdown of CG6015 in CySCs caused aberrant activation of dpERK in undifferentiated germ cells in the Drosophila testis, and disruption of key downstream targets of EGFR signaling (Dsor1 and rl) in CySCs results in a phenotype resembling that of CG6015 knockdown. CG6015, Dsor1, and rl are essential for the survival of Drosophila cell line Schneider 2 (S2) cells. Our data showed that somatic CG6015 regulates CySC maintenance and GSC differentiation via EGFR signaling, and inhibits aberrant activation of germline dpERK signals. These findings indicate regulatory mechanisms of stem cell niche homeostasis in the Drosophila testis.
Collapse
Affiliation(s)
- Qianwen Zheng
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, 212001, Zhenjiang, Jiangsu, P.R. China
| | - Xia Chen
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, 212001, Zhenjiang, Jiangsu, P.R. China
| | - Chen Qiao
- Department of Clinical Pharmacy, the Affiliated Hospital of Jiangsu University, Jiangsu University, 212001, Zhenjiang, Jiangsu, P.R. China
| | - Min Wang
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, 212001, Zhenjiang, Jiangsu, P.R. China
| | - Wanyin Chen
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, 212001, Zhenjiang, Jiangsu, P.R. China
| | - Xiaojin Luan
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, 212001, Zhenjiang, Jiangsu, P.R. China
| | - Yidan Yan
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, 212001, Zhenjiang, Jiangsu, P.R. China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, 215002, Suzhou, Jiangsu, P.R. China
| | - Jie Fang
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, 212001, Zhenjiang, Jiangsu, P.R. China
| | - Xing Hu
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, 212001, Zhenjiang, Jiangsu, P.R. China
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, 215002, Suzhou, Jiangsu, P.R. China.
| | - Yibo Wu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, 214062, Wuxi, Jiangsu, P.R. China.
| | - Jun Yu
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, 212001, Zhenjiang, Jiangsu, P.R. China.
| |
Collapse
|
12
|
Berez A, Peercy BE, Starz-Gaiano M. Development and Analysis of a Quantitative Mathematical Model of Bistability in the Cross Repression System Between APT and SLBO Within the JAK/STAT Signaling Pathway. Front Physiol 2020; 11:803. [PMID: 32848815 PMCID: PMC7401978 DOI: 10.3389/fphys.2020.00803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/17/2020] [Indexed: 11/21/2022] Open
Abstract
Cell migration is a key component in development, homeostasis, immune function, and pathology. It is important to understand the molecular activity that allows some cells to migrate. Drosophila melanogaster is a useful model system because its genes are largely conserved with humans and it is straightforward to study biologically. The well-conserved transcriptional regulator Signal Transducer and Activator of Transcription (STAT) promotes cell migration, but its signaling is modulated by downstream targets Apontic (APT) and Slow Border Cells (SLBO). Inhibition of STAT activity by APT and cross-repression of APT and SLBO determines whether an epithelial cell in the Drosophila egg chamber becomes motile or remains stationary. Through mathematical modeling and analysis, we examine how the interaction of STAT, APT, and SLBO creates bistability in the Janus Kinase (JAK)/STAT signaling pathway. In this paper, we update and analyze earlier models to represent mechanistically the processes of the JAK/STAT pathway. We utilize parameter, bifurcation, and phase portrait analyses, and make reductions to the system to produce a minimal three-variable quantitative model. We analyze the manifold between migratory and stationary steady states in this minimal model and show that when the initial conditions of our model are near this manifold, cell migration can be delayed.
Collapse
Affiliation(s)
- Alyssa Berez
- Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Bradford E Peercy
- Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Michelle Starz-Gaiano
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States
| |
Collapse
|
13
|
Kierdorf K, Hersperger F, Sharrock J, Vincent CM, Ustaoglu P, Dou J, Gyoergy A, Groß O, Siekhaus DE, Dionne MS. Muscle function and homeostasis require cytokine inhibition of AKT activity in Drosophila. eLife 2020; 9:e51595. [PMID: 31944178 PMCID: PMC6996930 DOI: 10.7554/elife.51595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/10/2020] [Indexed: 12/20/2022] Open
Abstract
Unpaired ligands are secreted signals that act via a GP130-like receptor, domeless, to activate JAK/STAT signalling in Drosophila. Like many mammalian cytokines, unpaireds can be activated by infection and other stresses and can promote insulin resistance in target tissues. However, the importance of this effect in non-inflammatory physiology is unknown. Here, we identify a requirement for unpaired-JAK signalling as a metabolic regulator in healthy adult Drosophila muscle. Adult muscles show basal JAK-STAT signalling activity in the absence of any immune challenge. Plasmatocytes (Drosophila macrophages) are an important source of this tonic signal. Loss of the dome receptor on adult muscles significantly reduces lifespan and causes local and systemic metabolic pathology. These pathologies result from hyperactivation of AKT and consequent deregulation of metabolism. Thus, we identify a cytokine signal that must be received in muscle to control AKT activity and metabolic homeostasis.
Collapse
Affiliation(s)
- Katrin Kierdorf
- MRC Centre for Molecular Bacteriology and InfectionImperial College LondonLondonUnited Kingdom
- Department of Life SciencesImperial College LondonLondonUnited Kingdom
| | - Fabian Hersperger
- Institute of Neuropathology, Faculty of MedicineUniversity of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Jessica Sharrock
- MRC Centre for Molecular Bacteriology and InfectionImperial College LondonLondonUnited Kingdom
- Department of Life SciencesImperial College LondonLondonUnited Kingdom
| | - Crystal M Vincent
- MRC Centre for Molecular Bacteriology and InfectionImperial College LondonLondonUnited Kingdom
- Department of Life SciencesImperial College LondonLondonUnited Kingdom
| | - Pinar Ustaoglu
- MRC Centre for Molecular Bacteriology and InfectionImperial College LondonLondonUnited Kingdom
- Department of Life SciencesImperial College LondonLondonUnited Kingdom
| | - Jiawen Dou
- MRC Centre for Molecular Bacteriology and InfectionImperial College LondonLondonUnited Kingdom
| | - Attila Gyoergy
- Institute of Science and TechnologyKlosterneuburgAustria
| | - Olaf Groß
- Institute of Neuropathology, Faculty of MedicineUniversity of FreiburgFreiburgGermany
- Centre for Integrative Biological Signalling Studies (CIBSS)University of FreiburgFreiburgGermany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | | | - Marc S Dionne
- MRC Centre for Molecular Bacteriology and InfectionImperial College LondonLondonUnited Kingdom
| |
Collapse
|
14
|
Mehta AS, Singh A. Insights into regeneration tool box: An animal model approach. Dev Biol 2019; 453:111-129. [PMID: 30986388 PMCID: PMC6684456 DOI: 10.1016/j.ydbio.2019.04.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 12/20/2022]
Abstract
For ages, regeneration has intrigued countless biologists, clinicians, and biomedical engineers. In recent years, significant progress made in identification and characterization of a regeneration tool kit has helped the scientific community to understand the mechanism(s) involved in regeneration across animal kingdom. These mechanistic insights revealed that evolutionarily conserved pathways like Wnt, Notch, Hedgehog, BMP, and JAK/STAT are involved in regeneration. Furthermore, advancement in high throughput screening approaches like transcriptomic analysis followed by proteomic validations have discovered many novel genes, and regeneration specific enhancers that are specific to highly regenerative species like Hydra, Planaria, Newts, and Zebrafish. Since genetic machinery is highly conserved across the animal kingdom, it is possible to engineer these genes and regeneration specific enhancers in species with limited regeneration properties like Drosophila, and mammals. Since these models are highly versatile and genetically tractable, cross-species comparative studies can generate mechanistic insights in regeneration for animals with long gestation periods e.g. Newts. In addition, it will allow extrapolation of regenerative capabilities from highly regenerative species to animals with low regeneration potential, e.g. mammals. In future, these studies, along with advancement in tissue engineering applications, can have strong implications in the field of regenerative medicine and stem cell biology.
Collapse
Affiliation(s)
- Abijeet S Mehta
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA; Premedical Program, University of Dayton, Dayton, OH, 45469, USA; Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, 45469, USA; The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, 45469, USA; Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA.
| |
Collapse
|
15
|
Headcase is a Repressor of Lamellocyte Fate in Drosophila melanogaster. Genes (Basel) 2019; 10:genes10030173. [PMID: 30841641 PMCID: PMC6470581 DOI: 10.3390/genes10030173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/12/2023] Open
Abstract
Due to the evolutionary conservation of the regulation of hematopoiesis, Drosophila provides an excellent model organism to study blood cell differentiation and hematopoietic stem cell (HSC) maintenance. The larvae of Drosophila melanogaster respond to immune induction with the production of special effector blood cells, the lamellocytes, which encapsulate and subsequently kill the invader. Lamellocytes differentiate as a result of a concerted action of all three hematopoietic compartments of the larva: the lymph gland, the circulating hemocytes, and the sessile tissue. Within the lymph gland, the communication of the functional zones, the maintenance of HSC fate, and the differentiation of effector blood cells are regulated by a complex network of signaling pathways. Applying gene conversion, mutational analysis, and a candidate based genetic interaction screen, we investigated the role of Headcase (Hdc), the homolog of the tumor suppressor HECA in the hematopoiesis of Drosophila. We found that naive loss-of-function hdc mutant larvae produce lamellocytes, showing that Hdc has a repressive role in effector blood cell differentiation. We demonstrate that hdc genetically interacts with the Hedgehog and the Decapentaplegic pathways in the hematopoietic niche of the lymph gland. By adding further details to the model of blood cell fate regulation in the lymph gland of the larva, our findings contribute to the better understanding of HSC maintenance.
Collapse
|
16
|
Lenhart KF, Capozzoli B, Warrick GSD, DiNardo S. Diminished Jak/STAT Signaling Causes Early-Onset Aging Defects in Stem Cell Cytokinesis. Curr Biol 2019; 29:256-267.e3. [PMID: 30612906 DOI: 10.1016/j.cub.2018.11.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/12/2018] [Accepted: 11/28/2018] [Indexed: 01/09/2023]
Abstract
Tissue renewal becomes compromised with age. Although defects in niche and stem cell behavior have been implicated in promoting age-related decline, the causes of early-onset aging defects are unknown. We have identified an early consequence of aging in germline stem cells (GSCs) in the Drosophila testis. Aging disrupts the unique program of GSC cytokinesis, with GSCs failing to abscise from their daughter cells. Abscission failure significantly disrupts both self-renewal and the generation of differentiating germ cells. Extensive live imaging and genetic analyses show that abscission failure is due to inappropriate retention of F-actin at the intercellular bridges between GSC-daughter cells. Furthermore, F-actin is regulated by the Jak/STAT pathway-increasing or decreasing pathway activity can rescue or exacerbate the age-induced abscission defect, respectively. Even subtle decreases to STAT activity are sufficient to precociously age young GSCs and induce abscission failure. Thus, this work has identified the earliest age-related defect in GSCs and has revealed a unique role for an established niche signaling pathway in controlling stem cell cytokinesis and in regulating stem cell behavior with age.
Collapse
Affiliation(s)
- Kari F Lenhart
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, Drexel University, Philadelphia, PA 19104, USA.
| | - Benjamin Capozzoli
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gwen S D Warrick
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Stephen DiNardo
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
17
|
Trivedi S, Starz-Gaiano M. Drosophila Jak/STAT Signaling: Regulation and Relevance in Human Cancer and Metastasis. Int J Mol Sci 2018; 19:ijms19124056. [PMID: 30558204 PMCID: PMC6320922 DOI: 10.3390/ijms19124056] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 12/26/2022] Open
Abstract
Over the past three-decades, Janus kinase (Jak) and signal transducer and activator of transcription (STAT) signaling has emerged as a paradigm to understand the involvement of signal transduction in development and disease pathology. At the molecular level, cytokines and interleukins steer Jak/STAT signaling to transcriptional regulation of target genes, which are involved in cell differentiation, migration, and proliferation. Jak/STAT signaling is involved in various types of blood cell disorders and cancers in humans, and its activation is associated with carcinomas that are more invasive or likely to become metastatic. Despite immense information regarding Jak/STAT regulation, the signaling network has numerous missing links, which is slowing the progress towards developing drug therapies. In mammals, many components act in this cascade, with substantial cross-talk with other signaling pathways. In Drosophila, there are fewer pathway components, which has enabled significant discoveries regarding well-conserved regulatory mechanisms. Work across species illustrates the relevance of these regulators in humans. In this review, we showcase fundamental Jak/STAT regulation mechanisms in blood cells, stem cells, and cell motility. We examine the functional relevance of key conserved regulators from Drosophila to human cancer stem cells and metastasis. Finally, we spotlight less characterized regulators of Drosophila Jak/STAT signaling, which stand as promising candidates to be investigated in cancer biology. These comparisons illustrate the value of using Drosophila as a model for uncovering the roles of Jak/STAT signaling and the molecular means by which the pathway is controlled.
Collapse
Affiliation(s)
- Sunny Trivedi
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Michelle Starz-Gaiano
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
18
|
JAK/STAT guarantees robust neural stem cell differentiation by shutting off biological noise. Sci Rep 2018; 8:12484. [PMID: 30127451 PMCID: PMC6102247 DOI: 10.1038/s41598-018-30929-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 08/08/2018] [Indexed: 01/10/2023] Open
Abstract
Organismal development is precisely regulated by a sequence of gene functions even in the presence of biological noise. However, it is difficult to evaluate the effect of noise in vivo, and the mechanisms by which noise is filtered during development are largely unknown. To identify the noise-canceling mechanism, we used the fly visual system, in which the timing of differentiation of neural stem cells is spatio-temporally ordered. Our mathematical model predicts that JAK/STAT signaling contributes to noise canceling to guarantee the robust progression of the differentiation wave in silico. We further demonstrate that the suppression of JAK/STAT signaling causes stochastic and ectopic neural stem cell differentiation in vivo, suggesting an evolutionarily conserved function of JAK/STAT to regulate the robustness of stem cell differentiation.
Collapse
|
19
|
Torres J, Monti R, Moore AL, Seimiya M, Jiang Y, Beerenwinkel N, Beisel C, Beira JV, Paro R. A switch in transcription and cell fate governs the onset of an epigenetically-deregulated tumor in Drosophila. eLife 2018; 7:32697. [PMID: 29560857 PMCID: PMC5862528 DOI: 10.7554/elife.32697] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/04/2018] [Indexed: 12/20/2022] Open
Abstract
Tumor initiation is often linked to a loss of cellular identity. Transcriptional programs determining cellular identity are preserved by epigenetically-acting chromatin factors. Although such regulators are among the most frequently mutated genes in cancer, it is not well understood how an abnormal epigenetic condition contributes to tumor onset. In this work, we investigated the gene signature of tumors caused by disruption of the Drosophila epigenetic regulator, polyhomeotic (ph). In larval tissue ph mutant cells show a shift towards an embryonic-like signature. Using loss- and gain-of-function experiments we uncovered the embryonic transcription factor knirps (kni) as a new oncogene. The oncogenic potential of kni lies in its ability to activate JAK/STAT signaling and block differentiation. Conversely, tumor growth in ph mutant cells can be substantially reduced by overexpressing a differentiation factor. This demonstrates that epigenetically derailed tumor conditions can be reversed when targeting key players in the transcriptional network. When an animal is developing as an embryo, different cells start to specialize into the specific cell types needed to form the tissues and organs of the body. How an individual cell commits to become a certain type of cell is mostly determined by which of the genes in its DNA are active. In animal cells, DNA is wrapped around proteins called histones, and one way that cells can maintain their distinct pattern of gene activity is via chemical tags on the histones. These tags can switch nearby genes on or off, and are added or removed by other proteins called epigenetic regulators. The epigenetic tags are also stably inherited when the cell divides, meaning that a cell’s identity can be maintained over many cell generations. If epigenetic regulators fail to work properly or get disrupted, the pattern of gene activity in a cell becomes altered. As a consequence, that cell can lose its identity and will often turn into a cancer cell. In fact, mutations in epigenetic regulators are found in several human cancers. It is not yet understood how these changes in gene expression lead cells to become cancerous. Torres et al. have now analyzed an epigenetic regulator called Polyhomeotic in developing larvae of the fruit fly, Drosophila melanogaster. The results show that when Polyhomeotic is not produced the fly larvae develop tumors. Moreover, the mutant cells without Polyhomeotic had different gene expression profiles compared to normal cells. This in turn caused the mutant cells, which had previously committed to a certain fate, to become more like the unspecialized cells found in early embryos. Torres et al. next showed that, among the genes that were incorrectly regulated when Polyhomeotic’s activity was compromised, one gene called knirps was switched on by mistake, which led the mutant cells to become tumor cells. When the activity of knirps was reduced instead, almost no tumors grew. Additionally, Torres et al. found that the protein encoded by knirps activates a signaling pathway that keeps tumor cells unspecialized by blocking their normal progress to a more mature and specialized state – a process known as differentiation. Experimentally raising the levels of a different molecule that ultimately promotes differentiation caused the tumor cells to grow less. These findings suggest that tumors caused when epigenetic regulation goes awry may be reversed by targeting key genes such as knirps. Further work is now needed to test whether these findings will also extend to humans. Forcing cancer cells from a highly dividing, non-specialized state into a dead-end, mature state may lead to new ways to treat cancer.
Collapse
Affiliation(s)
- Joana Torres
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Remo Monti
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Ariane L Moore
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Makiko Seimiya
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Yanrui Jiang
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Jorge V Beira
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Renato Paro
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.,Faculty of Science, University of Basel, Basel, Switzerland
| |
Collapse
|
20
|
Beira JV, Torres J, Paro R. Signalling crosstalk during early tumorigenesis in the absence of Polycomb silencing. PLoS Genet 2018; 14:e1007187. [PMID: 29357360 PMCID: PMC5794193 DOI: 10.1371/journal.pgen.1007187] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/01/2018] [Accepted: 01/04/2018] [Indexed: 12/19/2022] Open
Abstract
In response to stress and injury a coordinated activation of conserved signalling modules, such as JNK and JAK/STAT, is critical to trigger regenerative tissue restoration. While these pathways rebuild homeostasis and promote faithful organ recovery, it is intriguing that they also become activated in various tumour conditions. Therefore, it is crucial to understand how similar pathways can achieve context-dependent functional outputs, likely depending on cellular states. Compromised chromatin regulation, upon removal of the Polycomb group member polyhomeotic, leads to tumour formation with ectopic activation of JNK signalling, mediated by egr/grnd, in addition to JAK/STAT and Notch. Employing quantitative analyses, we show that blocking ectopic signalling impairs ph tumour growth. Furthermore, JAK/STAT functions in parallel to JNK, while Notch relies on JNK. Here, we reveal a signalling hierarchy in ph tumours that is distinct from the regenerative processes regulated by these pathways. Absence of ph renders a permissive state for expression of target genes, but our results suggest that both loss of repression and the presence of activators may collectively regulate gene expression during tumorigenesis. Further dissecting the effect of signalling, developmental or stress-induced factors will thus elucidate the regulation of physiological responses and the contribution of context-specific cellular states.
Collapse
Affiliation(s)
- Jorge V. Beira
- ETH Zürich, Department of Biosystems Science and Engineering, MattenstrasseBasel, Switzerland
- * E-mail: (JVB); (RP)
| | - Joana Torres
- ETH Zürich, Department of Biosystems Science and Engineering, MattenstrasseBasel, Switzerland
| | - Renato Paro
- ETH Zürich, Department of Biosystems Science and Engineering, MattenstrasseBasel, Switzerland
- Faculty of Science, University of Basel, KlingelbergstrasseBasel, Switzerland
- * E-mail: (JVB); (RP)
| |
Collapse
|
21
|
Identification of genetic networks that act in the somatic cells of the testis to mediate the developmental program of spermatogenesis. PLoS Genet 2017; 13:e1007026. [PMID: 28957323 PMCID: PMC5634645 DOI: 10.1371/journal.pgen.1007026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/10/2017] [Accepted: 09/17/2017] [Indexed: 11/19/2022] Open
Abstract
Spermatogenesis is a dynamic developmental process requiring precisely timed transitions between discrete stages. Specifically, the germline undergoes three transitions: from mitotic spermatogonia to spermatocytes, from meiotic spermatocytes to spermatids, and from morphogenetic spermatids to spermatozoa. The somatic cells of the testis provide essential support to the germline throughout spermatogenesis, but their precise role during these developmental transitions has not been comprehensively explored. Here, we describe the identification and characterization of genes that are required in the somatic cells of the Drosophila melanogaster testis for progress through spermatogenesis. Phenotypic analysis of candidate genes pinpointed the stage of germline development disrupted. Bioinformatic analysis revealed that particular gene classes were associated with specific developmental transitions. Requirement for genes associated with endocytosis, cell polarity, and microtubule-based transport corresponded with the development of spermatogonia, spermatocytes, and spermatids, respectively. Overall, we identify mechanisms that act specifically in the somatic cells of the testis to regulate spermatogenesis. Sexual reproduction in animals requires the production of male and female gametes, spermatozoa and ova, respectively. Gametes are derived from specialized cells known as the germline through a process called gametogenesis. Gametogenesis typically takes place in a gonad and requires the germ cells to be surrounded by specialized somatic cells that support germline development. While many prior studies have identified germline specific genes required for gametogenesis few have systematically identified genes required in the somatic cells for gametogenesis. To this end we performed an RNAi screen where we disrupted the function of genes specifically in the somatic cyst cells of the Drosophila melanogaster testis. Using fertility assays we identified 281 genes that are required in somatic cyst cells for fertility. To better understand the role of these genes in regulating spermatogenesis we classified the resulting phenotypes by the stage of germline development disrupted. This revealed distinct sets of genes required to support specific stages of spermatogenesis. Our study characterizes the somatic specific defects resulting from disruption of candidate genes and provides insight into their function in the testes. Overall, our findings reveal the mechanisms controlling Drosophila melanogaster spermatogenesis and provide a resource for studying soma-germline interactions more broadly.
Collapse
|
22
|
Subramanian P, Kaliyamoorthy K, Jayapalan JJ, Abdul-Rahman PS, Haji Hashim O. Influence of Quercetin in the Temporal Regulation of Redox Homeostasis in Drosophila melanogaster. JOURNAL OF INSECT SCIENCE (ONLINE) 2017; 17:3778206. [PMID: 28931163 PMCID: PMC5605229 DOI: 10.1093/jisesa/iex040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Indexed: 06/07/2023]
Abstract
Numerous biological processes are governed by the biological clock. Studies using Drosophila melanogaster (L.) are valuable that could be of importance for their effective applications on rodent studies. In this study, the beneficial role of quercetin (a flavonoid) on H2O2 induced stress in D. melanogaster was investigated. D. melanogaster flies were divided into four groups (group I - control, group II - H2O2 (acute exposure), group III - quercetin, and group IV - quercetin + H2O2 treated). Negative geotaxis assay, oxidative stress indicators (protein carbonyls, thiobarbituric reactive substances [TBARS]), and antioxidants (superoxide dismutase [SOD], catalase [CAT], glutathione-S-transferase [GST], glutathione peroxidase, and reduced glutathione [GSH]) were measured at 4 h intervals over 24 h and temporal expression of heat shock protein-70 (Hsp70), Upd1 (homolog of IL-6 in Drosophila), and nitric oxide synthase (Nos) was analyzed by Western blotting. Groups II and IV showed altered biochemical rhythms (compared with controls). Decreased mesor values of negative geotaxis, SOD, CAT, GST, and GSH were noticed in H2O2, increased mesor of oxidative stress indicators (TBARS and protein carbonyl content) and a reversibility of the rhythmic characteristics were conspicuous after quercetin treatment. The expression levels of Hsp70, Upd1, and Nos were noticeably maximum at 04:00. Significant elevation of expression by H2O2 was nearly normalized by quercetin treatment. The possible mechanism by which quercetin modulates oxidant-antioxidant imbalance under oxidative stress could be ascribed to the modulation of the rhythmic properties. Our results will be helpful to understand the molecular interlink between circadian rhythm and oxidative stress mechanism.
Collapse
Affiliation(s)
- Perumal Subramanian
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram 608 002, Tamil Nadu, India (; )
| | - Kanimozhi Kaliyamoorthy
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram 608 002, Tamil Nadu, India (; )
| | - Jaime Jacqueline Jayapalan
- University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia ()
| | - Puteri Shafinaz Abdul-Rahman
- University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia ()
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia (; )
| | - Onn Haji Hashim
- University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia ()
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia (; )
| |
Collapse
|
23
|
Lee JY, Chen JY, Shaw JL, Chang KT. Maintenance of Stem Cell Niche Integrity by a Novel Activator of Integrin Signaling. PLoS Genet 2016; 12:e1006043. [PMID: 27191715 PMCID: PMC4871447 DOI: 10.1371/journal.pgen.1006043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 04/19/2016] [Indexed: 01/22/2023] Open
Abstract
Stem cells depend critically on the surrounding microenvironment, or niche, for their maintenance and self-renewal. While much is known about how the niche regulates stem cell self-renewal and differentiation, mechanisms for how the niche is maintained over time are not well understood. At the apical tip of the Drosophila testes, germline stem cells (GSCs) and somatic stem cells share a common niche formed by hub cells. Here we demonstrate that a novel protein named Shriveled (Shv) is necessary for the maintenance of hub/niche integrity. Depletion of Shv protein results in age-dependent deterioration of the hub structure and loss of GSCs, whereas upregulation of Shv preserves the niche during aging. We find Shv is a secreted protein that modulates DE-cadherin levels through extracellular activation of integrin signaling. Our work identifies Shv as a novel activator of integrin signaling and suggests a new integration model in which crosstalk between integrin and DE-cadherin in niche cells promote their own preservation by maintaining the niche architecture. Stem cells are vital for development and for regeneration and repair of tissues in an organism. The ability of adult stem cells to maintain their “stemness” depends critically on the localized microenvironment, or niche. While much is known about how the niche regulates stem cell self-renewal and differentiation, mechanisms for how the niche is maintained during aging are not well understood. Using Drosophila testis as a model system, here we demonstrate that a protein we named Shriveled is a secreted protein that activates integrin signaling to preserve niche architecture. We also show that Shriveled-dependent activation of integrin maintains normal E-cadherin levels in the niche cells, providing a mechanism for niche maintenance. Interestingly, upregulation of Shriveled retards the loss of niche and stem cells seen during normal aging. Together, our work identifies Shriveled as a novel molecule required for preservation of the niche structure in the Drosophila testis.
Collapse
Affiliation(s)
- Joo Yeun Lee
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States of America
| | - Jessica Y. Chen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jillian L. Shaw
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States of America
| | - Karen T. Chang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States of America
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
Monahan AJ, Starz-Gaiano M. Apontic regulates somatic stem cell numbers in Drosophila testes. BMC DEVELOPMENTAL BIOLOGY 2016; 16:5. [PMID: 26993259 PMCID: PMC4799534 DOI: 10.1186/s12861-016-0103-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 02/10/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Microenvironments called niches maintain resident stem cell populations by balancing self-renewal with differentiation, but the genetic regulation of this process is unclear. The niche of the Drosophila testis is well-characterized and genetically tractable, making it ideal for investigating the molecular regulation of stem cell biology. The JAK/STAT pathway, activated by signals from a niche component called the hub, maintains both germline and somatic stem cells. RESULTS This study investigated the molecular regulation of the JAK/STAT pathway in the stem cells of the Drosophila testis. We determined that the transcriptional regulator Apontic (Apt) acts in the somatic (cyst) stem cells (CySCs) to balance differentiation and maintenance. We found Apt functions as a negative feedback inhibitor of STAT activity, which enables cyst cell maturation. Simultaneous loss of the STAT regulators apt and Socs36E, or the Stat92E-targeting microRNA miR-279, expanded the somatic stem cell-like population. CONCLUSIONS Genetic analysis revealed that a conserved genetic regulatory network limits JAK/STAT activity in the somatic stem cells of Drosophila testis. In these cells, we determined JAK/STAT signaling promotes apt expression. Then, Apt functions through Socs36E and miR-279 to attenuate pathway activation, which is required for timely CySC differentiation. We propose that Apt acts as a core component of a STAT-regulatory circuit to prevent stem cell overpopulation and allow stem cell maturation.
Collapse
Affiliation(s)
- Amanda J Monahan
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA.,Present Address: Department of Medicine, Division of Infectious Disease, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Michelle Starz-Gaiano
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA.
| |
Collapse
|
25
|
Ding F, Gil MP, Franklin M, Ferreira J, Tatar M, Helfand SL, Neretti N. Transcriptional response to dietary restriction in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2014; 69:101-106. [PMID: 24819200 PMCID: PMC4177363 DOI: 10.1016/j.jinsphys.2014.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/21/2014] [Accepted: 05/01/2014] [Indexed: 06/03/2023]
Abstract
Dietary restriction (DR) extends lifespan in a wide variety of organisms. Although several genes and pathways associated with this longevity response have been identified, the specific mechanism through which DR extends lifespan is not fully understood. We have recently developed a novel methodology to screen for transcriptional changes in response to acutely imposed DR upon adult Drosophila melanogaster and identified groups of genes that switch their transcriptional patterns from a normal diet pattern to a restricted diet pattern, or 'switching genes'. In this current report we extend our transcriptional data analysis with gene set enrichment analysis to generate a pathway-centered perspective. The pattern of temporal behavior in response to the diet switch is strikingly similar within and across pathways associated with mRNA processing and protein translation. Furthermore, most genes within these pathways display an initial spike in activity within 6-8h from the diet switch, followed by a coordinated, partial down-regulation after 24h. We propose this represents a stereotypical response to DR, which ultimately leads to a mild but widespread inhibition of transcriptional and translational activity. Inhibition of the protein synthesis pathway has been observed in DR in other studies and has been shown to extend lifespan in several model organisms.
Collapse
Affiliation(s)
- Feifei Ding
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, United States
| | - M Pilar Gil
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, United States
| | - Michael Franklin
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, United States
| | - Jonathan Ferreira
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, United States
| | - Marc Tatar
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, United States
| | - Stephen L Helfand
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, United States
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, United States; Center for Computational Molecular Biology, Brown University, Providence, RI 02912, United States.
| |
Collapse
|
26
|
Gold KS, Brückner K. Drosophila as a model for the two myeloid blood cell systems in vertebrates. Exp Hematol 2014; 42:717-27. [PMID: 24946019 PMCID: PMC5013032 DOI: 10.1016/j.exphem.2014.06.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/14/2014] [Accepted: 06/05/2014] [Indexed: 12/23/2022]
Abstract
Fish, mice, and humans rely on two coexisting myeloid blood cell systems. One is sustained by hematopoietic progenitor cells, which reside in specialized microenvironments (niches) in hematopoietic organs and give rise to cells of the monocyte lineage. The other system corresponds to the independent lineage of self-renewing tissue macrophages, which colonize organs during embryonic development and are maintained during later life by proliferation in local tissue microenvironments. However, little is known about the nature of these microenvironments and their regulation. Moreover, many vertebrate tissues contain a mix of both tissue-resident and monocyte-derived macrophages, posing a challenge to the study of lineage-specific regulatory mechanisms and function. This review highlights how research in the simple model organism Drosophila melanogaster can address many of these outstanding questions in the field. Drawing parallels between hematopoiesis in Drosophila and vertebrates, we illustrate the evolutionary conservation of the two myeloid systems across animal phyla. Much like vertebrates, Drosophila possesses a lineage of self-renewing tissue-resident macrophages, which we refer to as tissue hemocytes, as well as a "definitive" lineage of macrophages that derive from hematopoiesis in the progenitor-based lymph gland. We summarize key findings from Drosophila hematopoiesis that illustrate how local microenvironments, systemic signals, immune challenges, and nervous inputs regulate adaptive responses of tissue-resident macrophages and progenitor-based hematopoiesis to maximize fitness of the animal.
Collapse
Affiliation(s)
| | - Katja Brückner
- Department of Cell and Tissue Biology; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|